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DYNAMICS OF TWO LINEARLY ELASTIC BODIES CONNECTED BY A HEAVY

THIN SOFT VISCOELASTIC LAYER

ELENA BONETTI, GIOVANNA BONFANTI, CHRISTIAN LICHT, AND RICCARDA ROSSI

Abstract. In this paper we extend the asymptotic analysis in [18], performed on a structure consisting of two

linearly elastic bodies connected by a thin soft nonlinear KelvinVoigt viscoelastic adhesive layer, to the case in

which the total mass of the layer remains strictly positive as its thickness tends to zero.

We obtain convergence results by means of a nonlinear version of Trotter’s theory of approximation of

semigroups acting on variable Hilbert spaces. Differently from the limit models derived in [18], in the present

analysis the dynamic effects on the surface on which the layer shrinks do not disappear. Thus, the limiting

behavior of the remaining bodies is described not only in terms of their displacements on the contact surface,

but also by an additional variable that keeps track of the dynamics in the adhesive layer.

1. Introduction

PDE systems coupling bulk and surface equations play an important role in several applications. In particu-

lar, they are used to describe different physical situations in which two spatial scales are involved: a macroscopic

scale for the bulk domain and a microscopic scale to capture dynamics on a thin layer located at the boundary.

Among others, models for contact with adhesion between rigid bodies represent an important application of

this kind of approach. Indeed, these models couple mechanical and thermal properties of the involved bodies

and of the microscopic configurations of the thin adhesive layer between the bodies.

In a macroscopic description, this layer is considered as a part of the boundaries and dynamics of the

physical variables are described by boundary equations. This feature occurs, e.g., in the models for contact

with adhesion between a viscoelastic body and a rigid support analyzed in, e.g., [3], [4], and [5]. Such models

are derived from the theory for damage in thermoelastic materials by Frémond [10, 11]. Specifically, the

related energy functionals and dissipation potentials are written both in the bulk and on the surface and,

accordingly, bulk and surface equations are recovered via a generalization of the principle of virtual powers.

The main idea is to account for the effects of the microscopic forces, responsible for the degradation of the

adhesion on the interface between body and support, in the energy balance. While the PDE systems from [3],

[4], and [5] are rate-dependent, delamination can also be treated as a rate-independent phenomenon, see e.g.

[15, 21]. In that modeling context as well, the microscopic damage in the interface is assumed to influence the

strength of the adhesion and unilateral conditions are accounted for to ensure non-penetrability between the

adhering bodies.

A possible validation of this kind of models, coupling bulk and surface phenomena, could be provided by

deriving the surface equations from equations set on a thin layer, as the thickness of the layer tends to zero.

This kind of asymptotic analysis has been tackled in the literature using different analytical techniques and

modeling approaches. One possibility is to develop a formal asymptotic expansion method as in [14, 7, 12].

For damage and delamination, we refer to the asymptotic analyses carried out in [1, 2]. In the context of rate-

independent modeling of delamination, instead, Γ-convergence type techniques were used in [19] to show that

Energetic solutions to a system for isotropic damage converge to an Energetic solution of a delamination model
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Nazionale di Alta Matematica (INdAM) .

1

http://arxiv.org/abs/1912.05600v1


as the thickness of the layer between the two bulk bodies, where damage occurs, tends to zero. Indeed, the

Energetic weak solvability notion for rate-independent processes, consisting of an energy-dissipation balance

and of a stability condition that involves the minimization of a suitable functional, allows for the usage of the

variational techniques at the core of the analysis in [19] (see also [8, 9]).

A rigorous approach based on variational convergences techniques has been carried out for this kind of

problems, in the rate-dependent framework, in a series of papers, cf. e.g. [16, 17, 18, 13]. In particular, this

paper follows up on the analysis developed in [18], where the authors derived an asymptotic model for the

dynamics of two linearly elastic bodies connected by a thin viscoelastic layer by means by of a nonlinear

version of Trotter’s theory of approximation of semigroups, cf. [22]. More specifically, in [18] the model was

obtained by studying the asymptotic behavior, as some parameters accounting for geometrical and mechanical

data vanished, of the structure consisting of the two adhering bodies, perfectly bonded through the adhesive

layer. The analysis was carried out under the further assumption that the total mass of the adhesive layer was

vanishing. Hence, the limit model obtained in [18] describes for the dynamics of two adhering bodies subject

to a mechanical constraint along the surface S the layer shrinks to. Its constitutive equation is of the same

type as that for the layer (nonlinear viscoelastic of Kelvin-Voigt type).

In this paper, we aim to extend the asymptotic analysis in [18] by considering the case in which the total

mass remains strictly positive; indeed, this is what the term ‘heavy’ in the title refers to. As in [18], the

cornerstone of our analysis will be the reformulation of the original problem, in which the interface is given

with a positive thickness, in terms of a nonlinear evolution equation in a Hilbert space of admissible states with

finite mechanical energy, governed by a suitable maximal monotone operator. Our convergence result shall then

be obtained by resorting to a nonlinear version of Trotter’s theory of approximation of semigroups of operators

acting on variable Hilbert spaces, see [20]. Albeit relying on the same theoretical tools as those of [18], our

analysis here is significantly different. Indeed, since the dynamic effects in the thin layer do not disappear, the

limiting contact condition between the two remaining bodies shall not only involve their displacements along

the interface but an additional variable, too, which accounts for the asymptotic behavior of the layer and whose

analytical treatment within Trotter’s theory calls for suitable arguments. Of course, such a variable may be

eliminated so that the constraint appears as viscoelastic with long memory, cf. Sec. 5.

Plan of the paper. In Section 2 we specify the setting of the problem, starting from the formulation of

the model when the thickness of the interface is positive. Then, in Section 3 we recast this problem as an

abstract evolution equation in a Hilbert space, governed by a suitable maximal monotone operator. Staying

with this formulation, in Section 4 we carry out our asymptotic analysis, as the thickness of the layer between

the two adhering bodies vanishes, by means of Trotter’s theory. In this way we prove the main result of this

paper, Theorem 4.15. Finally, in Section 5 we give some further comments on our result, and hint at some

extensions.

Throughout this paper, we will use the following notation.

Notation 1.1 (General notation). We will denote the orthonormal basis of R3 by (e1, e2, e3). Given a vector

ξ = (ξ1, ξ2, ξ3) ∈ R3, we will use the symbol ξ̂ for (ξ1, ξ2), so that we will often write (ξ̂, ξ3) in place of

(ξ1, ξ2, ξ3). The symbol tr (A) will denote the trace of a R3×3 matrix, R3×3
sym the space of (3×3)-symmetric

matrices, equipped with the standard inner product, and Lin(R3×3
sym) the space of linear mappings from R3×3

sym

to R3×3
sym . Given two vectors ξ, ζ ∈ R3, we shall denote by ξ ⊗S ζ their symmetrized tensor product, defined by

ξ ⊗S ζ is the symmetric (3×3)-matrix with entries
1

2
(ξiζj + ξjζi) i, j = 1, . . . , 3. (1.1)

With any subset O ⊂ R3 we will associate its characteristic function χO, defined by χO(x) = 1 if x ∈ O,

and χO(x) = 0 if x ∈ R3 \O.

Finally, throughout the paper, the symbol C will denote various constants that may differ from one line to

the other.



2. Setup of the problem

Let us specify the setup of our problem, namely the study of the dynamic response of a structure made up

of two adhering bodies connected by a thin adhesive layer, subject to a given load. First of all, the reference

configuration of the structure is a bounded connected open subset Ω ⊂ R3 with a Lipschitz boundary ∂Ω.

Hereafter, we will denote by S the set

S := Ω ∩ {(x1, x2, x3) ∈ R
3 : x3 = 0} and assume that its Hausdorff measure H

2(S) > 0. (2.1)

In what follows, we shall identify S with its projection onto R2 and therefore treat it as a subset of R2.

Notation 2.1. For a function u ∈ H1(Ω\S;R3), we will denote by u+ (u−, respectively), its restriction to the

open set Ω± := {x = (x1, x2, x3) ∈ Ω : ±x3 > 0}, which is a function in H1(Ω±). The symbols γS(u
+) and

γS(u
−) will denote the traces of u+ and u−, respectively, on the set S. Moreover, we will use the notation

jump of u across S:
[[
u
]]
:= γS(u

+)− γS(u
−) . (2.2)

Throughout the paper, we will assume that there exists ε0 > 0 such that

Bε0 := {x = (x1, x2, x3) ∈ Ω : |x3| < ε0} is equal to S × (−ε0, ε0) . (2.3)

For 0 < ε < ε0, we will assume that the adhesive occupies the layer Bε := S × (−ε, ε), while the two adhering

bodies shall occupy the sets Ω±
ε := {x = (x1, x2, x3) ∈ Ω : ±x3 > ε}. We let Ωε := Ω+

ε ∪ Ω−
ε = Ω \ Bε . We

will use the notation

S±
ε := {x ∈ Ω : x3 = ±ε}, B+

ε := S × (0, ε), B−
ε := S × (−ε, 0) (2.4)

and assume that adhesive and adhering bodies are perfectly stuck together along Sε := S+
ε ∪ S−

ε . This means

that the jumps across Sε both of the displacement u and of the normal stress σe3 are zero, cf. (2.8d) and (2.8e)

below.

We consider a partition of ∂Ω = ΓD ∪ΓN such that ΓD has positive two-dimensional Hausdorff measure and

positive distance from Bε0 ; we assume that, during the time interval (0, T ), the structure is clamped on ΓD

and subjected to volumetric and surface forces (on ΓN := ∂Ω \ ΓD), with densities f and g, respectively. We

let Γ±
D := ΓD ∩ {±x3 > 0}.

The adhering bodies are modeled as linearly elastic materials with a strain energy density W such that

W (x, e) =
1

2
a(x)e · e for a.a. x ∈ Ω and for all e ∈ R

3×3
sym , with

a ∈ L∞(Ω; Lin(R3×3
sym)) such that ∃α, β > 0 for a.a. x ∈ Ω for all e ∈ R

3×3
sym : α|e|2 ≤ a(x)e · e ≤ β|e|2 .

The adhesive is assumed homogeneous, isotropic, and ‘viscoelastic of Kelvin-Voigt generalized type’. Its strain

energy density reads as

Wλ,µ(e) :=
λ

2
|tr(e)|2 + µ|e|2 for all e ∈ R

3×3
sym, with λ, µ > 0 the Lamé constants.

We will denote by DWλ,µ(e) its differential at any e ∈ R3×3
sym . Observe that

2Wλ,µ(e) = DWλµ(e) · e ≥ 2µ|e|2 for all e ∈ R
3×3
sym. (2.5)

Dissipation in the adhesive is modeled through a dissipation potential D : R3×3
sym → [0,∞) such that D is

convex and fulfils

∃ p ∈ [1, 2], ∃α′, β′ > 0 ∀ e ∈ R
3×3
sym : α′|e|p ≤ D(e) ≤ β′(|e|p+1); (2.6)

we will denote by ∂D : R3×3
sym ⇒ R3×3

sym its subdifferential in the sense of convex analysis. Indeed, in system (2.8)

below the functional D shall be multiplied by a positive constant b that accounts for the intensity of viscous



effects. Finally, we assume that the density γ of the structure takes two different positive values in Ωε and Bε,

namely

γ(x) =

{
ρ∗(x) for a.e. x ∈ Ωε,

ρ for a.e. x ∈ Bε,
with (2.7a)

ρ∗ : Ω → (0,∞) a measurable function s.t. ∃ 0 < ρ̄m < ρ̄M for a.a. x ∈ Ω : ρ̄m ≤ ρ∗(x) ≤ ρ̄M . (2.7b)

Then, the model for the dynamic response of the structure, in the case the thin adhesive layer still has a

‘positive thickness’, is described by the following PDE system.

γutt − div(σ) = f in Ω× (0, T ), (2.8a)

σ = a(x)e(u) in Ωε × (0, T ), (2.8b)

σ = λtr(e(u))I+ 2µe(u) + bξ in Bε × (0, T ), with ξ ∈ ∂D(e(ut)), (2.8c)
[[
σe3
]]
= 0 on S±

ε × (0, T ), (2.8d)
[[
u
]]
= 0 on S±

ε × (0, T ), (2.8e)

u = 0 on ΓD × (0, T ), (2.8f)

σn = g on ΓN × (0, T ), (2.8g)

where I denotes the identity matrix and e(u) the symmetric linearized strain tensor related to the displacement

vector u, defined by eij(u) =
1
2 (∂jui + ∂iuj), i, j = 1, . . . , 3. We will supplement system (2.8) with the initial

conditions

u(0) = u0, ut(0) = v0 in Ω. (2.9)

Note that the strong formulation (2.8) of the problem in the case the thickness of the adhesive layer is strictly

positive indeed corresponds to the formulation of the momentum balance equations written in the two bulk

domains. However, in what follows we will be able to provide an asymptotic result only for a variational (weak)

formulation of system (2.8) with the Cauchy conditions (2.9), namely

Problem (P): Find u : Ω × [0, T ] → R3 sufficiently smooth fulfilling (2.8f), (2.9), and such that there exists

ξ ∈ ∂D(e(ut)) satisfying∫

Ω

γutt · vdx +

∫

Ωε

ae(u) · e(v)dx +

∫

Bε

DWλµ(e(u)) · e(v)dx + b

∫

Bε

ξ · e(v)dx

=

∫

Ω

f · vdx +

∫

ΓN

g · vdH2(x)

(2.10)

for all v sufficiently smooth in Ω and vanishing on ΓD.

In the next section, we will show that Problem (P ) has a unique solution in a suitable sense. In Sec. 4 we will

then determine the asymptotic behavior of the solutions to Problem (P) when the quintuple of geometrical and

mechanical data (ε, λ, µ, b, ρ) that characterize the structure is regarded as a quintuple of positive parameters

qn := (εn, λn, µn, bn, ρn), suitably converging to a limit q∞ (cf. the upcoming Hyp. 4.1).

3. Existence and uniqueness of solutions to Problem (P )

We will rigorously prove our existence result for Problem (P ) relying on the, by now classical, results from

[6]. For the asymptotic analysis we shall resort to a nonlinear version of Trotter’s theory of approximation of

semigroups, acting on variable Hilbert spaces. This approach in fact relies on a reformulation of system (2.10)

as an abstract evolutionary equation involving semigroups on suitable Hilbert spaces. In what follows, we

recapitulate this formulation, as proposed in [18], and recall the existence result proved therein, cf. Theorem

3.2 ahead. Since we will keep the quintuple of parameters q = (ε, λ, µ, b, ρ) fixed in this section, in the following

lines we shall not highlight the dependence of the solution u, and of the functionals/operators/spaces entering

into the variational formulation of Problem (P ), on q.



From now on we will assume that the body and the surface forces fulfill

f ∈ BV([0, T ];L2(Ω;R3)), g ∈W 2,∞(0, T ;L2(ΓN;R
3)). (3.1)

Here and in what follows, BV([0, T ];X) shall denote the subspace of L1(0, T ;X) consisting of all the elements

whose distributional derivative with respect to time is a bounded Radon measure on (0, T ), valued in X . Along

the footsteps of [18] we seek a solution to Problem (P ) of the form

u = ue + ur. (3.2)

In (3.2), ue is the unique solution of the ‘stationary’ problem

ue(t) ∈ H1
ΓD

(Ω;R3), ϕ(ue(t), v) = L(t)(v) for all v ∈ H1
ΓD

(Ω;R3) and all t ∈ [0, T ], (3.3a)

where H1
ΓD

(Ω;R3) denotes the closed subspace of H1(Ω;R3) consisting of the elements with zero trace on ΓD;

hereafter, the notation H1
Γ(G;R

3) will be systematically used for any G ⊂ R3, Γ ⊂ ∂G. Furthermore,

ϕ(v, v′) :=

∫

Ωε

ae(v) · e(v′)dx +

∫

Bε

DWλ,µ(e(v)) · e(v
′)dx for all v, v′ ∈ H1

ΓD
(Ω;R3), (3.3b)

L(t)(v) :=

∫

ΓN

g(x, t) · v(x)dH2(x) for all v ∈ H1
ΓD

(Ω;R3) and all t ∈ [0, T ]. (3.3c)

Since, for every fixed t ∈ [0, T ] the operator g(t) 7→ ue(t) is linear and continuous from L2(ΓN;R
3) to

H1
ΓD

(Ω;R3), we find that

ue ∈W 2,∞(0, T ;H1
ΓD

(Ω;R3)) . (3.4)

Given such ue, the remaining part ur of u can be obtained by solving the following evolutionary problem:

Find ur : Ω × [0, T ] → R3 sufficiently smooth fulfilling (2.8f), the Cauchy conditions ur(0) = u0 − ue(0) and

∂tu
r(0) = v0 − ∂tu

e(0) in Ω, and such that there exists ξ : Bε → R satisfying ξ ∈ ∂D(e(∂t(u
r + ue))) a.e. in Bε

and
∫

Ω

γ∂tt(u
r(t)+ue(t)) · vdx +

∫

Ωε

ae(ur(t)) · e(v)dx+

∫

Bε

DWλ,µ(e(u
r(t))) · e(v)dx + b

∫

Bε

ξ · e(v)dx

=

∫

Ω

f(t) · vdx for all v ∈ H1
ΓD

(Ω;R3).

(3.5)

In [18], the existence of a (unique) solution to the Cauchy problem for (3.5) was proved by reformulating it

as an abstract evolutionary problem. Similarly arguing, we introduce the following problem

{
d
dtX(t) + AX(t) ∋ F(t) in H for a.a. t ∈ (0, T ),

X(0) = X0,
(3.6)

with H a (separable) Hilbert space (that will turn out to be the space of possible states with finite mechanical

- i.e., (kinetic+strain) - energy), A : H ⇒ H a maximal monotone (multivalued) operator, and F ∈ L1(0, T ;H).

More precisely, we consider the space

H := H1
ΓD

(Ω;R3)× L2(Ω;R3) (3.7a)

endowed with the following inner product and induced norm

(X,X′) := ϕ(u, u′) + k(v, v′) , |X|2 = (X,X) for all X = (u, v), X′ = (u′, v′) ∈ H,

with k(v, v′) :=

∫

Ω

γvv′ dx for all v, v′ ∈ L2(Ω;R3) ,
(3.7b)



and ϕ defined in (3.3b). Observe that the norm induced by the bilinear form ϕ is equivalent to the standard

Sobolev norm on H1
ΓD

(Ω;R3) by Korn’s inequality. We introduce the operator A : H ⇒ H, with domain

D(A) : =
{
X = (u, v) ∈ H : (1) v ∈ H1

ΓD
(Ω;R3)

(2) ∃ (w, ξ) ∈ L2(Ω;R3)× L2(Bε;R
3) with ξ ∈ ∂D(e(v)) a.e. in Bε, s.t.

k(w, v′) + ϕ(u, v′) + b

∫

Bε

ξ · e(v′)dx = 0 for all v′ ∈ H1
ΓD

(Ω;R3)
}
,

(3.8a)

defined at every X = (u, v) by

AX :=

(
−v

0

)
+

{(
0

−w

)
: w as in (3.8a)(2)

}
. (3.8b)

For later use, we recall the following result from [18], establishing a link between the equation defining the

resolvent of A and the Euler-Lagrange equation for the minimization of the functional

J : H1
ΓD

(Ω;R3) → R, J(v) :=
1

2
k(v, v)− k(ψ2, v) +

1

2
ϕ(v, v) + ϕ(ψ1, v) + b

∫

Bε

D(e(v))dx, (3.9)

with (ψ1, ψ2) ∈ H given.

Proposition 3.1 ([18], Prop. 3.1). The operator A is maximal monotone on H and its resolvent (I+A)−1 :

H → H is given for all (ψ1, ψ2) ∈ H by X = (I+A)−1(ψ1, ψ2) if and only if

X = (ū, v̄) with ū and v̄ fulfilling

{
J(v̄) ≤ J(v) for all v ∈ H1

ΓD
(Ω;R3),

ū = v̄ + ψ1 .
(3.10)

We now consider the Cauchy problem (3.6) with H from (3.7a), A from (3.8), and the data F and X0 given

by

F =

(
−∂tu

e,
f

γ

)
, X0 = (u0, v0)− (ue(0), 0) such that X0 ∈ D(A). (3.11)

We denote by X
r = (ur, vr) the solution to (3.6), which exists, unique, in W 1,∞(0, T ;H) thanks to, e.g., [6,

Prop. 3.4]. By the careful definition of H, A, and of the data F and X0, it can be easily checked that ur and

that vr = ∂t(u
r + ue) solve the Cauchy problem for (3.5).

Setting u := ur + ue, we ultimately find the unique solution to Problem (P). This is summarized in the

following result.

Theorem 3.2 ([18], Thm. 3.1). Let the data f, g comply with (3.1) and let (u0, v0) ∈ (ue(0), 0)+D(A). Then,

the Cauchy problem (3.6) with H, A, and the data F and X0 from (3.7), (3.8), and (3.11), respectively, has

a unique solution X
r = (ur, vr) ∈ W 1,∞(0, T ;H). Hence, there exists a unique u ∈ W 1,∞(0, T ;H1

ΓD
(Ω;R3)) ∩

W 2,∞(0, T ;L2(Ω;R3)), given by u = ue + ur, that satisfies (2.10) for all v ∈ H1
ΓD

(Ω;R3) and for almost all

t ∈ (0, T ) and complies with the Cauchy conditions (2.9).

4. Asymptotic analysis

In this section we address the asymptotic behavior of a sequence (un)n of solutions to Problems (Pn)

corresponding to a sequence qn = (εn, λn, µn, bn, ρn) of mechanical and geometrical parameters that satisfy

the suitable conditions. As the overall density of the structure depends on the parameter ρn, we shall denote

it by γn. The requirements in Hypothesis 4.1 below in particular reflect the fact that the adhesive layer has

vanishing thickness and that the total mass of the adhesive layer remains strictly positive.



Hypothesis 4.1. We suppose that

∃ lim
n→∞

qn = q∞ = (ε∞, λ∞, µ∞, b∞, ρ∞) (4.1)

such that

(1) q∞ ∈ {0} × [0,∞)× [0,∞)× [0,∞]× {∞};

(2) ∃ (λ̄, µ̄) ∈ [0,∞]× [0,∞] s.t. (λ̄, µ̄) = limn→∞

(
λn

εn
, µn

εn

)
;

(3) limn→∞ bnεn = 0 and ∃ b̄ ∈ [0,∞] s.t. b̄ = limn→∞
bn

εp−1
n

, where p ∈ [1, 2] is given as in (2.6);

(4) µ̄ ∈ (0,∞] if min{H2(Γ±
D)} = 0;

(5) lim supn→∞
ε2n
µn

<∞;

(6) ∃ ρ̄ ∈ (0,∞) s.t. ρ̄ = limn→∞ ρnεn.

A comparison between Hypothesis 4.1 and the analogous assumption [18, (H2)] reveals that the only differ-

ence lies in condition (6) on the asymptotic behavior of the sequence (ρn)n; condition (6) does indeed encompass

the fact that the total mass of the adhesive layer is strictly positive, in the limit. As we will see, this will make

the limiting problem significantly different from that considered in [18].

Actually, for the sake of simplicity and to highlight the main points in our analysis, in this paper we shall

confine the discussion to the case in which (λ̄, µ̄) ∈ [0,∞) × (0,∞). In the upcoming Section 4.1, with sort

of heuristic arguments we propose a candidate PDE system for the description of the limiting behavior of

the structure under Hypothesis 4.1 on the parameters (qn)n. As we will see, such a system may be somehow

‘guessed’, also based on the analysis previously performed in [18], cf. also [13].

In accordance with the approach developed in Sec. 3, the limiting system will be formulated as an evolution-

ary equation in a suitable Hilbert space, governed by a nonlinear maximal monotone operator. Next, in Sec.

4.2 we will carry out the asymptotic analysis via (a version of) Trotter’s theory of approximation of semigroups

on variable Hilbert spaces.

4.1. A candidate for the limiting behavior. The functional framework for the limiting problem is naturally

obtained by studying the behavior of sequences (Xn)n = (un, vn)n of possible mechanical states, uniformly

bounded in the Hilbert spaces Hn from (3.7), namely

Hn := H1
ΓD

(Ω;R3)× L2(Ω;R3) endowed with the norms | · |n and the inner products

(X,X′)n := ϕn(u, u
′) + kn(v, v

′) for all X = (u, v), X′ = (u′, v′) ∈ H with
{
ϕn(v, v

′) :=
∫
Ωε
ae(v) · e(v′)dx +

∫
Bεn

DWλn,µn
(e(v)) · e(v′)dx for all v, v′ ∈ H1

ΓD
(Ω;R3),

kn(v, v
′) :=

∫
Ωεn

ρ∗vv′ dx+
∫
Bεn

ρnvv
′ dx for all v, v′ ∈ L2(Ω;R3) .

(4.2)

Therefore, for uniformly bounded mechanical states (Xn)n = (un, vn)n the following estimates hold for a

constant C > 0 uniform w.r.t. n ∈ N:

kn(vn, vn) =

∫

Ωεn

ρ∗(x)|vn|
2 dx+

∫

Bεn

ρn|vn|
2 dx ≤ C, (4.3a)

ϕn(un, un) =

∫

Ωεn

a|e(un)|
2 dx+

∫

Bεn

DWλn,µn
(e(un)) · e(un)dx ≤ C. (4.3b)

Let us now draw some conclusions from (4.3).

First of all, observe that, via a simple change of variables estimate (4.3a) may be rephrased as

kn(vn, vn) =

∫

Ωεn

ρ∗(x)|vn|
2dx+ ρnεn

∫

B

|Sεn [vn]|
2 dx ≤ C (4.4)



in terms of the operator Sε that maps a function v into the function Sε[v] defined by

Sε[v](x̂, x3) := v(x̂, εx3) for all x = (x̂, x3) ∈ B := S × (−1, 1)

and all measurable functions v on Bε = S × (−ε, ε).
(4.5)

By virtue of Hypothesis 4.1(6) and condition (2.7b) on ρ∗, from the bound (4.4) we deduce that the pair

(1) (χΩεn
vn,Sεn [vn])n, up to a subsequence, weakly converge,

∃ (vΩ, vB) ∈ L2(Ω;R3)× L2(B;R3) : χΩεn
vn ⇀ vΩ in L2(Ω;R3), Sεn [vn]⇀ vB in L2(B;R3). (4.6)

Thus, we may describe the limiting kinetic state by two velocity fields vΩ and vB that effectively represent the

limiting behavior of the velocity in the adhering bodies and in the adhesive layer, respectively.

Secondly, we may deduce that there exists a pair (uΩ, uB) ∈ H1
ΓD

(Ω\S;R3)× L2(B;R3) such that, up to a

subsequence,

(2) the functions χΩεn
e(un) converge weakly to e(uΩ) in L

2(Ω;R3×3);

(3) the traces on S±
εn of un, considered as elements of L2(S;R3), converge to the traces on S of u±Ω (i.e.,

the restrictions of uΩ to Ω±) strongly in L2(S;R3);

(4) the functions Sεn [un] converge to uB weakly in L2(B;R3).

Let us shortly justify properties (2)–(4). Indeed, following the lines of the proof of [18, Lemma 4.2], from the

first two bounds in (4.3a) and (4.3b), via Korn’s inequality and a standard diagonalization argument we infer

that there exists uΩ ∈
⋃

η>0H
1
ΓD

(Ωη;R
3) (with Ωη = Ω\Bη) such that, up to a subsequence, for all η > 0 there

holds un ⇀ uΩ weakly in H1(Ωη;R
3). In turn, there exists e∗ ∈ L2(Ω;R3×3

sym) such that χΩεn
e(un)⇀ e∗ weakly

in L2(Ω;R3×3
sym). Clearly, the restriction of e∗ to any Ωη coincides with the restriction to Ωη of e(uΩ) (i.e. the

symmetric part of the distributional gradient of uΩ). We thus conclude that e(uΩ) ∈ L2(Ω;R3×3
sym) (whence

uΩ ∈ H1
ΓD

(Ω\S;R3)), and convergence (2) holds. Next, we repeat the very same arguments as in Step 2 of

the proof of [18, Prop. 4.3], to conclude convergence (3). In order to check (4), we will first of all show that

(Sεn [un])n is bounded in L2(B;R3). To this end, we first of all employ the key inequality

∃C > 0 ∀n ∈ N ∀w ∈ H1
ΓD

(Ω;R3) :

1

2

∫

Bεn

|w|2 dx ≤ εn

∫

Sεn

|w|2 dx̂+ Cε2n

∫

Bεn

|e(w)|2 dx+ Cε2n

∫

Ωεn

|e(w)|2 dx,
(4.7)

(cf. [18, (4.20)]), whence

1

2

∫

Bεn

|un|
2dx ≤ εn

∫

Sεn

|un|
2dx+ Cε2n

(∫

Ωεn

|e(un)|
2 dx+

∫

Bεn

|e(un)|
2 dx

)
.

Now, since ∫

Sεn

|un|
2 dx→

∫

S

(
|γS(u

+
Ω)|

2+|γS(u
−
Ω)|

2
)
dx,

we find that the first integral on the right-hand side is estimated by Cεn. Furthermore, by (4.3b) we have that
∫

Ωεn

|e(un)|
2dx ≤ C.

Finally,

ε2n

∫

Bεn

|e(un)|
2 dx

(1)

≤
ε2n
µn

∫

Bεn

DWλn,µn
(e(un)) · e(un)dx

(2)

≤ Cεn,



where (1) follows from (2.5) and (2) from the assumption that µn

εn
→ µ̄ > 0, cf. Hypothesis 4.1 (recall that we

confine here our analysis to the case µ̄ ∈ (0,+∞)). All in all, we conclude that

εn

∫

B

|Sεn [un]|
2dx =

∫

Bεn

|un|
2dx ≤ Cεn whence

∫

B

|Sεn [un]|
2dx ≤ C.

and convergence (4) follows.

Moreover, since ∫

Bεn

|e(un)|
2 dx =

1

εn

∫

B

|e(εn,Sεn [un])|
2 dx, (4.8)

where we have introduced the notation

e(ε, w)i,j :=





εe(w)i,j for 1 ≤ i, j ≤ 2
1
2 (ε∂iw3 + ∂3wi) for 1 ≤ i ≤ 2, j = 3

∂3w3 for i = j = 3

for all w ∈ H1(B;R3),

the convergence in the sense of distributions of Sεn [un] implies that

(5) e(εn,Sεn [un]) converge to ∂3uB ⊗S e3 weakly in L2(B;R3 × R3);

(6) uB ∈ H∂3
(B;R3), with

H∂3
(B;R3) := {u ∈ L2(B;R3) : ∂3u ∈ L2(B;R3)}; (4.9)

(7) the traces of uB on

S+ := S × {1} and S− := S × {−1}, (4.10)

hereafter denoted by γS±(uB) and treated as elements of L2(S;R3), coincide with the traces on S of

u±Ω , denoted by γS(u
±
Ω).

Indeed, while items (5) & (6) are obvious, (7) follows from observing that the traces of un on S±
εn coincide with

the traces of (Sεn [un])
± on S±, and then taking the limit as n→ ∞.

In view of the above considerations, we thus expect that the Hilbert space of possible limiting states with

finite energy will be

H := U× V with (4.11a)

U := {u = (uΩ, uB) ∈ H1(Ω\S;R3)×H∂3
(B;R3) : γS(uΩ

±) = γS±(uB)}, (4.11b)

V := {v = (vΩ, vB) ∈ L2(Ω;R3)× L2(B;R3)}, (4.11c)

endowed with the inner product (and related norm)

(X,X′) = ϕ(u, u′) + k(v, v′), |X|2 := ϕ(u, u) + k(v, v) for all X = (u, v), X′ = (u′, v′) ∈ H, (4.12a)

where

ϕ(u, u′) :=

∫

Ω\S

ae(uΩ) · e(u
′
Ω)dx +

∫

B

DWλ̄,µ̄(∂3uB ⊗S e3) · (∂3u
′
B ⊗S e3)dx, (4.12b)

k(v, v′) =

∫

Ω

ρ∗|vΩ|
2dx+ ρ̄

∫

B

|vB |
2dx . (4.12c)

The limiting pseudopotential of dissipation is defined by

D : L2(B;R3) → [0,∞] D(q) =

{
b̄D∞,p(q ⊗S e3) if b̄ ∈ [0,∞),

I{0}(q ⊗S e3) if b̄ = ∞,
(4.13a)

where I{0} is the indicator function of {0} and

D∞,p(e′) = lim sup
t→∞

D(te′)

tp
for all e′ ∈ R

3×3
sym (4.13b)



and p ∈ [1, 2] is given as in (2.6). It is not difficult to check that

I{0}(q ⊗S e3) <∞ ⇔ q = 0 . (4.14)

In what follows, we shall assume

Hypothesis 4.2. We suppose that

∃ δ > 0 ∃ θ ∈ (0, p) ∀ e′ ∈ R
3×3
sym : |D(e′)−D∞,p(e′)| ≤ δ(1+|e′|θ). (4.15)

Hence, we can introduce the evolution operator A : H ⇒ H with domain (cf. (4.14))

D(A) : =
{
X = (u, v) ∈ H : (1) v ∈ U and ∂3uB = 0 if b̄ = ∞,

(2)∃ (w, ξ) ∈ V × L2(B;R3) s.t. ξ ∈ ∂D(∂3vB ⊗S e3) a.e. in B,

k(w, v′) + ϕ(u, v′) +

∫

B

ξ · (∂3v
′
B⊗Se3)dx = 0 for all v′ ∈ U as in (1)

}
,

(4.16a)

defined at every X = (u, v) by

AX :=

(
−v

0

)
+

{(
0

−w

)
: w as in (4.16a)(2)

}
. (4.16b)

With the same arguments as for the operator A from (3.8), it can be easily proved that A is maximal monotone

in H. Moreover, with the very same arguments as for Proposition 3.1, one can check that the resolvent of A

satisfies

X̄+ AX̄ ∋ (ψ1, ψ2) for every (ψ1, ψ2) ∈ H,

with X̄ = (ū, v̄), if and only if {
J(v̄) ≤ J(v) for all v ∈ U,

ū = v̄ + ψ1

(4.17a)

with

J : U → R, J(v) :=
1

2
k(v, v)− k(ψ2, v) +

1

2
ϕ(v, v) + ϕ(ψ1, v) +

∫

B

D(∂3vB⊗Se3)dx . (4.17b)

By arguing as in Section 3, the expected limit of the sequence (un := uen + urn)n (cf. (3.2)) of the solutions

to Problems (Pn) will be the sum of some ue, solution to a limiting ‘stationary’ problem and some ur, solution

to a limiting evolutionary problem. More precisely, we will have that ue = (ueΩ, u
e
B) ∈ W 2,∞(0, T ;U), with ueB

affine in x3 (cf. Remark 4.4 ahead) is the unique solution to

ϕ(ue(t), v) = L(t)(v) for all v ∈ U for all t ∈ [0, T ], (4.18)

with ϕ from (4.12b) and L from (3.3c). Instead, ur is the first component of the solution X
r = (ur, vr) to the

following abstract problem
{

d
dtX(t) + AX(t) ∋ F(t) in H for a.a. t ∈ (0, T ),

X(0) = X0,
(4.19)

with X0 specified later on and F given by

F =

(
−∂tu

e,

(
f

ρ∗
, 0

))
. (4.20)

We postpone to Section 5 some comments on the variational formulation of the initial-boundary value problem

(4.19), cf. (5.1) and (5.4) ahead.

In the same way as for the Cauchy problem (3.6) with the forcing term F from (3.11), the results in [6, Sec.

III.2]) yield



Proposition 4.3. If X0 ∈ D(A) and if (f, g) satisfy (3.1), then (4.19) has a unique solution X
r = (ur, vr) ∈

W 1,∞(0, T ;H).

We set

X
e = (ue, 0), X = X

r + X
e (4.21)

We are now in a position to outline our argument for proving the convergence of the sequence (un = uen+u
r
n)n

to u = ue + ur:

(1) the convergence of uen to ue will be obtained in Proposition 4.11 ahead, as part of the proof of

(2) the convergence of urn to ur, stated in Theorem 4.15 ahead. For proving it, we will resort to a nonlinear

version of Trotter’s theory of approximation of semigroups acting on variable spaces, as developed in

the Appendix of [20]. The need for such a theory is motivated by the fact that the functions urn and

ur do not belong to the same space.

The proof of Theorem 4.15 will be carried out throughout Section 4.2.

We now conclude this section by specifying the structure of the solution ue = (ueΩ, u
e
B) to the limit stationary

problem (4.18). In particular, we will show that ueB is affine in x3.

Remark 4.4. Let ue = (ueΩ, u
e
B) ∈ W 2,∞(0, T ;U) be the unique solution to (4.18) with ϕ from (4.12b) and L

from (3.3c). Then ue satisfies
∫

Ω\S

ae(ueΩ)(t) · e(vΩ)dx +

∫

B

DWλ̄,µ̄(∂3u
e
B(t)⊗S e3) · (∂3vB ⊗S e3)dx

=

∫

ΓN

g(t) · vΩdH2(x) for all v = (vΩ, vB) ∈ U and for all t ∈ [0, T ].

(4.22)

Choosing now vΩ = 0 and vB as an arbitrary test function ϕ ∈ C∞
c (B;R3) leads to

∫

B

(
µ̄ ∂3(u

e
B)1 ∂3ϕ1+µ̄ ∂3(u

e
B)2 ∂3ϕ2+(λ̄+2µ̄) ∂3(u

e
B)3 ∂3ϕ3

)
dx = 0 for all ϕ ∈ C∞

c (B;R3),

where ∂3(u
e
B)i denotes the ith-component of the vector ∂3u

e
B. This implies that the function x3 7→ ueB(x̂, x3, t)

is affine.

4.2. Convergence. Throughout this section, we will implicitly assume the validity of Hypotheses 4.1 and 4.2,

and of conditions (3.1) on the problem data f and g. In particular, we shall omit to invoke these assumptions

in all of the statements of the various results, with the exception of Theorem 4.15.

In the next subsection we shortly recapitulate the basics of the result from Trotter theory that we shall use

to prove Theorem 4.15.

4.2.1. Recaps on Trotter’s theory of approximation of semigroups. Let us first fix some preliminary definitions.

We consider

a sequence (Hn)n of Hilbert spaces, with inner products (·, ·)n and norms | · |n,

and a ‘limiting’ Hilbert space H, such that for every n ∈ N there is defined an operator Pn : H → Hn, linear

and continuous, fulfilling the following properties:

There exists C > 0 such that for every n ∈ N and X ∈ H there holds |PnX|n ≤ C|X|; (4.23a)

For every X ∈ H there holds lim
n→∞

|PnX|n = |X|. (4.23b)

Next, for a given sequence (Xn)n with Xn ∈ Hn for every n ∈ N, we will say that

(Xn)n converge to X ∈ H in the sense of Trotter if lim
n→∞

|PnX−Xn|n = 0. (4.24)

We are now in a position to recall the result from [20] needed for our analysis.



Theorem 4.5 ([20], Thm. 5). Suppose that the Hilbert spaces Hn, H fulfill (4.23). Let An : Hn ⇒ Hn,

A : H ⇒ H be maximal monotone operators, let Fn ∈ L1(0, T ;Hn), F ∈ L1(0, T ;H), and let X
0
n ∈ D(An),

X
0 ∈ D(A). Let (Xn)n, X be the weak solutions to the Cauchy problems

{
d
dtXn(t) + AnXn(t) ∋ Fn(t) in Hn for a.a. t ∈ (0, T ),

Xn(0) = X
0
n,{

d
dtX(t) + AX(t) ∋ F(t) in H for a.a. t ∈ (0, T ),

X(0) = X
0 .

(4.25)

If

lim
n→∞

|Pn(X
0)− X

0
n|n = 0 and lim

n→∞

∫ T

0

|Pn(F(t)) − Fn(t)|n dt = 0 (4.26)

and if for every λ ≥ 0 and X ∈ H we have that

the sequence ((I+ λAn)
−1(Pn(X)))n converge in the sense of Trotter to (I+ λA)−1(X) as n→ ∞, (4.27)

(where we denote by the same symbol the identity operators I : Hn → Hn and I : H → H), then (Xn)n converge

to X in the sense of Trotter uniformly on [0, T ], namely

lim
n→∞

sup
t∈[0,T ]

|Pn(X(t))− Xn(t)|n = 0. (4.28)

4.2.2. Setting up Trotter’s theory for our problem. In what follows, we establish the setup in which we shall

apply Thm. 4.5. We consider the Hilbert spaces Hn from (4.2), while the ‘limiting’ Hilbert space H is given

by (4.11), with the inner product from (4.12). Now, in order to apply Thm. 4.5 we have to introduce a linear

continuous operator Pn : H → Hn that with any element X ∈ H associates a suitable representative Pn(X) ∈ Hn.

Therefore, the operator Pn : H → Hn shall have the form

Pn(X) = Pn((uΩ, uB); (vΩ, vB)) = (Pu
n(uΩ, uB);P

v
n(vΩ, vB)) . (4.29)

The choice for the operator Pv
n : V → L2(Ω;R3) (with V from (4.11c)) is guided by the idea of describing the

limiting state in terms of two velocity fields, namely we set

P
v
n(vΩ, vB) := χΩεn

vΩ + (1−χΩεn
)(Sεn)

−1[vB ] . (4.30)

The choice for P
u
n, specified in (4.38) below, reflects how a field like uB may be involved in the asymptotic

behavior of (un)n. Indeed, first of all we consider the unique function unB satisfying

unB ∈ H1(Bεn ;R
3) with unB(x̂,±εn) = u±Ω(x̂, 0) for a.a. x̂ ∈ S and

∫

Bεn

DWλn,µn
(e(unB)) · e(ϕ)dx =

∫

B

DWλ̄,µ̄(∂3uB⊗Se3) · e(εn,Sεn [ϕ])dx for all ϕ ∈ H1
S+
εn∪S−

εn

(Bεn ;R
3) ,

(4.31)

where H1
S+
εn∪S−

εn

(Bεn ;R
3) denotes the closed subspace of H1(Bεn ;R

3) consisting of the functions with null trace

on S+
εn∪S

−
εn . From the functions unB we then derive functions defined on B = S × (−1, 1) by resorting to the

operator Sεn . Namely, we set

uB,n := Sεn [u
n
B]. (4.32)

From (4.31) we deduce that the functions uB,n fulfill (recall that γS± denote the traces on S± = S×{±1}, cf.

(4.10))

uB,n ∈ H1(B;R3) with γS±(uB,n) = γS±(uB) and

1

εn

∫

B

DWλn,µn
(e(εn, uB,n)) · e(εn, ψ)dx =

∫

B

DWλ̄,µ̄(∂3uB⊗Se3) · e(εn, ψ)dx for all ψ ∈ H1
S+∪S−(B;R3) .

(4.33)



The functions uB,n will enter into the definition of Pu
n. Before specifying in which way, however, let us gain

further insight into the properties of the sequence (uB,n)n in the following result, where we are using the

notation ûB,n for the first two components of the function uB,n, cf. Notation 1.1.

Lemma 4.6. The following properties hold:

(1) the sequence (ûB,n)n converge weakly to ûB in L2(B;R2);

(2) the sequence ((uB,n)3, e(εn, uB,n))n converge strongly to (uB3, ∂3uB⊗Se3) in H∂3
(B) × L2(B;R3×3

sym)

(with the space H∂3
(B) defined analogously as H∂3

(B;R3), cf. (4.9));

(3) if uB belongs to H1(B;R3), then (uB,n)n converge strongly to uB in L2(B;R3).

Proof. Let u∗B ∈ H1(B;R3) fulfill γS±(u∗B) = γS±(uB). We plug in (4.33) the test function ψ = uB,n − u∗B,

thus obtaining

1

εn

∫

B

DWλn,µn
(e(εn, uB,n)) · e(εn, uB,n − u∗B)dx =

∫

B

DWλ̄,µ̄(∂3uB⊗Se3) · e(εn, uB,n − u∗B)dx. (4.34)

Combining the estimate 1
εn
DWλnµn

(e) · e ≥ µn

εn
|e|2 (cf.(2.5)) with the fact that µn

εn
→ µ̄ > 0 by Hypothesis 4.1,

from (4.34) we easily deduce that

∃C > 0 ∀n ∈ N :
µ̄

2

∫

B

|e(εn, uB,n)|
2dx ≤ C(1+‖e(εn, uB,n)‖L2(B;R3

sym)).

This implies that the sequence (e(εn, uB,n))n is bounded in L2(B;R3
sym). We will use this to conclude that

(uB,n)n is bounded in L2(B;R3) via a Poincaré-type estimate, namely

∃C > 0 ∀n ∈ N ∀ z ∈ H1
S+∪S−(B;R3) :

∫

B

|z|2dx ≤ C

∫

B

|e(εn, z)|
2dx . (4.35)

We deduce (4.35) from estimate (4.7), written for the function

w :=

{
0 in Ωεn ,

S −1
εn [z] in Bεn

(observe that S
−1
εn [z] ∈ H1(Bεn ;R

3) with γS±
εn
(S −1

εn [z]) = 0). Then,

∫

B

|z|2dx =

∫

B

|Sεn [S
−1
εn [z]]|2dx =

1

εn

∫

Bεn

|S −1
εn [z]|2dx

(1)

≤
1

εn

(
2εn

∫

Sεn

|S −1
εn [z]|2dx+ Cε2n

∫

Bεn

|e(S −1
εn [z])|2dx + 0

)

(2)
= Cεn

∫

Bεn

|e(S −1
εn [z])|2dx

(3)
= C

∫

B

|e(εn,Sεn [S
−1
εn [z]])|2dx = C

∫

B

|e(εn, z)|
2dx,

where (1) follows from (4.7), (2) from the fact that γS±
εn
(S −1

εn [z]) = 0, and (3) from (4.8). Next, choosing

z = uB,n−u
∗
B in (4.35) we conclude that

∫

B

|uB,n−u
∗
B|

2 dx ≤ C

∫

B

|e(εn, uB,n−u
∗
B)|

2 dx. (4.36)

Since (e(εn, uB,n))n is bounded in L2(B;R3
sym), we infer that (uB,n)n is bounded in L2(B;R3). Therefore, up

to a (not relabelled) subsequence, the functions (uB,n, e(εn, uB,n))n weakly converge to a pair (ūB, ∂3ūB⊗Se3),



where the identification of the weak limit of (e(εn, uB,n))n follows from a distributional convergence argument.

We are then in a position to pass to the limit in (4.33) and thus deduce that the function ūB fulfills

ūB ∈ H1
∂3
(B;R3) with γS±(ūB) = γS±(uB) and for all ψ ∈ H1

∂3
(B;R3) with γS±(ψ) = 0 there holds

∫

B

DWλ̄,µ̄(∂3ūB⊗Se3) · (∂3ψ⊗Se3)dx =

∫

B

DWλ̄,µ̄(∂3uB⊗Se3) · (∂3ψ⊗Se3)dx .
(4.37)

Therefore, ∂3(ūB−uB) = 0 and, since γS±(ūB) = γS±(uB), we ultimately have that ūB = uB. Having uniquely

identified the limit we eventually gain convergence along the whole sequence (εn)n. We thus conclude claim

(1).

Eventually, (4.34) implies

lim
n→∞

∫

B

2Wλ̄,µ̄(e(εn, uB,n))dx = lim
n→∞

∫

B

DWλ̄,µ̄(e(εn, uB,n)) · e(εn, uB,n)dx

= lim
n→∞

1

εn

∫

B

DWλn,µn
(e(εn, uB,n)) · e(εn, uB,n)dx

=

∫

B

DWλ̄,µ̄(∂3uB⊗Se3) · (∂3uB⊗Se3)dx

=

∫

B

2Wλ̄,µ̄(∂3uB⊗Se3)dx .

Since the functional q 7→
(∫

B Wλ̄,µ̄(q)dx
)1/2

induces a norm equivalent to the usual one on L2(B;R3×3
sym), we

thus deduce that e(εn, uB,n) converge to ∂3uB⊗Se3 strongly in L2(B;R3×3
sym) and then (uB,n)3 → (uB)3 strongly

in H1
∂3
(B). This gives claim (2).

Finally, suppose that uB ∈ H1(B;R3). The analogue of (4.36), i.e.
∫
B
|uB,n−uB|

2dx ≤ C
∫
B
|e(εn, uB,n−uB)|

2 dx,

combined with claim (2), yields that uB,n → uB strongly in L2(B;R3). This concludes the proof.

�

We define the operator Pu
n : U → H1

ΓD
(Ω;R3) (with U from (4.11b)) by

P
u
n(uΩ, uB)(x) :=





(Sεn)
−1[uB,n](x) = unB(x) if x ∈ Bεn ,

ξ(x3)uΩ(x̂, x3 + sign(x3)εn) + (1−ξ(x3))uΩ(x) if x ∈ B±
ε0 \B

±
εn ,

uΩ(x) if x ∈ Ωε0 ,

(4.38)

where B±
ε0 , B

±
εn are from (2.4) and ξ is a function in C∞

c (R) such that

ξ(r) :=





1 if |r| ≤ ε0
3 ,

∈ [0, 1] if ε0
3 ≤ |r| ≤ 2ε0

3 ,

0 if |r| ≥ 2ε0
3

(4.39)

(namely, for |r| ∈ [ ε03 ,
2ε0
3 ] we set ξ(r) := ξr with ξr some element in [0, 1]). Note that Pu

n(uΩ, uB) does belong

to H1
ΓD

(Ω;R3) because u = (uΩ, uB) belongs to the space U from (4.11b). In what follows, we will often write

P
u
n(u) in place of Pu

n(uΩ, uB) for notational simplicity. We are now in a position to prove the following result.

Proposition 4.7. We have that

(1) there exists C > 0 such that for all X ∈ H there holds |PnX|n ≤ C|X|;

(2) there holds limn→∞ |PnX|n = |X|,

namely properties (4.23) hold.



Proof. We start by recalling that, for every X = (u, v) ∈ H with u = (uΩ, uB) and v = (vΩ, vB) and with

PnX = (Pu
n(u),P

v
n(v)), we have that

|PnX|
2
n =

∫

Ωεn

ρ∗|Pv
n(v)|

2 dx+

∫

Bεn

ρn|P
v
n(v)|

2 dx

+

∫

Ωεn

ae(Pu
n(u)) · e(P

u
n(u))dx +

∫

Bεn

DWλn,µn
(e(Pu

n(u))) · e(P
u
n(u))dx

.
= In1 + In2 + In3 + In4 ,

(cf. (4.2)), while by (4.12a) we have

|X|2 =

∫

Ω

ρ∗|vΩ|
2 dx+ ρ̄

∫

B

|vB |
2dx+

∫

Ω\S

ae(uΩ) · e(uΩ)dx +

∫

B

DWλ̄,µ̄(∂3uB⊗Se3) · (∂3uB⊗Se3)dx

.
= I1 + I2 + I3 + I4 .

Now, by the definition (4.30) of Pv
n(v) we have that

In1 + In2 =

∫

Ωεn

ρ∗|vΩ|
2 dx+

∫

Bεn

ρn|S
−1
εn [vB ]|

2dx

≤

∫

Ω

ρ∗|vΩ|
2 dx+ ρnεn

∫

B

|vB|
2 dx ≤

∫

Ω

ρ∗|vΩ|
2dx+ (ρ̄+ c)

∫

B

|vB|
2 dx

(4.40)

for sufficiently big n, where the last estimate follows from Hyp. 4.1(6). Indeed, by the dominated convergence

theorem and again Hyp. 4.1 we also have

In1 + In2 → I1 + I2 . (4.41)

Further, taking into account that Ωεn = Ωε0 ∪ (B+
ε0\B

+
εn)∪ (B−

ε0\B
−
εn) and recalling the definition (4.38) of Pu

n,

we have

In3 =

∫

Ωε0

ae(uΩ) · e(uΩ)dx+

∫

B+
ε0

\B+
εn

ae(ξuΩ(·+εne3)+(1−ξ)uΩ) · e(ξuΩ(·+εne3)+(1−ξ)uΩ)dx

+

∫

B−
ε0

\B−
εn

ae(ξuΩ(·+εne3)−(1−ξ)uΩ) · e(ξuΩ(·−εne3)+(1−ξ)uΩ)dx

(4.42)

and it is not difficult to check that, again by the dominated convergence theorem,

In3 →

∫

Ωε0

ae(uΩ) · e(uΩ)dx+

∫

Bε0
\S

ae(uΩ) · e(uΩ)dx = I3 . (4.43)

Hence, we also have that In3 ≤ CI3. Finally, since P
u
n(u) = unB on Bεn , we have

In4 =

∫

Bεn

DWλn,µn
(e(unB)) · e(u

n
B)dx

=
1

εn

∫

B

DWλn,µn
(e(εn, uB,n)) · e(εn, uB,n)dx

=

∫

B

(
λn
εn

|tr(e(εn, uB,n))|
2+

2µn

εn
|e(εn, uB,n)|

2

)
dx

(1)
−→

∫

B

(
λ̄|tr(∂3uB⊗Se3)|

2+2µ̄|∂3uB⊗Se3|
2
)
dx

=

∫

B

DWλ̄,µ̄(∂3uB⊗Se3) · (∂3uB⊗Se3)dx,

(4.44)

where (1) is due to Hyp. 4.1(2) and to the strong convergence e(εn, uB,n) → ∂3uB⊗Se3 in L2(B;R3×3
sym) due to

Lemma 4.6(2). Clearly, these arguments also give In3 ≤ CI3. This concludes the proof. �

Even if the convergence notion from (4.24) is the right one from the mechanical viewpoint, it could be of

interest to translate this convergence in terms of some classical conventional convergence notions.



Proposition 4.8. Let (Xn)n = (un, vn)n with Xn ∈ Hn for all n ∈ N, converge in the sense of Trotter to some

X = (u, v) ∈ H. Then, the following convergences hold as n→ ∞

(1) the sequence χΩεn
(un, e(un)) converge to (uΩ, e(uΩ)) strongly in L2(Ω;R3)× L2(Ω\S;R3×3

sym);

(2) the sequence ̂Sεn [χBεn
un] converge to ûB weakly in L2(B;R2);

(3) the sequence ((Sεn [χBεn
un])3, e(εn,Sεn [χBεn

un]))n converge to (uB3, ∂3uB⊗Se3) strongly in H∂3
(B)×

L2(B;R3×3
sym);

(4) moreover, if uB ∈ H1(B;R3), then Sεn [χBεn
un] → uB strongly in L2(B;R3);

(5) χΩεn
vn → vΩ strongly in L2(Ω;R3);

(6) Sεn [χBεn
vn] → vB strongly in L2(B;R3).

Proof. Item (1) is an immediate consequence of the definition (4.38) of the operator Pu
n.

As for items (2), (3), (4), the key point is to observe that the convergence in the sense of Trotter of (un, vn)n
to (u, v) yields that (here, for simplicity we will write un in place of χBεn

un)
∫

B

(
λn
εn

|tr(e(εn,Sεn [u
n
B − un]))|

2+
2µn

εn
|e(εn,Sεn [u

n
B − un]))|

2

)
dx→ 0

(cf. the calculations for (4.44)), whence

e(εn,Sεn [u
n
B − un]) → 0 strongly in L2(B;R3×3

sym).

Combining this information with the second convergence in Lemma 4.6(2), we immediately deduce that

e(εn,Sεn [un] → ∂3uB⊗Se3 strongly in L2(B;R3×3
sym), whence the strong convergence of (Sεn [un])3 to uB3.

This proves item (3). Next, taking into account (4.35) we also infer that the sequence (unB − un)n is bounded

in L2(B;R3), and then items (2) & (4) follow from items (1) & (3) in Lemma 4.6.

As for items (5) & (6), from the Trotter convergence of (un, vn)n to (u, v) we also deduce, in particular, that

Jn
1 :=

∫

Ωεn

ρ∗ (vΩ−vn)
2
dx→ 0 as n→ ∞,

Jn
2 :=

∫

Bεn

ρn
(
S

−1
εn [vB]−χBεn

vn
)2

dx→ 0 as n→ ∞.

Now, from Jn
1 → 0 we immediately deduce item (5); we then observe that

0 = lim
n→∞

Jn
2 = lim

n→∞

∫

B

ρnεn
(
vB−Sεn [χBεn

vn]
)2
.

Recalling that ρnεn → ρ̄ > 0 by Hyp. 4.1(6), we immediately infer item (6). �

4.2.3. Convergence results. In order to apply Theorem 4.5 establishing the convergence in the sense of Trotter

(cf. (4.24)) of (Xn)n to X uniformly on [0, T ], it is sufficient to impose suitable conditions on the initial data,

which we shall discuss at the end of this section, and to check the validity of conditions (4.26) and (4.27), with

the operators An : Hn ⇒ Hn with domains

D(An) : =
{
X = (u, v) ∈ H : (1) v ∈ H1

ΓD
(Ω;R3)

(2)∃ (w, ξ) ∈ L2(Ω;R3)× L2(Bεn ;R
3) with ξ ∈ ∂D(e(v)) a.e. in Bεn , s.t.

kn(w, v
′) + ϕn(u, v

′) + bn

∫

Bεn

ξ · e(v′)dx = 0 for all v′ ∈ H1
ΓD

(Ω;R3)
}
,

(4.45a)

defined at every X = (u, v) by

AnX :=

(
−v

0

)
+

{(
0

−w

)
: w as in (4.45a)(2)

}
. (4.45b)



and the data

(Fn)n, (X
n
0 )n as in (3.11). (4.46)

Condition (4.27) follows from the following result.

Proposition 4.9. There holds

lim
n→∞

|Pn((I+A)−1(Ψ))−((I+An)
−1(Pn(Ψ)))|n = 0 for all Ψ ∈ H. (4.47)

The proof of Proposition 4.9 is postponed after the statement of Proposition 4.11, where we are going to check

(4.26). With this aim, we need to impose an additional condition on the external loading g.

Hypothesis 4.10. We suppose that g ∈ W 2,∞(0, T ;L2(ΓN;R
3)) fulfills

supp(g) ∩Bε0 = Ø for all t ∈ [0, T ] and

if min{H2(Γ+
D),H

2(Γ−
D)} = 0, say H2(Γ−

D) = 0, then supp(g) ∩ (∂Ω−
ε0) = Ø .

(4.48)

Observe that (4.48) guarantees that the support of g lies outside Bε0 and that, if the lower adhering body

is not clamped, then there are no surface forces imposed on its boundary. Under the additional Hyp. 4.10 we

shall have the following result, whose proof is postponed to that of Prop. 4.9.

Proposition 4.11. There holds

(1) limn→∞

∫ T

0
|Pn(F(t))−Fn(t)|n dt = 0;

(2) limn→∞ supt∈[0,T ] |Pn(X
e(t))−X

e
n(t)|n = 0,

where, according to the decomposition from (4.21), Xe and X
e
n are the ‘stationary’ parts of the solutions X and

Xn.

Let us now proceed with the proof of Proposition 4.9, which is split into three steps. The main idea

is to exploit the characterizations of the resolvents of An and A provided by Proposition 3.1 and by (4.17a),

respectively. In what follows, we will consider a fixed element Ψ = (ψ1, ψ2) ∈ H.

First step: We prove the following

Lemma 4.12. For all w ∈ U there exists a sequence (wn)n ⊂ H1
ΓD

(Ω;R3) such that

lim
n→∞

ϕn(wn−P
u
n(w), wn−P

u
n(w)) = 0,

and each term of

J̃n(wn) :=
1

2
ϕn(wn, wn) +

1

2
kn(wn, wn) + bn

∫

Bεn

D(e(wn))dx+ ϕn(P
u
n(ψ1), wn)− kn(P

v
n(ψ2), wn) (4.49)

converges to the corresponding term of

J(w) :=
1

2
ϕ(w,w) +

1

2
k(w,w) +

∫

B

D(∂3wB⊗Se3)dx + ϕ(ψ1, w)− k(ψ2, w),

cf. (4.17b).

Proof. Since J is continuous on U, it is sufficient to prove the result on a dense subset of U, namely the set

(H1
ΓD

(Ω\S;R3)×H1(B;R3)) ∩ U, and to conclude via a diagonalization argument. Then, we set

wn := P
u
n(w) .

Now, it follows from Prop. 4.7(2) that ϕn(wn, wn) → ϕ(w,w) as n → ∞. The convergence kn(wn, wn) →

k(w,w) stems from the definition (4.38) of Pu
n and Lemma 4.6. Indeed,

kn(wn, wn) =

∫

Ωεn

ρ∗|wn|
2dx+

∫

Bεn

ρn|wn|
2 dx .



On the one hand, again taking into account that Ωεn = Ωε0 ∪ (B+
ε0\B

+
εn) ∪ (B−

ε0\B
−
εn) and recalling (4.38) (cf.

the arguments for (4.42)), we see that
∫
Ωεn

ρ∗|wn|
2dx→

∫
Ω
ρ∗|wΩ|

2dx. On the other hand,

∫

Bεn

ρn|wn|
2 dx =

∫

Bεn

ρn|S
−1
εn [wB,n]|

2dx = ρnεn

∫

B

|wB,n|
2dx→ ρ̄

∫

B

|wB |
2dx

due to Hyp. 4.1(6) and Lemma 4.6(3), using that wB belongs to H1(B;R3). Analogously, one can pass to the

limit in the fifth contribution to J̃n(wn). As for the third term, we have that

bn

∫

Bεn

D(e(wn))dx =
bn

εp−1
n

∫

B

D(e(εn,Sεn [wn]))dx→

∫

B

D(∂3wB⊗Se3)dx,

with D given by (4.13), taking into account that e(εn,Sεn [wn]) → ∂3wB⊗Se3 strongly in L2(B;R3×3
sym) by

Proposition 4.8(3). Finally, to deal with the fourth term we use that

4ϕn(P
u
n(ψ1),P

u
n(w)) = ϕn(P

u
n(ψ1+w),P

u
n(ψ1+w)) − ϕn(P

u
n(ψ1−w),P

u
n(ψ1−w))

−→ ϕ(ψ1+w,ψ1+w) − ϕ(ψ1−w,ψ1−w) = 4ϕ(ψ1, w) ,

which concludes the proof. �

Second step: We now show that

Lemma 4.13. Let v̄n be the (unique) minimizer of the functional J̃n from (4.49) on H1
ΓD

(Ω;R3). Then, there

exists v̄ = (v̄Ω, v̄B) ∈ U such that

(1) the elements Ṽn := (v̄n, v̄n) converge to Ṽ := (v̄, v̄) in the sense of Trotter;

(2) every term of J(v̄) is estimated from above by the lim infn→∞ of the corresponding term of J̃n(v̄n);

(3) v̄ is the unique minimizer of J on U;

(4) J(v̄) = limn→∞ J̃n(v̄n) and |Ṽ| = limn→∞ |Ṽn|n.

Proof. Since J̃n(v̄n) ≤ J̃n(0) = 0, the sequence (Ṽn)n is bounded and there exists v̄ = (v̄Ω, v̄B) ∈ U such that,

at least along a not relabeled subsequence, there holds

(i) the sequence χΩεn
(v̄n, e(v̄n)) converges weakly to (v̄Ω, e(v̄Ω)) in L

2(Ω;R3 × R3×3
sym);

(ii) (Sεn [v̄n])3, e(εn,Sεn [v̄n])n converges to (v̄B3, ∂3v̄B⊗Se3) weakly in H∂3
(B)× L2(B;R3×3

sym);

(iii) χΩεn
v̄n converge to v̄Ω strongly in L2(Ω;R3);

(iv) Sεn [v̄n] converge to v̄B weakly in L2(B;R3).

Let us only comment on the proof of (iii): from
∫
Ωεn

(|e(v̄n)|
2+ |v̄n|

2)dx ≤ C and Korn’s inequality in Ωε0/3 we

deduce that the sequence (v̄extn )n defined by v̄extn (x) := (1− ξ(x3))v̄n(x) for all x ∈ Ω, with ξ the function from

(4.39), is bounded in H1(Ω;R3). Hence, v̄extn → v̄ext, with v̄ext(x) := (1 − ξ(x3))v̄Ω(x) strongly in L2(Ω;R3).

Likewise, Korn’s inequality in Ω± guarantees that the sequence (v̄∗n)n with v̄∗n(x̂, x3) := ξ(x3±εn)v̄n(x̂, x3±εn)

for all x ∈ Ω± is bounded in H1(Ω±;R3). Hence, v∗n → v∗ strongly in L2(Ω;R3), with v∗(x) := ξ(x3)v̄Ω(x) for

all x ∈ Ω. Now, since v∗n and v̄intn := v̄n − v̄extn weakly converge to the same limit in L2(Ω;R3), a fortiori we

conclude that v̄n = v̄extn + v̄intn → v̄Ω in L2(Ω;R3).

We use the above convergences for the last two terms contributing to J̃n(v̄n), and an additional classical

lower semicontinuity argument for the first three terms to conclude Claim (2), at least along a subsequence.

Then, from Step 1 we infer that v̄ is the unique minimizer in U of the strictly convex functional J, namely

Claim (3). Therefore, the whole sequence (v̄n)n converge, and there holds J(v̄) = limn→∞ J̃n(v̄n). In order to



complete the proof of Claim (4), it suffices to observe that

lim sup
n→∞

(
1

2
ϕn(v̄n, v̄n)+

1

2
kn(v̄n, v̄n)

)

≤ lim sup
n→∞

(
J̃n(v̄n)−bn

∫

Bεn

D(e(v̄n))dx−ϕn(P
u
n(ψ1), v̄n)+kn(P

v
n(ψ2), v̄n)

)

= J(v̄)− lim inf
n→∞

bn

∫

Bεn

D(e(wn))dx − lim inf
n→∞

ϕn(P
u
n(ψ1), v̄n) + lim

n→∞
kn(P

v
n(ψ2), v̄n)

≤ J(v̄)−

∫

B

D(∂3v̄B⊗Se3)dx − ϕ(ψ1, v̄) + k(ψ2, v̄)

=
1

2
ϕ(v̄, v̄) +

1

2
k(v̄, v̄) ≤ lim inf

n→∞

(
1

2
ϕn(v̄n, v̄n)+

1

2
kn(v̄n, v̄n)

)
,

which gives the separate convergences

ϕn(v̄n, v̄n) → ϕ(v̄, v̄), kn(v̄n, v̄n) → k(v̄, v̄) .

Hence, we conclude that

|Ṽ| = lim
n→∞

|Ṽn|n. (4.50)

Then, we use that

|PnṼ−Ṽn|
2
n = |PnṼ|

2
n + |Ṽn|

2
n − 2(PnṼ, Ṽn)n .

Taking into account (4.50) and the fact that limn→∞ |PnṼ|
2
n = |Ṽ|2, in order to establish the Trotter convergence

of (Ṽn)n to Ṽ it remains to check that

lim
n→∞

(PnṼ, Ṽn)n = |Ṽ|2.

This stems from convergences (i)–(iv). In order to check this, we use that

ϕn(P
u
n(v̄), v̄n) =

∫

Ωεn

ae(Pu
n(v̄)) · e(v̄n)dx +

∫

Bεn

DWλn,µn
(e(v̄nB)) · e(v̄n)dx .

To take the limit in the first term, we combine the facts that χΩεn
e(v̄n) ⇀ e(v̄Ω) weakly in L2(Ω;R3×3

sym)

and e(Pu
n(v̄)) → e(v̄Ω) strongly in L2(Ω\S;R3×3

sym) (indeed, the weak convergence of e(Pu
n(v̄)) to e(v̄Ω) in

L2(Ω\S;R3×3
sym) improves to a strong one by the analogue of convergence (4.43)). Then, we find that

∫

Ωεn

ae(Pu
n(v̄)) · e(v̄n)dx→

∫

Ω\S

ae(v̄Ω) · e(v̄Ω)dx.

Let us now show that
∫

Bεn

DWλn,µn
(e(Pu

n(v̄))) · e(v̄n)dx→

∫

B

DWλ̄,µ̄(∂3v̄B⊗Se3) · (∂3v̄B⊗Se3)dx . (4.51)

With this aim, we recall that P
u
n(v̄) = v̄nB on Bεn , with v̄nB the solution to (4.31). Then, it is sufficient to

observe
∫

Bεn

DWλn,µn
(e(v̄nB)) · e(v̄n)dx

=
1

εn

∫

B

DWλn,µn
(e(εn,Sεn [v̄

n
B])) · e(εn,Sεn [v̄n])dx

=
1

εn

∫

B

(λntr(e(εn,Sεn [v̄
n
B ]))tr(e(εn,Sεn [v̄n])) + 2µne(εn,Sεn [v̄

n
B]) · e(εn,Sεn [v̄n])) dx

−→

∫

B

(
λ̄|tr(∂3v̄B⊗Se3)|

2+2µ̄|∂3v̄B⊗Se3|
2
)
dx =

∫

B

DWλ̄,µ̄(∂3v̄B⊗Se3) · (∂3v̄B⊗Se3)dx



where the above convergence follows from the fact that e(εn,Sεn [v̄
n
B]) → ∂3v̄B⊗Se3 and e(εn,Sεn [v̄n]) →

∂3v̄B⊗Se3 weakly in L2(B;R3×3
sym) by Lemmas 4.6(2) and convergence (ii) at the beginning of the proof of

Lemma 4.13, respectively. All in all, we conclude that ϕn(P
u
n(v̄), v̄n) → ϕ(v̄, v̄). Finally, we observe that

kn(P
v
n(v̄), v̄n) =

∫

Ωεn

ρ∗v̄Ωv̄ndx+

∫

Bεn

ρnS
−1
εn [v̄B]v̄n dx =

∫

Ω

χΩεn
ρ∗v̄Ωv̄n dx+

ρn
εn

∫

B

v̄BSεn [v̄n]dx

Then, convergences (i) and (iv) stated at the beginning of the proof yield that kn(P
v
n(v̄), v̄n) → k(v̄, v̄). We

have thus established the Trotter convergence of (Ṽn)n to Ṽ. �

Third step: We will show that

lim
n→∞

|PnX̃− X̃n|n = 0 with

{
X̃n = (I + An)

−1(Pn(Ψ))

X̃ = (I + A)−1(Ψ)
(4.52)

by exploiting the characterizations of the resolvents of An and A from (3.10) and (4.17a), respectively. Indeed,

it follows from (3.10) that

X̃n = (I + An)
−1(Pn(ψ1, ψ2)) = Ṽn + (Pu

n(ψ1), 0),

with Ṽn = (v̄,v̄n) the unique minimizer for the functional J̃n from (4.49). Analogously, one has that

X̃ = (I + A)−1(ψ1, ψ2) = Ṽ + (ψ1, 0)

with Ṽ = (v̄, v̄) and v̄ the unique minimizer of the functional J from (4.17b). Then,

|PnX̃− X̃n|n =
∣∣∣Pn

(
Ṽ + (ψ1, 0)

)
− Ṽn − (Pu

n(ψ1), 0)
∣∣∣
n

=
∣∣∣Pn(Ṽ) + (Pu

n(ψ1), 0)− Ṽn − (Pu
n(ψ1), 0)

∣∣∣
n
=
∣∣∣Pn(Ṽ)− Ṽn

∣∣∣
n
→ 0

as n→ ∞ due to Lemma 4.13(1). Hence, (4.52) follows. This concludes the proof of Proposition 4.9.

Let us now carry out the proof of Proposition 4.11: As

f

γn
= χΩεn

f

ρ∗
+ (1−χΩεn

)
f

ρn

and

P
v
n

(
f

ρ∗
, 0

)
= χΩεn

f

ρ∗
,

we have that ∣∣∣∣Pv
n

(
f

ρ∗
, 0

)
−

(
f

γn
, 0

)∣∣∣∣
2

n

=

∫

Bεn

1

ρn
|f |2dx,

the first claim is a consequence of the dominated convergence theorem. As remarked in [18], condition (4.48)

implies that g 7→ uen is a linear mapping with

ϕn(u
e
n(t), u

e
n(t)) ≤ C|g(t)|L2(ΓN;R3) for all t ∈ [0, T ].

Since ue(t) and uen(t) are minimizers of 1
2ϕ(·, ·) − L(t)(·) and 1

2ϕn(·, ·) − L(t)(·), respectively, (3.1) and the

arguments from the proof of Prop. 4.9 give that

lim
n→∞

|PnX
e(t)−X

e
n(t)|n = lim

n→∞

∣∣∣∣Pn

(
dXe

dt
(t)

)
−
dXe

n

dt
(t)

∣∣∣∣
n

= 0 for a.a. t ∈ (0, T ).

But (3.1) implies that the sequence (PnX
e−X

e
n)n is boundedW 2,∞(0, T ). Then, we have sufficient compactness

to establish the uniform convergence in Claim (2) of Prop. 4.11. This concludes its proof.

We conclude this section by specifying the additional assumption on the initial data under which we will be

able to state our convergence result.



Hypothesis 4.14. We assume that

∃X0 ∈ X
e(0) + D(A); X

0
n ∈ X

e
n(0) + D(An) and lim

n→∞
|Pn(X

0)− X
0
n|n = 0 . (4.53)

Observe that the first condition imposes a sort of compatibility between the initial state and the initial

loading conditions. The second requirement is a convergence condition that, because of Proposition 4.9, is for

instance satisfied by

X
0
n = X

e
n(0) + (I+An)

−1
Pn(I+A)−1(X0−X

e(0)).

We are now in a position to apply the nonlinear Trotter-type Thm. 4.5 to investigate the asymptotic behavior

of the solutions (Xr
n)n ⊂W 1,∞(0, T ;Hn) to the Cauchy problems

{
d
dtX(t) + AnX(t) ∋ Fn(t) in Hn for a.a. t ∈ (0, T ),

X(0) = X
n
0 − X

e(0),
(4.54)

in the Hilbert spaces (Hn, | · |n) from (4.2), with the operators (An)n from (4.45) and the data Fn from (4.46).

Therefore, we deduce that the sequence (Xr
n)n converges uniformly, in the sense of Trotter, to the solution X

r

to the Cauchy problem (4.19), with the initial datum X
r
0 = X0 − X

e(0). This is summarized in the following

theorem, which is the main result of the paper.

Theorem 4.15. Assume Hypotheses 4.1, 4.2, 4.10, and 4.14. Then, the solutions (Xn)n to the Cauchy

problems




d
dtXn + An(Xn−X

e
n) ∋

(
0, f

γn

)
a.e. in (0, T ),

Xn(0) = X
0
n

(4.55)

converge to the solution X of the Cauchy problem

{
d
dtX+ A(X−X

e) ∋ (0, f/ρ̄) a.e. in (0, T ),

X(0) = X
0,

(4.56)

in the sense that

lim
n→∞

|Pn(X(t))−Xn(t)|n = 0 uniformly in [0, T ] (4.57)

and, in addition, there holds

lim
n→∞

|Xn(t)|n = |X(t)| uniformly in [0, T ]. (4.58)

While convergence (4.57) is guaranteed by Thm. 4.5, cf. (4.28), the additional (4.58) follows from observing

that the sequence (|Xn(·)|n−|X(·)|)n is bounded in W 1,∞(0, T ), and therefore equicontinuous. This turns the

pointwise convergence to 0 into uniform convergence on [0, T ].

Finally, let us highlight that, in view of Proposition 4.11(2), from Thm. 4.15 we also infer the uniform

convergence of the sequence Xn = X
r
n + X

e
n.

5. Conclusive results and remarks

The variational formulation corresponding to (4.56). In this final section we gain further insight into

the variational formulation of the initial-boundary value problem encompassed in the Cauchy problem (4.56).

We will distinguish the cases b̄ <∞ and b̄ = ∞.



When b̄ is finite, a more explicit way of writing (4.56) is

∃ ξ ∈ ∂D(∂3vB⊗Se3) such that
∫

Ω

ρ∗∂ttuΩ · ψΩdx+

∫

Ω\S

ae(uΩ) · e(ψΩ)dx+

∫

B

ρ̄∂ttuB · ψB dx+

∫

B

(
DWλ̄,µ̄(∂3uB⊗Se3)+ξ

)
· (∂3ψB⊗Se3)dx

=

∫

Ω

f · ψΩdx+

∫

ΓN

g · ψΩdH2(x)

for all ψ ∈ {(ψΩ, ψB) ∈ H1
ΓD

(Ω\S;R3)×H∂3
(B;R3) : γS±(ψB) = γS(ψ

±
Ω )}, in (0, T ),

(5.1)

supplemented with suitable initial conditions. Hence, the limiting behavior may be described in terms of a

coupled system of two evolutionary, or transient, problems set in Ω \ S and in B. Clearly, the stress and the

displacement fields σΩ and uΩ in the limiting adhering bodies that occupy Ω+ and Ω− satisfy the following

relations, written in strong form

ρ∗∂ttuΩ − divσΩ = f in (Ω\S)× (0, T ),

σΩ = ae(uΩ) in (Ω\S)× (0, T ),

uΩ = 0 on ΓD × (0, T ),

σΩn = g on ΓN × (0, T ),

∓ (σ±
Ω e3)(x̂, t) =

1

2

∫ 1

−1

[
ρ̄(1±x3)∂ttuB(x̂, x3, t)

±
(((

DWλ̄,µ̄(∂3uB(x̂, x3, t)⊗Se3) + ξ
)
e3
)
· e3
)
e3

]
dx3 on S × (0, T ).

(5.2)

This corresponds to the transient response to the loading (f, g) of each adhering body clamped on Γ±
D and

linked through a mechanical constraint along S. Differently from the case of an adhesive layer with a vanishing

total mass, which was considered in [18], the contact between the bodies need not be described only in terms

of the traces γS(u
±
Ω), γS(v

±
Ω ) of the displacement and velocity of the sole adhering bodies. In fact, one has

to consider the additional variables (uB, vB = ∂tuB) which keep track of the dynamics of the adhesive layer.

These variables fulfill the following equations

ρ̄∂ttuB − ∂3(σBe3) = 0 in B × (0, T ),

σB ∈ DWλ̄,µ̄(∂3uB⊗Se3) + ∂D(∂3uB⊗Se3) in B × (0, T ),

γS±(uB) = γS(u
±
Ω) on S × (0, T ).

(5.3)

Systems (5.2) and (5.3) are supplemented by suitable initial conditions. Such equations are of the same type as

those in the original layer. Of course, the variables (uB, vB) may be eliminated and, consequently (see (5.2)),

the contact condition along S between the two adhering bodies is a nonlocal - in time, only- relation between

the stress vector σ±
Ω (x̂, t))e3 at the current time t, and the history of γS(u

±
Ω(x̂, τ)), with τ ∈ [0, t]. Finally, from

the last line of (5.2) we deduce that

(σ−
Ω e3)(x̂, t)− (σ+

Ω e3)(x̂, t) =

∫ 1

−1

ρ̄∂ttuB(x̂, x3, t)dx3,

which reflects the fact that the jump of the stress vector on the adhering bodies balances the limiting inertial

forces stemming from the adhesive.

In the case b̄ = ∞, the system reads

∂3vB = 0 and
∫

Ω

ρ∗∂ttuΩψdx+

∫

Ω\S

ae(uΩ) · e(ψ)dx + 2ρ̄

∫

S

∂tvΩψdx =

∫

Ω

f · ψdx+

∫

ΓN

g · ψdH2(x)
(5.4)



for all ψ ∈ H1
ΓD

(Ω;R3), in (0, T ), again supplemented by suitable initial conditions. Indeed, from ∂3vB = 0,

supposing that the initial datum for uB is independent of the variable x3 we deduce that ∂3uB = 0, and hence

that [[uΩ]] = 0. Hence the space for the test functions in (5.4) is H1
ΓD

(Ω;R3). Let us stress that if b̄ = ∞ then

the relative motion along S is frozen.

Other relative behavior of the parameters (λn, µn). As previously mentioned, the analysis in Section 4

has been carried out confining the discussion to the case in which the parameters (λ̄, µ̄) are in [0,∞)× (0,∞).

Let us conclude the paper by examining the singular cases

(1) (λ̄, µ̄) ∈ {∞}× (0,∞);

(2) (λ̄, µ̄) ∈ [0,∞)× {∞};

(3) (λ̄, µ̄) ∈ (0,∞)× {0};

(4) λ̄ = µ̄ = 0.

In each of these cases, we will explicitly illustrate spaces H, U, V, the bilinear forms ϕ and k, the operator A,

and the function ue, like we have done for the case (λ̄, µ̄) ∈ [0,∞)× (0,∞). We will not give the proof of the

convergence result, as it is a straightforward adaptation of that developed throughout Sec. 4.2, and we will

leave it to the interested reader. Nonetheless, we will hint at the main point underlying the identification of

the limit problem, namely the correct identification of the space U which, in turn, will be based on the analysis

of the asymptotic behavior of a sequence (un)n with supn ϕn(un, un) <∞, cf. the arguments in Section 4.1.

Let us start by specifying that in each of the above cases we will have

H = U× V,

V = L2(Ω;R3)× L2(B;R3),

(X,X′) = ϕ(u, u′) + k(v, v′) for all X = (u, v), X′ = (u′, v′) ∈ H,

with the bilinear form k given by (4.12c), the form ϕ specified in (5.6b), (5.7b), (5.8b), and (5.9b) below, the

space U specified in (5.6a), (5.7a), (5.8a), (5.9a) below, the operator A : H ⇒ H with domain è

D(A) = {X ∈ H : (i) v ∈ P,

(ii) ∃ (w, ξ) ∈ V × ∂D(∂3vB⊗Se3) s.t.

k(w,ψ) + ϕ(u, ψ) +

∫

B

ξ · (∂3ψB⊗Se3)dx = 0 for all ψ ∈ U},

(5.5a)

and defined by

AX :=

(
−v

0

)
+

{(
0

−w

)
: w as in (5.5a)(2)

}
. (5.5b)

The space U featuring in (5.5a)(2) will be specified for each of the singular cases considered (cf. (5.6c), (5.7c),

(5.8c), (5.9c) below); analogously, ṽ shall be built from v ∈ P in a way depending on the case under consideration

(cf. (5.6d), (5.7d), (5.8d), (5.9d) below), with the space

P = {ψ = (ψΩ, ψB) ∈ H1(Ω\S;R3)×H∂3
(B;R3) : γS±(ψB) = γS(ψ

±
Ω )} .

Case 1: (λ̄, µ̄) ∈ {∞} × (0,∞). In this case we have (recall the notation [[z]] = γS(z
+)− γS(z

−))

U = {u = (uΩ, uB) ∈ H1
ΓD

(Ω\S;R3)×H∂3
(B;R3) :

[[
uΩ
]]
3 = 0, ∂3uB3 = 0}, (5.6a)

ϕ(u, u′) =

∫

Ω\S

ae(uΩ) · e(u
′
Ω)dx + µ̄

∫

B

∂3ûB · ∂3û
′
B dx, (5.6b)

U = U, (5.6c)

ṽ = v . (5.6d)



Indeed, the condition λn

εn
→ ∞ implies that, along a sequence (un)n with supn ϕn(un, un) < ∞, there holds

tr(e(εn,Sεn [un])) → 0 in L2(B), whence the condition ∂3uB3 = 0 and, consequently, [[uΩ]]3 = 0, as encompassed

in the space U from (5.6a). Here, the adhering bodies are in bilateral contact along S and the tangential

component of the stress vector applied along S is given by

̂γS(σ
±
Ω )e3 = ±

1

2

∫ 1

−1

(
ρ̄(1±x3)∂ttûB ± (µ̄∂3ûB+ξ̂e3)

)
dx3 on S × (0, T ),

with 



ξ ∈ ∂D(∂3vB⊗Se3) in B × (0, T ),

ρ̄∂ttûB − 2µ̄∂2ûB

∂x3
2 − ∂

∂x3
ξ̂e3 = 0 in B × (0, T ),

̂γS±(uB) = γ̂S(u
±
Ω) on S × (0, T ),

supplemented by suitable initial conditions. Observe that only the tangential component of the traces on S of

the displacement in the adhering bodies is nonlocal-in-time. This is a kind of viscoelastic behavior with long

memory when b̄ is finite. When b̄ = ∞, since ∂3vB = 0, the relative sliding along S is frozen.

Case 2: (λ̄, µ̄) ∈ [0,∞)× {∞}. We have

U = H1
ΓD

(Ω;R3), (5.7a)

ϕ(u, u′) =

∫

Ω\S

ae(uΩ) · e(u
′
Ω)dx, (5.7b)

U = {v ∈ P : ∂3vB = 0,
[[
vΩ
]]
= 0}, (5.7c)

ṽ = vΩ . (5.7d)

In this case, the condition µn

εn
→ ∞ implies that e(εn,Sεn [un]) → 0 in L2(B;R3×3

sym), so that ∂3uB = 0 and,

consequently, [[uΩ]] = 0. Hence uΩ satisfies
∫

Ω

ρ∗∂ttuΩ · ψdx +

∫

S

2ρ̄∂ttuΩ · ψdx̂+

∫

Ω

ae(uΩ) · e(ψ)dx =

∫

Ω

f · ψdx +

∫

ΓN

g · ψdH2(x)

for all ψ ∈ H1
ΓD

(Ω;R3), in (0, T ). The adhering bodies are perfectly bonded and the obtained deformable body

is submitted to surface forces on S corresponding to the limit of the vertical forces in the adhesive.

Case 3: (λ̄, µ̄) ∈ (0,∞)× {0}. Here we find

U = {u = (uΩ, uB3) ∈ H1
ΓD

(Ω\S;R3)×H∂3
(B) : (γS±(uB))3 = (γS(u

±
Ω))3}, (5.8a)

ϕ(u, u′) =

∫

Ω\S

ae(uΩ) · e(u
′
Ω)dx+ λ̄

∫

B

∂3uB3 · ∂3u
′
B3dx, (5.8b)

U = P, (5.8c)

ṽ = (vΩ, vB3) . (5.8d)

In this case, from ϕn(un, un) ≤ C we may only infer the information that (tr(e(εn,Sεn [un])))n is bounded

in L2(B), and thus only uB3 is defined and belongs to H∂3
(B), with the condition (γS±(uB))3 = (γS(u

±
Ω))3.

Every adhering body is subjected to surface forces along S given by

γS(σ
±
Ω )e3 = ±

1

2

∫ 1

−1

(
ρ̄(1±x3)∂t (v̂B, ∂tuB3)± (λ̄∂3uB3e3+ξe3)

)
dx3 on S × (0, T ),

with 



ρ̄∂t(v̂B , ∂tuB3)−
∂

∂x3
(σBe3) = 0 in B × (0, T ),

σB ∈ λ̄∂3uB3e3 ⊗S e3 + ∂D(∂3vB⊗Se3) in B × (0, T ),

(γS±(uB))3 = (γS(u
±
Ω))3,

̂γS±(vB) = γ̂S(u
±
Ω) on S × (0, T ),

supplemented by suitable initial conditions. In this case, the forces are a nonlocal-in-time function (of the

traces on S of the displacements of both adhering bodies) of viscoelastic with long-memory type.



Case 4: λ̄ = µ̄ = 0. Here

U = {u = uΩ ∈ H1
ΓD

(Ω\S;R3)}, (5.9a)

ϕ(u, u′) =

∫

Ω\S

ae(uΩ) · e(u
′
Ω)dx, (5.9b)

U = P, (5.9c)

ṽ = vΩ . (5.9d)

Here, the estimate ϕn(un, un) ≤ C yields no information. That is why, the only conditions are given on vΩ
and vB; they are involved in the domain of the operator A (cf. (5.5a)) and specified by the space U from (5.9c).

Each adhering body is subject to surface forces along S given by

γS(σ
±
Ω )e3 = ±

1

2

∫ 1

−1

(ρ̄(1±x3)∂tvB±ξe3) dx3 on S × (0, T ),

with 



ρ̄∂tvB −
∂

∂x3
(ξe3) = 0 in B × (0, T ),

ξ ∈ ∂D(∂3vB⊗Se3) in B × (0, T ),

γS±(vB) = γS(v
±
Ω ) on S × (0, T ),

supplemented by a suitable initial condition. These forces are a nonlocal-in-time function (of the traces on S

of the velocity in both adhering bodies) of viscous with long-memory type.
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