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The Maximum Colorful Arborescence Problem: How
(Computationally) Hard can it be ? I

Guillaume Fertin, Julien Fradin, Géraldine Jean∗

Université de Nantes, CNRS, LS2N, F-44000, Nantes

Abstract

Given a vertex-colored arc-weighted directed acyclic graph G, the Maximum Color-
ful Subtree problem (or MCS) aims at finding an arborescence of maximum weight
in G, in which no color appears more than once. The problem was originally intro-
duced in [1] in the context of de novo identification of metabolites by tandem mass
spectrometry. However, a thorough analysis of the initial motivation shows that the
formal definition of MCS should be amended, since the input graph G actually pos-
sesses extra properties, which have been unexploited so far. This leads us to describe
in this paper a more precise model that we call Maximum Colorful Arborescence
(MCA), which we extensively study in terms of algorithmic complexity. In particular,
we show that exploiting the implied Color Hierarchy Graph of the input graph G can
lead to exact polynomial algorithms and approximation algorithms. We also develop
Fixed-Parameter Tractable (FPT) algorithms for the problem parameterized by the
“dual parameter” `C , defined as the minimum number of vertices of G which are not
kept in the solution.

Keywords: Complexity, FPT algorithms, approximation algorithms, Maximum
colorful arborescence, tandem mass spectometry

1. Introduction

Metabolites are small molecules that are involved in cellular reactions, most of them
remaining unknown to this date [2]. Consequently, identifying molecular structures of
metabolites is a key problem in biology [3, 4], and in particular in drug design [5, 6].
Tandem mass spectrometry is one of the most commonly used technologies to achieve
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this goal. In a tandem mass spectrometry experiment, a metabolite is fragmented into
smaller molecules. The mass spectrometer then outputs a fragmentation spectrum
that consists of a series of peaks where, ideally, each peak corresponds to the mass of
one of the generated fragments. If we are able to “explain” the spectrum by finding the
molecule which corresponds to each peak it contains, then the input metabolite can
in turn be infered. Such an identification can be achieved by comparison with some
reference database(s) [7]; however, the databases at hand are largely incomplete [2, 8,
9]. This is why de novo interpretation of the fragments, directly from the spectra, is
a promising alternative.

Determining the chemical formula of metabolites is generally used as a first step in
the identification of their molecular structure. In [1], Böcker et al. initiated such study,
where the problem of de novo identifying the chemical formulas of metabolites from
tandem mass spectrometry spectra was formally modeled by the Maximum Colorful
Subtree (or MCS) problem. Let µ be an unknown metabolite and sµ a tandem mass
spectrum of µ. Intuitively, a solution of MCS represents the best possible “fragmenta-
tion scenario”, called a fragmentation tree, of µ. Böcker et al. showed that computing
the fragmentation tree of µ allows to determine the chemical formula of the studied
metabolite [1]. Further studies then showed how to use these fragmentation trees in
order to determine the molecular structures of these metabolites [10, 11, 12, 13, 14].

In the following, we describe the main ideas behind MCS. First, for each peak p
in sµ representing a mass, a set of chemical formulas is generated such that the mass
of any molecule having one of those chemical formulas lies in the same range as p. A
directed acyclic graph (DAG) G = (V,A) is then created as follows: every node v ∈ V
represents a chemical formula; two nodes u and v are linked by an arc (u, v) if one
molecule, whose chemical formula is represented by vertex v, is possibly the result of
the fragmentation of another molecule whose chemical formula is represented by vertex
u; each vertex possesses a color corresponding to its mass (or better said, its mass
range). A weight function w : A → R is also assigned to the arcs of G. Informally,
weights correspond to some degree of confidence concerning the fragmentation of a
molecule into its sub-molecule; it is also important to note that in most applications,
the weight function w is logarithmic, and thus arc weights in G may be negative. Note
finally that in such a graph, there exists a unique vertex of indegree 0 (that can be
seen as the ”root” of G), whose color is also unique: this particular vertex represents
one possible candidate chemical formula for metabolite µ. Now the MCS problem,
introduced in [1], is defined as follows: given a DAG G = (V,A), a set C of colors, a
coloring function col : V → C and a weight function w : A→ R, find a subtree T of G
such that (1) no two vertices of T carry the same color (we then say that T is colorful)
and (2) T is of maximum weight (where the weight of T is the sum of the weights of
the arcs it contains).

However, a finer-grained analysis shows that modeling the initial problem as the
MCS problem does not completely reflect the precise structure of the input. First,
it is easy to see that G is not any DAG: more precisely, as discussed above, it has a
unique root r having indegree 0. Moreover, let us define H(G) as the directed graph
that is built from G as follows: V (H(G)) is the set C of colors used to color V (G), and
there is an arc from c to c′ in H(G) if there is an arc in G from a vertex of color c to a
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vertex of color c′. Since vertices are colored according to the masses of the molecules
they represent and since an arc (x, y) represents the fragmentation of a molecule of
chemical formula x into a molecule of chemical formula y, there necessarily exists a
partial order among colors, which implies thatH(G) is necessarily a DAG too; therefore
H(G) is called the Color Hierarchy Graph of G. Finally, by the nature of the initial
problem, the output tree T must necessarily contain the root r. Thus, T is formally an
arborescence, i.e., a directed graph T = (VT , AT ) with a designated root r such that
there exists only one path from r to any node v ∈ VT . This leads us to reformulate the
MCS problem into the following Maximum Colorful Arborescence (or MCA)
problem, which better reflects the initial motivation.

Maximum Colorful Arborescence (MCA)

• Input: A DAG G = (V,A) rooted in some vertex r, a set C of colors, a
coloring function col : V → C s.t. H(G) is a DAG and an arc weight function
w : A→ R.

• Output: A colorful arborescence T = (VT , AT ) rooted in r and of maximum
weight w(T ) =

∑
a∈AT w(a).

We say that an optimization problem Q is FPT (for Fixed-Parameter Tractable)
with respect to a given parameter k if it can be exactly solved in time O(f(k)·poly(|I|))
for some computable function f and any instance I of Q, i.e., if the exponential part of
its complexity depends only on k. If k is small in practice, designing Fixed-Parameter
Tractable algorithms is of interest since they are exact and possibly run in reason-
able time, even for large inputs. For more details on the theory of fixed-parameter
tractability, we refer the reader to [15]. Now, because the definition of MCA is more
accurate, it seems interesting to provide a detailed analysis of the computational com-
plexity of the problem, as done in this paper. Indeed, studying MCA contributes to a
better understanding of the initial biological problem. In particular, we will see that
the fact that H is a DAG can be positively exploited in some situations. Moreover,
since any instance of MCA is also an instance of MCS, any positive result (such as
polynomial-time, approximation and FPT algorithms) for MCS also applies to MCA –
with a time complexity and/or approximation ratio that may even be improved for
MCA. Besides, a negative result for MCS does not necessarily imply the same result
for MCA. In this paper, we study MCA under an algorithmic viewpoint: a first goal
is to distinguish tractable instances from intractable ones; a second one is to provide
new polynomial and FPT algorithms for the problem.

This paper, which is an extended version of [16], is organized as follows. In Sec-
tion 2, we introduce notations that will be used throughout the paper. We then show
in Section 3 that MCA remains hard even when the input instances consist in very
specific arborescences. In this extended version, we also propose approximation al-
gorithms for such instances, that essentially take advantage of the fact that H is a
DAG. Using this property of H, we describe in Section 4 a new range of instances that
are polynomial-time solvable, and provide new FPT algorithms. Finally, in Section 5,
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we present FPT algorithms for MCA parameterized by parameter `C , defined as the
minimum number of vertices not present in the solution. In particular, we show in
this extended version a new FPT algorithm whenever (1) G is a tree and (2) the arc
weights are uniform.

2. Preliminaries

Notations. For any positive integer k, we use the notation [k] = {1, 2, . . . , k}. For
any vertex-colored and arc-weighted DAG G = (V,A) given as input of MCA, we let
n = |V | and m = |A|. Since the input DAG of MCA instances is rooted in a single
vertex, we always denote by r the root of G. For any v ∈ V , N+(v) denotes the set of
outneighbors of v (thus excluding v) and, for any V ′ ⊆ V , N+(V ′) =

⋃
v′∈V ′ N

+(v′)
is the set of outneighbors of all v′ ∈ V ′ (excluding V ′). For any v ∈ V , d+(v) (resp.
d−(v)) denotes the outdegree (resp. indegree) of v. Moreover, for all V ′ ⊆ V and
v ∈ V ′, Gv[V ′] denotes the induced DAG of G[V ′] that is rooted in v. When G is
an arborescence, for any vertex v ∈ V we let f(v) be the father (i.e., the unique
inneighbor) of v in G. For any subset V ′ of V , col(V ′) denotes the multiset of colors
assigned to the vertices of V ′ and col∗(V ′) its underlying set. We say that V is colorful
when col(V ) = col∗(V ) and that G is colorful when V (G) is itself colorful. For a vertex
v ∈ V , we let d(r, v) denote the oriented distance from r to v in (the unweighted version
of) G, that is the minimum number of arcs needed to reach v from r in G. The Color
Hierarchy Graph of G is denoted by H(G) = (C, AC) or, when clear from the context,
simply H.

The problem MCA+ denotes the restriction of MCA to DAGs with positive
weights, whereas UMCA denotes the restriction of MCA+ to instances having unit
arc weights, i.e., w(a) = 1 for all a ∈ A. Note that the root r of G is a trivial solution
to any instance which only contains negative arcs; therefore, there is no need to define
a restriction of MCA to DAGs with only negative arc weights. The problem MCA-x
is the restriction of MCA in which any color c ∈ C appears at most x times in col(V ).
Finally, we can also constrain the input instances of MCA both on the weights and
on the maximal number of occurrences of a color, and thus combine any the three
abovementioned variants. In that case, the problem will be naturally denoted by com-
bining the corresponding notations. For instance, the UMCA-x problem considers
input DAGs with positive and uniform weights, and in which any color appears at
most x times in G.

Note that although G, the solution arborescence T and the Color Hierarchy Graph
H are by definition directed, in the rest of the paper we will often, for simplicity and
when clear from the context, refer to the underlying undirected graph of some graph H
(rather than H itself). For instance, when we talk about MCA “in trees”, we actually
mean that the underlying undirected graph of G is a tree.

Two parameters will be of importance in the algorithmic study of MCA: `C =
n − |C| is the minimum number of vertices that are not part of the solution, and s is
the minimum number of arcs that need to be removed from H in order to turn it into
an arborescence.
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Previous results. We summarize here known results about MCS, and also note that
every result mentioned below concerning MCS also applies to MCA. Indeed, MCA
being a particular case of MCS, any positive result for MCS also holds for MCA.
Moreover, for all negative results below, the MCS instances that are built in the
corresponding proofs turn out to be either MCA instances themselves, or can easily
be transformed into such instances.

MCS is known to be NP-hard even when every arc weight is equal to 1 [1], and it
can be seen that the result also applies to UMCA. MCS is also APX-hard on binary
trees [17, 18], a result that also applies to UMCA-2. However, the problem is FPT
parameterized by |C|, by a dynamic programming algorithm that runs in O∗(3|C|) time
and uses O∗(2|C|) space [19, 1].

Theorem 1 from [17], which shows hardness results for MCS, is directly applicable
to MCA-1, since the MCS instance constructed in the reduction turns out to be an
MCA-1 instance. Besides, it can be slighlty modified, while preserving the results,
into an MCA-2 instance in which G is a tree. Thus we derive from Theorem 1 in [17]
the following results: MCA-1 and MCA-2 in trees both are W[1]-hard when param-
eterized by the weight w of the solution ; MCA-1 is W[1]-hard when parameterized
by `C = n− |C| ; unless P 6= NP, there is no polynomial-time approximation algorithm

achieving a ratio of O(n
1
2−ε) with ε > 0 for both MCA-1 and MCA-2 in trees.1

MCA has also been studied in [20], under a parameterized complexity point of
view. It has been proved that MCA is FPT in the number of vertices of indegree at
least 2 inH and W[2]-hard parameterized by the treewitdh tH ofH. An FPT algorithm
in `C + tH is also given.

Our results. The main results obtained in this paper are summarized in Tables 1 and 2.
They will be developed in the following sections.

3. MCA in Trees

In this section, we focus on MCA in the case where the input graph G is a tree, aim-
ing at determining which tree structures lead to (in)tractable (resp. (in)approximable)
results. We start with the following theorem, that applies to the general case of trees.

Theorem 1. For any δ < 1, UMCA in trees cannot be approximated within 2log
δ n

in polynomial time, unless NP ⊆ DTIME[2poly logn].

Proof. Dondi et al. introduced the Maximum Level Motif (or MLM) prob-
lem [18], a maximization variant of the Graph Motif problem [21] dealing with
colorful motifs on trees. Besides, MLM incorporates the notion of a leveled coloring
function col′ : V → C for which two vertices can have the same color only if they are
at the same distance from the root. The formal definition of MLM is given below.

1As a side note, we point out an error in the inapproximation ratio given in Theorem 1 in [17],

which should be O(n
1
2
−ε) instead of O(n1−ε).

5



R
es

tr
ic

ti
on

on
G

Constraint Variant Result

tree UMCA
no 2log

δn approx., δ < 1 (Th. 1)

O( n
logn ) approx. in binary trees (Prop. 2)

superstar UMCA-2
APX-hard (Th. 4)

2-approx. (Prop. 5)

comb-graph
UMCA-2 no O(n

1
3−ε) approx. (Th. 8)

UMCA O(n
1
2−ε) approx. (Prop. 11)

caterpillar MCA belongs to P (Prop. 12)

on
H

tree MCA belongs to P (Th. 15)

Table 1: Overview of the approximation and exact results presented in this paper for the MCA
problem and its variants. Here, n is the number of vertices in G. Positive results are obtained based
on the fact that H is a DAG.

Variant Restriction on G Result

MCA - O∗(2`C+m−) (Prop. 19)

MCA+ - O∗(2`C ) (Cor. 20)

MCA G is a tree O∗(2`C ) (Prop 21)

MCA+ G is a tree O∗(1.62`C ) (Prop. 22)

UMCA G is a tree O∗(1.33`C ) (Prop. 23)

UMCA-2 - no O∗((2− ε)`C ) algorithm (Thm. 24)

Table 2: Overview of the parameterized results presented in this paper for the MCA problem and its
variants. Here, n is the number of vertices in G, C is the color set of G, `C = n− |C| and m− is the
number of arcs with negative weight in G.

Maximum Level Motif (MLM)

• Input: A rooted tree H = (V,E), a color set C, a leveled coloring function
col′ : V → C.
• Output: A maximum cardinality subset V ′ ⊆ V such that the induced
subgraph H[V ′] is connected and colorful.

Let I be any instance of MLM. We construct an instance I ′ of MCA as follows:
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graph G is built on V , and each edge in H is changed into an arc in G, between the
same vertices, such that each arc is oriented from parent to child; clearly, G is a tree.
We let w(a) = 1 for any arc, and we also apply the same coloring function col′, given
as input of MLM, to color the vertices of G. Since col′ is a leveled coloring function,
the colors in C are partially ordered and therefore H is a DAG. Thus, I ′ is a correct
UMCA instance. We now show that there exists a solution V ′ of cardinality at least k
for MLM iff there exists a colorful arborescence T = (VT , AT ) such that w(T ) ≥ k− 1
in G.

(⇒) Suppose there exists a solution V ′ of MLM such that |V ′| ≥ k. Let T
be the spanning arborescence of V ′ in G, with VT = V ′. Trivially, T is colorful
and of weight at least k − 1. If r /∈ VT , we search for a vertex x ∈ VT such that
d(r, x) = min{d(r, u) : u ∈ VT }. Let Vr,x (resp. Ar,x) be the set of vertices (resp. arcs)
in the path from r to x in G. We construct a new arborescence T ′ = (VT ′ , AT ′), with
VT ′ = VT ∪ Vr,x and AT ′ = AT ∪ Ar,x. According to col′, Vr,x is colorful and each
vertex in Vr,x has a different color from any of the vertices in VT . Thus, VT ′ is colorful.

(⇐) Suppose there exists a colorful arborescence T = (VT , AT ) of weight at least
k − 1 in G. Then, we choose V ′ = VT . Trivially, V ′ is colorful and |V ′| ≥ k.

Dondi et al. proved that, under the condition that NP ⊆ DTIME[2poly logn], MLM

cannot be approximated within 2log
δ n, δ < 1, in polynomial time [18]. By linearity of

the above reduction, we reach the same conclusion for UMCA in trees. �

We just showed that UMCA is highly inapproximable in trees. However, an ap-
proximation algorithm for UMCA can be obtained in binary trees. Indeed, note that
a path from the root to any other vertex is always colorful as H is a DAG. Since the
eccentricity of the root in any such tree is at least dlog ne, and since any solution for
UMCA in trees has weight less then or equal to n− 1, we obtain the following result.

Proposition 2. UMCA in binary trees can be approximated within ratio O( n
logn ).

From Theorem 1, it seems natural to further restrict the structure of the input
tree in order to draw the line between tractable and intractable cases. We begin by
the particular case where G is a star, i.e., a tree with one internal vertex, say z, that
is connected to all other vertices. In case the internal vertex of G is the root r, an
optimal solution to MCA is obtained as follows: for every color c ∈ C, consider all
arcs from r to a vertex of color c, and keep the one with maximum weight if it is
positively weighted, or discard it otherwise. In case z 6= r, z is the unique outneighbor
of r. Since r must belong to the solution, we proceed in two steps. First, consider
the star G[V \ {r}] and apply the same strategy as before with z playing the role of
r. We obtain a partial solution of positive total weight containing at least z. Second,
we try to add the arc (r, z) to the partial solution. Note that the arc (r, z) can be
positively or negatively weighted. Therefore, the final solution is obtained by adding
the arc (r, z) to the partial solution if the total weight is still positive. Otherwise, it
means that the arc (r, z) is too negatively weighted and the final solution is restricted
to the vertex r. We then get the following easy result, which will prove useful in some
of our FPT algorithms in Section 4.
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Proposition 3. MCA in stars is polynomial-solvable.

Superstars, defined as rooted trees of height 2, are a natural extension of stars.
However, in that case the MCA problem turns out to be hard, as shown by the
following result.

Theorem 4. UMCA-2 is APX-hard, even if G is a superstar.

Proof. The proof is by reduction from Max-2-SAT(3), which is known to be APX-
hard [22]. It can be seen as an extension of proof of Theorem 1 in [1].

Max-2-SAT(3)

• Input: A set X = {x1, x2 . . . xp} of variables, a CNF-formula φ on a set of
size-2 clauses C1, C2 . . . Cq built from X, such that each variable occurs in at
most 3 clauses.

• Output: A boolean assignment β : X → {true, false} that maximizes the
number of satisfied clauses from φ.

Recall that f(v) denotes the unique inneighbor of any v ∈ V asG is a tree. For every
j ∈ [q], let lj,1 and lj,2 be the two literals that appear in clause Cj . The reduction is as
follows: for any instance of Max-2-SAT(3), we create a directed superstar G = (V,A)
that we can see as a three-leveled graph (see Figure 1). The root r is at level 1, two
vertices vi and vi are created for every i ∈ [p] at level 2, and two vertices Cj,1, Cj,2 are
created for every j ∈ [q] at level 3. There exists an arc from r to every level-2 vertex.
For all i ∈ [p] and j ∈ [q], there exists an arc from vi (resp. vi) to Cj,1 if lj,1 = xi
(resp. lj,1 = xi) or from vi (resp. vi) to Cj,2 if lj,2 = xi (resp. lj,2 = xi). The intuition
is that an arc (vi, Cj, ) (resp. (vi, Cj, )) appearing in an arborescence represents the
situation where setting xi = true (resp. xi = false), modeled by vertex vi (resp. vi),
satisfies clause Cj . The coloring function on V (G) is defined as follows: the root r is
assigned a unique color; for all i ∈ [p], vertices vi and vi are assigned the same color
c(vi); for all j ∈ [q], vertices Cj,1 and Cj,2 are assigned the same color c(Cj). Clearly,
each color occurs at most twice in G, and the coloring function is partially ordered
because any two vertices having the same color lie at the same level. Finally, every
arc in G is assigned a weight of 1.

We now show that there exists a boolean assignment β for X that satisfies at least k
clauses in φ iff there exists a colorful arborescence T = (VT , AT ) of weight w(T ) ≥ p+k
in G.

(⇒) Suppose there exists an assignment β for X that satisfies at least k clauses of
φ. We define:

ST = {vi : i ∈ [p] s.t. xi = true in β}
and

SF = {vi : i ∈ [p] s.t. xi = false in β}
Then, we define:
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r

v1 v1

v2

v2

v3

v3

C1,1

C1,2

C2,1

C2,2

C3,1

C3,2

C4,1

C4,2

G

Figure 1: Construction of an instance of UMCA-2 from the following Max-2-SAT(3) instance: φ =
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3). By definition, all arc weights are equal to 1, and are
not represented for clarity. The assignment x1 = true, x2 = false and x3 = false satisfies φ and
corresponds to the UMCA-2 solution T in G with bold red arcs.

VT ={r} ∪ ST ∪ SF
∪ {Cj,1 : j ∈ [q] s.t. f(Cj,1) ∈ (ST ∪ SF )}
∪ {Cj,2 : j ∈ [q] s.t. f(Cj,2) ∈ (ST ∪ SF ) and f(Cj,1) /∈ (ST ∪ SF )}

We denote by T the spanning arborescence of VT . By construction, there cannot
exist j ∈ [q], h ∈ {1, 2} such that Cj,h ∈ VT and f(Cj,h) /∈ VT . Thus, T is connected.
Moreover, since β satisfies at least k clauses, there exists at least k distinct vertices of
type Cj,h that belong to T , in addition to the p vertices in ST ∪ SF and the root r.
Besides, T is necessarily colorful and w(T ) ≥ p+ k.

(⇐) Suppose there exists a colorful arborescence T ′ = (VT ′ , AT ′) of weight w(T ′) ≥
p + k in G. If VT ′ does not contain p vertices from level 2, then it is always possible
to extend it to a set VT such that VT ′ ⊆ VT , VT is colorful and contains p vertices
from level 2. Let T be the spanning arborescence of VT . Note that since T is colorful,
for any 1 ≤ i ≤ p, either vi or vi is in VT but not both. We now construct a truth
assignment β that satisfies at least k clauses from φ: for every i ∈ [p], if vi ∈ VT (resp.
vi ∈ VT ) then we let xi = true (resp. xi = false) in β. We now claim that β satisfies
at least k clauses from φ. Indeed, if a vertex Cj,h, j ∈ [q] and h ∈ {1, 2} is in VT , then
necessarily f(Cj,h) ∈ VT and, by construction, Cj is satisfied by β. Moreover, Cj,1 and
Cj,2 cannot both belong to VT because T is colorful. Since T has weight w(T ) ≥ p+k,
VT must contain at least k vertices from level 3, which means that β satisfies at least
k clauses.

To conclude the proof, recall that k ≤ q since no more than q clauses can be
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satisfied. Note also that 2q ≤ 3p as every variable appears at most three times in φ,
while every clause is of size 2. This gives us p ≥ 2q

3 ≥ 2k
3 and p + k ≥ 2k

3 + k ≥ 5k
3 .

Thus, there exists an assignment β that satisfies at least k clauses of φ iff there exists
a colorful arborescence T = (VT , AT ) of weight w(T ) ≥ 5k

3 in G. The linearity of the
reduction combined with the APX-hardness of Max-2-SAT(3) shows APX-hardness
of UMCA-2, even on superstars. �

Although Theorem 4 suggests that no PTAS exists for UMCA-2 in superstars, we
are able to provide in that case a constant ratio approximation algorithm, as described
below.

Proposition 5. UMCA-2 is 2-approximable in superstars.

Proof. In the following, for any v ∈ V (resp. any V ′ ⊆ V ), let col+(v) (resp.
col+(V ′)) be the underlying set of col(N+(v)) (resp. col(N+(V ′))). We first assume
that the root r of the superstar G is also the center of G, i.e., that there does not exist
any vertex v ∈ V such that d(r, v) > 2 – the case where r is not the center will be
discussed later. If G is a superstar, we can see it as a three-leveled graph where the root
r belongs to the first level, V2 = N+(r) belongs to the second level, and V3 = N+(V2)
belongs to the third level. For any color c ∈ C, let Vc = {v ∈ V : col(v) = c} be
the set of all vertices of color c in G. Finally, recall that any arc in G is of weight 1
in a UMCA-2 instance. As a consequence, if there exist two vertices v2 ∈ V2 and
v3 ∈ V3 such that v2 and v3 share the same color and such that v3 belongs to a
solution T = (VT , AT ) of UMCA-2 in G, then we can replace v3 by v2 in VT without
decreasing the weight of T . In the following, we thus assume without loss of generality
that col(V2) ∩ col(V3) = ∅.

For any 1 ≤ | col+(r)| ≤ |C| − 1, we prove by induction that there exists a colorful

arborescence T = (VT , AT ) of weight w(T ) ≥
⌈
|C|
2

⌉
in G. To begin, if | col+(r)| = 1,

then V2 contains either a single vertex or two vertices which share the same color, since
no color can appear more than twice in a UMCA-2 instance. In the first case, the
single vertex in V2 has an outgoing arc towards all the vertices in V3. In the second

case, at least one of the vertices in V2 has an outgoing arc towards at least
⌈
|C|
2

⌉
− 1

vertices of distinct colors in V3. Therefore, in both cases, there exists a trivial colorful

arborescence T of weight w(T ) ≥
⌈
|C|
2

⌉
.

For any k ∈ [|C| − 2], if | col+(r)| = k, then we suppose by induction hypothesis

that there exists a colorful arborescence T = (VT , AT ) of weight w(T ) ≥
⌈
|C|
2

⌉
in G.

Suppose now that | col+(r)| = k+1. Let c be an arbitrary color in col+(r), from which
we define V + = {r} ∪ Vc ∪N+(Vc) and V − = {r} ∪ (V2 \ Vc)∪ (V3 \ {v ∈ V3 : col(v) ∈
col+(Vc)}), with C+ = col∗(V +) and C− = col∗(V −). By induction, notice that G[V +]

(resp. G[V −]) contains a UMCA-2 solution T+ (resp. T−) of weight w(T+) ≥
⌈
|C+|
2

⌉
(resp. w(T−) ≥

⌈
|C−|
2

⌉
). We now show that T = T+∪T− is a UMCA-2 solution in G.

First, recall that r necessarily is the root of T+ and T−. Since r is the only vertex
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which belongs both to V + and V −, T is an arborescence in G. Second, by construction,
observe that C = C+ ⊕ (C− \ {col(r)}), where operator ⊕ represents the disjoint union
between two sets. In fact, except for the root r that belongs to both sets, all vertices
from the second level are kept either in V + or V − in such a way that vertices of the
same color belong to the same set. Concerning the third level, the only vertices that
are not considered are outneighbors of level-2 vertices from V − whose color is already
present in V +. As a consequence, T is colorful and w(T ) = w(T+) + w(T−), which

leads to w(T ) ≥
⌈
|C+|
2

⌉
+
⌈
|C−|
2

⌉
and thus to w(T ) ≥

⌈
|C|
2

⌉
.

Finally, if the center of G, say z, is such that z 6= r, then we consider two cases:
(a) either r and z are neighbors, or (b) they lie at distance 2. In case (a), we have
r ∈ V2 meaning that all outneighbors of r except z belong to the third level of G and
consequently, all its outneighbors except z are leaves. Let us study the graph G by
ignoring r and its neighbors from level three. To do so, we define V r = {r}∪ (N+(r) \
{z}) and V ′ = V \V r, with Cr = col∗(V r) and C′ = col∗(V ′). Notice that G[V ′] is still
a superstar centered in z and, according to the proof above, it contains a UMCA-2

solution T ′ rooted in z of weight w(T ′) ≥
⌈
|C′|
2

⌉
. Now, we define Cu = Cr \ C′ as the

set of colors that are uniquely present in V r, i.e., that are present in V r but not in V ′

and we build the colorful set V u as follows: for each color c ∈ Cu, pick exactly one
vertex v ∈ V r such that col(v) = c and add it to V u. Recall that r belongs to V r and
its color is unique, thus r ∈ V u. Consequently, Tu = G[V u] is a colorful arborescence
rooted in r and of weight w(Tu) = |Cu| − 1. We construct the final arborescence
T by connecting the two colorful ones Tu and T ′ with the arc (r, z) between their
corresponding roots. Since V ′ ∩ V u = ∅ and C′ ∩ Cu = ∅, T is a colorful arborescence

rooted in r and w(T ) = w(T ′) +w(Tu) + 1 which leads to w(T ) ≥
⌈
|C′|
2

⌉
+ |Cu|. Since

C = C′ ⊕ Cu, we can conclude w(T ) ≥
⌈
|C|
2

⌉
. In case (b), r ∈ V3, it means that there

exists a unique vertex z′ ∈ V2 that lies on the path from r to z. Moreover, since G
is a superstar centered in z and r is on level three, then r has a unique outneighbor
that is z′. Consequently, the color of z′ is unique. Therefore, we can apply case (a) by
considering z′ playing the role of r. Once again, since r is connected to z′ and r has
a unique color, r is part of the solution and this concludes the proof. �

Theorem 4 shows that MCA remains APX-hard even in trees of height 2. Hence,
another option, if one wants to find tractable instances, consists in constraining the
maximum degree of the input tree, which motivates the study of comb-graphs. If d(v)
denotes the degree of a vertex v in a graph, a comb-graph is defined as a tree for which
d(v) ≤ 3 for any v ∈ V , and where all vertices of degree 3 lie on a path, called the
spine. Unfortunately, we show in Theorem 8 that UMCA-2 remains APX-hard (with
a large inapproximability ratio) even when the input tree is a comb-graph.

We obtain this result by reduction from Maximum Independent Set (or MIS),
a proof somewhat similar to proof of Proposition 1 in [23]. In the following, we first
explain our reduction from MIS to UMCA-2. Then, we will prove two intermediate
lemmas, namely Lemmas 6 and 7, to show how to obtain a solution of MCA (resp.
MIS) from a solution of MIS (resp. MCA) in the constructed instances.
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We recall that MIS takes a graph H = (U,E) as input, and asks for a maximum
cardinality set U ′ ⊆ U such that no two vertices in U ′ are connected by an edge in H.
In the following, let U = {u1, u2 . . . un′} and E = {e1, e2 . . . em′}. For all i ∈ [n′], let
Li = (j1, . . . , jd) such that j1 < . . . < jd, and ejh is incident to ui for all h ∈ [d] be the
ordered list of indices of edges that are incident to ui, and note that |Li| = d(ui) is the
degree of vertex ui. For all k ∈ [d(ui)], we denote by Li(k) the k-th element in Li.

We create a directed comb-graph G = (V,A), with:

V ={ri : i ∈ [n′]}
∪ {xLi(k)i : i ∈ [n′], k ∈ [d(ui)]}
∪ {zpi : i ∈ [n′], p ∈ [n′2]}

and

A ={(ri, ri+1) : i ∈ [n′ − 1]}
∪ {(ri, xLi(1)i ) : i ∈ [n′]}
∪ {(xLi(k)i , x

Li(k+1)
i ) : i ∈ [n′], k ∈ [d(ui)− 1]}

∪ {(xLi(d(ui))i , z1i ) : i ∈ [n′]}
∪ {(zpi , zp+1

i ) : i ∈ [n′], p ∈ [n′2 − 1]}

For an illustration, see Figure 2. Informally, the vertices of type ri represent the
vertices of U and constitute the spine of G, which is rooted in r1, and that we can
visualize as a horizontal path. Then, to every ri we attach a vertical path composed
first of vertices of type xhi , that represent the edges incident to vertex ui in U (ordered
by their index), followed by n′2 vertices of type zpi .

Since G is rooted in r1, the orientation of the arcs directly follows and G is clearly
a comb-graph. Now let us describe the colors assigned to the vertices of G: each of the
vertices of type ri and zji has its own color, which is thus unique. For all h ∈ [m′], we
assign the same color c(h) to the two vertices xhi1 , x

h
i2
∈ V . Since xhi1 and xhi2 represent

the two extremities ui1 and ui2 from E of the edge eh in U of H, this means that c(h),
for any h ∈ [m′], appears exactly twice.

We can easily see that the coloring is partially ordered, since the vertices of type
xhi (which are the only ones that can have repeated colors) are ordered according to
the edge number they correspond to. Finally, each arc a ∈ A(G) is assigned a weight
w(a) = 1, which altogether ensures that G is a valid instance of UMCA-2. In the
following, for a given i ∈ [n′], we will denote by Zi the path induced by vertices of
type zji .

We now prove Lemmas 6 and 7.

Lemma 6. If there exists an independent set I of size k in H, then there exists a
colorful arborescence T = (VT , AT ) of weight W ≥ k · n′2 in G.
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H

r1 r2 r3 r4 r5

x1
1 x1

2 x2
3 x3

4 x5
5

x4
1 x2

2 x3
3 x4

4

x5
4

z11 z12 z13 z14 z15

... ... ... ... ...

z251 z252 z253 z254 z255

= 52 vertices

G

Figure 2: Construction of a UMCA-2 instance (on the right) from an MIS instance (on the left). The
edges of H are called e1, e2, . . . , e5. Each non-colored vertex of G in the above picture has a unique
color. For clarity, we do not represent the weights of the arcs – which are all equal to 1 by definition.
The subset I = {u1, u3, u5} (in bold red) is an MIS solution in H and corresponds to the UMCA-2
solution T in G with bold red arcs.

Proof. We let VT = {ri : i ∈ [n′]} ∪ {xLi(j)i : i s.t. ui ∈ I, j ∈ [d(ui)]} ∪ {zpi : i s.t.
ui ∈ I, p ∈ [n′2]}, and we define T as the spanning arborescence of VT . In that case
T is colorful, otherwise there would exist xhi1 , x

h
i2
∈ VT , which means by construction

that vertices ui1 and ui2 from I are connected by edge eh, a contradiction. Moreover,
T contains k paths Zi, each of size n′2. Consequently, W ≥ k · n′2. �

Lemma 7. If there exists a colorful arborescence T = (VT , AT ) of weight W in G,

then there exists an independent set I of size k ≥
⌈
W+1−n′−m′

n′2

⌉
in H.

Proof. We build I according to the following rule: for all i ∈ [n′], if there exists
p ∈ [n′2] such that zpi ∈ VT then ui ∈ I. In other words, I is composed of every
i ∈ [n′] for which there exists at least one vertex of type zpi in VT . We first prove
that I is an independent set. Indeed, suppose by contradiction there exists ui1 , ui2 ∈ I
such that ui1 and ui2 are adjacent. In that case, there would exist h ∈ [m′] such that
col(xhi1) = col(xhi2) while xhi1 and xhi2 belong to VT , which contradicts the fact that T
is colorful.

We now prove that k ≥
⌈
W+1−n′−m′

n′2

⌉
. First, note that we can always extend T

to a colorful arborescence T ′ = (VT ′ , AT ′) in such a way that the following conditions
hold: (i) VT ⊆ VT ′ , (ii) for every i ∈ [n′], ri ∈ VT ′ and (iii) if a vertex of type zpi belongs
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to VT , then the whole path Zi belongs to T ′. Let W ′ denote the weight of T ′. Since
VT ′ contains n′ vertices of type ri, k · n′2 vertices of type zji and at most m′ vertices
of type xhi , and since all arcs have weight 1, we have that W ′ ≤ n′ +m′ − 1 + k · n′2.
Now it suffices to note that W ≤W ′ to conclude. �

We are now able to prove Theorem 8.

Theorem 8. UMCA-2 cannot be approximated within O(n
1
3−ε), for any ε > 0, even

if G is a comb-graph.

Proof. Suppose UMCA-2 is approximable in polynomial time within some ratio
ρ. Then, in particular one can find in polynomial time an approximate solution of
weight W for the instance we built, such that W ≥ W∗

ρ , where W ∗ denotes the
weight of an optimal solution. According to Lemma 6, from an optimal solution of
MIS of size k∗, an optimal solution of weight W ′ ≥ k∗ · n′2 exists for UMCA-2,

which implies that W ∗ ≥ W ′ ≥ k∗ · n′2. By substitution, we obtain W ≥ k∗·n′2
ρ .

According to Lemma 7, if there exists a solution of weight W for UMCA-2, then
there exists a solution of size k ≥ W+1−n′−m′

n′2 for MIS. By substitution again, we

obtain k ≥
k∗·n′2
ρ +1−n′−m′

n′2 . Note that m′+n′−1
n′2 ≤ 1 as m′ ≤ n′(n′−1)

2 . Thus, we obtain

k ≥ k∗

ρ − 1. As a consequence, any approximation algorithm of ratio ρ for UMCA-
2 would imply an approximation algorithm of ratio ρ for MIS. We recall that MIS
cannot be approximated in polynomial time within O(n′1−ε) for any ε > 0, unless
P = NP [24] and that |V | = O(n′3), which concludes our theorem. �

Note that in the above argument, if we replace each vertical path of n′2 vertices
of type zpi by a single vertex of type zi and if we set all weights to 0 except for the
incoming arcs of all vertices of type zi, Lemmas 6 and 7 easily show that there exists
a independent set I of size k in the instance H of MIS if and only if there exists a
colorful arborescence T = (VT , AT ) of weight w(T ) = k in the MCA+-2 instance G
built from H. This observation directly implies the following result.

Corollary 9. MCA+-2 cannot be approximated within O(n
1
2−ε), ε > 0, even if G is

a comb-graph.

Similarly to Theorem 1, Theorem 8 and Corollary 9 provide large inapproximability
ratios, i.e. ratios which are function of n, the number of vertices of the input graph
G. However, we provide in Proposition 11 an approximation algorithm for UMCA
in comb-graphs which, as in the proof of Proposition 2, relies on the fact that H is a
DAG. We first need to prove the following lemma.

Lemma 10. Let G = (V,A) be a comb-graph rooted in r ∈ V , and let p be an arbitrary
positive integer. If d(r, v) ≤ p for any vertex v ∈ V , then G contains at most (p+ 1)2

vertices.

Proof. By definition, any comb-graph G = (V,A) contains a spine having vertex set
S ⊆ V , and for any vertex v ∈ S, G may contain a hanging path which is attached to
v, i.e. a path such that only one of the two extremities of the path belongs to S.
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We first assume that we want to build a comb-graph G having a maximum number
of vertices n, and such that d(r, v) ≤ p for any vertex v ∈ V . To begin with, we create
two vertices va ∈ S and vb /∈ S such that r belongs to the hanging path from va to
vb. Let a ≤ p (resp. b ≤ p) be the distance from r to va (resp. vb) in G. Because
of the distance constraint, we know that for any vertex v ∈ S, d(va, v) ≤ p − a. As
a consequence, for any v ∈ S such that d(va, v) = d′, with d′ ∈ {1, . . . , p − a}, the
hanging path from v is of length at most p− a− d′ (see Figure 3 for an illustration).

... va ...

...

r

...

vb

...

... ...

...

G

a

b

p− a

∗∗
∗

p− a

∗
∗∗

Figure 3: Construction of a comb-graph G maximizing |V (G)| and such that d(r, v) ≤ p for any v ∈ V ,
where p is a given positive integer). The braces represent a maximum distance between two vertices:
the symbol ∗ means “p− a− 1” and ∗∗ means “p− a− 2”.

Now let us turn to computing the maximum number of vertices n in such a comb-
graph G. Note that n ≤ 1 + a + b + 2 ·∑p−a

d′=1 d
′, which leads to n ≤ 1 + a + b +

2 · (p−a)(p−a+1)
2 and n ≤ (p − a)2 + p + b + 1. Now, observe that n is maximized by

setting a to 0 (which in turn implies r ∈ S), and b = p. As a consequence, we have
that n ≤ (p+ 1)2, which concludes the proof. �

Lemma 10 now allows us to prove the next result.

Proposition 11. UMCA in comb-graphs can be approximated in polynomial time
within a ratio O(n

1
2 ).

Proof. In the following, recall that G contains n vertices. According to Lemma 10,
if d(r, v) ≤ √n − 2 for any v ∈ V , then G contains at most (

√
n − 2 + 1)2 vertices,

which contradicts the fact that G contains n vertices. As a consequence, in any MCA
instance such that G is a comb-graph, there exists at least one vertex v ∈ V such that
d(r, v) ≥ √n − 1. Now, recall that any solution of UMCA in G is of weight at most
n − 1. Moreover, recall that any path from the root in G is colorful as H is a DAG.
Therefore, the longest path from the root is a solution to UMCA, of weight at least√
n− 1. Since no solution of weight more than n− 1 exists, this shows UMCA admits

an approximation algorithm of ratio O(n
1
2 ). �
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Recall that Theorem 8 does not forbid any O(n
1
3 )-approximation algorithm for

UMCA in comb-graphs. Therefore, determining if there exists such an approximation
algorithm remains an open question. Although the approximation algorithm from
Proposition 11 does not apply to comb-graphs with non-uniform weights, there exists
a trivial |C|-approximation algorithm for MCA+ in such graphs. If T is the optimal
solution of an instance G and W ∗ is the largest weight of G, then w(T ) ≤W ∗ ·(|C|−1)
since T cannot contain more than |C| vertices. Moreover, recall that any path from r
to a vertex v ∈ V is colorful as H is a DAG. Hence, the |C|-approximation algorithm
consists in taking any path from r which includes the largest weighted arc of G.

We have seen that MCA remains hard even in superstars (Theorem 4) and comb-
graphs (Theorem 8 and Corollary 9). Another way of restricting the input tree struc-
ture is to consider trees that are “close to paths”. When G is a path, it can be easily
seen that MCA is in P. The next step is to study caterpillars, which are trees that
become paths after removal of their leaves. Note that a superstar becomes a star, i.e.,
a special case of caterpillar, after removal of its leaves. Moreover, MCA is APX-hard
in superstars (see Theorem 4), and MCA is in P in stars (see Proposition 3). As shown
below, more generally, MCA in caterpillars is in P. Thus, the following theorem allows
us to draw a more precise line between intractable and tractable instances for MCA
in trees.

Proposition 12. MCA in caterpillars is in P.

Proof. The main purpose of the algorithm we present in this proof is to show polyno-
miality of MCA when G is a caterpillar; no particular effort is made here on optimizing
the running time. Let S = {r}∪{v ∈ V : d+(v) 6= 0} contain the root r and all vertices
of G which are not leaves. Clearly, G[S] is connected by definition of a caterpillar. The
proposed algorithm works as follows. First, we generate all colorful subsets S′ ⊆ S
such that r ∈ S′ and G[S′] is connected. Second, for each such S′, we denote by
N++(S′) = {v ∈ N+(u) : u ∈ S′ and v /∈ S}, we create a set S′′ = S′ and we proceed
as follows: for all colors c ∈ col∗(N++(S′)) \ col(S′), take x ∈ N++(S′) of color c
with the maximum weighted incoming arc ax and add x to S′′ only if w(ax) > 0.
From this newly built set S′′, we compute the spanning arborescence T ′′, and finally
output the arborescence that reaches the maximum weight among all the computed
arborescences.

Clearly, the algorithm is correct because we generated all possible connected and
colorful subsets S′. Moreover, for any such subset S′, computing a maximum spanning
arborescence in a caterpillar which contains S′ can be achieved greedily. Since there
are O(n2) subsets of vertices S′ such that r ∈ S′ and G[S′] is connected, and since
each S′ is treated in polynomial time, the whole algorithm is thus polynomial. �

4. A closer look at the Color Hierarchy Graph H

One major difference between MCS and MCA lies in the fact that H is imposed
to be a DAG in any MCA instance. In this section, we exploit this particularity
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and prove that MCA belongs to P whenever H is a tree. We first give the following
reduction rule, and prove its correctness.

Reduction Rule 13. Let I = (G, C, col, w, r) be an MCA instance. If there exists a
color c ∈ C such that (i) c does not have any outneighbor in H and (ii) c has a unique
inneighbor c− 6= col(r) in H, then we do the following:

• for any vertex v− ∈ V (G) of color c−, add
max {0,maxv∈N+(v−) | col(v)=c {w(v−, v)}} to the weight of each incoming arc of

v−;

• remove all vertices of color c in V (G), alongside to all arcs which are incident
to a vertex of color c in A(G).

Lemma 14. Reduction rule 13 is correct.

Proof. Let I ′ = (G′, C′, col′, w′, r′) be the MCA instance which is obtained after
applying Reduction rule 13 on I. We show that there exists a colorful arborescence
T = (VT , AT ) of weight at least W in I if and only if there exists a colorful arborescence
T ′ = (VT ′ , AT ′) of weight at least W in I ′. We only show the first direction of the
equivalence; the other can obtained by using a symmetric reasoning. First, if T does
not contain any vertex of color c, then we can trivially set T ′ = T . Otherwise, if
T contains a vertex v of color c and an arc (u, v), then we set VT ′ = VT \ {v} and
AT ′ = AT \ {(u, v)}. Clearly, T ′ is a colorful arborescence in G′. Moreover, if u−

is the inneighbor of u in T (and thus in T ′), then w(T ′) = w(T ) since w′(u−, u) =
w(u−, u) + w(u, v). �

Figure 4 shows an illustration of the application of Reduction rule 13. Now, we
show how to use this rule in order to prove that MCA belongs to P when H is a tree.

Theorem 15. MCA belongs to P when H is a tree.

Proof. First, recall that Reduction rule 13 removes at most n − 1 vertices from G
and modifies in polynomial time the weight of at most m − 1 arcs of G. Hence, this
reduction rule can be executed in polynomial time. Moreover, it can be executed at
most |C| − 2 times from an initial instance of MCA. Finally, let I = (G, C, col, w, r)
be an initial instance of MCA such that H is a tree. If we apply Reduction rule 13
on I until it can no longer be applied, then G is clearly a star in the final instance
which is obtained from I (see Figure 5 for an illustration). As MCA in stars is in P
(see Proposition 3), we conclude that MCA is in P when H is a tree. �

We recall that s is defined as the number of arcs that need to be removed from H =
(C, AC) in order for H to become a tree. In the following, let X = {c ∈ C : d−(c) > 1}
be the set of difficult colors in H, i.e., colors that have indegree strictly more than
one; clearly, H is not a tree whenever X is not empty. For any X 6= ∅, we let
p = min{d−(c) : c ∈ X}. We now show how to use Theorem 15 in order to obtain an
FPT algorithm for MCA parameterized by s+ p.
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Figure 4: Example of application of Reduction rule 13 on the orange color (vertices marked d1 and d2)
of an initial MCA instance, whose initial graph G is at the top left and whose initial Color Hierarchy
Graph is at the top right. We create a new MCA instance whose graph G′ is at the bottom left
and whose Color Hierarchy Graph is at the bottom right. We initialize G′ = G, then we remove
all orange vertices (d1 and d2) in G′ (together with their incident arcs). Finally, we set w′(a, c1) =
−1 + max{0,max{2, 8}} = 7, w′(a, c2) = 1 + max{0,−3} = 1 and w′(b, c2) = 2 + max{0,−3} = 2 in
G′. In both graphs G and G′, we represent the arcs of an MCA solution in bold red.

Proposition 16. MCA can be solved in time O∗(p s
p−1 ).

Proof. We design a branching algorithm that recursively computes every spanning
arborescence of H. To do so, we create a set Z, where initially Z = A(H), and we
consider a graph H′ = (C, Z). For every difficult color c ∈ X , we recursively branch
on the d−(c) different cases where only one incoming arc of c is not removed from Z.

At the end of these branching steps, each color c ∈ C has indegree 1 in H′ and
thus the connected component of H′ which contains col(r) – where r is the root of
G – is a tree. We then create a graph G′ = (V,AZ) with AZ = A \ {(x, y) ∈ A:
(col(x), col(y)) /∈ Z} and we consider the connected componentG′′ ofG′ which contains
the root of G′. Informally, G′′ is a subgraph of G, which is built from Z and such
that H(G′′) is a tree. Hence, by Theorem 15, we know that computing a colorful
arborescence of maximum weight in G′′ is polynomial-time solvable. Now, for any
solution T of MCA in G, recall that the color hierarchy graph of T is necessarily a
tree. As a consequence, computing a solution of MCA in every such subgraph G′′ ⊆ G
ensures that the above described algorithm is correct.
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Figure 5: Example of iterative applications of Reduction Rule 13 on an initial MCA instance, whose
initial graph G is at the top left and whose initial Color Hierarchy Graph is at the top right. As H(G)
is a tree, we iteratively apply Reduction Rule 13, in this order, on the orange (h1 and h2), green (g1
to g4), pink (f), dark purple (e1 and e2), light blue (c1 and c2) and finally on the red color (d). The
new MCA instance is displayed in graphs G′ at the bottom left, and H(G′) at the bottom right. In
both graphs G and G′, we represent the arcs of an optimal solution to MCA in bold red.

We now discuss the complexity of the above algorithm. To do so, let T be the
search tree of the above algorithm and observe that each step that contributes to
constructing T is achieved in polynomial time. The complexity of the above algorithm
is thus only exponential in the number of nodes |V (T )| =

∏
c∈X d

−(c) of T . We

now show that |V (T )| ≤ p
s
p−1 which in turn shows that MCA can be solved in

O∗(p s
p−1 ) time. Assuming X is not empty, we look for the smallest real number α

such that the inequality (1) d−(c) ≤ αd
−(c)−1 holds for all colors c ∈ X . From (1),

we have log(d−(c)) ≤ (d−(c) − 1) · log(α), thus α ≥ e
log(d−(c))

d−(c)−1 , which gives us α ≥
d−(c)

1

d−(c)−1 . The corresponding function f(x) = x
1

x−1 is monotonously decreasing for

all x ∈ [2; +∞[. By definition of p, this implies that we can set α to p
1
p−1 in order

to ensure that α ≥ d−(c)
1

d−(c)−1 for any c ∈ X . As |V (T )| ≤ ∏
c∈X α

d−(c)−1 and as

s =
∑
c∈X d

−(c)− 1, we obtain |V (T )| ≤ p
s
p−1 and the time complexity of the above

algorithm is O∗(p s
p−1 ). �
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For instance, if p = 3, then by Proposition 16 we obtain a running time of
O∗(1.733s) for solving MCA. In general, we always have p ≥ 2 for graphs G for
which H is not a tree. Thus, by setting p to 2, it leads to an FPT algorithm of the
problem parameterized by s alone and we obtain the following “universal” corollary.

Corollary 17. MCA can be solved in time O∗(2s).

5. FPT results with respect to parameter `C

In [25], some statistics concerning more than 600,000 biological instances of MCS
(provided by Sebastian Böcker’s group from Friedrich-Schiller-Universität Jena, Ger-
many), were provided. In particular, it can be seen that after applying the reduction
rules from [26], the average value for parameter `C = n − |C| is below 16, whenever
the weight of the studied metabolite is below 500 Daltons. Therefore, the study of
parameter `C is of particular interest for the MCA problem. Unfortunately, as noted
in Section 2, MCA-1 parameterized by `C is W[1]-hard. However, we show in the
following that MCA is FPT parameterized by `C+m−, where m− denotes the number
of negative arcs in the input instance. Although in practice `C +m− may appear too
large – for instance, in the abovementioned experimental data, `C+m− reaches (on av-
erage) almost 221 for metabolites of weight at most 500 Daltons –, this result remains
of interest as it allows us to draw a border between W[1]-hardness (for `C alone) and
fixed-parameter tractability (for `C+m−). Moreover, arcs of negative weight represent
arcs for which the degree of confidence (into the actual fragmentation it corresponds
to) is low: the initial data can thus be modified so as to delete the less relevant arcs
(by means of a threshold), which consequently decreases the value of m−.

In order to show that MCA is FPT parameterized by `C +m−, we first introduce
the following notion: a fully-colorful subgraph of a graph G is a subgraph of G that
contains exactly one occurrence of each color from C. We recall the following lemma
from [20].

Lemma 18 ([20]). Given any graph G with |C| colors, there exist at most 2`C fully-
colorful subgraphs of G.

We are now ready to prove the next proposition.

Proposition 19. MCA can be solved in O∗(2`C+m−) time.

Proof. In the following, let G′ = (V ′, A′) be an arbitrary fully-colorful subgraph of
G. We say that a subset X of arcs of negative weights is correct if no vertex from
V ′ has two or more incoming arcs from X. For any correct subset X ⊆ A′, we will
first describe how to build a subgraph G′X = (V ′X , A

′
X) of G′ such that any spanning

arborescence T ′X of G′X necessarily contains all the arcs from X ∩ A′X . Then, we will
prove the following claim: if T is a solution of MCA in G, then there exists a fully-
colorful subgraph G′ = (V ′, A′) of G, a correct subset of arcs X ⊆ A′ and a solution
T ′X of MCA in G′X such that w(T ′X) = w(T ).
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We show how to build a subgraph G′X = (V ′X , A
′
X) of G′ from a fully-colorful

subgraph G′ = (V ′, A′) and a correct subset X ⊆ A′. First, we initialize G′X = G′.
Second, for any vertex v ∈ V ′, if v has an incoming arc which belongs to X, then we
remove from A′X all the other incoming arcs of v. Third, we remove from G′X all the
vertices v ∈ V ′X (and their incident arcs) such that there does not exist any path from
r to v in G′X . Now, notice that any spanning arborescence of G′X necessarily contains
every arc of X which belongs to G′X , as any vertex which is incident to an arc from
X is necessarily of indegree 1.

We can now prove our claim. Let T = (VT , AT ) be a solution of MCA in G
and let G′ = (V ′, A′) be a fully-colorful subgraph of G such that T ⊆ G′. As G′ is
fully-colorful, there does not exist any pair of vertices u ∈ VT and v ∈ (V ′ \ VT ) such
that w(u, v) > 0, otherwise T would not be a solution of MCA in G′ – and thus in
G. As a consequence, we set X = {a ∈ AT | w(a) < 0} and build G′X as described
above. Clearly, T is also an arborescence of maximum weight in G′X . Therefore, to
ensure that an optimal solution of MCA in G is found, we generate all fully-colorful
subgraphs G′ of G and any correct subset of arcs X in G′, build all corresponding
graphs G′X , and for each find a maximum weight spanning arborescence.

Now, recall that computing such a spanning arborescence takes polynomial time [27,

28]. Besides, observe that G contains at most 2m
−

correct subsets of arcs and recall
by Lemma 18 that G contains at most 2`C fully-colorful subgraphs. Hence, altogether,
our algorithm has a running time of O∗(2`C+m−). �

By setting m− = 0, the above theorem implies the following corollary.

Corollary 20. MCA+ can be solved in O∗(2`C ) time.

In the following, we will see that constraining the input instances allows us to
derive several other positive results – for instance, if we constrain the input graph of
an MCA instance, instead of constraining the weight function as in Corollary 20.

Proposition 21. MCA in trees can be solved in O∗(2`C ) time.

Proof. We design a recursive branching algorithm based on the colors of the input
graph G. We first let S = V . If S is not colorful, we consider u, v ∈ S such that
col(u) = col(v) and recursively branch on two cases: either V (Gu[S]) or V (Gv[S]) is
removed from S. Recall that Gu[S] (resp. Gv[S]) is the induced DAG of G[S] that
is rooted in u (resp. v). Clearly, for each set S we finally obtain, G[S] is a colorful
tree. As a consequence, H(G[S]) is itself a tree, and by Theorem 15, we can compute
a maximum weighted arborescence in G[S] in polynomial time. Clearly, the above
described algorithm is correct, and its running time is exponential only in the number
of nodes of the search tree. Since this search tree is binary and of height `C = n− |C|,
our algorithm runs in O∗(2`C ). �

We now show that Proposition 21 can be improved when all arcs a ∈ A have positive
weights, based on the fact that, in that case, finding a maximum weighted colorful
arborescence when repeated colors appear as leaves in the input tree is polynomial.
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Proposition 22. MCA+ in trees can be solved in O∗(1.62`C ) time.

Proof. Recall that f(v) denotes the unique inneighbor of any v ∈ V \ {r} as G
is a tree. We improve the branching algorithm discussed in proof of Proposition 21
above, by using a different branching procedure. Let S = V and let us apply the
following branching rule: if there exists u, v ∈ S such that (i) col(u) = col(v) and
(ii) |N+(u)| > 0 or |N+(v)| > 0 (where N+(u) and N+(v) apply here in G[S]), then
we branch on two cases: either V (Gu[S]) or V (Gv[S]) is removed from S. We repeat
this branching procedure until it cannot longer be applied on S.

For any S which corresponds to a leaf of the search tree T , we now show how
to compute a solution of MCA+ in G[S]. For any such S, let US be the set of
vertices having a unique color in S. Note that because of condition (ii), two vertices
u, v ∈ S can have the same color only if they are both leaves of G[S], and thus G[US ] is
connected. Besides, recall that G is a tree and that for any arc a ∈ A, its weight w(a)
is positive. Thus, G[US ] is necessarily contained in a maximum colorful arborescence
T = (VT , AT ) built from G[S]. We now need to compute T from S: we start by taking
in T all vertices from US . Then, for every color c ∈ col(S) \ col(US), we add to VT the
vertex v ∈ S of color c such that w((f(v), v)) is maximum – note that f(v) necessarily
belongs to US . Finally, T is defined as the tree which is induced by VT in G[S] (see
Figure 6). It can be easily seen that T is connected, colorful and of maximum weight
in G[S]. This ensures the correctness of our algorithm as any solution of MCA is
necessarily contained in the graph G[S] which is produced from at least one leaf of
T . The computational complexity of our algorithm derives from the fact that, at each
step, if |N+(u)| = 0 (resp. |N+(v)| = 0) then |N+(v)| > 0 (resp. |N+(u)| > 0).
Therefore, the branching vector is (1, 2), which leads to an O∗(1.62`C ) algorithm (for
an introduction to the analysis of branching vectors, see e.g. [29]). �

Finally, we show that Proposition 22 can also be improved when all arcs in A have
uniform weights.

Proposition 23. UMCA in trees can be solved in O∗(1.33`C ) time.

Proof. In the following, for any v ∈ V , if v has a unique outneighbor u in G and if u
is a leaf in G, then we say that v is a near-leaf in G. Moreover, for any vertex v ∈ V
such that v is neither a leaf nor a near-leaf in G, we call v a trunk-vertex in G.

We create a set S = V on which we recursively apply the following branching rule:
if there exists u, v ∈ S such that (i) col(u) = col(v), (ii) u (resp. v) is a trunk-vertex
in G[S] and (iii) v (resp. u) is a trunk-vertex or a near-leaf in G[S], then we remove
either V (Gu[S]) or V (Gv[S]) from S. If we assume without loss of generality that u
is a trunk-vertex, the branching vector of this rule is (3, 2). Indeed, we remove either
at least three vertices while removing V (Gu[S]) – as u is a trunk-vertex – or at least
two vertices while removing V (Gv[S]) – as v is a trunk-vertex or a near-leaf.

For any S which corresponds to a leaf of the search tree T , let S1 be the set of trunk-
vertices in G[S], S2 be the set of near-leaves in G[S], and S3 be the set of leaves in G[S].
We may assume that any color c ∈ C appears in only one set among col(S1), col(S2)
and col(S3). First, if S corresponds to a leaf of T , then col(S1)∩col(S2) = ∅, otherwise
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Figure 6: Example of application of the algorithm proposed in Proposition 22. Here, S corresponds
to a leaf in the search tree such that we iteratively removed V (Ga2 [S]) and then V (Gf1 [S]) from
S = V . Subset US contains all vertices of unique color which belong to S. As G[US ] is connected,
G[US ] necessarily belongs to any solution T of MCA+ in G[S]. For any color c ∈ col(S \ US), it
remains to add to VT the vertex v ∈ S of color c such that w((f(v), v)) is maximum in G[S]. In both
G and G[S], we represent a solution of MCA with bold red arcs.

we would have applied the above branching rule on S. Second, notice that G[S1] is
colorful – as S is a leaf of T – and necessarily connected. As col(S1) ∩ col(S2) = ∅,
there exists at least one solution T of UMCA in G[S] which contains all vertices from
S1. Indeed, if T contains a vertex v3 ∈ S3 such that col(v3) ∈ col(S1), then we can
substitute v3 in T by a vertex of the same color which belongs to S1. The weight
of T will not be decreased as any arc weight is equal in G and as v3 is a leaf of G.
Therefore, we can remove all vertices v3 ∈ S3 such that col(v3) ∈ col(S1) and thus
assume without loss of generality that col(S1) ∩ col(S3) = ∅. Finally, we may also
assume that col(S2) ∩ col(S3) = ∅ according to a similar reasoning.

For any S which corresponds to a leaf of T , we now describe how to obtain a
solution T = (VT , AT ) of UMCA in G[S]. First, recall that we may assume that any
vertex from S1 belongs to VT . We now show how to select the vertices from S2 and
S3 which also belong to VT . Let M be a maximum matching in H(G[S2 ∪ S3]) (see
Figure 7 for an illustration). For any arc (c, c′) ∈ M , we add to VT a pair of vertices
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u, v ∈ S such that col(u) = c, col(v) = c′ and (u, v) ∈ A(G[S]). Finally, for any
color c ∈ col(S2) such that c /∈ col(VT ), we add an arbitrary vertex of color c from
S2 to VT . Clearly, the spanning arborescence T of G[VT ] is connected and colorful.
Moreover, recall that S1 ∈ VT and that col(S2) ⊆ col(VT ). As a consequence, if there
exists a solution T ′ of UMCA such that w(T ′) > w(T ) in G[S], then T ′ contains more
vertices from S3 than T , which contradicts the fact that M is a maximum matching
in H(G[S2∪S3]). Therefore, T is a solution of UMCA in G[S]. Besides, the proposed
algorithm is correct as any solution of UMCA is necessarily contained in a graph G[S]
such that S corresponds to a leaf of T . As the branching vector is (3, 2) and as the
maximum matching problem can be solved in polynomial time [28], we conclude that
UMCA can be solved in O∗(1.33`C ) time. �
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Figure 7: Example of application of the algorithm proposed in Proposition 23. Here, S corresponds
to a leaf in the search tree. For clarity, we do not represent the weights of the arcs, which are all
equal to 1 by definition. Observe that the spanning arborescence of G[S1] necessarily belongs to any
solution of UMCA in G[S] as the color of any vertex from G[S1] is unique and as G[S1] is connected.
As a consequence, any solution of UMCA also contains a vertex of color c for any c ∈ col(S2). By
solving the instance H(G[S2 ∪ S3]) of Maximum Matching (framed), we then compute the subset of
vertices from S3 which belongs to a solution of UMCA.

24



We now turn to proving a lower bound on the computational complexity of MCA
with respect to `C . In particular, our result proves that the FPT algorithm given in
Proposition 19 is essentially optimal for MCA+.

Theorem 24. The UMCA-2 problem cannot be solved in time O∗((2 − ε)`C ) unless
the Strong Exponential-Time Hypothesis fails.

Proof. First note that the Strong Exponential-Time Hypothesis (SETH) states that
the CNF-SAT problem defined on p variables cannot be solved in time O∗((2 − ε)p)
for any ε > 0 [30]. The reduction from CNF-SAT we present here is adapted from
proof of Theorem 1 in [31]. We first formally define CNF-SAT.

CNF-SAT

• Input: A set X = {x1, x2 . . . xp} of variables, a CNF-formula φ on a set
C = {C1, C2 . . . Cq} of clauses built from X.

• Output: An assignment β : X → {true, false} that satisfies φ.

Starting from any instance φ of CNF-SAT, we build an instance of UMCA-2 in
the form of a three-level graph G (see Figure 8). First, level 1 only consists of the root
r. For each variable xi ∈ X, 1 ≤ i ≤ p, we create two vertices vi and vi at level 2.
For each clause Cj ∈ C, 1 ≤ j ≤ q, we create a vertex zj at level 3. We then add an
arc from r to vi and to vi for all i ∈ [p]. There is also an arc from vi (resp. vi) to zj
iff literal xi (respectively xi) appears in clause Cj , for all i ∈ [p] and for all j ∈ [q].
The root r (level 1) and every level 3 vertex is assigned a unique color. At level 2, for
all i ∈ [p], vi and vi share the same color ci. Thus, every color c ∈ C can appear at
most twice, and these colors can easily be partially ordered (and thus totally ordered)
based on their level in the graph. Finally, the weight of every arc is 1, and it can be
seen that G is indeed an instance of UMCA-2.

We now show that there exists an assignment β that satisfies φ iff there exists a
colorful arborescence of weight p+ q (and thus of order p+ q + 1) in G.

(⇒) Suppose there exists an assignment true/false of each xi ∈ X, say β, that
satisfies φ. Let IT (resp. IF ) be the set of indices i ∈ [p] such that xi is set to true

(resp. false) by β. Let S = {r} ∪ {vi for all i ∈ IT } ∪ {vi for all i ∈ IF } ∪ {zj for all
j ∈ [q]}. Necessarily, G[S] is connected: first, r is connected to every level-2 vertex;
second, a vertex zj corresponds to a clause satisfied by some xi (resp. xi), and by
definition G[S] contains vi (resp. vi), which is connected to zj . Now, let T = (VT , AT )
be a spanning arborescence of G[S]. Clearly, T is colorful and of total weight p+ q.

(⇐) Suppose there exists a colorful arborescence T = (VT , AT ) of weight p + q in
G, thus of order p+ q + 1. Note that T contains at most p vertices from level 2, and
thus at least q vertices from level 3. However, level 3 contains exactly q vertices. Thus,
VT must be composed of the root, exactly p vertices at level 2 and exacty q vertices at
level 3. Since level 2 is composed of 2p vertices where each color appears twice, and
since T is colorful, for all i ∈ [p], either vi or vi is in VT . The assignment β is thus
the following: if vi ∈ VT (resp. vi ∈ VT ) then xi is set to true (resp. false). Since
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Figure 8: Construction of a UMCA-2 instance from φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x4) of
SAT. For clarity, arc weights (which are all equal to 1 by definition) are not represented. The arcs of
a solution T of UMCA-2 are colored in bold red. From this solution, the assignment β consisting of
setting x1 = true, x2 = false, x3 = true and x4 = false satisfies φ.

T is connected, then for any zj with j ∈ [q], there exists f(zj) ∈ T , which means that
every clause in φ is satisfied by at least one literal in β.

Hence, since n = 2p+ q+1 and |C| = p+ q+1, we have that `C = n−|C| = p. As a
consequence, every algorithm running in time O∗((2− ε)`C ) for UMCA-2 would imply
an algorithm running in time O∗((2 − ε)p) for CNF-SAT, which would contradict
SETH. �

6. Conclusion

In this paper, we introduced the MCA problem, a constrained version of the MCS
problem, where the input graph G and its Color Hierarchy Graph H must be two
rooted DAGs. MCA is designed to better represent the initial motivation of de novo
inference of metabolites from tandem mass spectra, and leads to better-shaped al-
gorithms. Although we showed that MCA remains APX-hard even for constrained
inputs, we also showed that it is possible to take advantage of the fact that H is
a DAG to describe new polynomial-time and FPT algorithms, alongside to new ap-
proximation algorithms. It remains an open problem whether other polynomial-time
algorithms based on the structure of H can be designed.

We also provided algorithmic results concerning parameter `C = n − |C|. Al-
though MCA is W[1]-hard when parameterized by `C , we were able to provide sev-
eral FPT results parameterized by `C for some variants of MCA. Some of these may
still be improved, even though other results taking `C as a parameter were recently
obtained in [20]. Many problems remain open for the MCA problem, and notably
(in)approximability gaps remain to be filled. A more general question, based on the
fact that, in experimental data, `C remains high when the weight of a metabolite is
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greater than 500 Daltons, is whether it is possible to obtain new data reduction rules
which would make our FPT algorithms parameterized by `C even more efficient.
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