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a b s t r a c t 

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to 
identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there 
is considerable variability in segmentation protocols and techniques. This can result in different reconstructions 
of the same intended white matter pathways, which directly affects tractography results, quantification, and 
interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols 
for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and 
algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and 
asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation 
protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement 
among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying 
streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability 
in the virtual dissection process, including variability within protocols and variability across subjects. In order 
to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical 
tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed 
to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible 
research and may be achieved through the use of standard nomenclature and definitions of white matter bundles 
and well-chosen constraints and decisions in the dissection process. 
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. Introduction 

Diffusion MRI fiber tractography ( Xue et al., 1999 , Conturo et al.,
999 ) offers unprecedented insight into the structural connections of
he human brain. In a process that parallels post-mortem microdissec-
ion, tractography – in combination with a set of rules, constraints, and
rocedures to dissect and segment major white matter fascicles of the
rain – allows noninvasive visualization and quantification of the shape,
ocation, connectivity, and biophysical properties of white matter bun-
les. This process of in vivo “virtual dissection ” ( Catani and Thiebaut
e Schotten, 2008 , Catani et al., 2002 ), also called bundle segmentation ,
as led to new insight into how structural connectivity underlies brain
unction, cognition, and development, in addition to dysfunction in neu-
ological diseases, mental health disorders, and aging ( Le Bihan and
ohansen-Berg, 2012 ). Additionally, bundle segmentation is used rou-
inely to provide critical clinical information in both pre-operative and
ntra-operative mapping of brain tumor resections ( Essayed et al., 2017 ,
anderweyen et al., 2020 ). 

Despite widespread use in clinical and research domains, there are
 large number of variations in workflows for bundle segmentation that
ave been adopted by the neuroimaging community ( Fig. 1 ). Normally,
orkflows either generate bundles of streamlines, i.e., digital represen-

ations of fiber trajectories, or dissect subsets of streamlines from an en-
emble of streamlines throughout the whole brain. These protocols typ-
cally differ in the rules and constraints used to isolate a given pathway,
anging from manual delineation of inclusion and exclusion regions of
nterest, to fully automated segmentations based on shape, location, or
onnectivity. Contributing to this variability, agreements on the anatom-
cal definitions of pathways in the human brain are far from settled
 Forkel et al., 2014 , Mandonnet et al., 2018 , Panesar and Fernandez-
iranda, 2019 , Bajada et al., 2015 ), in part hindered by the lack of
 consistent framework for defining tracts. Descriptive tract definitions
ave traditionally focused on the shape and area of convergence of axons
eep in the white matter, but may also focus on the specific regions to
hich these fibers connect ( Mandonnet et al., 2018 , Bajada et al., 2015 ,
ajada et al., 2017 , Carpenter and Sutin, 1983 , Nieuwenhuys et al.,
008 , Schmahmann et al., 2007 ). Consequently, and coming full cir-
le, differences and disagreements in anatomical definitions and their
nterpretation may lead to further variations in protocols used in the
irtual dissection process. 

For these reasons, the process of bundle segmentation has been de-
cribed as existing somewhere between science and art ( Schilling et al.,
3 
019 ). Variation in protocols can result in different segmentations
hich can lead to different scientific conclusions or clinical decisions
 Pujol et al., 2015 ). This inter-protocol variability adds “noise ” to
he literature when it comes to the process of bundle segmentation
 Rheault et al., 2020 , Botvinik-Nezer et al., 2020 ), a variability that
revents a direct comparison of the outcomes of different studies, and
inders the translation of these techniques from the research laboratory
o the clinic. Yet, an estimate of the variability that exists across dif-
erent protocols remains unclear. In order to ultimately harmonize the
natomical definition of tracts and standardize the bundle segmentation
rocess, we propose a first step is to quantify this variability, and un-
erstand the similarities and differences in bundle segmentation results
cross protocols. 

There have been many works that benchmark or validate the
natomical accuracy of tractography, typically comparing against sim-
lated data ( Daducci et al., 2014 , Neher et al., 2015 , Maier-Hein et al.,
017 ), physical phantoms ( Guevara et al., 2012 , Perrin et al., 2005 ),
nimal tracer studies ( Schilling et al., 2019 , Donahue et al., 2016 ,
irard et al., 2020 , Grisot et al., 2021 , Schmahmann and Pandya, 2006 ),
r cadaveric dissections ( Forkel et al., 2014 , Lawes et al., 2008 ,
arubbo et al., 2013 , Maffei et al., 2018 , Hau et al., 2017 ). These have
ed to insight into the challenges and limitations of tractography, includ-
ng the presence of false positive and false negative pathways and sub-
equent sensitivity/specificity tradeoff in accuracy ( Maier-Hein et al.,
017 , Schilling et al., 2019 , Thomas et al., 2014 , Aydogan et al.,
018 , Knösche et al., 2015 ), and the presence of biases ( Rheault et al.,
020 ) due to pathway shape and location ( Yeh et al., 2016 ), anatomy
 Schilling et al., 2018 , Reveley et al., 2015 ), and processing decisions
 Girard et al., 2014 ). Importantly, differences and variability in re-
ults are expected due to differences in acquisition ( Ambrosen et al.,
020 ), pre-processing ( Maier-Hein et al., 2017 , Cote et al., 2013 ),
rientation reconstruction ( Li et al., 2012 ), and the tractography ap-
roach/algorithm ( Donahue et al., 2016 , Cote et al., 2013 , Smith et al.,
020 , Smith et al., 2012 , Bastiani et al., 2012 ). However, variability due
o differences in protocols for segmenting specific white matter path-
ays has not been thoroughly investigated. Here, we ask “what happens
hen many groups attempt to dissect the same white matter bundles on

he same tractography dataset ” in order to isolate and quantify vari-
bility in the tractography dissection process. This variation represents
ifferences that may occur when different groups segment and study the
ame major white matter pathways of the brain, even if all other sources
f variation are removed. 



K.G. Schilling, F. Rheault, L. Petit et al. NeuroImage 243 (2021) 118502 

Fig. 1. Variation in white matter bundle segmentation. Four example segmentations of the corticospinal tract (green) and arcuate fasciculus (cyan) show variability 
in the size, shape, densities, and connections of these reconstructed white matter pathways. 
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Towards this end, the aims of this study are twofold: (1) to under-
tand how much variability exists across different protocols for bun-
le segmentation, and (2) to quantify which fascicles exhibit the most
greement/disagreement across protocols. To do this we take a “many
nalysts, one dataset ” approach previously used to study workflows
or diffusion analysis ( Jones et al., 2007 ), hippocampus segmentation
 Boccardi et al., 2011 ), fMRI analysis ( Botvinik-Nezer et al., 2020 ,
oline et al., 2006 ), and psychology research ( Silberzahn et al., 2018 ).
hrough an open call to the community, we invited collaborations from
xpert scientists and clinicians who use tractography for bundle segmen-
ation, provided them all with the same sets of tractography streamlines,
nd gave them the task of segmenting 14 white matter pathways from
ach dataset. This enabled streamline-based and volume-based quan-
ification of inter-protocol agreement and disagreement for each fiber
athway and the results highlight the problem of variation of defini-
ions and protocols for bundle segmentation. 

. Results 

.1. Submissions 

We surveyed the protocols for bundle segmentation of 14 white mat-
er bundles: Superior Longitudinal Fasciculus (SLF), Arcuate Fasciculus
AF), Optic Radiation (OR), Corticospinal Tract (CST), Cingulum (CG),
ncinate Fasciculus (UF), Corpus Callosum (CC), Middle Longitudinal
asciculus (MdLF), Inferior Fronto-Occipital Fasciculus (IFOF), Inferior
ongitudinal Fasciculus (ILF), Fornix (FX), Anterior Commissure (AC),
osterior Commissure (PC), and Parieto-Occipital Pontine Tract (POPT).

To isolate the effects of bundle segmentation from all other sources
f variation, we directly provided six sets of whole-brain streamlines
both deterministic and probabilistic) to all collaborators, derived from
 subjects with scan-rescan data acquired from the Human Connectome
roject test-retest database ( Glasser et al., 2016 ). Collaborators were
iven the choice of utilizing streamlines generated from one of two com-
only used tractography methods, a deterministic or a probabilistic al-

orithm, which are known to generate different representations of white
atter bundles and have different uses and applications as described in

he literature ( Pestilli et al., 2014 , Sarwar et al., 2019 ). 
In total, this collaborative effort involved 144 collaborators from 42

eams ( Fig. 2 , top). 57 unique sets of protocols were submitted, of which
8 submissions used the deterministic streamlines and 29 used proba-
ilistic. A total of 3138 bundle tractograms were submitted. Because col-
aborators did not have to submit all bundles, pathways showed varying
epresentation across submissions ( Fig. 2 , bottom), ranging from as low
s 16 protocols for the PC, up to 50 protocols for the CST. 

A detailed description of all protocols, submitted by each of the 42
roups is provided as a Supplementary Table. 

.2. Qualitative results 

Example visualizations of randomly selected segmentations from a
ingle subject are shown for exemplar projection, association, and com-
4 
issural pathways (CST, AF, CC) in Fig. 3 . These are visualized as both
treamlines directly, and also as 3D streamline density maps. The pri-
ary result from this figure is that there are many ways to segment these

tructures that result in qualitatively different representations of the
ame white matter pathways. These examples demonstrate visibly ap-
arent variations in the size, shape, and connectivity patterns of stream-
ines. In contrast, different protocols result in similar patterns of high
treamline density in the deep white matter and midbrain, with sim-
lar overall shape and central location. Similar visualizations, for all
ubmitted pathways, both probabilistic and deterministic, are provided
n supplementary documentation. These observations apply to all dis-
ected pathways, however the commissural AC and PC contained very
ew streamlines, with little-to-no agreement across protocols. 

.3. Pathway-specific results 

To understand the variability that exists across protocols for a given
athway, we visualize volume-based and streamline-based overlaps
mong the protocols and show boxplots of agreement measures that
uantify inter-protocol, intra-protocol, and inter-subject variation. The
olume overlap is displayed as the volume of voxels in which a given
ercent of protocols agree that the voxel was occupied by a given path-
ay, where a streamline overlap is displayed as the individual stream-

ines in which a given percent of protocols agree that streamline is rep-
esentative of a given pathway. For quantitative analysis, we use several
easures to describe similarity and dissimilarity of streamlines, stream-

ine density, and pathway volume ( Fig. 4 ). This includes (1) v olume
ice overlap which describes the overall volume similarity, (2) density
orrelation which describes insight into similarity of streamline density,
3) bundle adjacency which describes the average distance of disagree-
ent between two bundles, and (4) streamline Dice which describes the

verlap of streamlines common between protocols (which can only be
alculated because bundles come from the same original set of stream-
ines). We calculate geometric measures of pathways including num-
er of streamlines, mean length, and volume, as well as microstructural
easures of the average fractional anisotropy (FA) of the entire pathway

olume and the FA weighted by streamline density (wFA). 
For simplicity, we show results of the CST, AF, and CC. Analysis

as conducted on all tracts, and results are provided in supplementary
ocumentation. 

.3.1. Corticospinal Tract (CST) 
Fig. 5 shows the results for the CST, and Appendix A summarizes

he descriptive definitions and decisions made in the bundle segmenta-
ion workflow. Looking at the volume of agreement on a single subject,
early all methods agree on the convergence of axons through the inter-
al capsule and midbrain, with some disagreements on cortical termina-
ions, and only a minority of protocols suggesting lateral projections of
his tract. Streamline-based agreements show similar trends. The most
triking result is that there were not any streamlines which were com-
on to at least 75% of either the deterministic or probabilistic protocols.
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Fig. 2. Summary of teams and submissions. Location of the teams’ affiliated lab (top). In total, 42 teams submitted 57 unique sets of bundle dissections, 28 utilized 
the provided deterministic streamlines, and 29 utilized probabilistic. Map icons are colored based on the set of streamlines utilized, with the same color-scheme as 
bar plots. Example submissions are shown for 14 pathways (bottom) along with a pie chart indicating the number of submissions for each bundle. Acronyms: see 
text. 

5 
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Fig. 3. Variation in protocols for bundle segmentation of example pathways (CST, AF, and CC) on the same subject from the same set of whole-brain streamlines. Eight 
randomly selected bundle segmentation approaches for each pathway are shown as segmented streamlines and rendered as 3D streamline density maps. Variations 
in size, shape, density, and connectivity are qualitatively apparent. Probabilistic streamlines are shown, see supplementary material for Deterministic submissions. 
Random selections generated independently for each pathway. Streamlines are colored by orientation and all density maps are windowed to the same range. 

Fig. 4. Similarity and dissimilarity metrics to assess reproducibility. Example SLF datasets are used to illustrate a range of similarity values between bundles A and 
B (top) and between bundles A and C (bottom). Dice overlap is a volume-based measure calculated as twice the intersection of two bundles (magenta) divided by 
the union (red and blue). Density correlation is calculated as the correlation coefficient between the voxel-wise streamline densities (shown as a hot-cold colormap 
ranging from 0 to maximum streamline density) of the two bundles being compared. Bundle adjacency is calculated by taking the average distance of disagreement 
(not including overlapping voxels in blue) between bundles (distances shown as hot-cold colormap). Finally, streamline Dice is taken as the intersection of common 
streamlines divided by the union of all streamlines in a bundle and requires input bundles to be segmented from the same set of underlying streamlines (intersection 
shown in figure). 

6 
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Fig. 5. Corticospinal Tract (CST) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and 
probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject 
variability (deterministic: red; probabilistic: blue). Each data-point in the plots is derived from the summary statistic of a single submission. Note that there were no 
streamlines which were common to at least 75% of the protocols. 
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Quantitative analysis indicates fairly low agreement across proto-
ols. Inter-protocol Dice overlap coefficients largely fall between 0.4
nd 0.6 (median Dice of 0.47 and 0.51 for probabilistic and determin-
stic, respectively), with a larger tail towards much lower Dice values
ndicating some outlier protocols that are substantially different from
thers. Protocols show moderate density correlation coefficients (me-
ian correlations of 0.51 and 0.67), and an average difference between
rotocols of > 4mm (median bundle adjacency of 4.3mm and 3.9mm).
eproducibility within protocols is much higher, resulting in higher Dice
oefficients, higher density correlations, and lower bundle adjacency.
he variation across protocols is even greater than the variation across
ubjects when quantified using Dice overlap. However, the density cor-
elation across protocols is higher than that across subjects, indicating
hat while the volume overlap decreases, measures of bundle density are
ore consistent across protocols. Finally, bundle adjacency is higher for

nter-protocol analysis than inter-subjects, suggesting that volume-based
 V  

7 
ifferences across protocols are greater than volume-based differences
cross subjects. The quantitative index FA shows a coefficient of varia-
ion across protocols of 7% relative to its average value and the density
eighted FA shows a variation of 4%. 

.3.2. Arcuate Fasciculus (AF) 
Fig. 6 shows the results of the inter-protocol analysis for the AF, and

ppendix B summarizes the descriptive definitions and decisions made
n the bundle segmentation workflow. A majority of the extracted bun-
les agree on the volume occupied by the bundle, with both determin-
stic and probabilistic submissions showing the characteristic arching
hape as the pathway bends from the frontal to temporal lobes. The vol-
me of the 75% agreement is significantly smaller and much more spe-
ific than that of the 25% of agreement, occupying only the deep white
atter core of this trajectory. Similar results are shown for streamlines.
ery few streamlines were agreed upon by 75% of protocols for deter-
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Fig. 6. Arcuate Fasciculus (AF) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and prob- 
abilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject 
variability (deterministic: red; probabilistic: blue). Note that there were no streamlines which were common to at least 75% of the protocols. 
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inistic tractography, and no single streamline was observed in 75% of
robabilistic submissions. Cortical connections show significant varia-
ion. Qualitatively, as we become more strict with agreement, the con-
ections become much more refined to the frontal and temporal lobes
nly, with fewer connections to the parietal cortex. 

Quantitative analyses of similarity and agreement closely follow that
f the CST. The Dice overlap indicates relatively poor inter-protocol
greement (median values 0.46 and 0.43 for probabilistic and determin-
stic, respectively), with a much higher intra-protocol agreement (me-
ian of 0.66 and 0.74). However, the inter-protocol overlap is similar
o the variation across subjects (0.40 and 0.53). Similar trends are ob-
erved for density correlations. In this case, the inter-subject variation
s lower than inter-protocol for deterministic, but higher for probabilis-
ic, although both measures are lower than within protocol agreement.
inally, differences across protocols are on average > 5mm of distance,
hereas the disagreement is much less within protocols and even be-
w  

8 
ween subjects. Finally, the coefficient of variation of FA and wFA across
rotocols is 10% and 5% that of the average FA and wFA, respectively.

.3.3. Corpus callosum 

Fig. 7 shows the results of inter-protocol analysis of the CC, and
ppendix C presents a summary of the descriptive definitions and deci-
ions made in the bundle segmentation workflow. Most protocols gen-
rally agree that this structure takes up a large portion of the cerebral
hite matter in both hemispheres. While many streamlines were consis-

ent across methods, when looking at the 75% agreement, many submis-
ions do not include lateral projections – although they exist within the
ataset – as well as fibers of the splenium (or forceps major) connecting
o the occipital lobe and connections to temporal cortex. 

Quantitative analysis shows much higher reproducibility than for the
F and CST, with mean Dice values across protocols of 0.66 and 0.72,
hich are again lower than intra-protocol reproducibility, but in this
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Fig. 7. Corpus callosum (CC) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and probabilistic 
tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject variability 
(deterministic: red; probabilistic: blue). 
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ase, both slightly higher than that across subjects. The density correla-
ion shows similar trends. Finally, bundle adjacency is higher across pro-
ocols than across subjects, with measures indicating that disagreement
s generally 3mm or greater across protocols. Even though this structure
s quite expansive throughout the white matter, variation across quanti-
ative FA measures are still on the order of 8% and 4% for FA and wFA,
espectively. 

.4. Inter-protocol variability 

To understand which pathways exhibit the most agreement/
isagreement across protocols, intra-protocol volume-based variation
easures of Dice overlap, density correlation, bundle adjacency, and
ice streamlines are plotted in Fig. 8 . 

There is a fairly large variation across pathways in the overall proto-
ol agreement as measured by Dice volume overlap ( Fig. 8 A). Volume-
ise, the most reproducible were the CC, the CST, and the IFOF. Re-
9 
roducible results from the CC were expected due to its large size and
nambiguous location of the CC proper, while the CST is arguably one of
he most well-studied tracts. The IFOF, while one of the more controver-
ial fasciculi ( Forkel et al., 2014 , Mandonnet et al., 2018 , Altieri et al.,
019 , Sarubbo et al., 2019 ), likely results in higher overlap because it is
 long anterior-posterior directed pathway spanning from the occipital
o frontal lobe, passing through the temporal stem, a tight and small bot-
leneck region ( Hau et al., 2016 ) and most protocols agree that nearly
ny streamline spanning this extent through a ventral route, will belong
o this pathway. In all cases, the overlap across protocols is fairly low,
ith median values of the CC of 0.66 and 0.72 being the highest among
ll pathways studied. 

The least reproducible structures are those of the commissures, AC
nd PC, which are largely defined only by a single location along the
idline with very little information on their routes or connections. The

X represented a unique case. Many groups submitted the left FX as
xpected, while others considered the left and right FX as a single struc-
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Fig. 8. Inter-protocol variability. Dice overlap coefficients, density correlation, bundle adjacency, and Dice streamlines for all studied pathways. Deterministic results 
shown in red, probabilistic in blue. 

Fig. 9. Inter-protocol variation in mean FA, weighted-FA, volume (mm 

3 ), and pathway length (mm) for all studied pathways. Note that CC volume is an order of 
magnitude larger than all other pathways and is shown on a 10 3 mm 

3 scale. 
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ure due to its commissural component. Thus, while it is indeed a small
tructure, the quantitative value of overlap is overly critical based on
ualitative observations. 

In agreement with qualitative results, the density correlations
 Fig. 8 B) are moderate to high for most pathways, meaning that areas
f high streamline density and low streamline density are generally in
greement across protocols. Pathways such as the CC, IFOF, CG, CST,
nd UF have high agreement in streamline densities, whereas pathways
ith generally lower number of streamlines and hence lower densities

i.e., PC, and FX) show lower density correlations. 
Similar results are observed for dissimilarity ( Fig. 8 C). Again, AC,

C, show very large distances of disagreement, along with the FX and
n this case the MdLF. For nearly all pathways, the range of disagree-
ents across protocols are most typically on the order of 4-6mm. Look-

ng at Dice overlap of the streamlines ( Fig. 8 D), it is immediately ap-
arent that the overlap is very low in all cases, much lower than over-
ap of volume. For all pathways, a large majority of all comparisons
ield streamline Dice coefficients less than 0.2, with many indicating
o overlap at all. A trend observed in the streamline comparisons is
hat the overlap is generally greater for deterministic than probabilistic
lgorithms. 

Fig. 9 shows protocol variability for pathway-specific measures of
he mean fractional anisotropy, weighted fractional anisotropy, path-
 c  

10 
ay volume, and pathway length across all protocols. In agreement with
esults on the CST, AF, and CC, the FA derived from different protocols
aries by more than 8-12%, an effect greater than that observed in the
iterature across study cohorts ( Landman et al., 2011 , Farrell et al., 2007 ,
andman et al., 2007 ). Weighted-FA (wFA), however, varies much less
cross protocols (4-7%) and is of greater overall magnitude than the
nweighted metric. The volume measurements show that different pro-
ocols can result in an order of magnitude difference in pathway volume,
n effect observed for all pathways. Finally, pathways with more vari-
tion in average streamline length ( Fig. 9 ) agree well with those with
ore variation in overlap measures. For example, AC, PC, and FX re-

ult in large differences in average length, while protocols on the IFOF
onsistently agree on the length of this structure. 

.5. Variability within and across pathways 

To assess similarity and differences in submissions without a priori
ser-defined metrics of similarity, we utilized the Uniform Manifold Ap-
roximate and Projection (UMAP) ( McInnes and Healy, 2007 ) technique
o visualize all bundle segmentation techniques in a low-dimensional
pace. The UMAP is a general nonlinear dimensionality reduction that is
articularly well suited for visualizing high-dimensional datasets, in this
ase, on a 2D plane. Fig. 10 shows all submissions, for all pathways, pro-
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Fig. 10. UMAP dimensionality reduction projected bundles onto an un-scaled 2D plane. Object color and shape represent pathways, and object size designates 
deterministic/probabilistic. While variation exists within pathways and within deterministic/probabilistic streamlines, the white matter pathways generally cluster 
together in low dimensional space. Insets visualize data points as streamline renderings, and highlight areas where similarity and/or overlap is shown across different 
pathways. 
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ected on a 2D plane. While there are differences across protocols for a
iven pathway, all submissions for a given pathway generally cluster to-
ether and show similar low-order commonalities, for both probabilistic
nd deterministic. However, overlap between different pathways does
ccur in some instances, for example between the SLF and AF ( Fig. 10 ,
), POPT and CST ( Fig. 10 , B), and MLF, ILF, and OR ( Fig. 10 , C). This
uggests similar low-order representation of some submissions in these
athways. 

. Discussion 

These results identify and quantify differences and the significant
eterogeneity of white matter structures introduced by the use of differ-
nt protocols for bundle segmentation with tractography. This variabil-
ty may present difficulties interpreting differences in bundle segmenta-
ion results obtained by different labs, or meta-analyses extending and
omparing findings from one study to other studies. Additionally, this
ariation in protocols can lead to variability in quantitative metrics that
re greater than true biological variability across populations or sub-
ects and may hinder translation of these techniques from the research
aboratory to the clinic. 
11 
We propose that a major source of this variation stems from a lack
f consensuses on the anatomical definition of pathways ( Forkel et al.,
014 , Mandonnet et al., 2018 , Panesar and Fernandez-Miranda, 2019 ,
ajada et al., 2015 ). There is no standard framework for defining a tract,
ith some descriptive definitions focusing on the shape and locations of

onvergence of axons in the deep white matter, while others may focus
n specific regions to which fibers connect ( Mandonnet et al., 2018 ,
ajada et al., 2015 , Bajada et al., 2017 , Carpenter and Sutin, 1983 ,
ieuwenhuys et al., 2008 , Schmahmann et al., 2007 ). Consequently,
ifferences, misconceptions, and ambiguities in anatomical definitions
nd their interpretation may lead to different rules used in the dissec-
ion process. For example, workflows used to dissect a bundle range from
anual to automated delineation of regions through which streamlines
ust pass, to shape-based, signal-based, or connection-based methods

f segmentation. Importantly, the appropriateness and usefulness of the
hosen reconstruction method is application dependent, and no single
ethod is clearly wrong and/or better than the others. 

This study was not intended to detract from the value of tractogra-
hy and bundle segmentation, but rather the aim was to clearly define a
urrent inherent problem and its scope. Looking forward, with a number
f well-validated and valuable tools, pipelines, software, and processes
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t our disposal, it becomes fairly straightforward to modify bundle seg-
entation protocols to match what we would ultimately strive for in
 “consensus definition ” of white matter bundles. Thus, instead of de-
cribing these results as revealing a problem, we see this as an opportu-
ity, or a call-to-action to harmonize the field of bundle segmentation –
oth in the nomenclature and definition of white matter pathways, and
n the best way to virtually segment these using tractography. More-
ver, optimistically, it may be quite useful to have a supply of tools
vailable to dissect and investigate the same white matter bundle in
ifferent ways depending on the research question, or the anatomy or
unctional system under investigation. We note that collaborative efforts
ave proven valuable to identify successes and limitations of tractog-
aphy ( Schilling et al., 2019 , Pujol et al., 2015 , Daducci et al., 2014 ,
aier-Hein et al., 2017 , Schilling et al., 2019 ), and facilitate future im-

rovements. Here, we pursue a different approach, focusing specifically
n variability of the tractography dissection process when performed
y different groups, rather than comparisons against simulations, phan-
oms, tracers, or prior knowledge. 

.1. What happens when 42 groups dissect the same dataset? 

Our first main result is that the inter-protocol agreement is generally
oor across protocols for many pathways , with limited agreement on the
rain volume occupied by the pathway. With few exceptions, the aver-
ge Dice coefficients from both deterministic and probabilistic stream-
ines were below 0.5, with many considerably lower. For most stream-
ines, the inter-protocol bundle adjacency is between 4-6 mm, meaning
hat when protocols disagree, they do so by an average of ∼3-5 vox-
ls. Shape and geometry-based measures (i.e., length and volume) of
he streamline bundles vary by an order of magnitude across protocols.
onsequently, quantitative metrics calculated based on this volume will
ary, for example the average FA within a bundle varies by ∼8-12%
cross protocols. Because our analysis was based on the same set of
treamlines, these results represent a best-case measure of inter-protocol
greement, and would almost certainly result in increased variability if
articipants performed their own reconstruction and streamline gener-
tion procedures. 

Our second main result is that bundle segmentation protocols have bet-
er agreement in areas with high streamline densities . Measures of stream-
ine density correlation coefficients across submissions are on average
 0.5, with few exceptions, which suggests that high density areas in

ractograms generally correspond to high density areas of other trac-
ograms, while low density areas correspond to low-density areas (or,
n fact, regions with no streamlines). This agrees with observations of
D density maps where areas of high streamline density are consistently
bserved in the same location across submissions. These areas of higher
treamline density correspond to the core or stem of most of the bundles,
enerally located in the deep white matter of the brain. Because of this,
eighting quantification by streamline density will reduce variability
cross protocols, for example, wFA varied by ∼4-7% across protocols. 

Third, we find that the variability across protocols is greater than the
ariability within protocols , and more importantly, similar to (or greater
han) the variability across subjects. These results are in agreement with
revious studies showing high overlap, high density correlations, and
ow disagreements within a protocol ( Wakana et al., 2007 , Nath et al.,
019 , Rheault et al., 2020 ). Most importantly, in our study, this rep-
esents a worst-case intra-protocol measure. It includes sources of vari-
bility related to acquisition (and associated noise and artifacts), reg-
stration, reconstruction, and streamline generation – sources of vari-
tion which are shown to be still smaller than that across protocols.
hus, while there is little consensus on bundle dissection protocols, a
tudy that uses a consistent protocol has been shown to have the power
o reliably detect consistent differences within and across populations;
owever, there may be limitations in how the findings from a given
tudy can be extended, applied, or compared to others with different
rotocols. 
12 
Fourth, we find that there is variability per bundle in how much agree-
ent there is across protocols . The commissural CC has a higher repro-
ucibility due to its large size and very clear anatomical definition, de-
pite more ambiguous definitions of its cortical terminations. However,
he PC and AC commissures showed very poor agreement, despite hav-
ng a very clear location along the midline. This is in part due to smaller
izes, but also scarce literature on the location and connections of the
undles that pass through these regions. CST and IFOF also show mod-
rate agreement across protocols, in part due to their length and at least
ne location that is moderately specific to these bundles (i.e., the pyra-
ids of the medulla for the CST and the floor of the external capsules for

he IFOF). Even here, the Dice overlap across protocols is 0.6 or less, on
verage. The MdLF and CG show relatively poor agreement. The MdLF
s much less studied, and a relatively recent addition to the literature
 Seltzer and Pandya, 1986 , Makris et al., 2013 ), with some disagree-
ent on parietal terminations ( Bajada et al., 2015 ). The CG is a tract

hat is likely composed of both longer fibers extending throughout the
hole tract, as well as multiple short fibers across its structure which
ay be both hard for tractography to entirely delineate the long fibers,

nd hard to capture and constrain segmentation of the shorter fibers
hat enter and leave throughout ( Jones et al., 2013 , Heilbronner and
aber, 2014 ). The POPT showed relatively higher agreement. This bun-
le was included as a relatively ambiguous nomenclature (seen in the
iterature) of pontine tracts. Whereas both occipito-pontine and parieto-
ontine fibers exist, they are not usually defined as a specific tract or fas-
iculus. Finally, some of the more commonly delineated structures (OR,
LF, SLF, UF) show inter-protocol variabilities somewhere in between,
ut still exhibit poor-to-moderate volume and streamline overlaps. 

For many applications, end-users of bundle segmentation technolo-
ies are interested in gross differences in connectivity and location,
nd what matters is not so much that tracts are reconstructed in their
ntirety, but that they are not confused with one another. For exam-
le, misunderstanding or inapt nomenclature, and/or non-specific con-
traints in the bundle segmentation process could lead to misidentifica-
ion of the desired pathway (possibly as another pathway or subset of
nother pathway) and would lead to confusion in the literature. Based
n our results, an experienced neuroanatomist or neuroimager can eas-
ly classify the submitted pathways based on visual inspection of the
treamlines. Thus, these inter-protocol bundle segmentations represent the
ame basic structure , even if some variability in spatial extent and con-
ections is observed. This is confirmed using an unsupervised data ex-
loration tool for dimensionality reduction, where within-pathway sub-
issions are clearly clustered (for both probabilistic and deterministic

lgorithms) in low dimensional space. However, there are a few excep-
ions. Notably, several AF and SLF submissions overlap significantly,
hich is not unexpected because these have often been defined and/or
sed interchangeably in the literature ( Dick and Tremblay, 2012 ). Re-
atedly, several submissions of the POPT contain a subset of streamlines
ften assigned as CST, which is again expected because both are often
or can be) described as having parietal connections in common. Fi-
ally, several ventral longitudinal systems of fibers (MdLF, OR, ILF, and
FOF) are not clearly separated in this space, suggesting that in many
nstances they share similar spatial overlap and densities of streamlines
cross submissions. 

Finally, while there is low volume-based agreement, streamline-
ased agreement is lower still. In fact, many protocols did not agree on a
ingle streamline belonging to a pathway of interest. Protocols agreed on
onsistently 20% or less of deterministic streamlines and less than 10%
f probabilistic streamlines. Put another way, given a set of streamlines
rom which to select, very few streamlines were consistently determined
o be a part of a given pathway across all groups performing the segmen-
ation. With the wide variety of workflows to select streamlines, few
treamlines met inclusion criteria associated with cortical connectivity,
hape and spatial location, and survived possible exclusion criteria such
s filtering based on length, curvature, or diffusions signal, as well as
ersonal preference of the person performing dissection (for example
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n  
liminating streamlines to reduce complexity of manual segmentation).
hus, the final main result is that the measured variability depends on the
cale upon which the variability is analyzed . Protocols show little-to-no
greement in assigning individual streamlines to a pathway, whereas
rotocols show higher agreement in assessing spatial overlap of path-
ay, and even higher agreement when taking into account density of

treamlines over a volume. This means that while selected streamlines
ay occupy the same volume, the streamlines that make up this volume

re different.Thus, the effects of this variability are dependent upon how
hese bundles are ultimately utilized in practice , and there are a number of
ays in which these bundles are used and applied. For this reason, we

tate that no submissions are inherently “wrong ”, and instead emphasize
hat they are simply “different from one another ”. 

.2. Sources of variability 

We have identified variability in the protocols for bundle segmen-
ation, which parallels variability in the literature of other techniques
hat have been used to elucidate the structure and function of the brain
or the last 20 years. These types of disagreements and the challenge
n advancing science beyond them are not new to computational neu-
oanatomy. Indeed, as we look at the history of brain science differences
n opinions and associated results can be traced back a long way. Key
xamples of the inherent variability in anatomical and functional defi-
itions and associated disagreements include the definition and func-
ional specialization of cortical areas ( Tootell and Hadjikhani, 2001 ,

einer and Grill-Spector, 2012 , Winawer et al., 2010 ). Hence, our find-
ngs here highlight the complexity of the scientific concepts and the
ifficulty in making progress towards understanding. The fact that the
ngineering of new methods needs to be refined because we still have
and have had for over hundreds of years in neuroanatomy) substan-
ial variability in results does not necessarily mean that science is not
rogressing. 

We postulate that the problem stems from two sources (1) the
natomical definition of a white matter pathway and (2) the constraints
sed to dissect this pathway. The descriptions of the white matter path-
ays given in the appendix highlight the problem of “definition ”. Path-
ays may be defined by their shape, their endpoints, or by regions

hrough which they pass. Descriptions and definition approaches may
ary based on the pathway itself (i.e., some may lend themselves more
asily to descriptions of shape rather than endpoints), by the system or
unctions under investigation, by the training and/or occupation of the
esearcher/clinician, or by the modality used to define the tract. For
xample, cadaveric microdissection may facilitate description of fasci-
ular organization and regional descriptions over highly specific lobu-
ar connectivity descriptions provided by histological tracers. Further,
efinitions do not always facilitate binary decision making in the bun-
le dissection process due to biological reasons. The brain is a complex
tructure, there are not always hard or unique borders between cortical
r subcortical regions, and the location of endpoints or regions may not
lways be precisely determined. The goal of tractography bundle seg-
entation then is to recreate these definitions in the bundle dissection
rocess ( Schilling et al., 2020 ); however, certain algorithms, software
ackages, and manual pipelines lend themselves more naturally to one
ype of constraint than the other, and may implement them in different
ays or with different levels of precision. Even if a definition has been

ntirely met, a sensitivity/specificity tradeoff is possible, influenced by
otentially every step in the fiber tractography process from acquisi-
ion and reconstruction to the final constraints and streamline filtering
echniques ( Schilling et al., 2019 , Thomas et al., 2014 , Knösche et al.,
015 ). 

.3. The ‘problem’ and ‘solution’ 

The question becomes “whose problem is this? ”. We propose that
here may be shared responsibility on the part of classical anatomists,
13 
hose developing tractography algorithms, and those implementing or
erforming segmentations. The endeavor to digitally segment the white
atter is predicated upon there being some consensus of what structures

re there to be segmented, this is the task of classical neuroanatomists.
ext, tractography providers must endeavor to create candidate trac-

omes that resemble the white matter of the brain as closely as possible,
s the resultant tractomes must contain viable anatomy for extraction.
inally, those who perform digital segmentations must decide an appro-
riate level of precision (sensitivity/specificity) and be clear and precise
s they describe the methods of their segmentations as this will permit
omparison and refinement between segmentations. This must be an
terative process, utilizing orthogonal information in the form of non-
uman model brains, micro-dissection, and alternative neuroimaging
ontrasts, in order to validate the existence and location or connections
f a pathway, validate the rules and constraints that allow accurate dis-
ection of this pathway, then iteratively refining the location and/or
onnections based on knowledge gained through the bundle segmenta-
ion process. Thus, we hope that this paper acts as a call to action on two
fforts of consensus: both standardization of the anatomical definition
in addition to nomenclature) and the adoption of protocols to fulfill
his definition. 

Even without a consensus, there could be a convergence towards
ppropriate, or more specific, nomenclature and clustering of stream-
ines, or alternative accepted definitions. Additionally, a consensus on
he healthy, young adult, individual may not lead to satisfactory results
n developing, aging, or diseased populations. The effect of protocols
nd their adherence to definitions should be investigated in the presence
f tumors, on the pediatric and elderly populations, and also with vary-
ng acquisition, reconstruction, and streamline generation conditions.
onvergence upon protocols may come from isolating and operational-

zing similarities and differences in definitions and protocols, as done in
mage segmentation literature ( Boccardi et al., 2015 ), in order to slowly
onverge upon a consensus and/or guidelines. This may include: (1)
xploring relationships between automated, semi-automated, and man-
al methods, (2) nomenclature and methodology based on volumetric
haracteristics (locations, shapes, orientation) versus connectivity char-
cteristics (origins and terminations) ( DN et al., 2021 ), and (3) studies
f various constraints to best replicate nomenclature. 

While we cannot currently give a recommended dissection protocol
or a given pathway, we can recommend good practices to be used in
ll studies. First, we suggest transparency and explicit descriptions of
athway definition, dissection protocol, and ROIs ( Catani and Thiebaut
e Schotten, 2008 , Fekonja et al., 2019 ). Second, understanding and
uantifying the intra-protocol variability, for both automatic and man-
al approaches, is a necessary prerequisite to determine quantification
ariability and subsequent statistical power. Third, with the knowledge
hat the dense core of the pathway is consistent across protocols, weight-
ng by density (or a focus on deep white matter, as is common in many
tatistical analyses ( Smith et al., 2007 , Yeatman et al., 2012 )) will be
ore appropriate for evaluating inter-subject difference in microstruc-

ural properties, given its smaller inter-site and inter-lab differences. Fi-
ally, the results obtained by (and inferences made from) tractography
ust be interpreted with appropriate level of coarseness, by consider-

ng the existence of inter-protocol variability and coarse spatial scale
f diffusion MRI measurements. Since some of statistical properties of
ractography (streamline counts and densities, and geometry/volume of
racts) have dependency on method selections at this point, it is im-
ortant to encourage studies by independent groups testing how much
onclusions in a single original paper can be generalizable to a different
egmentation protocol or datasets. 

.4. Limitations 

This study has several limitations which constrain the generaliz-
bility of the results. First, there is a low number of subjects and low
umber of repeats. While automated methods can be run on several
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undred subjects using only CPU-hours, this study would have become
rohibitive for manual or semi-automated methods with more than 14
athways over six datasets (84 total possible dissections), and many of
hese methods would have been under-represented. Next, we did not in-
lude a number of pathways with functional relevance in the literature,
ut chose a sample representative of the commonly studied projection,
ssociation, and commissural bundles, and, again, a compromise was
ade between the number of pathways requested and expected time and

ffort. Future studies should consider studying pathway sub-divisions
pecifically, as well as additional major white matter pathways and su-
erficial U-fibers ( Guevara et al., 2020 ). Further, because we wanted to
solate the effect of bundle segmentation protocols, we forced the use
f our own generated streamlines. This may not be optimal for a given
egmentation process where streamlines are generated using different
arameters or propagation methods, and filtered or excluded in various
ays. However, allowing the creation of different streamlines would
nly increase the variability seen across protocols. Finally, there is no
right ” measure to quantify variability ( Rheault et al., 2020 ). No single
easure can paint a complete picture of the similarities and differences

f this complex technology across all applications. The measures used
n this study were chosen as intuitive quantifications of volume-based,
oxel-wise, and streamline-based agreement, as well as measures based
n binary volumes and streamline densities. We also quantified mea-
ures of geometry which are often used in quantification or to modu-
ate connectivity measures, as well as measures of microstructure within
athways (both weighted and unweighted by densities). The best mea-
ure of bundle variability is ultimately dependent on how the bundle is
sed. 

Future studies may investigate which protocols (and which features
f those protocols) result in bundles that are more or less similar to
ther protocols, and more importantly, quantify how well different pro-
ocols result in bundles that match the desired anatomical definition.
his could be done using tools ( Wassermann et al., 2016 ) to query text
escriptions of volume, location, and connectivity to determine whether
treamlines agree with the definition of a bundle. Finally, similar efforts
ith international and multi-disciplinary teams must apply evidence-
ased approaches pooling knowledge gathered from tracers, dissections,
nd functional contrasts from in vivo and ex vivo specimens in order to
ltimately reach a consensus on tract descriptions ( Yang et al., 2021 ,
ullock et al., ), and the best way to virtually dissect these tracts using
ber tractography. 

. Materials and methods 

We surveyed the protocols for bundle segmentation of 14 white mat-
er bundles, chosen to represent a variety of white matter pathways stud-
ed in the literature, including association, projection, and commissural
bers, fibers with clinical and neurosurgical relevance, as well as cov-
ring a range from frequently to relatively infrequently studied and/or
escribed in the literature. 

We made available the same datasets to be analyzed by a large num-
er of groups in order to uncover variability across analysis teams.
o isolate the effects of bundle segmentation from all other sources
f variation, we directly provided six sets of whole-brain streamlines
both deterministic and probabilistic) to all collaborators, derived from
 subjects with scan-rescan data acquired from the Human Connectome
roject test-retest database ( Glasser et al., 2016 ). We extended invita-
ions for collaboration, disseminated data and the protocol with clearly
efined tasks, and received streamlines from collaborators for analysis.
n addition to streamlines, we requested a written “definition ” of the
athways and a description of the constraints used to dissect it. Impor-
antly, this dataset allows us to quantify and compare variability across
rotocols (inter-protocol), variability within protocols (intra-protocol),
nd variability across subjects (inter-subject). Detailed procedures are
rovided in supplementary material. 
14 
.1. Data and protocol 

The diffusion data for this study were selected from the Human Con-
ectome Project test-retest database ( Glasser et al., 2016 ). A total of
hree subjects (HCP IDs: 144226, 103818, 783462) were chosen that
ad repeat diffusion MRI scans, resulting in six high-quality datasets,
ree of any significant artifacts. This dataset was chosen as a compromise
etween quantification and inclusivity - the use of this small database
till provides enough information to detect and quantify the variability
mong results with great enough participation across laboratories and
cientists. 

Collaborators were not informed that the six datasets represented
nly three subjects in order to not bias intra-protocol analysis. Dis-
ortion, motion correction and estimation of nonlinear transforma-
ions with the MNI space was performed using the HCP preprocessing
ipelines ( Glasser et al., 2016 ). Whole-brain tractograms were gener-
ted using the DIPY-based Tractoflow processing pipeline ( Theaud et al.,
020 , Garyfallidis et al., 2014 ), producing both deterministic and prob-
bilistic sets of streamlines to be given to participants. Importantly, to
e as inclusive as possible to all definitions and constraints, streamlines
ere not filtered in any way. Streamlines were separated into left, right,
nd commissural fibers in order to minimize file sizes. Also provided
ere the b0 images, Fractional Anisotropy (FA) maps ( Jenkinson et al.,
012 ), directionally-encoded color maps ( Jenkinson et al., 2012 ), T1
eighted images, and masks for the cerebrospinal fluid, gray matter,
nd white matter ( Jenkinson et al., 2012 ). 

The task given to collaborators was (see supplementary material) to
issect 14 major white matter pathways on the left hemisphere on the
ix diffusion MRI datasets provided. Collaborators were free to choose
ither deterministic or probabilistic streamlines, and free to utilize any
oftware they desired. In order to maximize the quality of submitted
esults, investigators did not have to provide segmentations for all path-
ays if they did not have protocols or experience in some areas. 

.2. Submissions 

For submission, we asked for a written definition of the white mat-
er bundles, a description of the protocol to dissect these pathways,
ll code and/or temporary files in order to facilitate reproducibility of
ethods, and finally the streamline files themselves. Quality assurance
as performed on file organization, naming conventions, and streamline

patial attributes, and visual inspection was performed for all stream-
ines of all subjects. Tools for quality assurance (QA) can be found at
 https://github.com/scilus/scilpy ). 

.3. Pathway-specific analysis 

For all pathways, we focused on quantifying volume-based and
treamline-based similarities and differences in the dissected bundles
cross protocols. Qualitatively, we assessed volume overlap and stream-
ine overlap. Volume overlap was displayed as the volume of voxels in
hich 25%, 50%, and 75% of all protocols agreed that a given voxel
as occupied by the pathway under investigation. Similarly, we viewed

he individual streamlines in which 25%, 50%, and 75% of all protocols
greed that this streamline is representative of a given pathway. These
ualitative observations were shown as volume-renderings or stream-
ines visualizations directly. 

Next, quantitative analysis used three voxel-based measures (based
n volume and streamline density) and one streamline-based measure
 Rheault et al., 2020 ). The Dice overlap coefficient, density correlation
oefficient, bundle adjacency, and streamline Dice overlap are illus-
rated in Fig. 4 . Dice overlap measures the overall volume similarity
etween two binarized bundles (i.e., all voxels that contain a stream-
ine), by taking twice the intersection of two bundles divided by the
nion of both bundles. A value of 1 indicates perfect overlap, a value

https://github.com/scilus/scilpy
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f 0 indicates no overlap. The density correlation coefficient is a mea-
ure of the Pearson’s correlation coefficient obtained from the streamline
ensity maps. This provides insight into not only overlap, but also agree-
ent in streamline density. Bundle adjacency is a volume-based metric

hat describes the average distance of disagreement between two bun-
les. This was calculated by taking all non-overlapping voxels from one
undle, and calculating the nearest distance to the second bundle (and
epeating from the second to the first bundle) and taking the average of
hese distances. By defining this metric, we are using a convenient sym-
etric distance between two binary volumes, which is a modification

f the Hausdorff distance. A value of 3mm, for example, indicates that
hen the bundles disagree, they are an average of 3mm apart. Finally,

treamline Dice is the streamline-equivalent of Dice overlap. Because all
ubmissions for a given subject were derived from the same set of whole-
rain streamlines, we had the ability to quantify whether an individ-
al streamline was common to both submitted bundles. Streamline Dice
as calculated by taking the total amount of streamlines common to
oth protocols (i.e., intersection) divided by the total number of unique
treamlines in both bundles (i.e., union). Again, a value of 1 indicates
hat all streamlines are exactly the same, a value of 0 indicates no over-
ap in streamlines. Note that this final measure can be calculated only
or datasets that are derived from the same original set of streamlines. 

.4. Quantifying variability across protocols 

The measures introduced above were used to quantify variability
cross protocols (inter-protocol), variability within protocols (intra-
rotocol), and variability across subjects (inter-subject), with separate
nalyses for deterministic and probabilistic results. Below, we describe
hese three levels of variability assuming there were “N ” submissions
or a given pathway. 

For inter-protocol variability, each bundle was compared to its coun-
erpart as produced by each of the other N-1 protocols, and the results
veraged, representing the average similarity/dissimilarity of that pro-
ocol with all others. This was done for all N submissions, for all 3 sub-
ects, resulting in Nx3 data-points for each pathway. 

For intra-protocol variability, we aimed to compare the same proto-
ol performed on the same subject. For each of the N submissions, we
alculated the similarity/dissimilarity measures with respect to the same
ubmission on the repeated scan. This was repeated for all subjects, re-
ulting in again Nx3 data-points for each pathway. A “precise ” measure
f intra-protocol variability would have been possible if the same set of
treamlines had been provided twice for each subject. Instead, the study
sed scan/re-scan data to measure not only intra-protocol variability,
ut the variability of everything up to, and including protocol . Thus, this
easure includes acquisition variability (i.e., noise and possible arti-

acts), registration (to a common space), reconstruction, and generation
f whole brain streamlines. 

For inter-subject variability, we sought to characterize how simi-
ar/dissimilar a bundle is across subjects within a single protocol. All
treamlines were normalized to MNI space using nonlinear registration
 antsRegistrationSyn) ( Avants et al., 2008 ) of the T1 image to the MNI
CBM 152 asymmetric template ( Fonov et al., 2011 ). For each of N proto-
ols, the agreement measures were calculated from subject 1 to subject
, from subject 2 to subject 3, and from subject 1 to subject 3, again
esulting in Nx3 data-points for each pathway. 

Finally, to visually assess differences across bundles and across pro-
ocols,we utilized the Uniform Manifold Approximate and Projection
UMAP) ( McInnes and Healy, 2007 ) technique ( https://github.com/
mcinnes/umap ; release 0.4.1), which is particularly suited for visu-
lizing clusters or groups of high-dimensional data and their relative
roximities. UMAP input was the 3D density maps of all bundles for
ll submission, while the output was projection of all bundles onto
he 2D space. We note that any dimensionality reduction technique
nd subsequent visualization could have been used, for example t-
NE ( Hinton and Roweis, 2002 ), for qualitative analysis of tractograms
15 
rouped across bundles and protocols. Hyperparameters and algorithm
nitialization are known to influence results for these nonlinear dimen-
ion reduction techniques ( Kobak and Linderman, 2021 ), but for our
urposes (qualitative visualization of local and global clusters without
n explicit user-defined scalar measure of agreement/disagreement) we
ave implemented this with all default parameters of distances, metrics,
nd components. 

ata and Code Availability 

The diffusion data for this study were selected from the Human Con-
ectome Project test-retest database. A total of three subjects (HCP IDs:
44226, 103818, 783462) were used in this study. Code for bundle vari-
bility analysis is available at (https://github.com/scilus/scilpy). 
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ppendix A. Cortico Spinal Tract (CST) 

The CST is the major descending tract that mediates voluntary skilled
ovements ( Jang, 2009 , Wiesendanger, 1969 ). At its most basic, this

ract is a pathway of fibers coursing primarily from the motor cortex
own the spinal cord. Despite this apparent simplicity, dissecting this
ract can be quite variable. Moderately increasing the complexity of the
efinition, the CST can be (unanimously) described as starting from the
ortex, traveling through the corona radiata, converging into the in-
ernal capsule, continuing into the brainstem through the medulla, and
nally extending to the spinal cord. Decisions to be made include choos-

ng specific cortical terminations (which span both frontal and parietal
obes) and how these are delineated, selecting regions through which
he streamlines must pass ( “cortex to medulla ” or “cortex to lower brain-
tem ” or “motor cortex to medulla ”), and implementing additional in-
lusion and exclusion regions throughout the extent of the pathway to
urther refine where it goes and where it does not go. Adding further
mbiguity, the CST together with the corticobulbar tract make up the
yramidal tract, and because these are not easily (or not possibly) sep-
rated due to inherent tractography limitations and field of view re-
trictions, these have sometimes been used interchangeably and/or in-
orrectly in the literature. In this study, the CST was divided into pre-
entral and postcentral divisions based on endpoints, hand-foot-face di-
isions based on regions of interest, anterior-posterior-central-cingulate
ivisions based on endpoints, combined/separated with ascending path-
ays with thalamic synapses, as well as combined/separated with the
eri-Rolandic component based on endpoints, and divided into lateral
nd anterior components based on definition (but not dissected). 

ppendix B. Arcuate Fasciculus (AF) 

The AF plays a key role in language processing. This is an associ-
tion tract that is well-understood to connect Wernicke’s area (some-
here in the posterior temporal lobe) to Broca’s area (located in the

nferior frontal lobe). It gets its name (Latin for curved bundle) from the
istinctive arch shape it makes as it curves from the anterior-posterior
irection in the frontal-parietal cortex ventrally into the temporal cortex
round the Sylvian fissure (lateral sulcus) ( Catani and Mesulam, 2008 ,
en Donkelaar et al., 2018 ). This description of the AFs shape is gen-
rally agreed upon. A third area (inferior parietal lobule) is also tra-
itionally included in this tract’s connections, representing the path-
ay that Geschwind postulated to be damaged in conduction aphasia
 Catani and Mesulam, 2008 ). For this reason, many descriptions include
ultiple segments of the AF - a direct pathway traversing the entire tract

rom temporal to frontal lobes, and an indirect pathway of shorter fibers
onnecting temporal to parietal to frontal lobes. Consequently, the AF
16 
an be described as connecting a number of areas of the perisylvian
ortex of the frontal, parietal, and temporal lobes. To further compli-
ate the literature, because the AF is a dorsal longitudinal system of
racts, it is occasionally considered to be part of the SLF system of tracts
 Dick and Tremblay, 2012 , Thiebaut de Schotten et al., 2012 ) and con-
idered synonymous or used interchangeably in the literature ( Dick and
remblay, 2012 ). For these reasons, we hypothesized that we would see

arge variability when giving collaborators the task to “segment the ar-
uate fasciculus ”. Variability is observed due to differences in defining
he location and method of delineating Wernicke’s and Broca’s areas, or
election of regions to capture the arch-like shape. Approximately 1/5 of
ubmissions indicated dividing the AF into the long direct segment (of-
en described as more medially located), and the anterior and posterior
ndirect segments (described as laterally located shorter segments). 

ppendix C. Corpus Callosum (CC) 

The CC is the largest, and arguably most easily recognizable, white
atter structure of the brain. This structure is not a single tract, but

ather a commissure, composed of axons coursing in the left-right ori-
ntation at the midline, and interconnecting the cerebral cortex of the
wo hemispheres. Many subdivisions of the CC have been proposed
 Hofer and Frahm, 2006 ) with most partitioning the CC based on axon
ocation in the mid-sagittal section. Most commonly, subcomponents are
ostrum, genu, body, isthmus, splenium, and (sometimes) tapetum, al-
hough others include genu, splenium, and callosal body, or anterior,
id-anterior, central, mid-posterior, and posterior based on (FreeSurfer)
arcellation schemes. Alternative subdivisions included separating ac-
ording to the major lobes of the brain (frontal, parietal, occipital, and
emporal) or numerical subdivisons (ranging between 5 and 12) based
n cadaveric and histological dissections ( Witelson, 1985 ), or homolo-
ous connections, or clusters of fibers. Common to all protocols is the
arge, easily distinguishable region near the midline. Constraints, de-
isions, and filters include choices of where these bundles cannot go
various temporal lobe regions, through or near subcortical structures,
ingulum and parahippocampal gyri, etc), filtering by connection re-
ions or lengths, or rules enforcing homologous connections. 
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