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DYNAMICS OF TWO LINEARLY ELASTIC BODIES CONNECTED BY A HEAVY THIN SOFT VISCOELASTIC LAYER

, performed on a structure consisting of two linearly elastic bodies connected by a thin soft nonlinear KelvinVoigt viscoelastic adhesive layer, to the case in which the total mass of the layer remains strictly positive as its thickness tends to zero.

, in the present analysis the dynamic effects on the surface on which the layer shrinks do not disappear. Thus, the limiting behavior of the remaining bodies is described not only in terms of their displacements on the contact surface, but also by an additional variable that keeps track of the dynamics in the adhesive layer.

Introduction

PDE systems coupling bulk and surface equations play an important role in several applications. In particular, they are used to describe different physical situations in which two spatial scales are involved: a macroscopic scale for the bulk domain and a microscopic scale to capture dynamics on a thin layer located at the boundary. Among others, models for contact with adhesion between rigid bodies represent an important application of this kind of approach. Indeed, these models couple mechanical and thermal properties of the involved bodies and of the microscopic configurations of the thin adhesive layer between the bodies.

In a macroscopic description, this layer is considered as a part of the boundaries and dynamics of the physical variables are described by boundary equations. This feature occurs, e.g., in the models for contact with adhesion between a viscoelastic body and a rigid support analyzed in, e.g., [START_REF] Bonetti | Global existence for a contact problem with adhesion[END_REF], [START_REF] Bonetti | Thermal effects in adhesive contact: modelling and analysis[END_REF], and [START_REF] Bonetti | Modeling via internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity[END_REF]. Such models are derived from the theory for damage in thermoelastic materials by Frémond [START_REF] Frémond | Adhérence des solides[END_REF][START_REF] Frémond | Non-Smooth Thermo-mechanics[END_REF]. Specifically, the related energy functionals and dissipation potentials are written both in the bulk and on the surface and, accordingly, bulk and surface equations are recovered via a generalization of the principle of virtual powers. The main idea is to account for the effects of the microscopic forces, responsible for the degradation of the adhesion on the interface between body and support, in the energy balance. While the PDE systems from [START_REF] Bonetti | Global existence for a contact problem with adhesion[END_REF], [START_REF] Bonetti | Thermal effects in adhesive contact: modelling and analysis[END_REF], and [START_REF] Bonetti | Modeling via internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity[END_REF] are rate-dependent, delamination can also be treated as a rate-independent phenomenon, see e.g. [START_REF] Kočvara | A rate-independent approach to the delamination problem[END_REF][START_REF] Scardia | Quasistatic delamination problem[END_REF]. In that modeling context as well, the microscopic damage in the interface is assumed to influence the strength of the adhesion and unilateral conditions are accounted for to ensure non-penetrability between the adhering bodies.

A possible validation of this kind of models, coupling bulk and surface phenomena, could be provided by deriving the surface equations from equations set on a thin layer, as the thickness of the layer tends to zero. This kind of asymptotic analysis has been tackled in the literature using different analytical techniques and modeling approaches. One possibility is to develop a formal asymptotic expansion method as in [START_REF] Klarbring | Derivation of the adhesively bonded joints by the asymptotic expansion method[END_REF][START_REF] Dumont | An asymptotic approach to the adhesion of thin stiff films[END_REF][START_REF] Lebon | Asymptotic behavior of a hard thin linear elastic interphase: An energy approach[END_REF]. For damage and delamination, we refer to the asymptotic analyses carried out in [START_REF] Bonetti | A model of imperfect interface with damage[END_REF][START_REF] Bonetti | Derivation of imperfect interface models coupling damage and temperature[END_REF]. In the context of rateindependent modeling of delamination, instead, Γ-convergence type techniques were used in [START_REF] Mielke | From damage to delamination in nonlinear elastic materials at small strains[END_REF] to show that Energetic solutions to a system for isotropic damage converge to an Energetic solution of a delamination model as the thickness of the layer between the two bulk bodies, where damage occurs, tends to zero. Indeed, the Energetic weak solvability notion for rate-independent processes, consisting of an energy-dissipation balance and of a stability condition that involves the minimization of a suitable functional, allows for the usage of the variational techniques at the core of the analysis in [START_REF] Mielke | From damage to delamination in nonlinear elastic materials at small strains[END_REF] (see also [START_REF] Freddi | Quasistatic delamination models for Kirchhoff-Love plates[END_REF][START_REF] Freddi | Quasistatic delamination of sandwich-like Kirchhoff-Love plates[END_REF]).

A rigorous approach based on variational convergences techniques has been carried out for this kind of problems, in the rate-dependent framework, in a series of papers, cf. e.g. [START_REF] Licht | Comportement asymptotique d'une bande dissipative mince de faible rigidité[END_REF][START_REF] Licht | A modelling of elastic bonded joints[END_REF][START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF][START_REF] Licht | Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media[END_REF]. In particular, this paper follows up on the analysis developed in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], where the authors derived an asymptotic model for the dynamics of two linearly elastic bodies connected by a thin viscoelastic layer by means by of a nonlinear version of Trotter's theory of approximation of semigroups, cf. [START_REF] Trotter | Approximation of semi-groups of operators[END_REF]. More specifically, in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] the model was obtained by studying the asymptotic behavior, as some parameters accounting for geometrical and mechanical data vanished, of the structure consisting of the two adhering bodies, perfectly bonded through the adhesive layer. The analysis was carried out under the further assumption that the total mass of the adhesive layer was vanishing. Hence, the limit model obtained in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] describes for the dynamics of two adhering bodies subject to a mechanical constraint along the surface S the layer shrinks to. Its constitutive equation is of the same type as that for the layer (nonlinear viscoelastic of Kelvin-Voigt type).

In this paper, we aim to extend the asymptotic analysis in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] by considering the case in which the total mass remains strictly positive; indeed, this is what the term 'heavy' in the title refers to. As in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], the cornerstone of our analysis will be the reformulation of the original problem, in which the interface is given with a positive thickness, in terms of a nonlinear evolution equation in a Hilbert space of admissible states with finite mechanical energy, governed by a suitable maximal monotone operator. Our convergence result shall then be obtained by resorting to a nonlinear version of Trotter's theory of approximation of semigroups of operators acting on variable Hilbert spaces, see [START_REF] Iosifescu | Nonlinear boundary conditions in Kirchhoff-Love plate theory[END_REF]. Albeit relying on the same theoretical tools as those of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], our analysis here is significantly different. Indeed, since the dynamic effects in the thin layer do not disappear, the limiting contact condition between the two remaining bodies shall not only involve their displacements along the interface but an additional variable, too, which accounts for the asymptotic behavior of the layer and whose analytical treatment within Trotter's theory calls for suitable arguments. Of course, such a variable may be eliminated so that the constraint appears as viscoelastic with long memory, cf. Sec. 5.

Plan of the paper. In Section 2 we specify the setting of the problem, starting from the formulation of the model when the thickness of the interface is positive. Then, in Section 3 we recast this problem as an abstract evolution equation in a Hilbert space, governed by a suitable maximal monotone operator. Staying with this formulation, in Section 4 we carry out our asymptotic analysis, as the thickness of the layer between the two adhering bodies vanishes, by means of Trotter's theory. In this way we prove the main result of this paper, Theorem 4.15. Finally, in Section 5 we give some further comments on our result, and hint at some extensions.

Throughout this paper, we will use the following notation. Notation 1.1 (General notation). We will denote the orthonormal basis of R 3 by (e 1 , e 2 , e 3 ). Given a vector ξ = (ξ 1 , ξ 2 , ξ 3 ) ∈ R 3 , we will use the symbol ξ for (ξ 1 , ξ 2 ), so that we will often write ( ξ, ξ 3 ) in place of (ξ 1 , ξ 2 , ξ 3 ). The symbol tr (A) will denote the trace of a R 3×3 matrix, R 3×3 sym the space of (3×3)-symmetric matrices, equipped with the standard inner product, and Lin(R 3×3 sym ) the space of linear mappings from R 3×3 sym to R 3×3 sym . Given two vectors ξ, ζ ∈ R 3 , we shall denote by ξ ⊗ S ζ their symmetrized tensor product, defined by

ξ ⊗ S ζ is the symmetric (3×3)-matrix with entries 1 2 (ξ i ζ j + ξ j ζ i ) i, j = 1, . . . , 3. (1.1)
With any subset O ⊂ R 3 we will associate its characteristic function χ O , defined by

χ O (x) = 1 if x ∈ O, and χ O (x) = 0 if x ∈ R 3 \ O.
Finally, throughout the paper, the symbol C will denote various constants that may differ from one line to the other.

Setup of the problem

Let us specify the setup of our problem, namely the study of the dynamic response of a structure made up of two adhering bodies connected by a thin adhesive layer, subject to a given load. First of all, the reference configuration of the structure is a bounded connected open subset Ω ⊂ R 3 with a Lipschitz boundary ∂Ω. Hereafter, we will denote by S the set S := Ω ∩ {(x 1 , x 2 , x 3 ) ∈ R 3 : x 3 = 0} and assume that its Hausdorff measure H 2 (S) > 0.

(

In what follows, we shall identify S with its projection onto R 2 and therefore treat it as a subset of R 2 .

Notation 2.1. For a function u ∈ H 1 (Ω\S; R 3 ), we will denote by u + (u -, respectively), its restriction to the open set Ω ± := {x = (x 1 , x 2 , x 3 ) ∈ Ω : ±x 3 > 0}, which is a function in H 1 (Ω ± ). The symbols γ S (u + ) and γ S (u -) will denote the traces of u + and u -, respectively, on the set S. Moreover, we will use the notation jump of u across S:

u := γ S (u + ) -γ S (u -) . (2.2)
Throughout the paper, we will assume that there exists ε 0 > 0 such that

B ε0 := {x = (x 1 , x 2 , x 3 ) ∈ Ω : |x 3 | < ε 0 } is equal to S × (-ε 0 , ε 0 ) . (2.3)
For 0 < ε < ε 0 , we will assume that the adhesive occupies the layer B ε := S × (-ε, ε), while the two adhering bodies shall occupy the sets

Ω ± ε := {x = (x 1 , x 2 , x 3 ) ∈ Ω : ±x 3 > ε}. We let Ω ε := Ω + ε ∪ Ω - ε = Ω \ B ε .
We will use the notation

S ± ε := {x ∈ Ω : x 3 = ±ε}, B + ε := S × (0, ε), B - ε := S × (-ε, 0) (2.4)
and assume that adhesive and adhering bodies are perfectly stuck together along S ε := S + ε ∪ S - ε . This means that the jumps across S ε both of the displacement u and of the normal stress σe 3 are zero, cf. (2.8d) and (2.8e) below.

We consider a partition of ∂Ω = Γ D ∪ Γ N such that Γ D has positive two-dimensional Hausdorff measure and positive distance from B ε0 ; we assume that, during the time interval (0, T ), the structure is clamped on Γ D and subjected to volumetric and surface forces (on Γ N := ∂Ω \ Γ D ), with densities f and g, respectively. We let Γ ± D := Γ D ∩ {±x 3 > 0}. The adhering bodies are modeled as linearly elastic materials with a strain energy density W such that W (x, e) = 1 2 a(x)e • e for a.a. x ∈ Ω and for all e ∈ R 3×3 sym , with a ∈ L ∞ (Ω; Lin(R 3×3 sym )) such that ∃ α, β > 0 for a.a. x ∈ Ω for all e ∈ R 3×3 sym : α|e| 2 ≤ a(x)e • e ≤ β|e| 2 . The adhesive is assumed homogeneous, isotropic, and 'viscoelastic of Kelvin-Voigt generalized type'. Its strain energy density reads as W λ,µ (e) := λ 2 |tr(e)| 2 + µ|e| 2 for all e ∈ R 3×3 sym , with λ, µ > 0 the Lamé constants.

We will denote by DW λ,µ (e) its differential at any e ∈ R 3×3 sym . Observe that 2W λ,µ (e) = DW λµ (e) • e ≥ 2µ|e| 2 for all e ∈ R 3×3 sym .

(2.5)

Dissipation in the adhesive is modeled through a dissipation potential D : R 3×3 sym → [0, ∞) such that D is convex and fulfils

∃ p ∈ [1, 2], ∃ α ′ , β ′ > 0 ∀ e ∈ R 3×3 sym : α ′ |e| p ≤ D(e) ≤ β ′ (|e| p +1); (2.6)
we will denote by ∂D : R 3×3 sym ⇒ R 3×3 sym its subdifferential in the sense of convex analysis. Indeed, in system (2.8) below the functional D shall be multiplied by a positive constant b that accounts for the intensity of viscous effects. Finally, we assume that the density γ of the structure takes two different positive values in Ω ε and B ε , namely

γ(x) = ρ * (x) for a.e. x ∈ Ω ε , ρ for a.e. x ∈ B ε , with (2.7a) ρ * : Ω → (0, ∞) a measurable function s.t. ∃ 0 < ρm < ρM for a.a. x ∈ Ω : ρm ≤ ρ * (x) ≤ ρM . (2.7b)
Then, the model for the dynamic response of the structure, in the case the thin adhesive layer still has a 'positive thickness', is described by the following PDE system.

γu tt -div(σ) = f in Ω × (0, T ), (2.8a) σ = a(x)e(u) in Ω ε × (0, T ), (2.8b) σ = λtr(e(u))I + 2µe(u) + bξ in B ε × (0, T ), with ξ ∈ ∂D(e(u t )), (2.8c 
)

σe 3 = 0 on S ± ε × (0, T ), (2.8d) u = 0 on S ± ε × (0, T ), (2.8e 
)

u = 0 on Γ D × (0, T ), (2.8f 
)

σn = g on Γ N × (0, T ), (2.8g) 
where I denotes the identity matrix and e(u) the symmetric linearized strain tensor related to the displacement vector u, defined by e ij (u) = 1 2 (∂ j u i + ∂ i u j ), i, j = 1, . . . , 3. We will supplement system (2.8) with the initial conditions

u(0) = u 0 , u t (0) = v 0 in Ω. (2.9)
Note that the strong formulation (2.8) of the problem in the case the thickness of the adhesive layer is strictly positive indeed corresponds to the formulation of the momentum balance equations written in the two bulk domains. However, in what follows we will be able to provide an asymptotic result only for a variational (weak) formulation of system (2.8) with the Cauchy conditions (2.9), namely Problem (P): Find u : Ω × [0, T ] → R 3 sufficiently smooth fulfilling (2.8f), (2.9), and such that there exists ξ ∈ ∂D(e(u t )) satisfying

Ω γu tt • v dx + Ωε ae(u) • e(v) dx + Bε DW λµ (e(u)) • e(v) dx + b Bε ξ • e(v) dx = Ω f • v dx + ΓN g • v dH 2 (x) (2.10)
for all v sufficiently smooth in Ω and vanishing on Γ D .

In the next section, we will show that Problem (P ) has a unique solution in a suitable sense. In Sec. 4 we will then determine the asymptotic behavior of the solutions to Problem (P) when the quintuple of geometrical and mechanical data (ε, λ, µ, b, ρ) that characterize the structure is regarded as a quintuple of positive parameters q n := (ε n , λ n , µ n , b n , ρ n ), suitably converging to a limit q ∞ (cf. the upcoming Hyp. 4.1).

Existence and uniqueness of solutions to Problem (P )

We will rigorously prove our existence result for Problem (P ) relying on the, by now classical, results from [START_REF] Brezis | Opérateurs Maximaux-Monotones et Semi-Groupes de Contraction dans les Espaces de Hilbert[END_REF]. For the asymptotic analysis we shall resort to a nonlinear version of Trotter's theory of approximation of semigroups, acting on variable Hilbert spaces. This approach in fact relies on a reformulation of system (2.10) as an abstract evolutionary equation involving semigroups on suitable Hilbert spaces. In what follows, we recapitulate this formulation, as proposed in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], and recall the existence result proved therein, cf. Theorem 3.2 ahead. Since we will keep the quintuple of parameters q = (ε, λ, µ, b, ρ) fixed in this section, in the following lines we shall not highlight the dependence of the solution u, and of the functionals/operators/spaces entering into the variational formulation of Problem (P ), on q.

From now on we will assume that the body and the surface forces fulfill

f ∈ BV([0, T ]; L 2 (Ω; R 3 )), g ∈ W 2,∞ (0, T ; L 2 (Γ N ; R 3 )). (3.1)
Here and in what follows, BV([0, T ]; X) shall denote the subspace of L 1 (0, T ; X) consisting of all the elements whose distributional derivative with respect to time is a bounded Radon measure on (0, T ), valued in X. Along the footsteps of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] we seek a solution to Problem (P ) of the form

u = u e + u r . (3.2)
In (3.2), u e is the unique solution of the 'stationary' problem

u e (t) ∈ H 1 ΓD (Ω; R 3 ), ϕ(u e (t), v) = L(t)(v) for all v ∈ H 1 ΓD (Ω; R 3 ) and all t ∈ [0, T ], (3.3a) 
where H 1 ΓD (Ω; R 3 ) denotes the closed subspace of H 1 (Ω; R 3 ) consisting of the elements with zero trace on Γ D ; hereafter, the notation H 1 Γ (G; R 3 ) will be systematically used for any

G ⊂ R 3 , Γ ⊂ ∂G. Furthermore, ϕ(v, v ′ ) := Ωε ae(v) • e(v ′ ) dx + Bε DW λ,µ (e(v)) • e(v ′ ) dx for all v, v ′ ∈ H 1 ΓD (Ω; R 3 ), (3.3b) 
L(t)(v) := ΓN g(x, t) • v(x) dH 2 (x) for all v ∈ H 1 ΓD (Ω; R 3 ) and all t ∈ [0, T ]. (3.3c)
Since, for every fixed t ∈ [0, T ] the operator g(t) → u e (t) is linear and continuous from

L 2 (Γ N ; R 3 ) to H 1 ΓD (Ω; R 3 ), we find that u e ∈ W 2,∞ (0, T ; H 1 ΓD (Ω; R 3 )) . (3.4) 
Given such u e , the remaining part u r of u can be obtained by solving the following evolutionary problem:

Find u r : Ω × [0, T ] → R 3 sufficiently smooth fulfilling (2.8f), the Cauchy conditions u r (0) = u 0 -u e (0) and ∂ t u r (0) = v 0 -∂ t u e (0)
in Ω, and such that there exists ξ :

B ε → R satisfying ξ ∈ ∂D(e(∂ t (u r + u e ))) a.e. in B ε and Ω γ∂ tt (u r (t)+u e (t)) • v dx + Ωε ae(u r (t)) • e(v) dx + Bε DW λ,µ (e(u r (t))) • e(v) dx + b Bε ξ • e(v) dx = Ω f (t) • v dx for all v ∈ H 1 ΓD (Ω; R 3 ). (3.5)
In [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], the existence of a (unique) solution to the Cauchy problem for (3.5) was proved by reformulating it as an abstract evolutionary problem. Similarly arguing, we introduce the following problem

d dt X(t) + AX(t) ∋ F(t) in H for a.a. t ∈ (0, T ), X(0) = X 0 , (3.6) 
with H a (separable) Hilbert space (that will turn out to be the space of possible states with finite mechanical -i.e., (kinetic+strain) -energy), A : H ⇒ H a maximal monotone (multivalued) operator, and F ∈ L 1 (0, T ; H). More precisely, we consider the space

H := H 1 ΓD (Ω; R 3 ) × L 2 (Ω; R 3 ) (3.7a)
endowed with the following inner product and induced norm

(X, X ′ ) := ϕ(u, u ′ ) + k(v, v ′ ) , |X| 2 = (X, X) for all X = (u, v), X ′ = (u ′ , v ′ ) ∈ H, with k(v, v ′ ) := Ω γvv ′ dx for all v, v ′ ∈ L 2 (Ω; R 3 ) , (3.7b) 
and ϕ defined in (3.3b). Observe that the norm induced by the bilinear form ϕ is equivalent to the standard Sobolev norm on H 1 ΓD (Ω; R 3 ) by Korn's inequality. We introduce the operator A : H ⇒ H, with domain

D(A) : = X = (u, v) ∈ H : (1) v ∈ H 1 ΓD (Ω; R 3 ) (2) ∃ (w, ξ) ∈ L 2 (Ω; R 3 ) × L 2 (B ε ; R 3 ) with ξ ∈ ∂D(e(v)) a.e. in B ε , s.t. k(w, v ′ ) + ϕ(u, v ′ ) + b Bε ξ • e(v ′ ) dx = 0 for all v ′ ∈ H 1 ΓD (Ω; R 3 ) , (3.8a) 
defined at every X = (u, v) by

AX := -v 0 + 0 -w : w as in (3.8a)(2) . (3.8b)
For later use, we recall the following result from [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], establishing a link between the equation defining the resolvent of A and the Euler-Lagrange equation for the minimization of the functional

J : H 1 ΓD (Ω; R 3 ) → R, J(v) := 1 2 k(v, v) -k(ψ 2 , v) + 1 2 ϕ(v, v) + ϕ(ψ 1 , v) + b Bε D(e(v)) dx, (3.9) 
with (ψ 1 , ψ 2 ) ∈ H given.

Proposition 3.1 ([18], Prop. 3.1). The operator A is maximal monotone on H and its resolvent (I+A) -1 :

H → H is given for all (ψ 1 , ψ 2 ) ∈ H by X = (I+A) -1 (ψ 1 , ψ 2 ) if and only if X = (ū, v) with ū and v fulfilling J(v) ≤ J(v) for all v ∈ H 1 ΓD (Ω; R 3 ), ū = v + ψ 1 .
(3.10)

We now consider the Cauchy problem (3.6) with H from (3.7a), A from (3.8), and the data F and X 0 given by

F = -∂ t u e , f γ , X 0 = (u 0 , v 0 ) -(u e (0), 0) such that X 0 ∈ D(A). (3.11)
We denote by X r = (u r , v r ) the solution to (3.6), which exists, unique, in W 1,∞ (0, T ; H) thanks to, e.g., [START_REF] Brezis | Opérateurs Maximaux-Monotones et Semi-Groupes de Contraction dans les Espaces de Hilbert[END_REF]Prop. 3.4]. By the careful definition of H, A, and of the data F and X 0 , it can be easily checked that u r and that v r = ∂ t (u r + u e ) solve the Cauchy problem for (3.5).

Setting u := u r + u e , we ultimately find the unique solution to Problem (P). This is summarized in the following result. Theorem 3.2 ([18], Thm. 3.1). Let the data f, g comply with (3.1) and let (u 0 , v 0 ) ∈ (u e (0), 0) + D(A). Then, the Cauchy problem (3.6) with H, A, and the data F and X 0 from (3.7), (3.8), and (3.11), respectively, has a unique solution X r = (u r , v r ) ∈ W 1,∞ (0, T ; H). Hence, there exists a unique u ∈ W 1,∞ (0, T ;

H 1 ΓD (Ω; R 3 )) ∩ W 2,∞ (0, T ; L 2 (Ω; R 3 )),
given by u = u e + u r , that satisfies (2.10) for all v ∈ H 1 ΓD (Ω; R 3 ) and for almost all t ∈ (0, T ) and complies with the Cauchy conditions (2.9).

Asymptotic analysis

In this section we address the asymptotic behavior of a sequence (u n ) n of solutions to Problems (P n ) corresponding to a sequence q n = (ε n , λ n , µ n , b n , ρ n ) of mechanical and geometrical parameters that satisfy the suitable conditions. As the overall density of the structure depends on the parameter ρ n , we shall denote it by γ n . The requirements in Hypothesis 4.1 below in particular reflect the fact that the adhesive layer has vanishing thickness and that the total mass of the adhesive layer remains strictly positive.

Hypothesis 4.1. We suppose that

∃ lim n→∞ q n = q ∞ = (ε ∞ , λ ∞ , µ ∞ , b ∞ , ρ ∞ ) (4.1) such that (1) q ∞ ∈ {0} × [0, ∞) × [0, ∞) × [0, ∞] × {∞}; (2) ∃ ( λ, μ) ∈ [0, ∞] × [0, ∞] s.t. ( λ, μ) = lim n→∞ λn εn , µn εn ; (3) lim n→∞ b n ε n = 0 and ∃ b ∈ [0, ∞] s.t. b = lim n→∞ bn ε p-1 n
, where p ∈ [START_REF] Bonetti | A model of imperfect interface with damage[END_REF][START_REF] Bonetti | Derivation of imperfect interface models coupling damage and temperature[END_REF] is given as in (2.6);

(4) μ ∈ (0, ∞] if min{H 2 (Γ ± D )} = 0; (5) lim sup n→∞ ε 2 n µn < ∞; (6) ∃ ρ ∈ (0, ∞) s.t. ρ = lim n→∞ ρ n ε n .
A comparison between Hypothesis 4.1 and the analogous assumption [18, (H2)] reveals that the only difference lies in condition (6) on the asymptotic behavior of the sequence (ρ n ) n ; condition (6) does indeed encompass the fact that the total mass of the adhesive layer is strictly positive, in the limit. As we will see, this will make the limiting problem significantly different from that considered in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF].

Actually, for the sake of simplicity and to highlight the main points in our analysis, in this paper we shall confine the discussion to the case in which ( λ, μ) ∈ [0, ∞) × (0, ∞). In the upcoming Section 4.1, with sort of heuristic arguments we propose a candidate PDE system for the description of the limiting behavior of the structure under Hypothesis 4.1 on the parameters (q n ) n . As we will see, such a system may be somehow 'guessed', also based on the analysis previously performed in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], cf. also [START_REF] Licht | Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media[END_REF].

In accordance with the approach developed in Sec. 3, the limiting system will be formulated as an evolutionary equation in a suitable Hilbert space, governed by a nonlinear maximal monotone operator. Next, in Sec. 4.2 we will carry out the asymptotic analysis via (a version of) Trotter's theory of approximation of semigroups on variable Hilbert spaces.

4.1.

A candidate for the limiting behavior. The functional framework for the limiting problem is naturally obtained by studying the behavior of sequences (X n ) n = (u n , v n ) n of possible mechanical states, uniformly bounded in the Hilbert spaces H n from (3.7), namely

H n := H 1 ΓD (Ω; R 3 ) × L 2 (Ω; R 3 ) endowed with the norms | • | n and the inner products (X, X ′ ) n := ϕ n (u, u ′ ) + k n (v, v ′ ) for all X = (u, v), X ′ = (u ′ , v ′ ) ∈ H with ϕ n (v, v ′ ) := Ωε ae(v) • e(v ′ ) dx + Bε n DW λn,µn (e(v)) • e(v ′ ) dx for all v, v ′ ∈ H 1 ΓD (Ω; R 3 ), k n (v, v ′ ) := Ωε n ρ * vv ′ dx + Bε n ρ n vv ′ dx for all v, v ′ ∈ L 2 (Ω; R 3 ) . (4.2) 
Therefore, for uniformly bounded mechanical states (X n ) n = (u n , v n ) n the following estimates hold for a constant C > 0 uniform w.r.t. n ∈ N:

k n (v n , v n ) = Ωε n ρ * (x)|v n | 2 dx + Bε n ρ n |v n | 2 dx ≤ C, (4.3a) 
ϕ n (u n , u n ) = Ωε n a|e(u n )| 2 dx + Bε n DW λn,µn (e(u n )) • e(u n ) dx ≤ C. (4.3b) 
Let us now draw some conclusions from (4.3).

First of all, observe that, via a simple change of variables estimate (4.3a) may be rephrased as

k n (v n , v n ) = Ωε n ρ * (x)|v n | 2 dx + ρ n ε n B |S εn [v n ]| 2 dx ≤ C (4.4)
in terms of the operator S ε that maps a function v into the function S ε [v] defined by

S ε [v](x, x 3 ) := v(x, εx 3 ) for all x = (x, x 3 ) ∈ B := S × (-1, 1)
and all measurable functions v on B ε = S × (-ε, ε). (4.5)

By virtue of Hypothesis 4.1(6) and condition (2.7b) on ρ * , from the bound (4.4) we deduce that the pair

(1) (χ Ωε n v n , S εn [v n ]
) n , up to a subsequence, weakly converge,

∃ (v Ω , v B ) ∈ L 2 (Ω; R 3 ) × L 2 (B; R 3 ) : χ Ωε n v n ⇀ v Ω in L 2 (Ω; R 3 ), S εn [v n ] ⇀ v B in L 2 (B; R 3 ). (4.6)
Thus, we may describe the limiting kinetic state by two velocity fields v Ω and v B that effectively represent the limiting behavior of the velocity in the adhering bodies and in the adhesive layer, respectively.

Secondly, we may deduce that there exists a pair (u

Ω , u B ) ∈ H 1 ΓD (Ω\S; R 3 ) × L 2 (B; R 3
) such that, up to a subsequence,

(2) the functions χ Ωε n e(u n ) converge weakly to e(u Ω ) in L 2 (Ω; R 3×3 );

(3) the traces on S ± εn of u n , considered as elements of L 2 (S; R 3 ), converge to the traces on S of u ± Ω (i.e., the restrictions of u Ω to Ω ± ) strongly in L 2 (S; R 3 ); (4) the functions S εn [u n ] converge to u B weakly in L 2 (B; R 3 ).

Let us shortly justify properties (2)-( 4). Indeed, following the lines of the proof of [18, Lemma 4.2], from the first two bounds in (4.3a) and (4.3b), via Korn's inequality and a standard diagonalization argument we infer that there exists u Ω ∈ η>0 H 1 ΓD (Ω η ; R 3 ) (with Ω η = Ω\B η ) such that, up to a subsequence, for all η > 0 there holds u n ⇀ u Ω weakly in H 1 (Ω η ; R 3 ). In turn, there exists e * ∈ L 2 (Ω; R 3×3 sym ) such that χ Ωε n e(u n ) ⇀ e * weakly in L 2 (Ω; R 3×3 sym ). Clearly, the restriction of e * to any Ω η coincides with the restriction to Ω η of e(u Ω ) (i.e. the symmetric part of the distributional gradient of u Ω ). We thus conclude that e(u Ω ) ∈ L 2 (Ω; R 3×3 sym ) (whence u Ω ∈ H 1 ΓD (Ω\S; R 3 )), and convergence (2) holds. Next, we repeat the very same arguments as in Step 2 of the proof of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF]Prop. 4.3], to conclude convergence [START_REF] Bonetti | Global existence for a contact problem with adhesion[END_REF]. In order to check (4), we will first of all show that (S εn [u n ]) n is bounded in L 2 (B; R 3 ). To this end, we first of all employ the key inequality

∃ C > 0 ∀ n ∈ N ∀ w ∈ H 1 ΓD (Ω; R 3 ) : 1 2 Bε n |w| 2 dx ≤ ε n Sε n |w| 2 dx + Cε 2 n Bε n |e(w)| 2 dx + Cε 2 n Ωε n |e(w)| 2 dx, (4.7) 
(cf. [18, (4.20)]), whence

1 2 Bε n |u n | 2 dx ≤ ε n Sε n |u n | 2 dx + Cε 2 n Ωε n |e(u n )| 2 dx+ Bε n |e(u n )| 2 dx . Now, since Sε n |u n | 2 dx → S |γ S (u + Ω )| 2 +|γ S (u - Ω )| 2 dx,
we find that the first integral on the right-hand side is estimated by Cε n . Furthermore, by (4.3b) we have that

Ωε n |e(u n )| 2 dx ≤ C.
Finally,

ε 2 n Bε n |e(u n )| 2 dx (1) ≤ ε 2 n µ n Bε n DW λn,µn (e(u n )) • e(u n ) dx (2) ≤ Cε n ,
where (1) follows from (2.5) and ( 2) from the assumption that µn εn → μ > 0, cf. Hypothesis 4.1 (recall that we confine here our analysis to the case μ ∈ (0, +∞)). All in all, we conclude that

ε n B |S εn [u n ]| 2 dx = Bε n |u n | 2 dx ≤ Cε n whence B |S εn [u n ]| 2 dx ≤ C.
and convergence (4) follows.

Moreover, since

Bε n |e(u n )| 2 dx = 1 ε n B |e(ε n , S εn [u n ])| 2 dx, (4.8) 
where we have introduced the notation e(ε, w) i,j := hereafter denoted by γ S ± (u B ) and treated as elements of L 2 (S; R 3 ), coincide with the traces on S of u ± Ω , denoted by γ S (u ± Ω ). Indeed, while items ( 5) & ( 6) are obvious, [START_REF] Dumont | An asymptotic approach to the adhesion of thin stiff films[END_REF] follows from observing that the traces of u n on S ± εn coincide with the traces of (S εn [u n ]) ± on S ± , and then taking the limit as n → ∞.

       εe(w) i,j for 1 ≤ i, j ≤ 2 1 2 (ε∂ i w 3 + ∂ 3 w i ) for 1 ≤ i ≤ 2, j = 3 ∂ 3 w 3 for i = j = 3 for all w ∈ H 1 (B; R 3 ), the convergence in the sense of distributions of S εn [u n ] implies that (5) e(ε n , S εn [u n ]) converge to ∂ 3 u B ⊗ S e 3 weakly in L 2 (B; R 3 × R 3 ); (6) u B ∈ H ∂3 (B; R 3 ), with H ∂3 (B; R 3 ) := {u ∈ L 2 (B; R 3 ) : ∂ 3 u ∈ L 2 (B; R 3 )}; ( 4 
In view of the above considerations, we thus expect that the Hilbert space of possible limiting states with finite energy will be

H := U × V with (4.11a) U := {u = (u Ω , u B ) ∈ H 1 (Ω\S; R 3 ) × H ∂3 (B; R 3 ) : γ S (u Ω ± ) = γ S ± (u B )}, (4.11b) V := {v = (v Ω , v B ) ∈ L 2 (Ω; R 3 ) × L 2 (B; R 3 )}, (4.11c)
endowed with the inner product (and related norm)

(X, X ′ ) = ϕ(u, u ′ ) + k(v, v ′ ), |X| 2 := ϕ(u, u) + k(v, v) for all X = (u, v), X ′ = (u ′ , v ′ ) ∈ H, (4.12a) 
where

ϕ(u, u ′ ) := Ω\S ae(u Ω ) • e(u ′ Ω ) dx + B DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • (∂ 3 u ′ B ⊗ S e 3 ) dx, (4.12b) k(v, v ′ ) = Ω ρ * |v Ω | 2 dx + ρ B |v B | 2 dx . (4.12c)
The limiting pseudopotential of dissipation is defined by and p ∈ [START_REF] Bonetti | A model of imperfect interface with damage[END_REF][START_REF] Bonetti | Derivation of imperfect interface models coupling damage and temperature[END_REF] is given as in (2.6). It is not difficult to check that

D : L 2 (B; R 3 ) → [0, ∞] D(q) = bD ∞,p (q ⊗ S e 3 ) if b ∈ [0, ∞), I {0} (q ⊗ S e 3 ) if b = ∞, ( 4 
I {0} (q ⊗ S e 3 ) < ∞ ⇔ q = 0 . (4.14)
In what follows, we shall assume Hypothesis 4.2. We suppose that

∃ δ > 0 ∃ θ ∈ (0, p) ∀ e ′ ∈ R 3×3 sym : |D(e ′ )-D ∞,p (e ′ )| ≤ δ(1+|e ′ | θ ). (4.15)
Hence, we can introduce the evolution operator A : H ⇒ H with domain (cf. (4.14)) 1) , (4.16a) defined at every X = (u, v) by

D(A) : = X = (u, v) ∈ H : (1) v ∈ U and ∂ 3 u B = 0 if b = ∞, (2) ∃ (w, ξ) ∈ V × L 2 (B; R 3 ) s.t. ξ ∈ ∂D(∂ 3 v B ⊗ S e 3 ) a.e. in B, k(w, v ′ ) + ϕ(u, v ′ ) + B ξ • (∂ 3 v ′ B ⊗ S e 3 ) dx = 0 for all v ′ ∈ U as in (
AX := -v 0 + 0 -w : w as in (4.16a)(2) . (4.16b)
With the same arguments as for the operator A from (3.8), it can be easily proved that A is maximal monotone in H. Moreover, with the very same arguments as for Proposition 3.1, one can check that the resolvent of A satisfies X + A X ∋ (ψ 1 , ψ 2 ) for every (ψ 1 , ψ 2 ) ∈ H, with X = (ū, v), if and only if

J(v) ≤ J(v) for all v ∈ U, ū = v + ψ 1 (4.17a) with J : U → R, J(v) := 1 2 k(v, v) -k(ψ 2 , v) + 1 2 ϕ(v, v) + ϕ(ψ 1 , v) + B D(∂ 3 v B ⊗ S e 3 ) dx . (4.17b)
By arguing as in Section 3, the expected limit of the sequence (u n := u e n + u r n ) n (cf. (3.2)) of the solutions to Problems (P n ) will be the sum of some u e , solution to a limiting 'stationary' problem and some u r , solution to a limiting evolutionary problem. More precisely, we will have that u e = (u e Ω , u e B ) ∈ W 2,∞ (0, T ; U), with u e B affine in x 3 (cf. Remark 4.4 ahead) is the unique solution to

ϕ(u e (t), v) = L(t)(v) for all v ∈ U for all t ∈ [0, T ], (4.18) 
with ϕ from (4.12b) and L from (3.3c). Instead, u r is the first component of the solution X r = (u r , v r ) to the following abstract problem

d dt X(t) + AX(t) ∋ F(t) in H for a.a. t ∈ (0, T ), X(0) = X 0 , (4.19) 
with X 0 specified later on and F given by

F = -∂ t u e , f ρ * , 0 . (4.20) 
We postpone to Section 5 some comments on the variational formulation of the initial-boundary value problem (4.19), cf. (5.1) and (5.4) ahead.

In the same way as for the Cauchy problem (3.6) with the forcing term F from (3.11), the results in [6, Sec. III.2]) yield

Proposition 4.3. If X 0 ∈ D(A) and if (f, g) satisfy (3.1), then (4.19) has a unique solution X r = (u r , v r ) ∈ W 1,∞ (0, T ; H).
We set X e = (u e , 0), X = X r + X e (4.21)

We are now in a position to outline our argument for proving the convergence of the sequence (u n = u e n +u r n ) n to u = u e + u r :

(1) the convergence of u e n to u e will be obtained in Proposition 4.11 ahead, as part of the proof of (2) the convergence of u r n to u r , stated in Theorem 4.15 ahead. For proving it, we will resort to a nonlinear version of Trotter's theory of approximation of semigroups acting on variable spaces, as developed in the Appendix of [START_REF] Iosifescu | Nonlinear boundary conditions in Kirchhoff-Love plate theory[END_REF]. The need for such a theory is motivated by the fact that the functions u r n and u r do not belong to the same space.

The proof of Theorem 4.15 will be carried out throughout Section 4.2.

We now conclude this section by specifying the structure of the solution u e = (u e Ω , u e B ) to the limit stationary problem (4.18). In particular, we will show that u e B is affine in x 3 .

Remark 4.4. Let u e = (u e Ω , u e B ) ∈ W 2,∞ (0, T ; U) be the unique solution to (4.18) with ϕ from (4.12b) and L from (3.3c). Then u e satisfies

Ω\S ae(u e Ω )(t) • e(v Ω ) dx + B DWλ ,μ (∂ 3 u e B (t) ⊗ S e 3 ) • (∂ 3 v B ⊗ S e 3 ) dx = ΓN g(t) • v Ω dH 2 (x) for all v = (v Ω , v B ) ∈ U and for all t ∈ [0, T ]. (4.22) 
Choosing now v Ω = 0 and v B as an arbitrary test function

ϕ ∈ C ∞ c (B; R 3 ) leads to B μ ∂ 3 (u e B ) 1 ∂ 3 ϕ 1 +μ ∂ 3 (u e B ) 2 ∂ 3 ϕ 2 +( λ+2μ) ∂ 3 (u e B ) 3 ∂ 3 ϕ 3 dx = 0 for all ϕ ∈ C ∞ c (B; R 3 ),
where ∂ 3 (u e B ) i denotes the ith-component of the vector ∂ 3 u e B . This implies that the function x 3 → u e B (x, x 3 , t) is affine. 4.2. Convergence. Throughout this section, we will implicitly assume the validity of Hypotheses 4.1 and 4.2, and of conditions (3.1) on the problem data f and g. In particular, we shall omit to invoke these assumptions in all of the statements of the various results, with the exception of Theorem 4.15.

In the next subsection we shortly recapitulate the basics of the result from Trotter theory that we shall use to prove Theorem 4.15.

4.2.1.

Recaps on Trotter's theory of approximation of semigroups. Let us first fix some preliminary definitions. We consider a sequence (H n ) n of Hilbert spaces, with inner products (•, •) n and norms | • | n , and a 'limiting' Hilbert space H, such that for every n ∈ N there is defined an operator P n : H → H n , linear and continuous, fulfilling the following properties:

There exists C > 0 such that for every n ∈ N and X ∈ H there holds |P n X| n ≤ C|X|;

(4.23a)

For every X ∈ H there holds lim

n→∞ |P n X| n = |X|. (4.23b)
Next, for a given sequence (X n ) n with X n ∈ H n for every n ∈ N, we will say that

(X n ) n converge to X ∈ H in the sense of Trotter if lim n→∞ |P n X-X n | n = 0. ( 4 

.24)

We are now in a position to recall the result from [START_REF] Iosifescu | Nonlinear boundary conditions in Kirchhoff-Love plate theory[END_REF] needed for our analysis.

Theorem 4.5 ([20], Thm. 5). Suppose that the Hilbert spaces H n , H fulfill (4.23). Let A n : H n ⇒ H n , A : H ⇒ H be maximal monotone operators, let F n ∈ L 1 (0, T ; H n ), F ∈ L 1 (0, T ; H), and let X 0 n ∈ D(A n ), X 0 ∈ D(A). Let (X n ) n , X be the weak solutions to the Cauchy problems

d dt X n (t) + A n X n (t) ∋ F n (t)
in H n for a.a. t ∈ (0, T ), 

X n (0) = X 0 n , d dt X(t) + AX(t) ∋ F(t) in H for a.a. t ∈ (0, T ), X(0) = X 0 . (4.25) If lim n→∞ |P n (X 0 ) -X 0 n | n =
P n (X) = P n ((u Ω , u B ); (v Ω , v B )) = (P u n (u Ω , u B ); P v n (v Ω , v B )) . (4.29) 
The choice for the operator P v n : V → L 2 (Ω; R 3 ) (with V from (4.11c)) is guided by the idea of describing the limiting state in terms of two velocity fields, namely we set

P v n (v Ω , v B ) := χ Ωε n v Ω + (1-χ Ωε n )(S εn ) -1 [v B ] . (4.30) 
The choice for P u n , specified in (4.38) below, reflects how a field like u B may be involved in the asymptotic behavior of (u n ) n . Indeed, first of all we consider the unique function 

u n B satisfying u n B ∈ H 1 (B εn ; R 3 ) with u n B (x, ±ε n ) = u ± Ω (x,
u B,n ∈ H 1 (B; R 3 ) with γ S ± (u B,n ) = γ S ± (u B ) and 1 ε n B DW λn,µn (e(ε n , u B,n )) • e(ε n , ψ) dx = B DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • e(ε n , ψ) dx for all ψ ∈ H 1 S + ∪S -(B; R 3 ) . (4.33)
The functions u B,n will enter into the definition of P u n . Before specifying in which way, however, let us gain further insight into the properties of the sequence (u B,n ) n in the following result, where we are using the notation u B,n for the first two components of the function u B,n , cf. Notation 1.1.

Lemma 4.6. The following properties hold:

(1) the sequence

( u B,n ) n converge weakly to u B in L 2 (B; R 2 ); (2) the sequence ((u B,n ) 3 , e(ε n , u B,n )) n converge strongly to (u B3 , ∂ 3 u B ⊗ S e 3 ) in H ∂3 (B) × L 2 (B; R 3×3
sym ) (with the space H ∂3 (B) defined analogously as H ∂3 (B; R 3 ), cf. (4.9)); 

(3) if u B belongs to H 1 (B; R 3 ), then (u B,n ) n converge strongly to u B in L 2 (B; R 3 ). Proof. Let u * B ∈ H 1 (B; R 3 ) fulfill γ S ± (u * B ) = γ S ± (u B ). We plug in (4.33) the test function ψ = u B,n -u * B , thus obtaining 1 ε n B DW λn,µn (e(ε n , u B,n )) • e(ε n , u B,n -u * B ) dx = B DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • e(ε n , u B,n -u * B ) dx. ( 4 
∃ C > 0 ∀ n ∈ N : μ 2 B |e(ε n , u B,n )| 2 dx ≤ C(1+ e(ε n , u B,n ) L 2 (B;R 3 sym ) ).
This implies that the sequence (e(ε n , u B,n )) n is bounded in L 2 (B; R 3 sym ). We will use this to conclude that

(u B,n ) n is bounded in L 2 (B; R 3 ) via a Poincaré-type estimate, namely ∃ C > 0 ∀ n ∈ N ∀ z ∈ H 1 S + ∪S -(B; R 3 ) : B |z| 2 dx ≤ C B |e(ε n , z)| 2 dx . (4.35) 
We deduce (4.35) from estimate (4.7), written for the function

w := 0 in Ω εn , S -1 εn [z] in B εn (observe that S -1 εn [z] ∈ H 1 (B εn ; R 3 ) with γ S ± εn (S -1 εn [z]) = 0). Then, B |z| 2 dx = B |S εn [S -1 εn [z]]| 2 dx = 1 ε n Bε n |S -1 εn [z]| 2 dx (1) ≤ 1 ε n 2ε n Sε n |S -1 εn [z]| 2 dx + Cε 2 n Bε n |e(S -1 εn [z])| 2 dx + 0 (2) = Cε n Bε n |e(S -1 εn [z])| 2 dx (3) = C B |e(ε n , S εn [S -1 εn [z]])| 2 dx = C B |e(ε n , z)| 2 dx,
where (1) follows from (4.7), (2) from the fact that γ S ± εn (S -1 εn [z]) = 0, and (3) from (4.8). Next, choosing

z = u B,n -u * B in (4.35) we conclude that B |u B,n -u * B | 2 dx ≤ C B |e(ε n , u B,n -u * B )| 2 dx. (4.36) Since (e(ε n , u B,n )) n is bounded in L 2 (B; R 3 sym ), we infer that (u B,n ) n is bounded in L 2 (B; R 3
). Therefore, up to a (not relabelled) subsequence, the functions (u B,n , e(ε n , u B,n )) n weakly converge to a pair (ū B , ∂ 3 ūB ⊗ S e 3 ), where the identification of the weak limit of (e(ε n , u B,n )) n follows from a distributional convergence argument. We are then in a position to pass to the limit in (4.33) and thus deduce that the function ūB fulfills ūB ∈ H 1 ∂3 (B; R 3 ) with γ S ± (ū B ) = γ S ± (u B ) and for all ψ ∈ H 1 ∂3 (B; R 3 ) with γ S ± (ψ) = 0 there holds Therefore, ∂ 3 (ū B -u B ) = 0 and, since γ S ± (ū B ) = γ S ± (u B ), we ultimately have that ūB = u B . Having uniquely identified the limit we eventually gain convergence along the whole sequence (ε n ) n . We thus conclude claim (1).

Eventually, (4.34) implies

lim n→∞ B 2Wλ ,μ (e(ε n , u B,n )) dx = lim n→∞ B DWλ ,μ (e(ε n , u B,n )) • e(ε n , u B,n ) dx = lim n→∞ 1 ε n B DW λn,µn (e(ε n , u B,n )) • e(ε n , u B,n ) dx = B DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • (∂ 3 u B ⊗ S e 3 ) dx = B 2Wλ ,μ (∂ 3 u B ⊗ S e 3 ) dx .
Since the functional q → B Wλ ,μ (q) dx 1/2 induces a norm equivalent to the usual one on L 2 (B; R 3×3 sym ), we thus deduce that e(ε n , u B,n ) converge to ∂ 3 u B ⊗ S e 3 strongly in L 2 (B; R 3×3 sym ) and then (u B,n

) 3 → (u B ) 3 strongly in H 1 ∂3 (B). This gives claim (2). Finally, suppose that u B ∈ H 1 (B; R 3 ). The analogue of (4.36), i.e. B |u B,n -u B | 2 dx ≤ C B |e(ε n , u B,n -u B )| 2 dx
, combined with claim (2), yields that u B,n → u B strongly in L 2 (B; R 3 ). This concludes the proof.

We define the operator P In what follows, we will often write P u n (u) in place of P u n (u Ω , u B ) for notational simplicity. We are now in a position to prove the following result. Proof. We start by recalling that, for every X = (u, v) ∈ H with u = (u Ω , u B ) and v = (v Ω , v B ) and with P n X = (P u n (u), P v n (v)), we have that Even if the convergence notion from (4.24) is the right one from the mechanical viewpoint, it could be of interest to translate this convergence in terms of some classical conventional convergence notions.

|P
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 97 the traces of u B on S + := S × {1} and S -:= S × {-1}, (4.10)

  .13a) where I {0} is the indicator function of {0} and D ∞,p (e ′ ) = lim sup t→∞ D(te ′ ) t p for all e ′ ∈ R 3×3 sym (4.13b)

B

  DWλ ,μ (∂ 3 ūB ⊗ S e 3 ) • (∂ 3 ψ⊗ S e 3 ) dx = B DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • (∂ 3 ψ⊗ S e 3 ) dx .(4.37)

  u n : U → H 1 ΓD (Ω; R 3 ) (with U from (4.11b)) byP u n (u Ω , u B )(x) ) -1 [u B,n ](x) = u n B (x) if x ∈ B εn , ξ(x 3 )u Ω (x, x 3 + sign(x 3 )ε n ) + (1-ξ(x 3 ))u Ω (x) if x ∈ B ± ε0 \ B ± εn , u Ω (x) if x ∈ Ω ε0 ,(4.38)whereB ± ε0 , B ± εn are from (2.4) and ξ is a function in C ∞ c (R) such that ξ(r) for |r| ∈ [ ε0 3 , 2ε03 ] we set ξ(r) := ξ r with ξ r some element in [0, 1]). Note that P u n (u Ω , u B ) does belong to H 1 ΓD (Ω; R 3 ) because u = (u Ω , u B ) belongs to the space U from (4.11b).

Proposition 4 . 7 .

 47 We have that (1) there exists C > 0 such that for all X ∈ H there holds |P n X| n ≤ C|X|;(2) there holds lim n→∞ |P n X| n = |X|, namely properties (4.23) hold.

|X| 2 = 1 + I n 2 = 3 → 4 =

 21234 Ω ρ * |v Ω | 2 dx + ρ B |v B | 2 dx + Ω\S ae(u Ω ) • e(u Ω ) dx + B DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • (∂ 3 u B ⊗ S e 3 ) dx . = I 1 + I 2 + I 3 + I 4 . Now, by the definition (4.30) of P v n (v) we have thatI n Ωε n ρ * |v Ω | 2 dx + Bε n ρ n |S -1 εn [v B ]| 2 dx ≤ Ω ρ * |v Ω | 2 dx + ρ n ε n B |v B | 2 dx ≤ Ω ρ * |v Ω | 2 dx + (ρ + c) B |v B | 2 dx (4.40)for sufficiently big n, where the last estimate follows from Hyp. 4.1[START_REF] Brezis | Opérateurs Maximaux-Monotones et Semi-Groupes de Contraction dans les Espaces de Hilbert[END_REF]. Indeed, by the dominated convergence theorem and again Hyp. 4.1 we also haveI n 1 + I n 2 → I 1 + I 2 . (4.41) Further, taking into account that Ω εn = Ω ε0 ∪ (B + ε0 \B + εn ) ∪ (B - ε0 \B - εn ) and recalling the definition (4.38) of P u n Ω ) • e(u Ω ) dx + B + ε 0 \B + εn ae(ξu Ω (•+ε n e 3 )+(1-ξ)u Ω ) • e(ξu Ω (•+ε n e 3 )+(1-ξ)u Ω ) dx + B - ε 0 \B - εn ae(ξu Ω (•+ε n e 3 )-(1-ξ)u Ω ) • e(ξu Ω (•-ε n e 3 )+(1-ξ)u Ω ) dx (4.42)and it is not difficult to check that, again by the dominated convergence theorem,I n Ωε 0 ae(u Ω ) • e(u Ω ) dx + Bε 0 \S ae(u Ω ) • e(u Ω ) dx = I 3 . (4.43)Hence, we also have that I n 3 ≤ CI 3 . Finally, since P u n (u) = u n B on B εn , we haveI n Bε n DW λn,µn (e(u n B )) • e(u n B ) dx = 1 ε n B DW λn,µn (e(ε n , u B,n )) • e(ε n , u B,n ) dx = B λ n ε n |tr(e(ε n , u B,n ))| 2 + 2µ n ε n |e(ε n , u B,n )| 2 dx 3 u B ⊗ S e 3 )| 2 +2μ|∂ 3 u B ⊗ S e 3 | 2 dx = B DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • (∂ 3 u B ⊗ S e 3 ) dx,(4.44)where (1) is due to Hyp. 4.1(2) and to the strong convergence e(ε n , u B,n ) → ∂ 3 u B ⊗ S e 3 in L 2 (B; R 3×3 sym ) due to Lemma 4.6[START_REF] Bonetti | Derivation of imperfect interface models coupling damage and temperature[END_REF]. Clearly, these arguments also give I n 3 ≤ CI 3 . This concludes the proof.

  and if for every λ ≥ 0 and X ∈ H we have that the sequence ((I + λA n ) -1 (P n (X))) n converge in the sense of Trotter to (I + λA) -1 (X) as n → ∞, (4.27) (where we denote by the same symbol the identity operators I : H n → H n and I : H → H), then (X n ) n converge to X in the sense of Trotter uniformly on [0, T ], namely Setting up Trotter's theory for our problem. In what follows, we establish the setup in which we shall apply Thm. 4.5. We consider the Hilbert spaces H n from (4.2), while the 'limiting' Hilbert space H is given by (4.11), with the inner product from (4.12). Now, in order to apply Thm. 4.5 we have to introduce a linear continuous operator P n : H → H n that with any element X ∈ H associates a suitable representative P n (X) ∈ H n . Therefore, the operator P n : H → H n shall have the form

					T
		0 and	lim n→∞	0	|P n (F(t)) -F n (t)| n dt = 0	(4.26)
	lim n→∞	t∈[0,T ] sup	|P n (X(t)) -X n (t)| n = 0.	(4.28)
	4.2.2.				

  0) for a.a. x ∈ S and DWλ ,μ (∂ 3 u B ⊗ S e 3 ) • e(ε n , S εn [ϕ]) dx for all ϕ ∈ H 1 εn ; R 3 ) denotes the closed subspace of H 1 (B εn ; R 3 ) consisting of the functions with null trace on S + εn ∪S - εn . From the functions u n B we then derive functions defined on B = S × (-1, 1) by resorting to the operator S εn . Namely, we set u B,n := S εn [u n B ]. (4.32) From (4.31) we deduce that the functions u B,n fulfill (recall that γ S ± denote the traces on S ± = S × {±1}, cf. (4.10))

	Bε n	DW λn,µn (e(u n B )) • e(ϕ) dx =	S + εn ∪S -εn	(B εn ; R 3 ) ,
					(4.31)
	where H 1 S + εn ∪S -εn	(B	

B

  n X| 2 n =

	Ωε n	ρ * |P v n (v)| 2 dx +	Bε n	ρ n |P v n (v)| 2 dx
	+ = I n . 1 + I n Ωε n 2 + I n ae(P u n (u)) • e(P u n (u)) dx + 3 + I n 4 ,	Bε n	DW λn,µn (e(P u n (u))) • e(P u n (u)) dx
	(cf. (4.2)), while by (4.12a) we have		

Proposition 4.8. Let (X n ) n = (u n , v n ) n with X n ∈ H n for all n ∈ N, converge in the sense of Trotter to some X = (u, v) ∈ H. Then, the following convergences hold as n → ∞

(1) the sequence χ Ωε n (u n , e(u n )) converge to (u Ω , e(u Ω )) strongly in L 2 (Ω; R 3 ) × L 2 (Ω\S; R 3×3 sym ); (2) the sequence S εn [χ Bε n u n ] converge to u B weakly in L 2 (B; R 2 );

(3) the sequence ((S εn [χ Bε n u n ]) 3 , e(ε n , S εn [χ Bε n u n ])) n converge to (u B3 , ∂ 3 u B ⊗ S e 3 ) strongly in H ∂3 (B)× L 2 (B; R 3×3 sym ); (4) moreover, if u B ∈ H 1 (B; R 3 ), then S εn [χ Bε n u n ] → u B strongly in L 2 (B; R 3 ); [START_REF] Bonetti | Modeling via internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity[END_REF] 

Proof. Item ( 1) is an immediate consequence of the definition (4.38) of the operator P u n . As for items (2), ( 3), [START_REF] Bonetti | Thermal effects in adhesive contact: modelling and analysis[END_REF], the key point is to observe that the convergence in the sense of Trotter of (u n , v n ) n to (u, v) yields that (here, for simplicity we will write u n in place of

(cf. the calculations for (4.44)), whence e(ε n , S εn [u n B -u n ]) → 0 strongly in L 2 (B; R 3×3 sym ). Combining this information with the second convergence in Lemma 4.6(2), we immediately deduce that e(ε n , S εn [u n ] → ∂ 3 u B ⊗ S e 3 strongly in L 2 (B; R 3×3 sym ), whence the strong convergence of (S εn [u n ]) 3 to u B3 . This proves item [START_REF] Bonetti | Global existence for a contact problem with adhesion[END_REF]. Next, taking into account (4.35) we also infer that the sequence (u n B -u n ) n is bounded in L 2 (B; R 3 ), and then items ( 2) & (4) follow from items (1) & (3) in Lemma 4.6.

As for items ( 5) & [START_REF] Brezis | Opérateurs Maximaux-Monotones et Semi-Groupes de Contraction dans les Espaces de Hilbert[END_REF], from the Trotter convergence of (u n , v n ) n to (u, v) we also deduce, in particular, that

Now, from J n 1 → 0 we immediately deduce item [START_REF] Bonetti | Modeling via internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity[END_REF]; we then observe that

Recalling that ρ n ε n → ρ > 0 by Hyp. 4.1(6), we immediately infer item (6).

4.2.3.

Convergence results. In order to apply Theorem 4.5 establishing the convergence in the sense of Trotter (cf. (4.24)) of (X n ) n to X uniformly on [0, T ], it is sufficient to impose suitable conditions on the initial data, which we shall discuss at the end of this section, and to check the validity of conditions (4.26) and (4.27), with the operators 

The proof of Proposition 4.9 is postponed after the statement of Proposition 4.11, where we are going to check (4.26). With this aim, we need to impose an additional condition on the external loading g.

Hypothesis 4.10. We suppose that g ∈ W 2,∞ (0, T ;

Observe that (4.48) guarantees that the support of g lies outside B ε0 and that, if the lower adhering body is not clamped, then there are no surface forces imposed on its boundary. Under the additional Hyp. 4.10 we shall have the following result, whose proof is postponed to that of Prop. 4.9.

Proposition 4.11. There holds [START_REF] Bonetti | A model of imperfect interface with damage[END_REF] 

, where, according to the decomposition from (4.21), X e and X e n are the 'stationary' parts of the solutions X and X n .

Let us now proceed with the proof of Proposition 4.9, which is split into three steps. The main idea is to exploit the characterizations of the resolvents of A n and A provided by Proposition 3.1 and by (4.17a), respectively. In what follows, we will consider a fixed element Ψ = (ψ 1 , ψ 2 ) ∈ H.

First step: We prove the following Lemma 4.12. For all w ∈ U there exists a sequence (w n ) n ⊂ H 1 ΓD (Ω; R 3 ) such that lim n→∞ ϕ n (w n -P u n (w), w n -P u n (w)) = 0, and each term of

converges to the corresponding term of

Proof. Since J is continuous on U, it is sufficient to prove the result on a dense subset of U, namely the set (H 1 ΓD (Ω\S; R 3 )×H 1 (B; R 3 )) ∩ U, and to conclude via a diagonalization argument. Then, we set w n := P u n (w) . Now, it follows from Prop. 4.7(2) that ϕ n (w n , w n ) → ϕ(w, w) as n → ∞. The convergence k n (w n , w n ) → k(w, w) stems from the definition (4.38) of P u n and Lemma 4.6. Indeed,

On 

which concludes the proof.

Second step: We now show that Lemma 4.13. Let vn be the (unique) minimizer of the functional

Proof. Since J n (v n ) ≤ J n (0) = 0, the sequence ( V n ) n is bounded and there exists v = (v Ω , vB ) ∈ U such that, at least along a not relabeled subsequence, there holds

Let us only comment on the proof of (iii): from

n and vint n := vn -vext n weakly converge to the same limit in L 2 (Ω; R 3 ), a fortiori we conclude that vn = vext n + vint n → vΩ in L 2 (Ω; R 3 ). We use the above convergences for the last two terms contributing to J n (v n ), and an additional classical lower semicontinuity argument for the first three terms to conclude Claim (2), at least along a subsequence. Then, from Step 1 we infer that v is the unique minimizer in U of the strictly convex functional J, namely Claim (3). Therefore, the whole sequence (v n ) n converge, and there holds J(v) = lim n→∞ J n (v n ). In order to complete the proof of Claim (4), it suffices to observe that lim sup

which gives the separate convergences

Hence, we conclude that

Then, we use that

This stems from convergences (i)-(iv). In order to check this, we use that

To take the limit in the first term, we combine the facts that χ Ωε n e(v n ) ⇀ e(v Ω ) weakly in L 2 (Ω; R 3×3 sym ) and e(P u n (v)) → e(v Ω ) strongly in L 2 (Ω\S; R 3×3 sym ) (indeed, the weak convergence of e(P u n (v)) to e(v Ω ) in L 2 (Ω\S; R 3×3 sym ) improves to a strong one by the analogue of convergence (4.43)). Then, we find that

Let us now show that

With this aim, we recall that P u n (v) = vn B on B εn , with vn B the solution to (4.31). Then, it is sufficient to observe

where the above convergence follows from the fact that e(ε n , S εn [v n B ]) → ∂ 3 vB ⊗ S e 3 and e(ε n , S εn [v n ]) → ∂ 3 vB ⊗ S e 3 weakly in L 2 (B; R 3×3 sym ) by Lemmas 4.6(2) and convergence (ii) at the beginning of the proof of Lemma 4.13, respectively. All in all, we conclude that ϕ n (P u n (v), vn ) → ϕ(v, v). Finally, we observe that

Then, convergences (i) and (iv) stated at the beginning of the proof yield that k n (P v n (v), vn ) → k(v, v). We have thus established the Trotter convergence of ( V n ) n to V.

Third step: We will show that

by exploiting the characterizations of the resolvents of A n and A from (3.10) and (4.17a), respectively. Indeed, it follows from (3.10) that

), 0), with V n = (v , vn ) the unique minimizer for the functional J n from (4.49). Analogously, one has that

with V = (v, v) and v the unique minimizer of the functional J from (4.17b). Then,

as n → ∞ due to Lemma 4.13 [START_REF] Bonetti | A model of imperfect interface with damage[END_REF]. Hence, (4.52) follows. This concludes the proof of Proposition 4.9.

Let us now carry out the proof of Proposition 4.11: As

the first claim is a consequence of the dominated convergence theorem. As remarked in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] = 0 for a.a. t ∈ (0, T ).

But (3.1) implies that the sequence (P n X e -X e n ) n is bounded W 2,∞ (0, T ). Then, we have sufficient compactness to establish the uniform convergence in Claim (2) of Prop. 4.11. This concludes its proof.

We conclude this section by specifying the additional assumption on the initial data under which we will be able to state our convergence result.

Hypothesis 4.14. We assume that

Observe that the first condition imposes a sort of compatibility between the initial state and the initial loading conditions. The second requirement is a convergence condition that, because of Proposition 4.9, is for instance satisfied by

We are now in a position to apply the nonlinear Trotter-type Thm. 4.5 to investigate the asymptotic behavior of the solutions (X r n ) n ⊂ W 1,∞ (0, T ; H n ) to the Cauchy problems

2), with the operators (A n ) n from (4.45) and the data F n from (4.46). Therefore, we deduce that the sequence (X r n ) n converges uniformly, in the sense of Trotter, to the solution X r to the Cauchy problem (4.19), with the initial datum X r 0 = X 0 -X e (0). This is summarized in the following theorem, which is the main result of the paper. Finally, let us highlight that, in view of Proposition 4.11(2), from Thm. 4.15 we also infer the uniform convergence of the sequence X n = X r n + X e n .

Conclusive results and remarks

The variational formulation corresponding to (4.56). In this final section we gain further insight into the variational formulation of the initial-boundary value problem encompassed in the Cauchy problem (4.56). We will distinguish the cases b < ∞ and b = ∞.

When b is finite, a more explicit way of writing (4.56) is

0, T ), (5.1) supplemented with suitable initial conditions. Hence, the limiting behavior may be described in terms of a coupled system of two evolutionary, or transient, problems set in Ω \ S and in B. Clearly, the stress and the displacement fields σ Ω and u Ω in the limiting adhering bodies that occupy Ω + and Ω -satisfy the following relations, written in strong form

+ ξ e 3 • e 3 e 3 dx 3 on S × (0, T ).

(

This corresponds to the transient response to the loading (f, g) of each adhering body clamped on Γ ± D and linked through a mechanical constraint along S. Differently from the case of an adhesive layer with a vanishing total mass, which was considered in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], the contact between the bodies need not be described only in terms of the traces γ S (u ± Ω ), γ S (v ± Ω ) of the displacement and velocity of the sole adhering bodies. In fact, one has to consider the additional variables (u B , v B = ∂ t u B ) which keep track of the dynamics of the adhesive layer. These variables fulfill the following equations

on S × (0, T ).

(5.3) Systems (5.2) and (5.3) are supplemented by suitable initial conditions. Such equations are of the same type as those in the original layer. Of course, the variables (u B , v B ) may be eliminated and, consequently (see (5.2)), the contact condition along S between the two adhering bodies is a nonlocal -in time, only-relation between the stress vector σ ± Ω (x, t))e 3 at the current time t, and the history of γ S (u ± Ω (x, τ )), with τ ∈ [0, t]. Finally, from the last line of (5.2) we deduce that

which reflects the fact that the jump of the stress vector on the adhering bodies balances the limiting inertial forces stemming from the adhesive.

In the case b = ∞, the system reads

for all ψ ∈ H 1 ΓD (Ω; R 3 ), in (0, T ), again supplemented by suitable initial conditions. Indeed, from ∂ 3 v B = 0, supposing that the initial datum for u B is independent of the variable x 3 we deduce that ∂ 3 u B = 0, and hence that [[u Ω ]] = 0. Hence the space for the test functions in (5.4) is H 1 ΓD (Ω; R 3 ). Let us stress that if b = ∞ then the relative motion along S is frozen.

Other relative behavior of the parameters (λ n , µ n ). As previously mentioned, the analysis in Section 4 has been carried out confining the discussion to the case in which the parameters ( λ, μ) are in [0, ∞) × (0, ∞). Let us conclude the paper by examining the singular cases

In each of these cases, we will explicitly illustrate spaces H, U, V, the bilinear forms ϕ and k, the operator A, and the function u e , like we have done for the case ( λ, μ) ∈ [0, ∞) × (0, ∞). We will not give the proof of the convergence result, as it is a straightforward adaptation of that developed throughout Sec. 4.2, and we will leave it to the interested reader. Nonetheless, we will hint at the main point underlying the identification of the limit problem, namely the correct identification of the space U which, in turn, will be based on the analysis of the asymptotic behavior of a sequence (u n ) n with sup n ϕ n (u n , u n ) < ∞, cf. the arguments in Section 4.1.

Let us start by specifying that in each of the above cases we will have

with the bilinear form k given by (4.12c), the form ϕ specified in (5.6b), (5.7b), (5.8b), and (5.9b) below, the space U specified in (5.6a), (5.7a), (5.8a), (5.9a) below, the operator A : H ⇒ H with domain è (5.5b)

The space U featuring in (5.5a)(2) will be specified for each of the singular cases considered (cf. (5.6c), (5.7c), (5.8c), (5.9c) below); analogously, ṽ shall be built from v ∈ P in a way depending on the case under consideration (cf. (5.6d), (5.7d), (5.8d), (5.9d) below), with the space

) ṽ = v .

(5.6d) Indeed, the condition λn εn → ∞ implies that, along a sequence (u n ) n with sup n ϕ n (u n , u n ) < ∞, there holds tr(e(ε n , S εn [u n ])) → 0 in L 2 (B), whence the condition ∂ 3 u B3 = 0 and, consequently, [[u Ω ]] 3 = 0, as encompassed in the space U from (5.6a). Here, the adhering bodies are in bilateral contact along S and the tangential component of the stress vector applied along S is given by γ

on S × (0, T ), supplemented by suitable initial conditions. Observe that only the tangential component of the traces on S of the displacement in the adhering bodies is nonlocal-in-time. This is a kind of viscoelastic behavior with long memory when b is finite. When b = ∞, since ∂ 3 v B = 0, the relative sliding along S is frozen.

for all ψ ∈ H 1 ΓD (Ω; R 3 ), in (0, T ). The adhering bodies are perfectly bonded and the obtained deformable body is submitted to surface forces on S corresponding to the limit of the vertical forces in the adhesive.