

Environmental and life-history factors influence inter-colony multidimensional niche metrics of a breeding Arctic marine bird

Reyd Smith, David Yurkowski, Kyle J.L. Parkinson, Jérôme Fort, Holly Hennin, H. Grant Gilchrist, Keith Hobson, Mark Mallory, Jóhannis Danielsen, Svend Garbus, et al.

▶ To cite this version:

Reyd Smith, David Yurkowski, Kyle J.L. Parkinson, Jérôme Fort, Holly Hennin, et al.. Environmental and life-history factors influence inter-colony multidimensional niche metrics of a breeding Arctic marine bird. Science of the Total Environment, 2021, 796, pp.148935. 10.1016/j.scitotenv.2021.148935 . hal-03346864

HAL Id: hal-03346864 https://hal.science/hal-03346864v1

Submitted on 25 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Environmental and life-history factors influence inter-colony and multidimensional niche
2	metrics of a breeding Arctic marine bird
3	Reyd A. Smith ^{1*} , David J. Yurkowski ² , Kyle J.L. Parkinson ¹ , Jérôme Fort ³ , Holly L. Hennin ⁴ , H.
4	Grant Gilchrist ⁴ , Keith A. Hobson ⁵ , Mark L. Mallory ⁶ , Jóhannis Danielsen ⁷ , Svend E. Garbus ⁸ ,
5	Sveinn A. Hanssen ⁹ , Jón Einar Jónsson ¹⁰ , Christopher J. Latty ¹¹ , Ellen Magnúsdóttir ¹⁰ , Børge
6	Moe ⁹ , Glen J. Parsons ¹² , Christian Sonne ⁸ , Grigori Tertitski ¹³ , and Oliver P. Love ¹
7	
8	¹ University of Windsor, Windsor, Ontario, Canada, N9B 3P4
9	² Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada, R3T 2N6
10	³ French National Centre for Scientific Research, Paris, France, 75016
11	⁴ Environment and Climate Change Canada, Ottawa, Ontario, Canada, K0A 1H0.
12	⁵ Western University, London, Ontario, Canada, N6A 3K7
13	⁶ Acadia University, Wolfville, Nova Scotia, Canada, B4P 2R6
14	⁷ Faroe Marine Research Institute, Tórshavn, Faroe Islands, FO-110
15	⁸ Aarhus University, Roskilde, Denmark, DK-4000
16	⁹ Norwegian Institute for Nature Research, Tromsø, Norway, N-9296
17	¹⁰ University of Iceland's Research Centre at Snæfellsnes, Hafnargata 3, 340, Stykkishólmur,
18	Iceland
19	¹¹ Arctic National Wildlife Refuge, U.S. Fish and Wildlife Service, Fairbanks, Alaska, United
20	States, 99701
21	¹² Nova Scotia Department of Lands and Forestry, Kentville, Nova Scotia, Canada, B4N 4E5
22	¹³ Institute of Geography of the Russian Academy of Sciences, Moscow, Russia, 119017
23	
24	*Corresponding Author
25	
26	
27	Keywords

28 Stable isotopes; carbon-13; nitrogen-15; Hg; isotopic niche; climate change; common eider

29 Abstract

30 Human industrialization has resulted in rapid climate change, leading to wide-scale environmental shifts. These shifts modify food web dynamics by altering the abundance and 31 32 distribution of primary producers (ice algae and phytoplankton), as well as animals at higher 33 trophic levels. Methylmercury (MeHg) is a neuro-endocrine disrupting compound which 34 biomagnifies in animals as a function of prey choice, and, as such, bioavailability is affected by 35 altered food web dynamics and adds an important risk-based dimension in studies of foraging 36 ecology. We determined the multidimensional (δ^{13} C, δ^{15} N, THg) niche dynamics (MDND) among breeding common eider (Somateria mollissima) ducks sampled from 10 breeding 37 38 colonies distributed across the circumpolar Arctic and subarctic. Results show high variation in MDND among colonies as indicated by niche size and ranges in δ^{13} C, δ^{15} N and THg values in 39 40 relation to spatial differences in primary production inferred from sea-ice presence and colony 41 migratory status. Colonies with higher sea-ice cover during the pre-incubation period had higher median colony THg, δ^{15} N and δ^{13} C. Individuals at migratory colonies had relatively higher THg 42 43 and δ^{15} N and lower δ^{13} C, suggesting a higher trophic position and a greater reliance on 44 phytoplankton-based prey. We conclude that variation in MDND exists amongst eider colonies 45 which influenced individual blood THg concentrations. Further exploration of spatial 46 ecotoxicology and niche characteristics at each individual site is important to examine the relationships between anthropogenic activities, foraging behaviour, and the related risks of 47 48 contaminant exposure. Multidimensional niche analysis that incorporates multiple isotopic and contaminant metrics could help identify those populations at risk to rapidly altered food 49 web dynamics, notably important to the Indigenous populations that rely on eiders as a 50 stable resource. 51

52 Highlights

- 53 1. Common eider colonies vary in their multidimensional ($\delta^{15}N$, $\delta^{13}C$, THg) niche size.
- 54 2. Colonies with higher sea-ice cover had higher $\delta^{15}N$, $\delta^{13}C$ and THg.
- 55 3. Colonies considered migratory had higher average δ^{15} N and THg, but lower δ^{13} C.
- 56 4. Individuals with lower δ^{13} C and higher trophic positions had higher THg.
- 57

58 Graphical Abstract

3

60 1. Introduction

61	Global anthropogenic activity has resulted in environmental shifts within Arctic systems	
62	including rising air and ocean temperatures (Zhang 2005; Screen and Simmonds 2010; Najafi et	
63	al. 2015), changes in wind and ocean circulation (Timmermans et al. 2011), a dramatic	
64	modification of sea-ice cover in polar marine systems (Johannessen et al. 2004; Hoegh-Guldberg	
65	and Bruno 2010; IPCC 2019), and an elevated transport and deposition of biologically harmful	
66	contaminants (Dietz et al. 2009; Liu et al. 2012; Foster et al. 2019). These multiple stressors	
67	generate cumulative effects which have direct and indirect influences on biological systems,	
68	ultimately having the potential to affect food web characteristics including prey availability and	
69	selection (Vasseur and McCann 2005; Frederiksen et al. 2006; Parmesan 2006). Arctic marine	
70	food-webs have been particularly impacted, leading to dramatic abiotic shifts resulting in	
71	alterations of prey abundance and availability which have modified the foraging niche of higher	
72	trophic-level organisms (Moline et al. 2008; Pecuchet et al. 2020).	
73	The foraging niche of an organism includes both dietaryc and environmental components,	
74	and therefore has been used to discern both trophic roles by consumers and changes in their	
75	resource use (Newsome et al. 2007). Studies examining foraging niche size (the spatial and	
76	trophic-level range at which a group forages) have been used to investigate the effect of	
77	phenological changes in primary production on predators (Rabosky 2009). In polar regions,	
78	changes in the abundance, distribution, and phenology of primary producers such as	
79	phytoplankton and sea ice-algae can have effects on higher trophic-level wildlife (Frederiksen et	
80	al. 2006; Kohlbach et al. 2016; Renaut et al. 2018; Lewis et al. 2020). Sympagic-pelagic-benthic	
81	coupling drives energy flow between the surface and benthic habitats and provides a foundation	
82	for Arctic ecosystem functioning involving benthic consumers but is being decoupled due to	

83	changing sea-ice dynamics (Søreide et al. 2012; Kohlbach et al. 2016; Yurkowski et al. 2020a).
84	These shifts can generate bottom-up effects on the foraging ecology of higher trophic species,
85	especially those that rely on consuming resources that inhabit the sea floor (Leu et al. 2011; Post
86	et al. 2013; Post 2017; Cusset et al. 2019).
87	Stable isotopes of carbon (δ^{13} C) and nitrogen (δ^{15} N) are tracers that provide time-
88	integrated information on habitat use and diet (Bearhop et al. 2006; Cherel and Hobson 2007;
89	Inger and Bearhop 2008). In costal polar environments, δ^{13} C provides dietary information on
90	sources of primary productivity and foraging habitat, for example, between ¹³ C -depleted
91	phytoplankton-derived carbon and ¹³ C -enriched sea-ice derived carbon (Hobson et al. 2002;
92	Kohlbach et al. 2016; Yurkowski et al. 2020a; Lewis et al. 2020). In addition, benthic or
93	nearshore environments are typically enriched in ¹³ C compared to pelagic or offshore sources
94	(Hobson and Welch 1992; Hobson et al. 1995; France 1995). Values of δ^{15} N indicate relative
95	trophic level, with higher trophic levels associated with increased $\delta^{15}N$ values (Hobson and
96	Welch 1992).
97	One further consequence of changing Arctic marine ecosystems is shifts in marine
98	wildlife exposure to contaminants (Muir et al. 1999; Macdonald et al. 2005; Stern et al. 2012). It
99	is well established that Arctic marine food webs are influenced by long-range transport of
100	contaminants (Macdonald et al. 2000; Braune et al. 2005; Kirk et al. 2012). On top of this, the
101	melting of permafrost, ice caps and glaciers is releasing stored contaminants from years of higher
102	contaminant output into the current system (Rydberg et al. 2010; Schuster et al. 2018).
103	Methylmercury (MeHg) is a biologically converted form of mercury (Hg) and is a contaminant
104	of concern due to its high bioavailability in organic tissues and toxic effects at even low, sub-
105	lethal concentrations (Wiener et al. 2003; Whitney and Cristol 2017; Evers 2018). Uptake of

106	MeHg into wildlife can disrupt endocrine functioning, behaviour, and reproductive success	
107	(Cardona-Marek et al. 2009; Chen and Hale 2010; Whitney and Cristol 2017). Specifically,	
108	reproductive effects in birds include reduced clutch size, altered parental breeding behaviour and	
109	reduced hatching and fledgling success (Braune et al. 2012; Tartu et al. 2013; Goutte et al. 2014;	
110	Hartman et al. 2019). Together, these impacts may result in slowed or negative population	
111	growth rates and reproductive success in individuals exposed as juveniles (Schoch et al. 2014;	
112	Paris et al. 2018).	
113	Climate change and human activity in Arctic ecosystems affect the distribution and	
114	accumulation of Hg (Stern et al. 2012; McKinney et al. 2015). Further, changes in Arctic food	
115	web dynamics and trophic relationships may shift the flow of Hg between organisms (Braune et	
116	al. 2014). To study this, δ^{13} C and δ^{15} N measurements are tools that help determine	
117	environmental and dietary sources of Hg due to varying Hg uptake with carbon-source use and	
118	trophic level (Atwell et al. 1998; Cardona-Marek et al. 2009; Pomerleau et al. 2016). While $\delta^{15}N$	
119	indicates trophic level, with greater Hg concentrations through food web biomagnification, high	
120	variability in Hg still occurs among individuals despite similar δ^{15} N values (Atwell et al. 1998;	
121	Bearhop et al. 2000; DiMento et al. 2019). Furthermore, isotope biplots consisting of just δ^{13} C	
122	and δ^{15} N obviously capture an incomplete portrayal of ecological niche due to the inclusion of	
123	only two isotopic variables. A multidimensional niche, including three or more total variables,	
124	can provide more information to assess foraging ecology (Swanson et al. 2015, Hobson et al.	
125	2015, O'Donovan et al. 2018). Therefore, including Hg in niche analyses along with δ^{13} C and	
126	δ^{15} N provides a broader method to quantify an individual and population's foraging ecology and	
127	multidimensional niche dynamics (Yurkowski et al. 2020b). This analytical approach, combining	
128	stable isotopes and contaminants has been applied to multiple taxa including mammals, fish, and	

129	reptiles (Guzzo et al. 2016; Jackson et al. 2016; Purwandana et al. 2016; Yurkowski et al.
130	2020b). However, a multidimensional approach to determine niche size has not been investigated
131	in seabirds despite them being considered sentinels of ecosystem change (Le Bohec et al. 2013).
132	Arctic seabirds demonstrate varying foraging specializations on a large diversity of prey items
133	reflecting climate-induced trophic shifts and inform spatial variation and temporal changes in
134	sea-ice and ocean dynamics that propagate up the food web, making them an ideal model to
135	research multidimensional niche dynamics (Pratte et al. 2019; Albert et al. 2020; Renedo et al.
136	2020).
137	We used an inter-colony and inter-individual approach to examine spatial variation in the
138	3-dimensional niche of common eiders (Somateria mollissima, hereafter eiders). Eiders are a
139	long-lived, colonial-nesting marine bird with high site fidelity and widely dispersed breeding
140	populations across the circumpolar Arctic. Across their range, eiders are likely exposed to
141	diverse environmental conditions that influence colony demographics at varying intensities that
142	may influence foraging decisions and, although typically at low concentrations in eiders, Hg
143	exposure (Mallory et al. 2004; 2017; Jónsson et al. 2013; Goudie et al. 2020; Noel et al. 2021).
144	Eider prey primarily includes a diversity of benthic invertebrates (e.g., urchins, mussels, and
145	gastropods) as well as pelagic macroinvertebrates to a lesser extent (e.g., amphipods; Sénéchal et
146	al. 2011; Kristjánsson et al. 2013; Waltho and Coulson 2015). The abundance and distribution of
147	these prey groups vary spatio-temporally and correlate with both predator Hg concentrations and
148	phenological shifts in primary production (Mouritsen et al. 2005; Barber et al. 2015; Fort et al.

149 2016; Savoy et al. 2017). Thus, examining δ^{15} N, δ^{13} C and Hg niche dynamics of a costal,

150 primarily benthic foraging species provides an avenue to investigate the future impact of prey

151 shifts and the resulting influence on Hg exposure (Sénéchal et al. 2011), as well as relative

152	differences in ice algae and phytoplankton-based food webs in relation to sea-ice cover (Søreide
153	et al. 2012; Kohlbach et al. 2016).
154	We used a 3-dimensional approach combining δ^{15} N, δ^{13} C and total Hg (THg)
155	measurements collected from individuals at 10 eider breeding colonies located across their
156	circumpolar range to evaluate variation in eider foraging ecology and Hg exposure. We
157	anticipated that colonies would show differences in 3-dimensional niche size and ranges of each
158	axis and be influenced by spatial differences in primary productivity (i.e., sea-ice algae and
159	phytoplankton) and migratory behaviour. To examine these possible drivers of colony-level
160	variation in niche metrics, we first examined colony sea-ice cover during a period reflecting
161	periods of isotopic integration in blood. Specifically, we predicted that colonies with higher sea-
162	ice cover would have smaller niche sizes than those with no sea ice present due to more
163	restricted foraging habitat and likely less diverse prey availability (Yurkowski et al. 2016; Pratte
164	et al. 2019). We also examined whether a colony is considered primarily migratory or resident
165	and predicted that eiders from resident, non-migratory colonies would have smaller niche sizes
166	compared to migratory colonies, given that residents remain at the same geographical location
167	year-round and should therefore be continually exposed to a narrower range of environmental
168	conditions than migrants (Herrera 1978; Gómez et al. 2016).
169	In our second objective, as colony-corrected individual values and colony ranges of δ^{13} C,
170	δ^{15} N and THg provide important and unique information about foraging ecology, we first related
171	these values to colony sea-ice cover in the spring during the period when birds would have been
172	foraging at high rates to obtain body condition needed to breed. We predicted that colonies with
173	higher sea-ice cover during the pre-breeding period would have lower δ^{13} C, δ^{15} N and THg ranges
174	due to a restricted number of foraging locations available due to higher sea-ice concentrations, as

175	well as higher individual δ^{13} C, δ^{15} N and THg. Second, we related these metrics to the migratory
176	status of a colony. We predicted that migratory colonies would have wider δ^{13} C, δ^{15} N and THg
177	ranges due to a presumed broader distribution and use of habitat, in addition to higher median
178	THg, δ^{15} N and lower δ^{13} C. Median values were used to avoid data skewed by high/low
179	individual values within a mean and better represent general colony values.
180	Finally, we aimed to assess individual Hg exposure based on possible differences in
181	foraging behaviour and prey selection. We examined the relationship between trophic position
182	(the vertical placement of an individual in the food-web based on prey and individual $\delta^{15}N$) and
183	inter-individual δ^{13} C values on THg concentrations. We predicted that THg would increase with
184	higher trophic position due to the biomagnification of THg, and lower δ^{13} C values because of a
185	greater consumption of resources derived from phytoplankton (Atwell et al. 1998; McMahon et
186	al. 2006; Stern et al. 2012). By examining variation in 3-dimensional niche size among colonies
187	of this Arctic seabird, we aimed to identify the environmental and behavioural factors
188	influencing niche dynamics. Furthermore, multidimensional niche can be used to infer
189	population-level variability in resource use and overall niche diversity which allows for broad
190	predictions about predicted flexibility and resiliency to environmental change (Vander Zanden et
191	al. 2010; Paredes et al. 2012; Smith and Reeves 2012; Sydeman et al. 2012). As such, we also
192	considered how our measurement of niche size may help predict the resiliency of eider colonies
193	to environmental change (Paredes et al. 2012; Smith and Reeves 2012; Sydeman et al. 2012).
194	2. Methods

195 2.1. Study sites and sample collection

- 196 We collected whole blood samples from pre-incubating or incubating eiders in 2018 at 10
- breeding colonies (total number of individuals = 240) across the Arctic and subarctic (spanning a 197

198	longitude from -147.776 to 35.774 and latitude from 78.918 to 43.645; Figure 1, Table 1). We
199	captured eiders using colony- and breeding stage-specific techniques. Pre-incubating eiders were
200	sampled at East Bay Island (within in the Qaqsauqtuuq (East Bay) Migratory Bird Sanctuary,
201	Nunavut, Canada), whereas incubating eiders were sampled at the other nine locations.
202	At East Bay Island, eiders were captured using large flight nets. We collected birds from
203	the nets and drew a 1-mL tarsal blood sample from each female eider (Hennin et al. 2015). These
204	samples were used for isotopic analyses and were collected using a 23G thin-wall, 1-inch needle
205	attached to a sodium-heparinized 1 mL syringe (Lemons et al. 2012). After transferring to a
206	heparinized 1.5 mL Eppendorf tube, samples were kept cool (~10°C), and within 8 h, were
207	centrifuged at 10,000 rpm for 10 min to separate red blood cells (RBCs) and plasma. Plasma was
208	then transferred by pipetting into a separate cryovial and stored along with RBC samples at -
209	20°C until isotopic analysis. During the same capture period as the first sample, a second blood
210	sample of 1-mL was obtained from the jugular vein using 23G thin wall, 1-inch needles attached
211	to heparinized 3mL syringes to be used for Hg analysis. The whole blood sample was placed in
212	acid-rinsed cryovials and kept at $\sim 10^{\circ}$ C, and frozen within 6 hours of collection until analysis.
213	At the other nine colonies, female eiders were captured on their nest during incubation
214	using either a bownet, noose pole or dogs (John's Island location only; Milton et al. 2016). The
215	specific incubation stage could not be determined at all sites or for all individuals and was
216	excluded from analysis. For most sites, we collected 200-1000 μL of blood from the tarsal vein
217	using a 23G thin-wall, 1-inch needle attached to a heparinized 1 mL syringe. At the Alaskan site,
218	up to 5mL of blood was collected from the jugular vein using a non-heparinized syringe, while at
219	the Icelandic site, blood was collected from the brachial vein. After collection, samples were
220	kept cool and transferred to heparinized 1.5mL cryovials. Within 8-12 h, samples were

centrifuged at approximately 10,000 rpm, dependent on centrifuge model, for 10 min to separate
red blood cells (RBCs) and plasma. Plasma was then placed into a separate cryovial and stored
along with RBC samples at a minimum of -20°C until analysis.

224 2.2. Stable isotope analysis

225 Stable isotopes of elements turnover at different rates based on dietary composition, metabolic 226 rates, and specific metabolic activity of the tissue (Hobson and Clark 1992). Isotopic half-life is 227 dependent on body size and can be affected by temperature exposure (Carleton and Del Rio 228 2005). For avian blood components, plasma has fast turnover rate that reflects recent diet (days), 229 while the turnover rate of RBCs is slower and reflects diet over a longer period (weeks; Hobson 230 and Clark 1992; Barquete et al. 2013). Further, $\delta^{15}N$ and $\delta^{13}C$ usually have similar turnover 231 times, hence are comparable (Bearhop et al. 2002). Stable isotope ratios were measured in 232 plasma at East Bay Island and in RBCs at the other nine colonies. Therefore, despite sampling 233 colonies at different life history stages, by using different tissues for analysis we were still able 234 to compare them within a similar stage including the pre-incubation period while eiders are 235 heavily foraging, either at resident sites or in the last period of migration to build up stored 236 resources for their incubation fast. 237 Samples were freeze-dried for approximately 72 h after collection. Samples were then 238 ground into a fine, homogenized powder using a metal spatula cleaned with acetone. Plasma 239 samples were then lipid extracted using a 2:1 chloroform:methanol solution (Søreide et al. 2006). 240 Specifically, 2:1 chloroform:methanol solution (1.9mL) was added to 100µL of each plasma 241 sample, which were then placed in a water bath at 30°C for 24 h. Samples were then centrifuged 242 at 15,000 rpm for 10 min to separate the lipid solution from the plasma pellet. A p1000 pipette

243 was used to remove the lipid solution, leaving the plasma pellet behind. The pellet was washed

244	again with an additional 1.9 mL of the chloroform:methanol solution and centrifuged for a final
245	10 min at 15,000 rpm. The remaining lipid solution was removed, leaving only a plasma pellet.
246	Samples were left open in the fume hood for 24 h to allow for any remaining
247	chloroform:methanol solution to evaporate. Since RBCs have minimal lipids present, they did
248	not undergo lipid extraction (Hobson and Clark 1992).
249	Plasma and RBC samples were weighed into individual tin-capsules using a 4-digit
250	balance to obtain 0.3-0.5 mg of sample. Plasma samples were prepared at the University of
251	Windsor, and plasma stable isotopes were analysed at the Environment and Climate Change
252	Canada Stable Isotope Laboratory in Saskatoon, Saskatchewan, using continuous-flow isotope-
253	ratio mass spectrometry (CFIRMS; Harris et al. 1997). Samples were weighed into pre-
254	combusted tin capsules. Encapsulated plasma was combusted at 1030°C in a Carlo Erba NA1500
255	or Eurovector 3000 elemental analyser. The resulting N_2 and CO_2 were separated
256	chromatographically and introduced to an Elementar Isoprime or a Nu Instruments Horizon
257	isotope ratio mass spectrometer. Two reference materials were used to normalize the results to
258	VPDB and AIR: BWBIII keratin (δ^{13} C = -20.18, δ^{15} N = +14.31 ‰, respectively) and PRCgel
259	$(\delta^{13}C = -13.64, \delta^{15}N = +5.07 $ %, respectively). Within run (n = 5) precisions as determined from
260	both reference and sample duplicate analyses were \pm 0.1 ‰ for both $\delta^{13}C$ and $\delta^{15}N.$
261	The RBC samples were prepared for isotope analysis at La Rochelle University, France,
262	and were analysed at the LIENSs institute (La Rochelle, France) as detailed in Fort et al. (2014).
263	Plasma and RBC samples were combusted using a Eurovector 3000 (Milan, Italy) elemental
264	analyser which results in production of N_2 and CO_2 gases. These were separated by gas
265	chromatography and introduced into a NU Horizon (Nu Instruments, Wrexham, UK) triple-
266	collector isotope-ratio mass-spectrometer via an open split. Ratios of carbon $({}^{13}C/{}^{12}C)$ and

267	nitrogen ($^{15}N/^{14}N$) were expressed in typical delta notation (δ) as per mil (‰) deviation from the
268	primary standards (Vienna Pee Dee Belemnite (VDPB) and atmospheric nitrogen (AIR),
269	respectively). Replicate measurements ($n = 20$) per run of laboratory standards (USGS-61 and
270	USGS-62) indicated that the measurement accuracy was <0.2‰ for both $\delta^{15}N$ and $\delta^{13}C$ values.
271	Blanks were run at the beginning of each sample set. Detection limit was set to 0.005 μ g/g dw.
272	Due to biogeochemical factors, baseline stable isotopes of Arctic marine food webs vary
273	spatiotemporally (de la Vega et al. 2019). Variation in food web δ^{13} C of marine environments is
274	driven largely by primary production growth rate and inorganic substrate (e.g., water
275	temperature, amount and isotopic signature of dissolved CO ₂) δ^{13} C and these, in turn, can be
276	influenced by sea-ice cover (de la Vega et al. 2019). Stable nitrogen isotope values in marine
277	food webs are influenced by spatial and temporal changes in temperature, increasing abundance
278	of phytoplankton that fix ¹⁵ N, trophic level as well as inputs of nitrogen from terrestrial sources
279	(Smith et al. 1999; Tamelander et al. 2009; McMahon et al. 2013). Importantly, since Arctic food
280	webs are expected to vary isotopically, measured δ^{13} C and δ^{15} N values of biota from different
281	regions can only be compared if corrected for such baseline variance (Bowen 2010; Hobson et al.
282	2012; de la Vega et al. 2019). Based on previously published δ^{13} C and δ^{15} N values of known
283	eider bivalve prey at the different breeding sites, we corrected our data by subtracting baseline
284	bivalve isotope values from the eider tissue values to obtain "corrected" isotopic values (Table
285	2). However, Hg values were not corrected to baseline values. Additionally, we were unable to
286	account for the potential impact of incubation stage on δ^{15} N, δ^{13} C or Hg values. Both Hg and
287	δ^{15} N values can be elevated in blood due to mobilization of internal nutrient stores during the
288	incubation fast (Hobson et al. 1993; Wayland et al. 2005). However, our use of RBCs instead of
289	plasma to determine incubating female δ^{15} N values minimized this effect (Cherel et al. 2005).

290	Furthermore, our sampling of eiders during incubation, when Hg is known to increase (Wayland
291	et al. 2005), lessens but does not mitigate the potential bias of East Bay Island pre-breeding
292	eiders having elevated Hg relative to the other colonies as the pre-breeding eiders have not yet
293	depurated Hg to their eggs during laying (Akearok et al. 2010). Hence, caution should be taken
294	when comparing Hg values between East Bay Island and the other nine colonies.
295	Diet-tissue isotopic discrimination factors allow modeling of isotopic trophic positions or
296	nutrient source tracing (e.g., Wolf et al. 2009; Federer et al. 2010; Bond and Diamond 2011).
297	Such factors have not been established for common eiders and so we used those reported by
298	Federer et al. (2010) for spectacled eider (Somateria fischeri) (plasma: +4.9%; RBC: +4.0%).
299	Trophic position was calculated using baseline $\delta^{15}N$ bivalve values for the individual's colony
300	$(\delta^{15}N_{base})$, discrimination factors from the respective tissue of spectacled eiders ($\delta^{15}N_{TDF}$; Federer
301	et al. 2010), trophic position (TP) of baseline prey values (TP _{base} ; value of 2 consistent with eider
302	prey), and the non-colony corrected $\delta^{15}N$ values for that individual eider ($\delta^{15}N_{eider}$; Hobson and
303	Welch 1992; Vander Zanden et al. 1997; Vander Zanden and Rasmussen 1999).

304

$TP = ((\delta^{15}N_{eider} - \delta^{15}N_{base})/\delta^{15}N_{TDF}) + TP_{base}$

305 2.3. THg analysis

306 Whole blood collected at East Bay Island was sent to the Research and Productivity Council 307 (RPC) in New Brunswick, Canada for THg analysis. Each sample was prepared by microwave-308 assisted digestion in nitric acid (SOP 4.M26). Mercury was then analysed by cold vapour atomic 309 absorption spectroscopy (AAS; SOP 4.M52 & SOP 4.M53) to obtain THg concentrations. 310 Quality assurance/control procedures included analysis of four reagent blanks, and reference 311 materials from dogfish liver (DOLT-2) and lobster hepatopancreas (TORT-2) from the National

312	Research Council (NRC), Canada, as well as four randomly selected duplicate samples. All
313	samples followed quality control procedures. Mercury concentrations were converted from wet
314	weight to dry weight for comparison with the other colonies following known equations and
315	moisture values for avian blood at 79% (Eagles-Smith et al. 2008).
316	For the remaining nine colonies, THg analyses were conducted at LIENSs Institute using
317	RBCs separated from plasma collected from incubating females. These eiders were captured
318	while incubating (Hanssen et al. 2002; Bottitta et al. 2003; Sénéchal et al. 2011), thus by
319	collecting and analysing RBCs alone, the timeframe which the RBCs represent aligns with the
320	same timeframe represented in the East Bay Island eiders (pre-incubation period for all colonies)
321	since whole blood has a turnover rate approximately intermediate of plasma and RBC (Cherel et
322	al. 2005). Therefore, this provides justification for including the colony in our analysis despite
323	potential differences in physiology due to their reproductive stages. Freeze-dried blood was
324	analysed using an Advanced Hg Analyser spectrophotometer (Altec AMA 254). A quality
325	control program included running blanks prior to the analysis, as well as the same certified
326	reference materials used to analyze the samples from East Bay Island (DOLT-2 and TORT-2)
327	analysed every 15 samples. Samples were analyzed for THg since Hg exists as primarily MeHg
328	in avian blood (near 1:1 ratio; Wiener et al. 2003; Rimmer et al. 2005).

329 2.4. Statistical analysis

We estimated 3-dimensional niche size (using THg, δ^{13} C and δ^{15} N) and ranges along the THg, δ^{13} C and δ^{15} N axes for 10 eider colonies using the R package nicheROVER v1.0 (Swanson et al. 2015) in R version 3.6.2 (R Development Core Team). NicheROVER uses Bayesian statistical methods to calculate a multidimensional niche region in multivariate space that represents the spatial breadth and placement of a group's (i.e., colony's) niche in relation to other groups and

335	infers the niche size of each group based on the group's individual values (Swanson et al. 2015).
336	Since the variables are in different units (δ^{13} C and δ^{15} N: ‰ vs. THg: µg/g ⁻¹), we scaled and
337	centred all values by subtracting the mean for each variable and dividing it by the standard
338	deviation, thereby standardizing all data. To determine if there were any correlations among
339	variables prior to analysis, we tested for independence by calculating Spearman's correlation
340	coefficient between THg and colony-corrected $\delta^{15}N$ which showed a significant but weak
341	correlation (<i>R</i> =0.429, <i>p</i> <0.001). Thus, THg and δ^{15} N, while related, do possess independent
342	variation that allows us to use both in our analysis to account for spatial variation in THg
343	concentrations. We calculated a 95% probability niche region in multivariate space at 10,000
344	iterations using diffuse priors (Swanson et al. 2015; Yurkowski et al. 2020b). We ran additional
345	script at 10,000 iterations to obtain $\delta^{13}C$, $\delta^{15}N$ and THg ranges (difference between the highest
346	and lowest values; Swanson et al. 2015; Yurkowski et al. 2020b). Three-dimensional models of
347	the niche ranges were visualized using the scatter3D function in the car package v.3.0-9 (Fox and
348	Weisberg 2019) and the rgl package v.0.100.54 (Adler and Murdoch 2017; see Supplemental
349	Materials).
350	Primary migratory status of each colony, not including the potential for individual
351	variation, was determined by consulting previous studies (Schamel 1997; Bønløkke et al. 2006;
352	Hanssen et al. 2016; Steenweg et al. 2017; Mallory et al. 2020) and through spatial tracking data
353	collected by the SEATRACK program (https://seapop.no/en/seatrack/). Moreover, we
354	determined the proportion of sea-ice cover surrounding each colony within a timeframe
355	reflecting turnover rates of isotope sampling (plasma within a week of sampling, RBC within a
356	month of sampling; Hobson and Clark 1992; Barquete et al. 2013). Sea-ice cover was determined
357	via a satellite image of a 100 km area around each colony on a cloud-less day from NASA

358 Worldview dataset (EOSDIS, https://worldview.earthdata.nasa.gov). Land pixels were removed 359 from the image manually and the remaining pixels were categorized into two groups (open water 360 or sea ice) using a K-means clustering procedure via RGB values of the pixels 361 (http://mkweb.bcgsc.ca/color-summarizer/). The resulting proportion of pixels was used as a 362 proxy for the proportion of sea ice around the colony during the time of isotopic turnover for 363 each colony (Cusset et al. 2019). 364 We ran a preliminary 2-tailed *t*-test to determine independence between colony sea-ice 365 cover and migratory behaviour and found they were not significantly correlated ($t_5=2.11$, 366 p=0.09). Therefore, to determine sources of niche variation with sea ice cover, we first ran a 367 general linear model (GLM) to determine how log-transformed niche size varied by colony sea 368 ice cover. Next, we conducted six GLMs to analyze the relationship between sea-ice cover and 369 colony δ^{15} N, log-transformed δ^{13} C and THg ranges, as well as median individual colony-370 corrected $\delta^{15}N$, and log-transformed $\delta^{13}C$ and THg values for each of the 10 colonies. 371 To examine variation in niche dynamics between migratory and resident colonies we 372 conducted a 2-tailed t-test to analyze how log-transformed colony niche size varied with 373 migratory status (migratory or resident being the two groups). Following this, we ran six, 2-tailed 374 *t*-tests to analyze whether migratory status of a colony resulted in different colony δ^{15} N, and log-375 transformed $\delta^{13}C$ and THg ranges, as well as individual colony-corrected eider $\delta^{13}C$, $\delta^{15}N$ and 376 log-transformed THg values. 377 Finally, we used a general linear mixed model (GLMM) to examine the relationship 378 between colony-corrected isotopes indicating carbon source (δ^{13} C), trophic position of each 379 individual, and log-transformed THg. The model consisted of THg as the dependent variable,

380 with δ^{13} C and trophic position as independent variables, as well as colony as a random variable.

381 All models conducted throughout the study met statistical assumptions, and all log-

382 transformations were conducted using natural log.

383 3. Results

384 3.1. Niche size and underlying sources of variation

385 Three-dimensional niche size was highly variable among colonies, ranging from 1.4 (Grindøya)

to 21.7 (Iceland), with an average niche size among all colonies of 9.2 ± 7.8 (Figure 2, see

387 Supplemental Materials). However, niche size was not correlated with colony sea ice cover (t_{δ} =-

0.92, p=0.54) or migratory status (t_4 =-0.61, p=0.57). The Christiansø colony in Denmark had the

lowest colony-corrected δ^{13} C values, suggesting higher phytoplankton-derived carbon in their

390 diet, while the Alaskan colony had the highest colony-corrected δ^{13} C suggesting eiders were

391 feeding on prey reflecting more ice algae- or inshore-derived carbon (see Supplemental

392 Materials). The Alaskan colony also had the highest colony-corrected δ^{15} N values, with the

393 Faroe Islands having the lowest values, suggesting that Faroese eiders forage at lower trophic

394 levels, whereas the Alaskan eiders forage at higher trophic levels.

395 3.2. Relationship between colony migratory behaviour and sea-ice cover with isotopes and

396 *THg*

397 Inter-colony variation in sea-ice presence was positively correlated with median eider THg

398 concentrations, as well as δ^{15} N and δ^{13} C values (Table 3). However, δ^{15} N, δ^{13} C as well as THg

399 ranges did not vary with colony sea-ice cover (Table 3). Migratory colonies had higher

400 individual δ^{15} N and THg, as well as lower individual δ^{13} C compared to individuals captured at

401 resident colonies (Table 3). However, δ^{15} N range, δ^{13} C range and THg range did not vary

402 between the migratory and resident colonies (Table 3).

403 3.3. Relationship between isotopic niche and THg concentrations

404	Both colony-corrected $\delta^{13}C$ and trophic position predicted THg concentration within individuals.
405	Specifically, individuals with a lower δ^{13} C value (phytoplankton-based foraging) had higher THg
406	values (Table 3, Figure 3). Additionally, THg significantly increased with trophic position,
407	where individuals with higher trophic positions had greater THg values (Table 3, Figure 3).
408	4. Discussion
409	Using data collected from ten eider colonies located throughout their circumpolar range,
410	including both Arctic and subarctic sites, we quantified 3-dimensional niche size using $\delta^{15}N$,
411	$\delta^{13}C$ and THg to determine colony niche size and ranges. Determination of 3-dimensional niche
412	size allowed us to broadly compare a snapshot of diet breadth at multiple eider colonies in
413	relation to environmental and behavioural differences, as well as infer their potential for
414	flexibility in response to environmental change. We demonstrate the benefits of using multiple
415	chemical tracers when assessing the effects of spatial variation and environmental gradients on
416	the foraging ecology of highly mobile consumers (Ramos and González-Solís 2012). This study
417	represents the first inter-colony, multidimensional niche size analysis for any seabird and the
418	resulting colony-level relationships with THg exposure, an area identified as a key knowledge
419	gap (Dietz et al. 2019).

420 4.1. Colony foraging flexibility and resiliency predictions

421 Generally, colonies that utilize broader, more generalist diets are expected to have larger 422 foraging niches, thus are expected to be inherently less vulnerable to changes since they have 423 greater flexibility in their prey source as they forage on a wide variety of organisms and habitats 424 (Jakubas et al. 2017; Both et al. 2010). Colonies with restricted, specialist diets are expected to 425 have smaller foraging niches, influenced by both prey availability and foraging distance, and are

426	generally viewed as more vulnerable to environmental changes (Bolnick et al. 2003; Araujo et al.
427	2011; Pratte et al. 2019). We examined the 3-dimensional niche size of eider breeding colonies,
428	representing prey selection and trophic connections through stable isotopes and Hg exposure.
429	Multidimensional niche analysis may be useful in predicting the resiliency of common eider
430	colonies to ongoing climate change across their range, although numerous other factors should
431	also be considered including multiple biogeochemical metrics, colony recruitment and individual
432	fitness (Paredes et al. 2012; Smith and Reeves 2012; Sydeman et al. 2012). However, our
433	analysis provides a snapshot of niche characteristics at a singular time frame that may assist with
434	colony-wide resiliency predictions in combination with future research on changing niche
435	dynamics at these colonies.
436	When grouped for similarity, niche size generated the following pattern in our study:
437	Iceland, East Bay Island and Faroe Islands > Christiansø and John's Island > Kongsfjorden,
438	Alaska and Russia > Tern Island and Grindøya (Figure 1). Using our 3-dimensional view of
439	niche size, we predict that colonies with wider (i.e., more generalist) 3-dimensional niches such
440	as those in Iceland and Faroe Islands, or colonies comprised of migrants from multiple locations
441	such as East Bay will show greater resiliency to shifts in food web dynamics compared to
442	colonies with a smaller (i.e., more restricted, specialist) niche similar to Tern Island and
443	Grindøya. Smaller niches are predicted to be a disadvantage in a changing climate as these
444	alterations may change or eliminate food sources, leaving a colony or species more vulnerable if
445	they do not have the flexibility to adapt and shift their diet with this changing prey base (Both et
446	al. 2010; Le Bohec et al. 2013; Ceia and Ramos 2015). However, climate change may present an
447	opportunity for Arctic colonies with smaller niches to expand their prey sources with advancing
448	phenology of spring phytoplankton blooms and more open water sources. For those with broader

449	niches at southern latitudes, that niche size may be critical as we see further changes in the
450	distribution and availability of key prey (Staudinger et al. 2019). Nevertheless, more research
451	that integrates measures of breeding success and colony demographics is necessary to test these
452	resiliency hypotheses over long temporal scales to identify seasonal and annual variation in inter-
453	and intra- colony foraging ecology.

454 4.2. Variation in niche size, niche metrics and THg to colony sea-ice cover

455 Colony niche size was not correlated with sea-ice cover, possibly attributable to several factors. 456 First, despite the presence of sea ice likely restricting foraging locations, eiders may still be able 457 to access a diversity of resources, including the potential for prey sources such as ice-associated 458 amphipods as niche size was similar to southern locations that have more accessible, ice-free 459 areas (Karnovsky et al. 2008). Second, northern colonies may support a variety of individuals 460 that utilize both generalist and specialist strategies, thus adding to the flexibility and diversity of the colony in the face of environmental change (Woo et al. 2008; Ceia and Ramos 2015; Pratte et 461 462 al. 2019). Notably, the relative proportion of generalist and specialist individuals in populations 463 dramatically affects dietary niche size with generalist-based populations having wider niches 464 (Newsome et al. 2007).

We found that eider colonies with greater sea-ice cover had higher δ^{13} C values, which is not consistent with the expected gradient based on ocean temperature (Sackett et al. 1965; Goericke and Fry 1994; McMahon et al. 2013). However, this pattern can be most likely explained by eiders foraging on more resources derved from ice algae with higher ice cover versus more phytoplankton-derived resources in areas with lower sea-ice presence (Hobson et al. 1995; Tamelander et al. 2006; McMahon et al. 2006). As well, macroalgal carbon has a higher δ^{13} C value than phytoplankton and therefore could be a contributing carbon source to these

472	spatial differences. Nonetheless, we show spatial differences in carbon-source use amongst eider
473	colonies, where some colonies use more phytoplankton-derived carbon than others. Furthermore,
474	our results suggest that in general, eider colonies with greater sea-ice cover also had higher
475	median individual THg and δ^{15} N, suggesting that sea-ice presence results in eiders foraging at
476	higher trophic levels, thus contributing to higher overall THg exposure. Potential reasons for
477	higher trophic-level foraging include eiders feeding on ice-associated sources of prey prior to
478	laying, such as amphipods, due to restricted access to benthic prey with sea ice present
479	(Karnovsky et al. 2008). Amphipods seasonally forage on ice algae and this would decouple
480	them from the pelagic food web and result in higher δ^{13} C values (Werner 1997; Brown et al.
481	2017). Furthermore, waters with sea ice present are supersaturated with dissolved THg, thus
482	further contributing to the elevation of THg in food webs (DiMento et al. 2019). Individual
483	variation in foraging behaviour is known to have a role in Hg accumulation (Anderson et al.
484	2009; Braune et al. 2014; Le Croizier et al. 2019) and in our study, individual variation exists
485	within colonies as demonstrated by the colony ranges.

486 4.3. Role of migration in shaping niche dynamics and THg exposure

487 We expected migratory populations (see Table 1, Figure 1) to have larger niches due to broader 488 exposure to a variety of environmental conditions and prey types experienced at overwintering, 489 migratory stopover, and breeding grounds (Herrera 1978; Gómez et al. 2016). In the present 490 study we found no pattern with migratory behaviour and niche size. However, two of the largest 491 niche sizes found at two resident colonies (Iceland and Faroe Islands) may stem from colony-492 wide expansion in dietary choice due to increased prey availability. This has been reported in 493 Iceland where eiders within the colony selected a wide array of both benthic and pelagic prey 494 (Kristjánsson et al. 2013). Waters around Iceland are a mix of Arctic (East-Greenland Current),

495	as well as Atlantic origins (North Atlantic Current), and this, together with greater lack of sea
496	ice, seem to provide a diverse range of prey options to pre-breeding eiders (Vincent 2010;
497	Kristjánsson et al. 2013; Casanova-Masjoan et al. 2020). The East Bay Island colony, consisting
498	of migrants from Greenland and Newfoundland, had the second largest niche size potentially in
499	part due to a mixing of individuals from both overwintering sites (Steenweg et al. 2017).
500	Additionally, individual variation in migration distance and strategy within a colony, although
501	not included in the present study, may lead to broader colony niche ranges (Mallory et al. 2020).
502	Colonies supporting migratory eiders had higher THg concentrations and foraged at
503	higher trophic levels compared to colonies supporting residents, suggesting that colonies of
504	migratory individuals have access to higher trophic-level prey, or rely on these prey to store
505	resources necessary for migration. Colonies with resident eiders with higher individual $\delta^{13} C$
506	levels partially indicate diets with greater foraging based on ice algae, potentially due to residing
507	at their Arctic breeding sites year-round while migratory colonies move to more suitable areas
508	with presumably lower sea ice. Combined with our results on colony latitude, these dynamics
509	suggest that changes in environmental conditions and variability may have different effects on
510	migratory and resident seabird colonies dependent on future colony flexibility, thus should be
511	factored into future analyses especially regarding climate change affects within Arctic
512	ecosystems.

513 4.4. Relationship between trophic position, foraging location and THg concentrations

514 With increasing industrial activity and contaminant deposition due to long-distance transport in 515 northern latitudes, as well as the release of stored Hg from melting ice and increased erosion of 516 terrestrial sources (Sorenson et al. 2016, Cossa et al. 2018), Arctic-inhabiting species are 517 potentially becoming more at risk for contaminants exposure and a suite of possible negative

518	neurological, physiological and reproductive impacts (Dietz et al. 2013; Scheuhammer et al.
519	2015). This is especially a potential population stability concern for harvested species, such as
520	common eider, which are an important, harvested species for many Indigenous communities in
521	the North (Nakashima and Murray 1988; Priest and Usher 2004). Concentrations of THg for the
522	eider colonies in this study are comparable to those observed in previous eider research
523	(Provencher et al. 2016; Albert et al. 2019; Ma et al. 2020; Dietz et al. 2021). The mean
524	concentrations of THg in the Alaska, Christiansø and East Bay colonies were above 0.95 $\mu g/g$
525	dw, suggesting that three of the 10 colonies studied are therefore considered to be above general
526	environmental background concentrations (Eagles-Smith et al. 2008; Ackerman et al. 2016).
527	Only 40% of eiders had higher concentrations of THg (above recognized background
528	concentrations of 0.95 ug/g dw), but these concentrations assign them a general "low risk" status
529	regarding concerns for health, physiology, behaviour and reproductive effects (Ackerman et al.
530	2016; Dietz et al. 2019; 2021). The individual eider with the highest Hg level was from the
531	Iceland colony (2.55 $\mu g/g$ dw compared to the colony mean of 0.95 $\mu g/g$ dw), which features
532	less sea ice than other regions such as Alaska, which had the highest colony THg average (1.23
533	μg/g dw).
534	With a rapidly declining sea-ice cover, a rise in phytoplankton production and
535	consumption by eiders could be related to higher, individual THg concentrations (Stern et al.
536	2012). Combined with our results in section 4.2 showing higher median THg concentrations at
537	colonies with greater sea-ice cover, our results demonstrate that within colonies, individuals with
538	greater phytoplankton-based consumption had higher THg concentrations. The relationship
539	between individual δ^{13} C and THg, combined with effects of trophic position (determined using
540	δ^{15} N) on THg may potentially have future effects on seabird health, behaviour and reproduction

541	in those with at-risk Hg exposure. However, it is likely that any possible effects would not be
542	consistent across the entire range of a species, especially given the regional difference in which
543	climate change is altering the Arctic (Muir et al. 1999; Mallory and Braune 2012; Swart et al.
544	2015). Nevertheless, we did detect variation among colonies, suggesting regional differences in
545	the relationship between δ^{13} C, trophic position and THg; for instance, the Christiansø and
546	Kongsfjorden colonies showed opposite relationships between THg and δ^{13} C (Figure 3). Thus,
547	while we conducted a broad-scale study into these relationships, more in-depth analyses of the
548	environmental factors at each site would allow for site-specific investigation into the
549	relationships between foraging behaviour and THg uptake. Additionally, further knowledge of
550	baseline variation (THg, $\delta^{15}N$, $\delta^{13}C$) in colony-specific prey at a varying spatio-temporal scale,
551	parallel with eider sampling, would aid future interpretation of eider niche size and sources of
552	individual and colony THg. The contribution of terrestrial carbon sources and agricultural runoff
553	to marine areas around some of these colonies may also contribute to variation in individual $\delta^{13}C$
554	and δ^{15} N values and affect the rate of THg accumulation (Dunton et al. 2006; Laursen et al.
555	2018; Renedo et al. 2020). Overall, the relationship between environmental conditions and THg
556	concentrations presents a complex system and paired with the rapid changes in ecosystem
557	dynamics currently being observed (i.e., sea ice abundance), underscores the necessity of future,
558	and consistent annual monitoring, especially in key ecosystem indicators like seabirds.
559	5. Conclusion
560	We examined inter-colony, 3-dimensional niche size, isotopic and THg ranges, and the

- relationships between δ^{13} C, δ^{15} N and THg within individuals. Our results suggest that common 561
- eider colonies across the Arctic and subarctic have a wide degree of diet variation, potentially 562
- influenced by environmental changes including spatio-temporal differences in primary 563

564	productivity. We found that consideration of colony-level variation in life histories (migratory vs
565	resident) was important for assessing the level of risk to which a colony may be exposed.
566	Further, inter-annual multidimensional niche analyses would provide greater insight into the
567	temporal variation in niche size that exists at both an inter- and intra-colony scale. Taken
568	together, exploring multidimensional niche metrics is an increasingly valuable tool to provide
569	insight into how diet breadth differs across a species' range, especially when combined with
570	temporal and spatial variation in environmental conditions and key components to variation in
571	life history such as migration.

572 Acknowledgments

573 We thank the field crews and regional volunteers at all locations who assisted in sample 574 collection and logistics. As well, thank you to the lab technicians at Research and Productivity 575 Council (RPC) in New Brunswick, Canada and Littoral Environment et Sociétés (LIENSs, La 576 Rochelle) for sample analysis. We are also grateful to the plateformes 'Analyses Elémentaires' 577 and 'Spectrométrie Isotopique' (La Rochelle University - LIENSs) for their assistance with 578 laboratory work. We also thank Environment and Climate Change Canada (ECCC), the Natural 579 Sciences and Engineering Research Council of Canada, Canada Research Chairs Program, the 580 Nunavut Wildlife Management Board, Northern Scientific Training Program, Polar Continental 581 Shelf Project, Polar Knowledge Canada, Baffinland Iron Mine, the Canadian Network of Centres 582 of Excellence (ArcticNet), Mitacs Globalink Research, The Danish Environmental Protection 583 Agency, Danish Hunters' Association, Hunters' Nature Fund, the Government of Ontario and the 584 University of Windsor for logistical support, research and/or personal funding. This study is also 585 a contribution to the ARCTOX initiative (arctox.cnrs.fr) and the ARCTIC-STRESSORS project 586 (ANR-20-CE34-0006-01). Animal care approval for this project was granted through the

- 587 University of Windsor Committee for Animal Care (AUPP #11-06; Reproductive Strategies of
- 588 Arctic-Breeding Common Eiders), and ECCC Animal Care (EC-PN-15-026).

590 Literature Cited

- 591 Ackerman, J.T., Eagles-Smith, C.A., Herzog, M.P., Hartman, C.A., Peterson, S.H., Evers, D.C.,
- 592 Jackson, A.K., Elliott, J.E., Vander Pol, S.S. and Bryan, C.E. 2016. Avian mercury
- 593 exposure and toxicological risk across western North America: a synthesis. Science of the
 594 Total Environment, 568: 749-769.
- Adler, D. and Murdoch, D. 2017. 3D Visualization Using OpenGL. Web page: [https://cran. r project. org/web/packages/rgl/rgl. pdf].
- 597 Akearok, J.A., Hebert, C.E., Braune, B.M. and Mallory, M.L. 2010. Inter-and intraclutch
- variation in egg mercury levels in marine bird species from the Canadian Arctic. Scienceof the Total Environment, 408(4): 836-840.
- Albert, C., Renedo, M., Bustamante, P. and Fort, J. 2019. Using blood and feathers to investigate
 large-scale Hg contamination in Arctic seabirds: a review. Environmental Research, 177:
 108588.
- 603 Albert, C., Helgason, H.H., Brault-Favrou, M., Robertson, G.J., Descamps, S., Amélineau, F.,
- 604 Danielsen, J., Dietz, R., Elliott, K., Erikstad, K.E. and Eulaers, I., Ezhov, A.,
- 605 Fitzsimmons, M.G., Gavrilo, M., Golubova, E., Grémillet, D., Hatch, H., Huffeldt, N.P.,
- 606 Jakubas, D., Kitaysky, A., Kolbeinsson, Y., Krasnov, Y., Lorentsen, S.A., Lorentzen, E.,
- 607 Mallory, M.L., Merkel, B., Merkel, F.R., Montevecchi, W., Mosbech, A., Olsen, B.,
- 608 Orben, R.A., Patterson, A., Provencher, J., Plumejeaud, C., Pratte, I., Reiertsen, T.K.,
- 609 Renner, H., Rojek, N., Romano, M., Strøm, H., Systad, G.H., Takahashi, A., Thiebot,
- 610 J.B., Thórarinsson, T.L., Will, A.P., Wojczulanis-Jakubas, K., Bustamante, P. and Fort, J.
- 611 2021. Seasonal variation of mercury contamination in Arctic seabirds: a pan-arctic
- assessment. Science of the Total Environment, 750: 142201.

- 613 Anderson, O.R.J., Phillips, R.A., McDonald, R.A., Shore, R.F., McGill, R.A.R. and Bearhop, S.
- 614 2009. Influence of trophic position and foraging range on mercury levels within a seabird
 615 community. Marine Ecology Progress Series, 375: 277-288.
- 616 Araújo, M.S., Bolnick, D.I. and Layman, C.A. 2011. The ecological causes of individual
- 617 specialisation. Ecology Letters, 14(9): 948-958.
- 618 Atwell, L., Hobson, K.A. and Welch, H.E. 1998. Biomagnification and bioaccumulation of
- 619 mercury in an arctic marine food web: insights from stable nitrogen isotope analysis.
 620 Canadian Journal of Fisheries and Aquatic Sciences, 55(5): 1114-1121.
- 621 Barber, D.G., Hop, H., Mundy, C.J., Else, B., Dmitrenko, I.A., Tremblay, J.E., Ehn, J.K., Assmy,
- 622 P., Daase, M., Candlish, L.M. and Rysgaard, S. 2015. Selected physical, biological and
- biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Progress in
 Oceanography, 139: 122-150.
- Barquete, V., Strauss, V. and Ryan, P.G. 2013. Stable isotope turnover in blood and claws: a
 case study in captive African penguins. Journal of Experimental Marine Biology and

627 Ecology, 448: 121-127.

- 628 Bearhop, S., Phillips, R.A., Thompson, D.R., Waldron, S. and Furness, R.W. 2000. Variability in
- 629 mercury concentrations of great skuas *Catharacta skua*: the influence of colony, diet and
- 630 trophic status inferred from stable isotope signatures. Marine Ecology Progress Series,
- 631 195: 261-268.
- 632 Bearhop, S., Waldron, S., Votier, S.C. and Furness, R.W. 2002. Factors that influence
- 633 assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood
- and feathers. Physiological and Biochemical Zoology, 75(5): 451-458.

- 635 Bearhop, S., Phillips, R.A., McGill, R., Cherel, Y., Dawson, D.A. and Croxall, J.P. 2006. Stable
- 636 isotopes indicate sex-specific and long-term individual foraging specialisation in diving
 637 seabirds. Marine Ecology Progress Series, 311: 157-164.
- 638 Bolnick, D.I., Svanbäck, R., Fordyce, J.A., Yang, L.H., Davis, J.M., Hulsey, C.D. and Forister,
- 639 M.L. 2003. The ecology of individuals: incidence and implications of individual
- 640 specialization. The American Naturalist, 161(1): 1-28.
- 641 Bond, A.L. and Diamond, A.W. 2011. Recent Bayesian stable-isotope mixing models are highly
- sensitive to variation in discrimination factors. Ecological Applications, 21(4): 1017-
- 643 1023.
- Bønløkke, J., Madsen, J.J., Thorup, K., Pedersen, K.T., Bjerrum, M. and Rahbek, C. 2006.
 Dansk Trækfugleatlas: the Danish bird migration atlas. Rhodos.
- 646 Both, C., Van Turnhout, C.A., Bijlsma, R.G., Siepel, H., Van Strien, A.J. and Foppen, R.P. 2010.
- 647 Avian population consequences of climate change are most severe for long-distance
- 648 migrants in seasonal habitats. Proceedings of the Royal Society B: Biological Sciences,
- 649 277(1685): 1259-1266.
- 650 Bottitta, G.E., Nol, E. and Gilchrist, H.G. 2003. Effects of experimental manipulation of
- 651 incubation length on behavior and body mass of common eiders in the Canadian Arctic.
- 652 Waterbirds, 26(1): 100-107.
- Bowen, G.J. 2010. Isoscapes: spatial pattern in isotopic biogeochemistry. Annual Review of
 Earth and Planetary Sciences, 38: 161-187.
- 655 Braune, B.M., Outridge, P.M., Fisk, A.T., Muir, D.C.G., Helm, P.A., Hobbs, K., Hoekstra, P.F.,
- 656 Kuzyk, Z.A., Kwan, M., Letcher, R.J. and Lockhart, W.L. 2005. Persistent organic

657	pollutants and merc	cury in marin	ne biota of the	e Canadian A	Arctic: an ove	erview of spatial and
	1	2				1

- 658 temporal trends. Science of the Total Environment, 351: 4-56.
- 659 Braune, B.M., Scheuhammer, A.M., Crump, D., Jones, S., Porter, E. and Bond, D. 2012.
- 660 Toxicity of methylmercury injected into eggs of thick-billed murres and arctic terns.
 661 Ecotoxicology, 21(8): 2143-2152.
- Braune, B.M., Gaston, A.J., Hobson, K.A., Gilchrist, H.G. and Mallory, M.L. 2014. Changes in
 food web structure alter trends of mercury uptake at two seabird colonies in the Canadian

Arctic. Environmental Science and Technology, 48(22): 13246-13252.

- Brown, T.A., Assmy, P., Hop, H., Wold, A. and Belt, S.T. 2017. Transfer of ice algae carbon to
 ice-associated amphipods in the high-Arctic pack ice environment. Journal of Plankton
- 667 Research, 39(4): 664-674.
- Cardona-Marek, T., Knott, K.K., Meyer, B.E. and O'Hara, T.M. 2009. Mercury concentrations in
 southern Beaufort Sea polar bears: variation based on stable isotopes of carbon and
- 670 nitrogen. Environmental Toxicology and Chemistry: An International Journal, 28(7):
- 671 1416-1424.
- 672 Carleton, S.A. and Del Rio, C.M. 2005. The effect of cold-induced increased metabolic rate on

673 the rate of 13C and 15N incorporation in house sparrows (*Passer domesticus*).

674 Oecologia, 144(2): 226-232.

Casanova-Masjoan, M., Pérez-Hernández, M.D., Pickart, R.S., Valdimarsson, H., Ólafsdóttir,
S.R., Macrander, A., Grisolía-Santos, D., Torres, D.J., Jónsson, S., Våge, K. and Lin, P.
2020. Along-stream, seasonal, and interannual variability of the north Icelandic Irminger
Current and East Icelandic Current around Iceland. Journal of Geophysical Research:

679 Oceans, 125(9): e2020JC016283.

680	Ceia, F.R. and Ramos, J.A. 2015. Individual specialization in the foraging and feeding strategies	
681	of seabirds: a review. Marine Biology, 162(10): 1923-1938.	
682	Chen, D. and Hale, R.C. 2010. A global review of polybrominated diphenyl ether flame retardant	
683	contamination in birds. Environment International, 36(7): 800-811.	
684	Cherel, Y., Hobson, K.A., Bailleul, F. and Groscolas, R. 2005. Nutrition, physiology, and stable	
685	isotopes: new information from fasting and molting penguins. Ecology, 86(11): 2881-	
686	2888.	
687	Cherel, Y. and Hobson, K.A. 2007. Geographical variation in carbon stable isotope signatures of	
688	marine predators: a tool to investigate their foraging areas in the Southern Ocean. Marine	
689	Ecology Progress Series, 329: 281-287.	
690	Cossa, D.; Heimbürger, L. E.; Sonke, J. E.; Planquette, H.; Lherminier, P.; García-Ibáñez, M. I.;	
691	Pérez, F. F.; Sarthou, G. 2018. Sources, cycling and transfer of mercury in the Labrador	
692	Sea (Geotraces-Geovide cruise). Marine Chemistry 198:64-69.	
693	Cusset, F., Fort, J., Mallory, M., Braune, B., Massicotte, P. and Massé, G. 2019. Arctic seabirds	
694	and shrinking sea ice: egg analyses reveal the importance of ice-derived	
695	resources. Scientific Reports, 9(1): 1-15.	a mis en forme : Français
696	de la Vega, C., Jeffreys, R.M., Tuerena, R., Ganeshram, R. and Mahaffey, C. 2019. Temporal	
697	and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food	
698	web studies. Global Change Biology, 25(12): 4116-4130.	
699	Dietz, R., Outridge, P.M. and Hobson, K.A. 2009. Anthropogenic contributions to mercury	
700	levels in present-day Arctic animals-a review. Science of the Total Environment,	
701	407(24): 6120-6131.	

- 702 Dietz, R., Sonne, C., Basu, N., Braune, B., O'Hara, T., Letcher, R.J., Scheuhammer, T.,
- 703 Andersen, M., Andreasen, C., Andriashek, D. and Asmund, G. 2013. What are the
- toxicological effects of mercury in Arctic biota? Science of the Total Environment, 443:
 705 775-790.
- 706 Dietz, R., Letcher, R.J., Desforges, J.P., Eulaers, I., Sonne, C., Wilson, S., Andersen-Ranberg,
- 707 E., Basu, N., Barst, B.D., Bustnes, J.O. and Bytingsvik, J. 2019. Current state of
- knowledge on biological effects from contaminants on Arctic wildlife and fish. Science
 of the Total Environment, 696: 133792.
- 710 Dietz, R., Fort, J., Sonne, C., Albert, C., Bustnes, J.O., Christensen, T.K., Ciesielski, T.M.,
- 711 Danielsen, J., Dastnai, S., Eens, M. and Erikstad, K.E. 2021. A risk assessment of the
- effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and
 bivalves. Environment International, 146: 106178.
- 714 DiMento, B.P., Mason, R.P., Brooks, S. and Moore, C. 2019. The impact of sea ice on the air-sea
- exchange of mercury in the Arctic Ocean. Deep Sea Research Part I: Oceanographic
 Research Papers, 144: 28-38.
- 717 Dunton, K.H., Weingartner, T. and Carmack, E.C. 2006. The nearshore western Beaufort Sea
- 718 ecosystem: circulation and importance of terrestrial carbon in arctic coastal food
- 719 webs. Progress in Oceanography, 71(2-4): 362-378.
- 720 Dunton, K.H., Schonberg, S.V. and Cooper, L.W. 2012. Food web structure of the Alaskan
- nearshore shelf and estuarine lagoons of the Beaufort Sea. Estuaries and Coasts, 35(2):
 416-435.
- 723 Eagles-Smith, C.A., Ackerman, J.T., Adelsbach, T.L., Takekawa, J.Y., Miles, A.K. and Keister,
- 724 R.A. 2008. Mercury correlations among six tissues for four waterbird species breeding in

725 San	Francisco Bay,	California,	USA. Env	vironmental	Toxicology	and Chemistry	: An
---------	----------------	-------------	----------	-------------	------------	---------------	------

- 726 International Journal, 27(10): 2136-2153.
- 727 Ek, C., Holmstrand, H., Mustajärvi, L., Garbaras, A., Barisevičiūte, R., Šapolaitė, J., Sobek, A.,
- 728 Gorokhova, E. and Karlson, A.M. 2018. Using compound-specific and bulk stable
- 729 isotope analysis for trophic positioning of bivalves in contaminated Baltic Sea sediments.
- 730 Environmental Science & Technology, 52(8): 4861-4868.
- 731 English, M.D., Robertson, G.J. and Mallory, M.L. 2015. Trace element and stable isotope
- analysis of fourteen species of marine invertebrates from the Bay of Fundy,
- 733 Canada. Marine Pollution Bulletin, 101(1): 466-472.
- Evers, D. 2018. The effects of methylmercury on wildlife: a comprehensive review and approach
 for interpretation. The Encyclopedia of the Anthropocene, 5: 181-194.
- 736 Federer, R.N., Hollmen, T.E., Esler, D., Wooller, M.J. and Wang, S.W. 2010. Stable carbon and
- 737 nitrogen isotope discrimination factors from diet to blood plasma, cellular blood, feathers,
- and adipose tissue fatty acids in Spectacled Eiders (*Somateria fischeri*). Canadian Journal
 of Zoology, 88(9): 866-874.
- 740 Fort, J., Robertson, G.J., Grémillet, D., Traisnel, G. and Bustamante, P. 2014. Spatial
- 741 ecotoxicology: migratory Arctic seabirds are exposed to mercury contamination while
- 742 overwintering in the northwest Atlantic. Environmental Science and Technology, 48(19):
- 743 11560-11567.
- Fort, J., Grémillet, D., Traisnel, G., Amélineau, F. and Bustamante, P. 2016. Does temporal
 variation of mercury levels in Arctic seabirds reflect changes in global environmental
 contamination, or a modification of Arctic marine food web functioning? Environmental
 Pollution, 211: 382-388.

- 748 France, R.L. 1995. Differentiation between littoral and pelagic food webs in lakes using stable
- carbon isotopes. Limnology and Oceanography, 40(7): 1310-1313.
- Fredriksen, S. 2003. Food web studies in a Norwegian kelp forest based on stable isotope (δ13C
 and δ15N) analysis. Marine Ecology Progress Series, 260: 71-81.
- 752 Frederiksen, M., Edwards, M., Richardson, A.J., Halliday, N.C. and Wanless, S. 2006. From
- 753 plankton to top predators: bottom-up control of a marine food web across four trophic
- r54 levels. Journal of Animal Ecology, 75(6): 1259-1268.
- 755 Foster, K.L., Braune, B.M., Gaston, A.J. and Mallory, M.L. 2019. Climate influence on mercury
- 756 in Arctic seabirds. Science of The Total Environment, 693: 133569.
- Fox, J. and Weisberg, S. 2019. An R companion to applied regression (Third). Thousand Oaks
 CA: Sage.
- 759 Goericke, R. and Fry, B. 1994. Variations of marine plankton δ 13C with latitude, temperature,
- 760 and dissolved CO2 in the world ocean. Global Biogeochemical Cycles, 8(1): 85-90.
- 761 Gómez, C., Tenorio, E.A., Montoya, P. and Cadena, C.D. 2016. Niche-tracking migrants and
- 762 niche-switching residents: evolution of climatic niches in New World warblers
- 763 (Parulidae). Proceedings of the Royal Society B: Biological Sciences, 283(1824):
- 764 20152458.
- Goudie, R.I., Robertson, G.J. and Reed, A. 2020. Common eider (*Somateria mollissima*), version
 1.0. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY.
- 767 Goutte, A., Barbraud, C., Meillère, A., Carravieri, A., Bustamante, P., Labadie, P., Budzinski,
- 768 H., Delord, K., Cherel, Y., Weimerskirch, H. and Chastel, O. 2014. Demographic
- 769 consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived

770	bird, the wandering albatross. Proceedings of the Royal Society B: Biological Sciences,
771	281(1787): 20133313.
772	Guzzo, M.M., Blanchfield, P.J., Chapelsky, A.J. and Cott, P.A. 2016. Resource partitioning
773	among top-level piscivores in a sub-Arctic lake during thermal stratification. Journal of
774	Great Lakes Research, 42(2): 276-285.
775	Hartman, C.A., Ackerman, J.T. and Herzog, M.P. 2019. Mercury exposure and altered parental
776	nesting behavior in a wild songbird. Environmental Science & Technology, 53(9): 5396-
777	5405.
778	Hanssen, S., Engebretsen, H. and Erikstad, K. 2002. Incubation start and egg size in relation to
779	body reserves in the common eider. Behavioral Ecology and Sociobiology, 52(4): 282-
780	288.
781	Hanssen, S.A., Gabrielsen, G.W., Bustnes, J.O., Bråthen, V.S., Skottene, E., Fenstad, A.A.,
782	Strøm, H., Bakken, V., Phillips, R.A. and Moe, B. 2016. Migration strategies of common
783	eiders from Svalbard: implications for bilateral conservation management. Polar Biology,
784	39(11): 2179-2188.
785	Harris, D., Porter, L.K. and Paul, E.A. 1997. Continuous flow isotope ratio mass spectrometry of
786	carbon dioxide trapped as strontium carbonate. Communications in Soil Science and
787	Plant Analysis, 28(9-10): 747-757.
788	Hennin, H.L., Legagneux, P., Bêty, J., Williams, T.D., Gilchrist, H.G., Baker, T.M. and Love,
789	O.P. 2015. Pre-breeding energetic management in a mixed-strategy breeder. Oecologia,
790	177(1): 235-243.
791	Herrera, C.M. 1978. Ecological correlates of residence and non-residence in a Mediterranean
792	passerine bird community. Journal of Animal Ecology. 47: 871-890.

793	Hoegh-Guldberg,	O. and Bruno,	J.F. 2010.	The impact of	of climate	change on	the world'	s marine
-----	-----------------	---------------	------------	---------------	------------	-----------	------------	----------

794 ecosystems. Science, 328(5985): 1523-1528.

- Hobson, K.A., Alisauskas, R.T. and Clark, R.G. 1993. Stable-nitrogen isotope enrichment in
 avian tissues due to fasting and nutritional stress: implications for isotopic analyses of
 diet. The Condor, 95(2): 388-394.
- Hobson, K.A., Fisk, A., Karnovsky, N., Holst, M., Gagnon, J.M. and Fortier, M. 2002. A stable
 isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating
- 800 trophodynamics and the flow of energy and contaminants. Deep Sea Research Part II:
- 801 Topical Studies in Oceanography, 49(22-23): 5131-5150.
- Hobson K.A. 2006. Using stable isotopes to quantitatively track endogenous and exogenous
 nutrient allocations to eggs of birds that travel to breed. Ardea, 94(3): 359–369.
- Hobson, K.A. and Clark, R.G. 1992. Assessing avian diets using stable isotopes I: turnover of
 13C in tissues. The Condor, 94(1): 181-188.

806 Hobson, K.A. and Welch, H.E. 1992. Determination of trophic relationships within a high Arctic

- 807 marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series, 84(1):
 808 9-18.
- 809 Hobson, K.A., Ambrose Jr, W.G. and Renaud, P.E. 1995. Sources of primary production,
- 810 benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya:
- 811 insights from δ13C and δ15N analysis. Marine Ecology Progress Series, 128: 1-10.
- 812 Hobson, K.A., Van Wilgenburg, S.L., Wassenaar, L.I. and Larson, K. 2012. Linking hydrogen
- 813 (δ2H) isotopes in feathers and precipitation: sources of variance and consequences for
- assignment to isoscapes. PloS one, 7(4): p.e35137.

815	Hobson, K.A., L.K. Blight and P. Arcese. 2015. Human-induced long-term shifts in gull diet	
816	from marine to terrestrial sources in North America's coastal Pacific: More evidence from	
817	more isotopes (δ^2 H, δ^{34} S). Environmental Science and Technology 49 :10834–10840.	
818		
819	IPCC 2019: Climate Change and Land: an IPCC special report on climate change,	
820	desertification, land degradation, sustainable land management, food security, and	
821	greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia,	
822	V. Masson-Delmotte, HO. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van	
823	Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal	
824	Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)].	
825	Inger, R. and Bearhop, S. 2008. Applications of stable isotope analyses to avian ecology. Ibis,	
826	150(3): 447-461.	
827	Jackson, M.C., Woodford, D.J., Bellingan, T.A., Weyl, O.L., Potgieter, M.J., Rivers-Moore,	
828	N.A., Ellender, B.R., Fourie, H.E. and Chimimba, C.T. 2016. Trophic overlap between	
829	fish and riparian spiders: potential impacts of an invasive fish on terrestrial consumers.	
830	Ecology and Evolution, 6(6): 1745-1752.	
831	Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L.M., Strøm, H. and Stempniewicz, L. 2017.	
832	Habitat foraging niche of a High Arctic zooplanktivorous seabird in a changing	
833	environment. Scientific Reports, 7(1): 1-14.	
834	Johannessen, O.M., Bengtsson, L., Miles, M.W., Kuzmina, S.I., Semenov, V.A., Alekseev, G.V.,	
835	Nagurnyi, A.P., Zakharov, V.F., Bobylev, L.P., Pettersson, L.H. and Hasselmann, K.	
836	2004. Arctic climate change: observed and modelled temperature and sea-ice variability.	
837	Tellus A: Dynamic Meteorology and Oceanography, 56(4): 28-341.	

838	Jónsson, J.E., Gardarsson, A., Gill, J.A., Pétursdóttir, U.K., Petersen, A. and Gunnarsson, T.G.
839	2013. Relationships between long-term demography and weather in a sub-arctic
840	population of common eider. PloS one, 8(6): e67093.
841	Karnovsky, N.J., Hobson, K.A., Iverson, S. and Hunt Jr, G.L. 2008. Seasonal changes in diets of
842	seabirds in the North Water Polynya: a multiple-indicator approach. Marine Ecology
843	Progress Series, 357: 291-299.
844	Kirk, J.L., Lehnherr, I., Andersson, M., Braune, B.M., Chan, L., Dastoor, A.P., Durnford, D.,
845	Gleason, A.L., Loseto, L.L., Steffen, A. and Louis, V.L.S. 2012. Mercury in Arctic
846	marine ecosystems: Sources, pathways and exposure. Environmental Research, 119: 64-
847	87.
848	Kohlbach, D., Graeve, M., A. Lange, B., David, C., Peeken, I. and Flores, H. 2016. The
849	importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food
850	web relationships revealed by lipid and stable isotope analyses. Limnology and
851	Oceanography, 61(6): 2027-2044.
852	Kristjánsson, T.Ö., Jónsson, J.E. and Svavarsson, J. 2013. Spring diet of common eiders
853	(Somateria mollissima) in Breiðafjörður, West Iceland, indicates non-bivalve
854	preferences. Polar Biology, 36(1), 51-59.
855	Laursen, K., Moller, A., and Hobson, K.A. 2018. N-isotopes in feathers and abundance of eiders
856	respond to nutrients in seawater. Ecosystems, 22: 1271-1279.
857	Le Bohec, C., Whittington, J.D. and Le Maho, Y. 2013. Polar monitoring: seabirds as sentinels
858	of marine ecosystems. In Adaptation and Evolution in Marine Environments, Volume 2

859 (205-230). Springer, Berlin, Heidelberg.

860	Le Croizier, G., Schaal, G., Point, D., Le Loc'h, F., Machu, E., Fall, M., Munaron, J.M., Boyé,
861	A., Walter, P., Laë, R. and De Morais, L.T. 2019. Stable isotope analyses revealed the
862	influence of foraging habitat on mercury accumulation in tropical coastal marine
863	fish. Science of the Total Environment, 650: 2129-2140.
864	Lemons, G.E., Eguchi, T., Lyon, B.N., LeRoux, R. and Seminoff, J.A. 2012. Effects of blood
865	anticoagulants on stable isotope values of sea turtle blood tissue. Aquatic Biology, 14(3):
866	201-206.
867	Leu, E., Søreide, J.E., Hessen, D.O., Falk-Petersen, S. and Berge, J. 2011. Consequences of
868	changing sea-ice cover for primary and secondary producers in the European Arctic shelf
869	seas: timing, quantity, and quality. Progress in Oceanography, 90(1-4): 18-32.
870	Lewis, K.M., van Dijken, G.L. and Arrigo, K.R. 2020. Changes in phytoplankton concentration
871	now drive increased Arctic Ocean primary production. Science, 369(6500): 198-202.
872	Liu, G., Cai, Y., O'Driscoll, N., Feng, X. and Jiang, G. 2012. Overview of mercury in the
873	environment. Environmental Chemistry and Toxicology of Mercury, 1-12.
874	Ma, N.L., Hansen, M., Therkildsen, O.R., Christensen, T.K., Tjørnløv, R.S., Garbus, S.E.,
875	Lyngs, P., Peng, W., Lam, S.S., Krogh, A.K.H. and Andersen-Ranberg, E. 2020. Body
876	mass, mercury exposure, biochemistry and untargeted metabolomics of incubating
877	common eiders (Somateria mollissima) in three Baltic colonies. Environment
878	International, 142: 105866.
879	Macdonald, R.W., Barrie, L.A., Bidleman, T.F., Diamond, M.L., Gregor, D.J., Semkin, R.G.,
880	Strachan, W.M.J., Li, Y.F., Wania, F., Alaee, M. and Alexeeva, L.B. 2000. Contaminants
881	in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and
882	pathways. Science of the Total Environment, 254(2-3): 93-234.

- 883 Macdonald, R.W., Harner, T. and Fyfe, J. 2005. Recent climate change in the Arctic and its
- impact on contaminant pathways and interpretation of temporal trend data. Science of the
 Total Environment, 342(1-3): 5-86.
- 886 Mallory, M.L., Braune, B.M., Wayland, M., Gilchrist, H.G. and Dickson, D.L. 2004.
- 887 Contaminants in common eiders (*Somateria mollissima*) of the Canadian Arctic.
- 888 Environmental Reviews, 12: 197-218.
- Mallory, M.L. and Braune, B.M. 2012. Tracking contaminants in seabirds of Arctic Canada:
 temporal and spatial insights. Marine Pollution Bulletin, 64(7): 1475-1484.
- 891 Mallory, C.D., Gilchrist, H.G., Robertson, G.J., Provencher, J.F., Braune, B.M., Forbes, M.R.

892 and Mallory, M.L. 2017. Hepatic trace element concentrations of breeding female

- common eiders across a latitudinal gradient in the eastern Canadian Arctic. Marine
 Pollution Bulletin, 124(1): 252-257.
- 895 Mallory, M.L., Ronconi, R.A., Allen, R.B., Dwyer, C., Lair, S., Mallory, C.D., McLellan, N.R.,
- 896 Milton, G.R., Parsons, G.J., Savoy, L. and Tomlik, M.D. 2020. Annual movement
- 897 patterns of American common eiders *Somateria mollissima dresseri*. Wildlife
 898 Biology, 2020(2).
- 899 McKinney, M.A., Pedro, S., Dietz, R., Sonne, C., Fisk, A.T., Roy, D., Jenssen, B.M. and
- 900 Letcher, R.J. 2015. A review of ecological impacts of global climate change on persistent
- 901 organic pollutant and mercury pathways and exposures in arctic marine ecosystems.
- 902 Current Zoology, 61(4): 617-628.
- McMahon, K.W., Ambrose Jr, W.G., Johnson, B.J., Sun, M.Y., Lopez, G.R., Clough, L.M. and
 Carroll, M.L. 2006. Benthic community response to ice algae and phytoplankton in Ny
 Ålesund, Svalbard. Marine Ecology Progress Series, 310: 1-14.

906	McMahon.	K.W.	. Hamady	. L.L.	and Thorrold	. S.R. 2013	3. A	review of	f ecogeochemistry
			, ,	,		,			/

- 907 approaches to estimating movements of marine animals. Limnology and Oceanography,
 908 58(2): 697-714.
- Milton, G.R., Iverson, S.A., Smith, P.A., Tomlik, M.D., Parsons, G.J., and Mallory, M.L. 2016.
 Sex-Specific Survival of Adult Common Eiders in Nova Scotia, Canada. The Journal of
 Wildlife Management, 80(8): 1427-1436.
- 912 Moline, M.A., Karnovsky, N.J., Brown, Z., Divoky, G.J., Frazer, T.K., Jacoby, C.A., Torres, J.J.
- and Fraser, W.R. 2008. High latitude changes in ice dynamics and their impact on polar
 marine ecosystems. Annals of the New York Academy of Sciences, 1134: 267-319.
- Mouritsen, K.N., Tompkins, D.M. and Poulin, R. 2005. Climate warming may cause a parasiteinduced collapse in coastal amphipod populations. Oecologia, 146(3): 476-483.
- 917 Muir, D., Braune, B., DeMarch, B., Norstrom, R., Wagemann, R., Lockhart, L., Hargrave, B.,
- 918 Bright, D., Addison, R., Payne, J. and Reimer, K. 1999. Spatial and temporal trends and
- 919 effects of contaminants in the Canadian Arctic marine ecosystem: a review. Science of
 920 the Total Environment, 230(1-3): 83-144.
- Najafi, M.R., Zwiers, F.W., and Gillett, N.P. 2015. Attribution of Arctic temperature change to
 greenhouse-gas and aerosol influences. Nature Climate Change, 5(3): 246-249.
- 923 Nakashima, D.J. and Murray, D.J. 1988. The common eider (Somateria mollissima sedentaria)
- 924 of eastern Hudson Bay: A survey of nest colonies and Inuit ecological knowledge.
- 925 Environmental Studies Research Funds.
- 926 Newsome, S.D., Martinez del Rio, C., Bearhop, S. and Phillips, D.L. 2007. A niche for isotopic
- 927 ecology. Frontiers in Ecology and the Environment, 5(8): 429-436.

928	Noel, K., McLellan, N., Gilliland, S., Allard, K.A., Allen, B., Craik, S., Demagny, A., English,	
929	M.D., Diamond, A., Giroux, J.F., Hanson, A., Heusmann, H.W., King, L.E., Lepage, C.,	
930	Major, H., AcAuley, D., Meattey, D.E., Milton, G.R., Osenkowski, J., Roberts, A.,	
931	Robertson, G.J., Roy, M., Savoy, L., Sullivan, K., and Mallory, M.L. 2021. Expert	
932	opinion on American common eiders in eastern North America: international information	
933	needs for future conservation. Socio-Ecological Practice Research, 1-14.	
934	O'Donovan, S., S. Budge, K.A. Hobson, A. Kelly, and A. Derocher. 2018. Intrapopulation	
935	variability in wolf diet revealed using a combined stable isotope and fatty acid approach.	
936	Ecosphere, 9(9):e02420. 10.1002/ecs2.2420.	
937 938	Paredes, R., Harding, A.M., Irons, D.B., Roby, D.D., Suryan, R.M., Orben, R.A., Renner, H.,	
939	Young, R. and Kitaysky, A. 2012. Proximity to multiple foraging habitats enhances	
940	seabirds' resilience to local food shortages. Marine Ecology Progress Series, 471: 253-	
941	269.	
942	Paris, O.J., Swaddle, J.P. and Cristol, D.A. 2018. Exposure to dietary methyl-mercury solely	
943	during embryonic and juvenile development halves subsequent reproductive success in	
944	adult zebra finches. Environmental Science and Technology, 52(5): 3117-3124.	
945	Parkinson, K.J.L. 2020. Using isotopic niche dynamics to predict resiliency to climate change in	
946	an Arctic seabird. Electronic Theses and Dissertations. 8336.	
947	Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual	
948	Review of Ecology, Evolution, and Systematics, 37: 637-669.	
949	Pecuchet, L., Blanchet, M.A., Frainer, A., Husson, B., Jørgensen, L.L., Kortsch, S. and	
950	Primicerio, R. 2020. Novel feeding interactions amplify the impact of species	
951	redistribution on an Arctic food web. Global Change Biology, 26(9): 4894-4906.	

953	Arctic concentrations of mercury and stable isotope ratios of carbon (δ 13C) and nitrogen
954	(δ 15N) in marine zooplankton. Science of the Total Environment, 551: 92-100.
955	Post, E. 2017. Implications of earlier sea ice melt for phenological cascades in arctic marine food
956	webs. Food Webs, 13: 60-66.
957	Post, E., Bhatt, U.S., Bitz, C.M., Brodie, J.F., Fulton, T.L., Hebblewhite, M., Kerby, J., Kutz,
958	S.J., Stirling, I. and Walker, D.A. 2013. Ecological consequences of sea-ice decline.
959	Science, 341(6145): 519-524.
960	Pratte, I., Braune, B.M., Hobson, K.A. and Mallory, M.L. 2019. Variable sea-ice conditions
961	influence trophic dynamics in an Arctic community of marine top predators. Ecology and
962	Evolution, 9(13): 7639-7651.
963	Priest, H., and Usher, P.J. 2004. The Nunavut wildlife harvest study. August 2004, p.822.
964	Nunavut Wildlife Management Board, Iqaluit, Nunavut.
965	Provencher, J.F., Forbes, M.R., Hennin, H.L., Love, O.P., Braune, B.M., Mallory, M.L. and
966	Gilchrist, H.G. 2016. Implications of mercury and lead concentrations on breeding
967	physiology and phenology in an Arctic bird. Environmental Pollution, 218: 1014-1022.
968	Purwandana, D., Ariefiandy, A., Imansyah, M.J., Seno, A., Ciofi, C., Letnic, M. and Jessop, T.S.
969	2016. Ecological allometries and niche use dynamics across Komodo dragon ontogeny.
970	The Science of Nature, 103(3-4): 27.
971	Rabosky, D.L. 2009. Ecological limits and diversification rate: alternative paradigms to explain

Pomerleau, C., Stern, G.A., Pućko, M., Foster, K.L., Macdonald, R.W. and Fortier, L. 2016. Pan-

952

972 the variation in species richness among clades and regions. Ecology Letters, 12(8): 735973 743.

974	Ramos, R. and González-Solis, J. 2012. Trace me if you can: the use of intrinsic biogeochemical
975	markers in marine top predators. Frontiers in Ecology and the Environment, 10(5): 258-
976	266.
977	Renaut, S., Devred, E. and Babin, M, 2018. Northward expansion and intensification of
978	phytoplankton growth during the early ice-free season in Arctic. Geophysical Research
979	Letters, 45(19): 10590-10598.
980	Renedo, M., Amouroux, D., Albert, C., Bérail, S., Bråthen, V.S., Gavrilo, M., Grémillet, D.,
981	Helgason, H.H., Jakubas, D., Mosbech, A., Strøm, H., Tessier, E., Wojczulanis-Kakubas,
982	K., Bustamante, P., and Fort, J. 2020. Contrasting spatial and seasonal trends of
983	methylmercury exposure pathways of Arctic seabirds: combination of large-scale
984	tracking and stable isotopic approaches. Environmental Science and Technology, 54(21):
985	13619-13629.
986	Rimmer, C.C., McFarland, K.P., Evers, D.C., Miller, E.K., Aubry, Y., Busby, D. and Taylor, R.J.
987	2005. Hg concentrations in Bicknell's thrush and other insectivorous passerines in
988	montane forests of northeastern North America. Ecotoxicology, 14(1-2): 223-240.
989	Rutkowska, M., Bajger-Nowak, G., Kowalewska, D., Bzoma, S., Kalisińska, E., Namieśnik, J.
990	and Konieczka, P. 2019. Methylmercury and total mercury content in soft tissues of two
991	bird species wintering in the Baltic Sea near Gdansk, Poland. Chemosphere, 219: 140-
992	147.
993	Rydberg, J., Klaminder, J., Rosén, P. and Bindler, R. 2010. Climate driven release of carbon and
994	mercury from permafrost mires increases mercury loading to sub-arctic lakes. Science of

.

....

995 the Total Environment, 408(20): 4778-4783.

$J_{J_{J_{J_{J_{J_{J_{J_{J_{J_{J_{J_{J_{J$	996	Sackett, W.M.	, Eckelmann,	W.R	Bender	M.L. and Bé	, A.W.	1965.	Temperature	dependence	of
--	-----	---------------	--------------	-----	--------	-------------	--------	-------	-------------	------------	----

- carbon isotope composition in marine plankton and sediments. Science, 148(3667): 235-237.
- Sarà, G., De Pirro, M., Romano, C., Rumolo, P., Sprovieri, M. and Mazzola, A. 2007. Sources of
 organic matter for intertidal consumers on Ascophyllum-shores (SW Iceland): a multi-
- 1001 stable isotope approach. Helgoland Marine Research, 61(4): 297-302.
- 1002 Savoy, L., Flint, P., Zwiefelhofer, D., Brant, H., Perkins, C., Taylor, R., Lane, O., Hall, J., Evers,
- 1003 D. and Schamber, J. 2017. Geographic and temporal patterns of variation in total mercury
- 1004 concentrations in blood of harlequin ducks and blue mussels from Alaska. Marine
- 1005 Pollution Bulletin, 117(1-2): 178-183.
- Schamel, D., 1977. Breeding of the common eider (*Somateria mollissima*) on the Beaufort Sea
 coast of Alaska. The Condor, 79(4): 478-485.
- 1008 Scheuhammer, A., Braune, B., Chan, H.M., Frouin, H., Krey, A., Letcher, R., Loseto, L., Noël,
- 1009 M., Ostertag, S., Ross, P. and Wayland, M. 2015. Recent progress on our understanding
- 1010 of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Science of1011 the Total Environment, 509: 91-103.
- 1012 Schoch, N., Glennon, M.J., Evers, D.C., Duron, M., Jackson, A.K., Driscoll, C.T., Ozard, J.W.
- 1013 and Sauer, A.K. 2014. The impact of mercury exposure on the Common Loon (Gavia
- 1014 *immer*) population in the Adirondack Park, New York, USA. Waterbirds, 37(sp1): 133-
- 1015 146.
- 1016 Schuster, P.F., Schaefer, K.M., Aiken, G.R., Antweiler, R.C., Dewild, J.F., Gryziec, J.D.,
- 1017 Gusmeroli, A., Hugelius, G., Jafarov, E., Krabbenhoft, D.P. and Liu, L. 2018. Permafrost

1018 stores a g	lobally significant amour	t of mercury. C	Geophysical Res	earch Letters,	45(3):
-----------------	---------------------------	-----------------	-----------------	----------------	--------

1019 1463-1471.

1032

- 1020 Screen, J.A. and Simmonds, I. 2010. Increasing fall-winter energy loss from the Arctic Ocean
- 1021 and its role in Arctic temperature amplification. Geophysical Research Letters, 37(16).
- 1022 Sénéchal, É., Bêty, J., Gilchrist, H.G., Hobson, K.A. and Jamieson, S.E. 2011. Do purely capital 1023 layers exist among flying birds? Evidence of exogenous contribution to arctic-nesting

1024 common eider eggs. Oecologia, 165(3): 593-604.

- 1025 Smith, B.D. and Reeves, R.R. 2012. River cetaceans and habitat change: generalist resilience or specialist vulnerability? Journal of Marine Biology, 2012: 1-11. 1026
- 1027 Smith, V.H., Tilman, G.D. and Nekola, J.C. 1999. Eutrophication: impacts of excess nutrient
- 1028 inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1-1029 3): 179-196.
- 1030 Søreide, J.E., Tamelander, T., Hop, H., Hobson, K.A. and Johansen, I. 2006. Sample preparation 1031 effects on stable C and N isotope values: a comparison of methods in Arctic marine food

web studies. Marine Ecology Progress Series, 328: 17-28.

- 1033 Søreide, J.E., Carroll, M.L., Hop, H., Ambrose Jr, W.G., Hegseth, E.N. and Falk-Petersen, S.,
- 1034 2013. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard
- 1035 revealed by stable isotopic and fatty acid tracers. Marine Biology Research, 9(9): 831-1036 850.
- 1037 Soerensen, A. L.; Jacob, D. J.; Schartup, A. T.; Fisher, J. A.; Lehnherr, I.; St. Louis, V. L.;
- 1038 Heimbürger, L.-E.; Sonke, J. E.; Krabbenhoft, D. P.; Sunderland, E. M. 2016. A mass
- 1039 budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochemical
- 1040 Cycles 30 (4), 560-575.

1042	Staudinger, M.D., Mills, K.E., Stamieszkin, K., Record, N.R., Hudak, C.A., Allyn, A., Diamond,
1043	A., Friedland, K.D., Golet, W., Henderson, M.E. and Hernandez, C.M. 2019. It's about
1044	time: a synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries
1045	Oceanography, 28(5): 532-566.
1046	Steenweg, R.J., Crossin, G.T., Kyser, T.K., Merkel, F.R., Gilchrist, H.G., Hennin, H.L.,
1047	Robertson, G.J., Provencher, J.F., Mills Flemming, J. and Love, O.P. 2017. Stable
1048	isotopes can be used to infer the overwintering locations of prebreeding marine birds in
1049	the Canadian Arctic. Ecology and Evolution, 7(21): 8742-8752.
1050	Stern, G.A., Macdonald, R.W., Outridge, P.M., Wilson, S., Chetelat, J., Cole, A., Hintelmann,
1051	H., Loseto, L.L., Steffen, A., Wang, F. and Zdanowicz, C. 2012. How does climate
1052	change influence arctic mercury? Science of the Total Environment, 414: 22-42.
1053	Sunderland, E.M. and Mason, R.P. 2007. Human impacts on open ocean mercury concentrations.
1054	Global Biogeochemical Cycles, 21(4).

- Swanson, H.K., Lysy, M., Power, M., Stasko, A.D., Johnson, J.D. and Reist, J.D. 2015. A new
 probabilistic method for quantifying n-dimensional ecological niches and niche overlap.
 Ecology, 96(2): 318-324.
- 1058 Swart, N.C., Fyfe, J.C., Hawkins, E., Kay, J.E. and Jahn, A. 2015. Influence of internal
- 1059 variability on Arctic sea-ice trends. Nature Climate Change, 5(2): 86-89.
- Sydeman, W.J., Thompson, S.A. and Kitaysky, A. 2012. Seabirds and climate change: roadmap
 for the future. Marine Ecology Progress Series, 454: 107-117.
- 1062 Tamelander, T., Renaud, P.E., Hop, H., Carroll, M.L., Ambrose Jr, W.G. and Hobson, K.A.
- 1063 2006. Trophic relationships and pelagic-benthic coupling during summer in the Barents

- 1064 Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope
- 1065 measurements. Marine Ecology Progress Series, 310: 33-46.
- 1066 Tamelander, T., Kivimäe, C., Bellerby, R.G., Renaud, P.E. and Kristiansen, S. 2009. Base-line
- 1067 variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and
 1068 nitrogen uptake by phytoplankton. Hydrobiologia, 630(1): 63-73.
- 1069 Tartu, S., Goutte, A., Bustamante, P., Angelier, F., Moe, B., Clément-Chastel, C., Bech, C.,

1070 Gabrielsen, G.W., Bustnes, J.O. and Chastel, O. 2013. To breed or not to breed:

- 1071 endocrine response to mercury contamination by an Arctic seabird. Biology Letters, 9(4):1072 20130317.
- 1073 Timmermans, M.L., Proshutinsky, A., Krishfield, R.A., Perovich, D.K., Richter-Menge, J.A.,

1074 Stanton, T.P., and Toole, J.M. 2011. Surface freshening in the Arctic Ocean's Eurasian

- Basin: An apparent consequence of recent change in the wind-driven circulation. Journalof Geophysical Research: Oceans, 116(C8).
- 1077 Vander Zanden, M.J., Cabana, G. and Rasmussen, J.B. 1997. Comparing trophic position of
- 1078 freshwater fish calculated using stable nitrogen isotope ratios ($\delta^{15}N$) and literature dietary 1079 data. Canadian Journal of Fisheries and Aquatic Sciences, 54(5): 1142-1158.
- 1080 Vander Zanden, M.J. and Rasmussen, J.B. 1999. Primary consumer $\delta^{13}C$ and $\delta^{15}N$ and the
- 1081 trophic position of aquatic consumers. Ecology, 80(4): 1395-1404.
- 1082 Vander Zanden, H.B., Bjorndal, K.A., Reich, K.J. and Bolten, A.B. 2010. Individual specialists
 1083 in a generalist population: results from a long-term stable isotope series. Biology Letters,
 1084 6(5): 711-714.
- 1085 Vasseur, D.A. and McCann, K.S. 2005. A mechanistic approach for modeling temperature-
- 1086 dependent consumer-resource dynamics. The American Naturalist, 166(2): 184-198.

- 1087 Vieweg, I., Hop, H., Brey, T., Huber, S., Ambrose Jr, W.G. and Gabrielsen, G.W. 2012.
- Persistent organic pollutants in four bivalve species from Svalbard waters. Environmental
 Pollution, 161: 134-142.
- 1090 Vincent, W.F. 2010. Microbial ecosystem responses to rapid climate change in the Arctic. The1091 ISME Journal, 4(9): 1087-1090.
- 1092 Waltho, C. and Coulson, J. 2015. The Common Eider (Vol. 35). Bloomsbury Publishing.
- 1093 Wayland, M., Gilchrist, H.G. and Neugebauer, E. 2005. Concentrations of cadmium, mercury
- 1094 and selenium in common eider ducks in the eastern Canadian arctic: influence of
- 1095 reproductive stage. Science of the Total Environment, 351: 323-332.
- Werner, I. 1997. Grazing of Arctic under-ice amphipods on sea-ice algae. Marine Ecology
 Progress Series, 160: 93-99.
- 1098 Whitney, M.C. and Cristol, D.A. 2017. Impacts of sublethal mercury exposure on birds: a
- detailed review. In Reviews of Environmental Contamination and Toxicology (113-163).Springer, Cham.
- Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H. and Scheuhammer, A.M. 2003. Ecotoxicology of
 mercury. Handbook of Ecotoxicology, 2: 409-463.
- 1103 Wolf, N., Carleton, S.A. and del Rio, C.M. 2009. Ten years of experimental animal isotopic
- 1104 ecology. Functional Ecology, 23(1): 17-26.
- 1105 Woo, K.J., Elliott, K.H., Davidson, M., Gaston, A.J. and Davoren, G.K. 2008. Individual
- 1106 specialization in diet by a generalist marine predator reflects specialization in foraging
- 1107 behaviour. Journal of Animal Ecology, 77(6): 1082-1091.

- 1108 Yakovis, E.L., Artemieva, A.V., Fokin, M.V. and Varfolomeeva, M.A. 2012. Intraspecific
- 1109 variation in stable isotope signatures indicates no small-scale feeding interference
- 1110 between a horse mussel and an ascidian. Marine Ecology Progress Series, 467: 113-120.
- 1111 Yurkowski, D.J., Ferguson, S., Choy, E.S., Loseto, L.L., Brown, T.M., Muir, D.C., Semeniuk,
- 1112 C.A. and Fisk, A.T. 2016. Latitudinal variation in ecological opportunity and
- 1113 intraspecific competition indicates differences in niche variability and diet specialization
- 1114 of Arctic marine predators. Ecology and Evolution, 6(6): 1666-1678.
- 1115 Yurkowski, D.J., Brown, T.A., Blanchfield, P.J., Ferguson, S.H. 2020a. Atlantic walrus signal
- 1116 latitudinal differences in the long-term decline of sea ice-derived carbon to benthic fauna
- 1117 in the Canadian Arctic. Proceedings of the Royal Society B: Biological Sciences,
- 1118 287(1940): 20202126.
- 1119 Yurkowski, D.J., Richardson, E.S., Lunn, N.J., Muir, D.C., Johnson, A.C., Derocher, A.E.,
- 1120 Ehrman, A.D., Houde, M., Young, B.G., Debets, C.D. and Sciullo, L. 2020b. Contrasting
- 1121 Temporal Patterns of Mercury, Niche Dynamics, and Body Fat Indices of Polar Bears
- and Ringed Seals in a Melting Icescape. Environmental Science and Technology, 54(5):2780-2789.
- 1124 Zhang, J. 2005. Warming of the arctic ice-ocean system is faster than the global average since
- 1125 the 1960s. Geophysical Research Letters, 32(19).

1127 Tables and Figures

1128 **Table 1.** Locations of common eider colonies included in this study, sample size (number of

- 1129 individual birds from each colony included in the study), month samples were obtained,
- 1130 coordinates (latitude and longitude), whether a colony is known to be predominately migratory
- 1131 or resident, and the proportion of sea ice cover in a 100km area around the colony during the

1132 appropriate timeframe reflecting isotope data.

Logation		Sampling	Latituda	Longitudo	Migratory	Sea ice
Location	п	month	Latitude	Longitude	behaviour	cover
Kaktovik, Alaska	vik, Alaska 33 July 70.340 -147.776		Migratory	43.45		
Breiðafjörður, Iceland	23	June	65.078	-22.736	Resident	3.10
Christiansø, Denmark	25	May	55.330	15.188	Migratory	0
Grindøya, Norway	17	June	69.633	18.844	Resident	0
John's Island, Canada	19	July	43.645	-66.041	Migratory	0
Kirkjubøhólmur, Faroe Islands	16	July	61.950	-6.799	Resident	0
Kongsfjorden, Norway	16	June	78.918	11.910	Migratory	0
East Bay Island, Canada	43	June	64.023	-81.790	Migratory	34.34
Onega Bay, Russia	24	June	65.048	35.774	Resident	0
Tern Island, Canada	24	June	69.547	-80.812	Migratory	36.47

1134	Table 2. Isotopic signatures	$(\delta^{13}C, \delta^{15}N \text{ in } \infty)$ of typical	common eider bivalve prev as

1135 determined by the most spatio-temporally appropriate literature values available at the time of

analysis. Prey stable isotope data was used to correct common eider isotope data to allow for

1137 inter-colony comparison.

Location	Prey Species	δ ¹³ C	$\delta^{15}N$	Reference
Beaufort Sea, Alaska	Cyrtodaria kurriana	-25.20	7.90	Dunton et al. 2012
Breiðafjörður, Iceland	Mytilus edulis	-19.60	7.40	Sarà et al. 2007
Christiansø, Denmark	Limecola balthica	-20.40	7.20	Ek et al. 2018
Grindøya, Norway	Hiatella arctica	-19.32	7.26	Fredriksen 2003
John's Island, Canada	Mytilus edulis	-19.99	7.17	English et al. 2015
Kirkjubøhólmur, Faroe Islands	Mytilus edulis	-19.20	8.41	Bustamante, unpub.
Kongsfjorden, Norway	Hiatella arctica	-20.30	6.90	Vieweg et al. 2012
East Bay Island, Canada	Hiatella arctica	-18.22	8.64	Sénéchal et al. 2011
Onega Bay, Russia	Styela rustica	-21.60	6.49	Yakovis et al. 2012
Tern Island, Canada	Hiatella arctica	-18.22	8.64	Sénéchal et al. 2011

1139	Table 3. Results of three sets of statistical analyses: a) seven 2-tailed t-tests relating migratory
1140	status to colony niche size, isotope and THg ranges, as well as individual colony-corrected
1141	isotope and THg values; b) seven GLM results relating colony sea ice cover to colony niche size,
1142	isotope and THg ranges as well as median colony isotope and THg values; c) GLMM results
1143	relating common eider trophic position, calculated using baseline and individual $\delta^{15}N$ and
1144	colony-corrected $\delta^{13}C$ to individual THg values. All log-transformed values were determined
1145	using the natural log and used to meet model assumptions.

Variable	Estimate (β)	SE df		t	р				
a) <u>2-tailed t-test – Migratory Status</u>									
log(Niche size)			4	-0.609	0.573				
log(δ ¹³ C Range)			8	-0.339	0.743				
δ ¹⁵ N Range			7	0.996	0.353				
log(THg Range)			5	-0.600	0.576				
Individual $\delta^{13}C$			238	2.218	0.028				
Individual δ ¹⁵ N			220	-6.858	<0.001				
log(Individual THg)			124	-6.329	<0.001				
b) <u>GLM – Sea Ice Cover</u>									
log(Niche size)	-0.0125	0.019	8	-0.639	0.541				
log(δ ¹³ C Range)	-0.013	0.008	8	-1.635	0.141				
δ ¹⁵ N Range	-0.002	0.014	8	-0.106	0.919				
log(THg Range)	-0.004	0.009	8	-0.459	0.658				
log(Median δ ¹³ C)	0.028	0.010	8	2.936	0.032				
Median δ ¹⁵ N	0.052	0.022	8	2.332	0.048				
log(Median THg)	0.014	0.006	8	2.525	0.036				
c) <u>GLMM – Individual log(THg)</u>									
Intercept	-1.923	0.304	142.233	-6.330	< 0.0001				
Trophic position	0.563	0.096	234.614	5.862	<0.001				
δ ¹³ C	-0.063	0.022	232.943	-2.813	0.005				

- Figure 1. Map of the circumpolar-Arctic, and locations of the 10 common eider colonies used in
 this study (stars) designated by whether a colony is primarily resident (circles) or migratory
 (squares). Shape colour represents four groupings of similar median 3-dimensional niche size
 (95% Bayesian credible intervals). By ascending niche size, colours represent: 1 (smallest; red),
 2 (white), 3 (grey), and 4 (largest; black). Dashed line indicates the Arctic Circle, and the solid
 line indicates the Arctic boundary according to the Arctic Monitoring and Assessment
- 1153 Programme (AMAP; map provided by globalcitymap.com).

1155 **Figure 2.** 2-dimensional projections of ten 3-dimensional niche regions produced using the R

1156 package nicheROVER v1.0 (Swanson et al. 2015). Corrected stable isotope (δ^{13} C and δ^{15} N in

1157 %) and THg data (in μ g/g dw) were used from individuals at 10 pan-Arctic or subarctic common

1158 eider colonies. Sections show, i) The raw stable isotope and THg data in pairs, ii) density

1159 estimates of $\delta^{15}N$, $\delta^{13}C$ and THg individually, and iii) pairings of $\delta^{15}N$, $\delta^{13}C$ and THg showing 2-

1160 dimensional projections of 95% probabilistic niche regions based on 3-dimensional data.

1162 Figure 3. Relationship between THg (natural log-transformed) with trophic position (calculated

1163 based on δ^{15} N; see Methods) and colony-corrected δ^{13} C (in ‰) for individuals at 10 pan-Arctic

1164 or subarctic common eider colonies, identified by colour.

1165

1166 Supplemental Materials

1167 Sample sizes (n), means \pm SD, Min-Max (in ‰) for δ^{13} C, δ^{15} N, and total Hg (THg in μ g/g dw)

- 1168 (values in brackets corrected for colony baseline ($\delta^{13}C$, $\delta^{15}N$) and standardized for units ($\delta^{13}C$,
- 1169 δ^{15} N and THg)), medians and range of 3-dimensional niche size (95% Bayesian credible

1170 intervals), and $\delta^{13}C$, $\delta^{15}N$ and THg ranges (maximum-minimum values using corrected and

1171 standardized values) of 10 pan-Arctic and subarctic common eider colonies.

Lesstien		\$130	S15N TH-	Nieke sies	δ ¹³ C	$\delta^{15}N$	THg	
Location	n	0 C	0 N	THg	I Hg Niche size	range	range	range
Alaska	22	$\textbf{-20.1}\pm0.5$	15.3 ± 0.7	1.2 ± 0.2	3.3 (2.3, 5.2)	0.866	1 461	1 680
Alaska	33	(1.8)	(1.8)	(0.9)		0.800	1.401	1.089
Christiansa	25	$\textbf{-21.2}\pm0.9$	10.0 ± 1.3	1.1 ± 0.5	9.7 (6.6, 16.7)	1 270	2 022	4 500
Chiristiansø	23	(-1.0)	(-0.9)	(0.6)		1.379	2.925	4.390
Faroe Islands	16	$\textbf{-18.5}\pm1.4$	10.1 ± 1.0	0.7 ± 0.4	18 8 (11 5 36 8)	2 059	2 106	4 508
Taroe Islands	10	(-0.3)	(-1.5)	(-0.6)	18.8 (11.5, 50.8)	2.039	2.100	4.508
Grindava	17	$\textbf{-17.8}\pm0.6$	11.1 ± 0.4	0.4 ± 0.1	1.4 (0.8, 2.6)	0.834	0 907	1 528
Grindbya		(0.1)	(-0.3)	(-1.4)		0.054	0.907	1.520
Iceland	23	$\textbf{-17.8}\pm0.9$	11.6 ± 1.0	0.9 ± 0.5	21.7 (14.2, 37.7)	1.407	2.257	5.410
reciand	23	(0.3)	(-0.1)	(0.1)				
John's Island	19	$\textbf{-16.9} \pm 1.5$	12.0 ± 0.8	0.5 ± 0.2	91(57165)	2 2 5 0	1 633	1 688
John S Island	u 1)	(-0.1)	(-0.1)	(-0.9)	y.i (5.7, 10.5)	2.230	1.055	1.000
Kongsfjorden	16	$\textbf{-18.4}\pm0.8$	11.8 ± 1.0	0.8 ± 0.2	4.6 (2.8, 9.1)	1 217	2 1 2 8	2.068
Rongstjorden	1 10	(0.3)	(0.3)	(-0.3)		1.217	2.120	2.000
Fast Bay Island	43	$\textbf{-18.2} \pm 1.1$	13.5 ± 1.3	1.0 ± 0.3	18.5 (13.6, 27.9)	1 904	2 897	3 571
Lust Duy Island	-15	(-0.6)	(0.3)	(0.4)		1.904	2.097	5.571
Russia	24	$\textbf{-19.4}\pm0.8$	10.2 ± 0.4	0.7 ± 0.2	3.3 (2.2, 5.8)	1 1 7 5	0.962	2 278
Russia	21	(0.4)	(-0.4)	(-0.4)		1.175	0.902	2.270
Tern Island	24	$\textbf{-18.8}\pm0.3$	12.4 ± 0.5	0.9 ± 0.2	1.4 (0.9, 2.4)	0.475	1 141	2 398
i ern Island	∠+	(-1.0)	(-0.4)	(0.1)		0.775	1.141	2.570

1180 (Still image of a video showing the 3-dimensional plot in rotating view).