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An Integrated Approach Using a Collaborative Strategy

for Sustainable Cities Freight Transportation: A Case

Study

Abstract

In recent years, the increasing freight transportation activities has caused
extensive economic, environmental and social impacts on society. There-
fore, it becomes necessary for logistics company to find high-performance
strategies to enhance their sustainiblity. Collaboration between companies
appears as one of the promising solution that imrpoves the freight transport
efficiency of modern cities. Existing studies on collaborative transport did
not sufficiently account for sustainability aspects and they mainly discuss
the independent planning of decision-making problems with economic objec-
tives. However, collaboration an integrated decision-making process can sig-
nificantly ameliorate the effectiveness of urban transportation systems. This
study addresses the issue of sustainable freight transportation planning by
formulating and solving a collaborative and integrated two-echelon inventory,
location and routing problem (2E-CILRP). The 2E-CILRP is formulated as
a multi-objective integer programming model that minimizes logistics costs,
CO2 emissions and accident rate. A hybrid heuristic based on machine learn-
ing is also introduced to solve the studied problem. The proposed approach
combines k -means clustering and genetic algorithms. Comparison of the
obtained results with those provided with exact method reveals that the de-
veloped approach is more efficient and more practical for designing integrated
and collaborative networks with large-sized data. A case study of four agri-
food SMEs in France is investigated in order to demonstrate the sustainable
benefits of the developed optimization approach. The obtained results sug-
gest that the developed approach can significantly reduce the level of CO2

emissions, logistics costs and accident rate caused by transportation in cities.

Keywords: Collaborative City Logistics; Integrated Planning; Sustainable
Freight Transport; Mixed-Integer Linear Programming; Heuristic

Preprint submitted to Elsevier August 31, 2021



1. Introduction

The logistics service networks are important components that allow the
supply chain to achieve a variety of objectives, ranging from low cost to
high responsiveness, and improve its overall profitability and competitive-
ness (Javid and Azad, 2010; Chen et al., 2017). In fact, the design and
management of the logistics networks are critical issues in any supply chain
optimization due to their crucial role in the development of society and the
protection of environment (Comi and Savchenko, 2021; Muñoz-Villamizar
et al., 2021; Kermanshah et al., 2020; Mahmoudi et al., 2019; Kiba-Janiak
et al., 2021). Thus, to remain competitive in today’s growing market, com-
panies should implement efficient strategies for designing and managing their
distribution networks for sustainable cities. In this direction, logistics col-
laboration between companies can considerably increase their logistics op-
erations efficiencies and strengthen the city’s growth in socio-environmental
terms (Russo et al., 2021; Vargas et al., 2020; Strulak-Wójcikiewicz and Wag-
ner, 2021). In logistics networks, collaboration can be horizontal or vertical.
The first type occurs when logistics stakeholders at different levels of the
supply chain, such as the manufacturers, distributors, carriers and retailers,
pool their resources and performance information to enhance the operational
efficiency (Ferrell et al., 2020; Dolati Neghabadi et al., 2021; Ferrero et al.,
2018). However, the second type involves companies at the same level of
the supply chain performing similar activities. These entreprises can benefit
from economies of scale by working together, e.g. cooperation between two
wholesalers (Pan et al., 2019).

Recently, interest in collaborative practices has gained momentum, and
many studies have been conducted to find solutions that can increase the
effectiveness of freight transportation operations through horizontal collabo-
ration (Soysal et al., 2018; Akyol and De Koster, 2018). Indeed, by pooling
resources, customers are delivered to closer distribution centres, which re-
duces the travelled distances and transportation costs (Habibi et al., 2018).
Moreover, companies can make sustainable savings by increasing transport
fleet fill rates, and reducing fixed costs, empty trips and fuel consumption.
This mode of collaboration has been widely applied during the last years in
several decision problems, especially in the vehicle routing problem (Wang
et al., 2021).

Location-allocation, inventory management and vehicle routing problems
are major issues emerging in the distribution network design and planning.
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Traditionally, these decisions were addressed sequentially or independently.
They were also approached before vehicle routing and inventory management
(Aloui et al., 2021b). The literature proved that the integrated planning de-
cisions have a major impact on the overall supply chain success in terms of
cost, quality and service time due to the great interdependence between the
various problems (Farias et al., 2020; Nagy and Salhi, 2007; Liu and Lin,
2005). Although the integration of planning decisions has gained momen-
tum in the last years, collaborative and integrated planning research is in
its infancy. In fact, few recent studies have developed integrated models for
the collaborative network design and planning. More recently, in preliminary
work (Aloui et al., 2021a), the two-echelon collaborative inventory-location-
routing problem (2E-CILRP) with environmental considerations has been
modelled for the first time. In the 2E-CILRP, the transportation providers
cooperate to optimize their location, inventory and routing decisions. In
other words, they determine the distribution centres to be opened, customer
and supplier allocation, routes and quantity of goods to be stocked in each pe-
riod. However, the growing socio-environmental concerns have led companies
to focus more on integrating economic, environmental and social objectives
in the global performance assessment. To the best of our knowledge, the
2E-CILRP under sustainability considerations has not yet been addressed
in the literature. To fill this gap, in this study, planning decisions are inte-
grated and three sustainability dimensions are evaluated in the two-echelon
collaborative logistics network design. For this purpose, a description and
formulation of the problem using a mixed integer linear programming are
presented. Besides, due to the NP-hard nature of the considered problem,
a new hybrid approach with modified k -means clustering and genetic algo-
rithm is proposed to solve large-scale 2E-CILRP. Moreover, a case study of
agri-food SMEs in France is sudied to show the sustainable benefits of the
developed optimization approach on both society and environment.

The remainder of this paper is organised as follows. Section 2 provides
a review of the relevant works dealing with the integrated and collabora-
tive planning and the inventory-location-routing problem. The 2E-CILRP
is described and modelled in Section 3. Section 4 depicts the developed so-
lution methodology to solve the 2E-CILRP. The computational results are
presented in Section 5. Finally, Section 6 concludes this study and provides
some future research directions.
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2. Literature review

There are many rich review studies about collaborative freight transporta-
tion planning. For instance, we can cite (Aloui et al., 2021b; Gansterer and
Hartl, 2018; Pan et al., 2019; Verdonck et al., 2013; Guajardo and Rönnqvist,
2016; Cleophas et al., 2019). This research domain is still developing and the
number of research works dealing with it has increased during the last decade
to achieve better performance of existing systems and attain sustainability
goals (Mahmoudi et al., 2019). This section presents a brief state-of-the-art
related to this issue. It includes four parts. The first part examines the
collaborative strategy in independent urban transport planning. The second
focuses on the literature about the integrated and collaborative planning
problems to assess the existing state-of-the-art knowledge. On the other
hand, the third part reviews the literature on the classical ILRP as well as
some variants of the problem. Finaly, the fourth part presents the main
contributions of this paper with respect to the current literature.

2.1. Collaborative and independent urban planning

The logistics network planning problem has been a main research subject
for almost a century (Zheng et al., 2019). It concerns decision making at
different levels. For instance, the strategic level decisions implicated in the
distribution network planning problem are the location of facilities and the
allocation of customers and suppliers. The tactical level decision is mainly
the inventory management, while the operational planning is related to the
vehicle routing problem (Yavari et al., 2020).

However, the collaborative logistics network design problem has received
very little consideration in the literature. For instance, Tang et al. (2016)
have addressed the problem of locating urban consolidation centers in a
multi-period collaborative distribution network for horticultural products in
France by minimizing transportation costs and facility opening costs. Also,
Fernández and Sgalambro (2020) have investigated the collaborative hub lo-
cation problem by proposing a MILP to minimize the freight distribution
costs. Recently, Mrabti et al. (2020) have studied the two-echelon collabora-
tive distribution network design problem using multiobjective optimization
of emissions and costs.

In the last few years, several studies dealing with collaborative routing
problems in urban areas have been published (Cleophas et al., 2019; Aloui
et al., 2021b; Yadav and Karmakar, 2020). For example, Montoya-Torres
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et al. (2016) have investigated the collaborative routing problem in urban lo-
gistics. The authors have evaluated the economic and environmental benefits
of collaborative freight transport in the city of Bogotá, Colombia. Similarly,
Muñoz-Villamizar et al. (2019) have assessed the environmental and opera-
tional impact of the implementation of electric vehicle fleets in collaborative
urban freight distribution. Yao et al. (2019) analyzed the performance of col-
laboration in urban logistics by considering profit and CO2 emission aspects.
Moutaoukil et al. (2012) have solved the vehicle routing problem with time
windows in order to study the impact of last-mile delivery under environmen-
tal concerns. Mancini et al. (2021) have introduced the collaborative consis-
tent vehicle routing problem with workload balance. In addition, Wang et al.
(2021) have investigated the issues of collaboration between logistic operators
in the two-echelon collaborative multi-depot and multi-period vehicle rout-
ing problems from the economic perspective. Furthermore, Dolati Neghabadi
et al. (2021) have discussed the impacts of operational constraints on the ef-
fectiveness of city freight pooling. Very recently, Strulak-Wójcikiewicz and
Wagner (2021) have shown the benefits of vehicle sharing in sustainable ur-
ban goods transport.

2.2. Collaborative and integrated planning

The traditional optimization method is generally used to approach se-
quencially the different decisions in order to impose the solution obtained
from one level to the next one in the hierarchy of decisions. Although this
technique is very intuitive and simple to apply, many studies have shown
that it may lead to sub-optimal decision-making (Guerrero et al., 2013;
Darvish and Coelho, 2018; Nagy and Salhi, 2007). For this reason, sev-
eral researchers have focused, in recent years, on the integration of different
decisions in order to improve the global efficiency of logistics networks. Al-
though integrated planning is in its early stages in the field of collaborative
logistics, few studies have attempted to integrate two or three decision prob-
lems, such as Location-Routing Problem (LRP), Inventory-Routing Problem
(IRP), Location-Inventory Problem (ILP) and Inventory-Location-Routing
Problem (ILRP), in a collaborative environment.

In fact, the LRP combines the decisions about the location of distribution
centers, the allocation of customers and suppliers and the vehicle routing.
Ouhader and El Kyal (2017) have studied the two-echelon Location-Routing
Problem (2E-LRP) to evaluate the synergies of horizontal collaboration and
the combination of the operational and strategic planning in urban freight

5



transport. The authors have proposed a multi-objective MILP model to op-
timize logistics costs, minimize CO2 emissions and increase the created job
opportunities.The results of their study have revealed that horizontal collab-
oration can reduce substantially CO2 emissions and increase the transporta-
tion cost savings. However, such collaboration may minimize the number of
the created job opportunities. Consequently, Ouhader and El Kyal (2020)
have recently focused on how to balance both economic and environmental
concerns in a collaborative strategy using the ε-constraint method. How-
ever, despite the complexity of this problem, the exact method has been
used to solve only small instances of the model using a commercial solver.
The single-echelon and mono-period collaborative LRP has been studied
by Quintero-Araujo et al. (2019) and Nataraj et al. (2019) to design ur-
ban distribution networks. The authors have proposed multiple scenarios
with different levels of collaboration. These scenarios have been solved using
metaheuristics to minimize the distribution costs and evaluate a posteriori
the CO2 emissions. Combining inventory management and vehicle routing
decisions results in a complex optimization in logistics known as the IRP.
The latter has been investigated by Stellingwerf et al. (2018) in the case
of temperature-controlled food distribution. The authors have suggested a
MILP to evaluate the economic and environmental advantages of horizontal
collaboration in a single-echelon and muliple time period IRP. From a similar
perspective, Soysal et al. (2018) have addressed this problem in a collabora-
tive context between suppliers of perishable products by taking into account
environmental impacts and uncertainty of demand. In the studies of Soysal
et al. (2018) and Stellingwerf et al. (2018), the models have been solved by
the exact method using the CPLEX solver and no heuristics were proposed
to solve the large-scale problems. Recently, in (Fardi et al., 2019), a Mixed
Integer Programming (MIP) formulation and metaheuristic algorithms have
been developed to solve the single-echelon and collaborative IRP. As for the
LIP models, their objective is to determine both the storage plans at the
distribution centers (DCs) and the location allocation decisions (Zhang and
Unnikrishnan, 2016; Zheng et al., 2019). In the collaborative logistics litera-
ture, this problem has been dealt with only once by Hacardiaux and Tancrez
(2020). The authors have introduced a Mixed Integer Quadratic Program
(MIQP) to address the LIP and evaluate the environmental benefits of hor-
izontal collaboration while satisfying uncertain demands. This model has
been validated on small instances using the CPLEX solver. However, these
research works have generally focused on combining two planning decisions.
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They have evaluated only the economic and environmental dimensions of
sustainability. Recently, due to the necessity of incorporating inventory and
routing decisions in the design of logistics networks, Aloui et al. (2021a) have
conducted a preliminary study where the 2E-CILRP has been modelled, us-
ing a MILP formulation, and solved by the CPLEX solver. In this study, only
logistics costs and CO2 emissions have been evaluated and just small-sized
instances have been tested.

2.3. Inventory-location-routing problem

Different cases of the ILRP have been dealt with in the literature. The
ILRP with one echelon, involving a set of depots and a set of retailers, has
been studied by Guerrero et al. (2013) and Zhang et al. (2014). In fact, it
has been modelled using MILP formulation, by minimizing strategic as well
as tactical and operational costs. On the other hand, it has been solved
by exact and approximate methods. Likewise, Yavari et al. (2020) have
examined the multi-period and mono-echelon ILRP for perishable products
under road disruptions at certain periods. The problem has been modelled
using MILP, by maximizing the total profit, and solved applying a genetic
algorithm.

The two-echelon ILRP with a single manufacturer/supplier has been dis-
cussed in several works. For example, Hiassat et al. (2017) and Rafie-Majd
et al. (2018) have addressed it in the case of a perishable product. They have
solved this problem by applying a genetic algorithm and lagrangian relax-
ation algorithm that minimizes the total costs. Similarly, Saif-Eddine et al.
(2019) have investigated the ILRP with a single supplier and following an
inventory strategy at the customers. The problem has been formulated, by
optimizing the total supply chain cost, and solved with an improved genetic
algorithm. Saragih et al. (2019) have examined a heuristic method to solve
the two-echelon ILRP (2E-ILRP) in which one supplier, a set of depots and a
set of customers have been considered. The main objective of this study is to
determine the location of the depots, the allocation of retailers to the opened
depots, the inventory in the different logistic entities and the routing of the
vehicles from the depots to the retailers by minimizing the total cost. More
recently, Wu et al. (2021a) have studied the multi-period two-echelon ILRP
by taking into account time windows at retailers and vehicle fuel consump-
tion. To solve this problem, the authors have developed a hybrid two-stage
metaheuristic approach to reduce the total costs. Although cost efficiency
is a prerequisite for sustainable performance, it is insufficient for achieving
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Table 1: Overview of the related literature on collaborative and integrated planning, and the ILRP

Paper
Logistics

cooperation
Network
echelons

Decision problem Evaluated sustainability
Suppliers

Solution
approachLocation Inventory Routing Economic Environmental Social

Tang et al. (2016) X 3 X - - X - - Multiple Exact
Fernández and Sgalambro (2020) X 1 X - - X - - Multiple Heuristic
Mrabti et al. (2020) X 2 X - X X X - Multiple Exact
Montoya-Torres et al. (2016) X 1 - - X X X - Multiple Heuristic
Muñoz-Villamizar et al. (2019) X 1 - - X X X - Multiple Exact
Yao et al. (2019) X 1 - - - X X - Multiple Heuristic
Moutaoukil et al. (2012) X 1 - - X X X X Multiple Exact
Mancini et al. (2021) X 1 - - X X - - Multiple Heuristic
Wang et al. (2021) X 2 - - X X - - Multiple Heuristic
Dolati Neghabadi et al. (2021) X 1 - - X X - - Multiple Heuristic
Strulak-Wójcikiewicz and Wagner (2021) X 1 - - - - - X Multiple Exploratory
Ouhader and El Kyal (2017) X 2 X - X X X X Multiple Exact
Soysal et al. (2018) X 1 - X X X X - Multiple Exact
Stellingwerf et al. (2018) X 1 - X X X X - Multiple Exact
Quintero-Araujo et al. (2019) X 1 X - X X X - Multiple Heuristic
Nataraj et al. (2019) X 1 X - X X X - Multiple Heuristic
Fardi et al. (2019) X 1 - X X X - Multiple Heuristic
Ouhader and El Kyal (2020) X 2 X - X X X - Multiple Exact
Hacardiaux and Tancrez (2020) X 2 X X - X X - Multiple Exact
Aloui et al. (2021a) X 2 X X X X X - Multiple Exact
Guerrero et al. (2013) - 1 X X X X - - Single Heuristic
Zhang et al. (2014) - 1 X X X X - - Single Heuristic
Yavari et al. (2020) - 1 X X X X - - Single Heuristic
Hiassat et al. (2017) - 2 X X X X - - Single Heuristic
Rafie-Majd et al. (2018) - 2 X X X X - - Single Heuristic
Saif-Eddine et al. (2019) - 2 X X X X - - Single Heuristic
Saragih et al. (2019) - 2 X X X X - - Single Heuristic
Wu et al. (2021a) - 2 X X X X - - Single Heuristic
Karakostas et al. (2020) - 1 X X X X X - Single Heuristic
Zhalechian et al. (2016) - 2 X X X X X X Multiple Heuristic
Biuki et al. (2020) - 3 X X X X X X Multiple Heuristic

The current paper X 2 X X X X X X Multiple Heuristic
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sustainability objectives (Lin et al., 2014). In fact, there are very few stud-
ies that have incorporated social and environmental concerns in integrated
decisions optimization. For instance, Karakostas et al. (2020) have focused
on the green ILRP to optimize CO2 emissions and the total cost. They have
developed a general variable neighborhood search-based framework to ad-
dress this problem. Zhalechian et al. (2016) have examined the two-echelon
ILRP for a sustainable closed-loop supply chain by taking into account the
CO2 emission, wasted energy and the negative impacts on economic develop-
ment. Recently, Biuki et al. (2020) have addressed the multi-echelon ILRP
of perishable products to design sustainable logistics networks. They have
also developed a multi-objective mixed integer programming under carbon
tax policy and two hybrid metaheuristics to solve this problem.

2.4. Research gap and contributions of the study

A comparative overview of the existing research works and the present
one is presented in Table 1. From the latter, we notice that although the
related studies have addressed several collaborative transportation planning
issues, they suffer from the following problems: (i) Collaboration as a strat-
egy applied to optimize configurations has not been extensively studied in
the context of the integrated two-echelon logistics network planning; (ii) most
studies dealing with integrated planning have used only commercial solvers
to solve small-scale problems, but they have ignored large-scale problems;
(iii) minimal attention has been paid to the three sustainability objectives in
integrated logistics network planning; (iv) existing ILRP studies have rarely
considered multiple suppliers and ignore the collaboration in different eche-
lons.

To fill this research gap, The main contributions of this study are sum-
marized as follows: (i) implementating logistical collaboration between Less
Than Truckload (LTL) carriers in the two-echelon ILRP; (ii) proposing a
multi-objective model to design collaborative and sustainable two-echelon
logistics networks by minimizing the total cost, CO2 emissions and accident
risk; (iii) perfroming an exact resolution and proposing a hybrid heuristic
based on k -means clustering and genetic algorithms to efficiently solve the
large-scale 2E-CILRP by taking sustainability explicitly into consideration.
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3. Problem description and model formulation

3.1. Problem statement

Compared to the traditional 2E-ILRP in which the functioning of com-
panies is relatively independent, the 2E-CILRP is defined to optimize a two-
echelon distribution network through collaboration and resource sharing. In
fact, it can effectively improve the loading rate of the transport means and
improve the effectiveness of the logistics network operation. In this study, the
considered two-echelon distribution network is composed of a set of suppliers,
a set of distribution centres and a set of customers in urban areas to be served.
Fig.1 depicts the logistics network before and after collaboration. The 2E-

Figure 1: The distribution network before and after collaboration.

CILRP is formally defined in this study as a complete graph G = (V,E)
where V denotes the set of nodes including the set of customers I ={1, ...,
NCustomers}, the set of potential distribution centers D={1, ...,NDCs} and
the set of suppliers J ={1,...,NSuppliers} and A={(i,j): i,j ∈ V; i 6= j} is the
set of edges that includes the delivery and pickup arcs. Each customer has
a non-constant and deterministic demand qtij from one supplier j at each
period t ∈ T ={1, ..., Nperiods}. For regulatory constraints in urban cities,
the customers are served by a homogeneous fleet of light vehicles with a
fixed capacity Qv and a fixed cost Fv. On the other hand, customer i can
be visited no more than once by one of the vehicles and served from only
one distribution center where demands must be consolidated. In this case,
direct transport from supplier to customer is not possible. Each potential
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distribution d ∈ D has a storage capacity Cd and a fixed cost FOd when it
is open. To transport goods between suppliers and distribution centers, a
homogeneous fleet of semitrailer trucks with a fixed capacity Qs and a fixed
cost Fs is used in the first echelon.

The aim of the studied problem is to determine the distribution centres
to be opened, the customers and suppliers assignment, the routes as well
as the inventory quantity in each period to minimize the total cost of the
CDs opening, routing and storage and to reduce the CO2 emissions and the
accident rate so that the final customer demands will be met during each
time period.

The model sets, parameters and decision variables of this paper are pre-
sented in Table 2.

3.2. Sustainability indicators

In the related literature, performance assessment of the transport sys-
tems is based essentially on the economic indicators (Aloui et al., 2021b).
However, in this study, we take into account the triple bottom-lines of sus-
tainability. From the economic perspective of sustainability, we consider the
different costs related to the use of distribution centres and transport means,
the storage of products in the distribution centres and the transport activ-
ities. From the environmental point of view, we take into account the CO2

emissions resulting from transport activities and distribution centres func-
tioning. On the other hand and from the social perspective, we consider the
accident rate caused by transport.

3.2.1. Cost calculation

The cost function, in model formulation, is calculated by adding the fixed
costs (CF ) of opening distribution centres and operating transport means, the
inventory cost (CI) and the transport cost in the first and second level (CT )
by applying Equation (1).

C = CF + CI + CT (1)

The fixed costs are calculated by summing the costs of purchasing the trans-
port means and the opening costs of the selected installations (Equation
(1)).

CF =
∑
d∈D

yd FOd +
∑
t∈T

∑
d∈D

∑
j∈J

xtd,j Fs+
∑
t∈T

∑
d∈D

∑
i∈I

xtd,i Fv (2)
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Table 2: Notations and definitions used in the mathematical modelling.

Notation Description
Sets
J Set of suppliers

D Set of distribution centers
I Set of customers
A1, A2 The set of arcs of the pickup and delivery routing
T Set of planning periods
Parameters
Cd Storage capacity of the distribution center d
FOd Fixed cost of the distribution center d
ECd Average energy consumption of the distribution centre d
Qs Semitrailer truck loading capacity
Qv Vehicle loading capacity
Fs Semitrailer truck operating cost
Fv Vehicle operating cost
TsE Fuel consumption rate by an empty semitrailer truck (L/Km)
TsL Fuel consumption rate by a fully-loaded semitrailer truck (L/Km)
TvE Fuel consumption rate by an empty vehicle (L/Km)
TvL Fuel consumption rate by a fully-loaded vehicle (L/Km)
cI Unit cost of storage in distribution centre (e/Kg)
cf Fuel price per litre (e/L)
eF Fuel to CO2 emissions factor (Kg CO2/L)
ec CO2 emitted by unit energy consumption (Kg CO2/kwh)
Ac Number of accidents per year
di,j Distance between two nodes i and j : i, j ∈ J ∪ D ∪ I
qtij Demand of customer i from supplier j in the period t

Decision variables
yd Equal to 1 if the distribution center d is open 1; otherwise 0
ztid Equal to 1 if the node i is assigned to the center d ; otherwise 0, i

∈ I ∪ J, d ∈ D
Qt

jd Quantity delivered by supplier j to the center d in the period t
I tjd Inventory level of product j in the center d at period t
xti,j Equal to 1 if the arc(i ;j ) is traversed in period t by a vehi-

cle/semitrailer truck 1; otherwise 0
f t
i,j Semitrailer truck/vehicle load on the arc (i ; j ) if a semitrailer

truck/vehicle travels directly from the node i to the node j in the
period t, (i, j ) ∈ A1 ∪ A2

The inventory cost is calculated with the multiplication of the inventory
amount in each period by the unit inventory cost (Equation (3)).

CI =
∑
t∈T

∑
d∈D

∑
j∈J

cI I
t
jd (3)
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Finally, to compute the transport costs, the formula proposed by Pan et al.
(2014) is used. Indeed, this cost depends principally on the semitrailer truck/
vehicle load and the travelled distance (see Equation (4)). In the first part
of Equation (4)), the fuel consumption of an empty vehicle/semitrailer truck
(TvE) is simply multiplied by the number of the used vehicle/semitrailer
truck. In the second part, the fuel consumption related to the vehicle/semitrailer
truck load (TvL - TvE) are multiplied by the volume of products expressed
in full vehicle/semitrailer truck. To obtain the total transport costs , the
amount of fuel consumed per km is multiplied by the distance and the fuel
price and summed for all deliveries and pickups.

CT =
∑
t∈T

∑
(i,j)∈A1

dij cf [xtijTsE + (TsL − TsE)
f t
ij

Qs

]

+
∑
t∈T

∑
(i,j)∈A2

dij cf [xtijTvE + (TvL − TvE)
f t
ij

Qv

] (4)

3.2.2. Emissions calculation

As mentioned above, the CO2 emissions result from the means of trans-
port (Et) and the distribution centres functioning (Ef ). Therefore, the total
emissions of the distribution network are quantified by summing these two
components using Equation (5).

E = Et + Ef (5)

To calculate the CO2 emissions, we use the approach proposed by Pan et al.
(2014). This method is largely employed in collaborative transport planning
(Hacardiaux and Tancrez, 2020; Ouhader and El Kyal, 2017, 2020; Aloui
et al., 2021a). It has the advantage of taking into account vehicle/semitrailer
truck loading rates, which is an important factor of improvement when coop-
erating. The CO2 emissions due to the transportation depend on the weight
loaded by the vehicle/semitrailer truck, the vehicle/semitrailer truck capac-
ity and the travelled distance. To determine the total transportation CO2

emissions, we add up the collection and delivery emissions using Equation
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(6).

Et =
∑
t∈T

∑
(i,j)∈A1

dij eF [xtijTsE + (TsL − TsE)
f t
ij

Qs

]

+
∑
t∈T

∑
(i,j)∈A2

dij eF [xtijTvE + (TvL − TvE)
f t
ij

Qv

] (6)

To estimate the emissions generated by the operation of distribution centres,
we utilize the same approach applied in Aloui et al. (2021a). This approach
is based on the reports ADEME (2005, 2010) where the CO2 emissions are
estimated using a fuel conversion factor ec for the consumed energy (See
Equation (7)).

Ec =
∑
d∈D

ec ECd yd (7)

3.2.3. Accident rate calculation

Modelling social considerations is a complex task that was not given great
attention in the literature (Pan et al., 2019). In this paper, the social di-
mension is represented by the risk rate related to traffic accidents. Indeed,
previous studies have shown that this rate depends principally on the trav-
elled distance (Abdullahi et al., 2021). To do this, we adopt the formula
proposed by (Paľsaitis and Petraška, 2012) to estimate the accident rate Ar

per thousand kilometers (Equation (8)).

Ar =
Ac 1000

Distance 365
(8)

As can be seen in Equation (8), distance is inversely proportional to accident
rates. Therefore, we estimate the accident rate A for the travelled distance
dij from nodes i and j with respect to the reference distance dref . Finally,
the accident rate A is calculated by applying Equation (9).

A =
∑
t∈T

∑
(i,j)∈A1∪A2

Aref
di,j
dref

xti,j (9)
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3.3. Model formulation for 2E-CILRP
The model presented in this section relies on a recently-proposed 2E-

CILRP formulation (Aloui et al., 2021a) in which three objective functions of
minimizing costs (10), reducing CO2 emissions (11) and minimizing accident
rates (12) are considered.

Minimize C (10)

Minimize E (11)

Minimize A (12)

3.3.1. Location-allocation constraints

Constraints (13) ensure that customers and suppliers can be assigned
to a distribution center only if it is open. Constraints (14) force each cus-
tomer (respectively supplier) to be assigned to only one distribution center.
Constraints (15) and (16) guarantee that the capacities of the distribution
centers are not exceeded. Constraints (17)-(22) eliminate the routes that do
not start and finish at the same distribution center. They also allow allo-
cating customers and suppliers. More precisely, constraints (17) and (18)
ensure that arc (j, d) is traversed if and only if the supplier j is assigned
to the distribution center d at time t. Similarly, constraints (20) and (21)
eliminate the infeasible routes in the second echelon (Distribution centers-
customers). Constraints (19) and (22) guarantee that the routes between
two suppliers/customers are eliminated if they are assigned to two different
distribution centers.

ztid ≤ yd ∀t ∈ T, ∀i ∈ I ∪ J, ∀d ∈ D (13)∑
d∈D

ztid ≤ 1 ∀t ∈ T, ∀i ∈ I ∪ J (14)∑
j∈J

∑
i∈I

ztid q
t
ij ≤ Cd zd ∀t ∈ T, ∀d ∈ D (15)∑

j∈J

Qt
jd ≤ Cd zd ∀t ∈ T, ∀d ∈ D (16)

xtdj ≤ ztjd ∀t ∈ T, ∀j ∈ J, ∀d ∈ D (17)

xtjd ≤ ztjd ∀t ∈ T, ∀j ∈ J, ∀d ∈ D (18)

xtjj′ + ztjd + ztj′d′ ≤ 2 ∀t ∈ T, ∀j, j′ ∈ J, ∀d, d′ ∈ D (19)

xtdi ≤ ztid ∀t ∈ T, ∀i ∈ I, ∀d ∈ D (20)
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xtid ≤ ztid ∀t ∈ T, ∀i ∈ I, ∀d ∈ D (21)

xtii′ + ztid + zti′d′ ≤ 2 ∀t ∈ T, ∀i, i′ ∈ I, ∀d, d′ ∈ D (22)

3.3.2. Maximum level inventory policy constraints

Constraints (23) define the initial inventory level in the distribution cen-
ters. Constraints (24) calculate the stock level in the distribution centers at
each planning period. Constraints (25) ensure that the inventory amount
at each distribution center does not exceed the available storage capacity.
Constraints (26) express that the amount of goods to be delivered to the
distribution center d will never exceed its capacity for each planning period.

I0
jd = 0 ∀j ∈ J, ∀d ∈ D (23)

I tjd = Qt
jd + I t−1

jd −
∑
i∈I

qtij z
t
id ∀j ∈ J, d ∈ D, t ∈ T (24)

I tjd ≤ Cd yd ∀j ∈ J, ∀d ∈ D, ∀t ∈ T (25)∑
j∈J

Qt
jd ≤ Cd yd −

∑
j∈J

I t−1
jd ∀d ∈ D, ∀t ∈ T (26)

3.3.3. Constraints in the first echelon

Constraints (27) ensure that each supplier must be visited only once at
most in each period. Constraints (28) and (29) ensure an equal number of
incoming and outgoing arcs. Constraints (30) guarantee the flow conservation
for the collection process. Constraints (31) ensure that the loaded quantity
on the semitrailer will not exceed its capacity on the arc (i, j ). Constraints
(32) guarantee that the semitrailer truck is empty when starting from an
open distribution center. ∑

i∈J∪D

xtij ≤ 1 ∀t ∈ T, ∀j ∈ J (27)∑
j∈J

xtdj =
∑
j∈J

xtjd ∀t ∈ T, ∀d ∈ D (28)∑
i∈J∪D

xtij =
∑

i∈J∪D

xtji ∀t ∈ T, ∀j ∈ J (29)∑
i∈J∪D

f t
ji −

∑
i∈J∪D

f t
ij =

∑
d∈D

Qt
jd ∀t ∈ T, ∀j ∈ J (30)

f t
ij ≤ Qs x

t
ij ∀t ∈ T, ∀i, j ∈ J ∪D (31)
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∑
j∈J

f t
dj ≤ 0 ∀t ∈ T, ∀d ∈ D (32)

3.3.4. Constraints in the second echelon

Constraints (33)-(38) concern the delivery process. They present condi-
tions similar to those of the pickup process (27)-(28);∑

i∈I∪D

xtji ≤ 1 ∀t ∈ T, ∀i ∈ I (33)∑
i∈I

xtdi =
∑
i∈I

xtid ∀t ∈ T, ∀d ∈ D (34)∑
j∈I∪D

xtji =
∑

j∈I∪D

xtij ∀t ∈ T, ∀i ∈ I (35)∑
j∈I∪D

f t
ji −

∑
j∈J∪D

f t
ij =

∑
j∈J

qtij ∀t ∈ T, ∀i ∈ I (36)

f t
ij ≤ Qv x

t
ij ∀t ∈ T, ∀i, j ∈ I ∪D (37)∑

i∈I

f t
id ≤ 0 ∀t ∈ T, ∀d ∈ D (38)

3.3.5. Other constraints

Constraints (39)-(43) specify the nature of each decision variable used in
this modelling.

yd ∈ {0, 1} ∀d ∈ D (39)

ztid ∈ {0, 1} ∀t ∈ T,∀d ∈ D, ∀i ∈ I ∪ J (40)

xtij ∈ {0, 1} ∀t ∈ T,∀(i, j) ∈ A1 ∪ A2 (41)

f t
ij ≥ 0 ∀t ∈ T,∀(i, j) ∈ A1 ∪ A2 (42)

Qt
jd, I

t
jd ≥ 0 ∀t ∈ T,∀d ∈ D, ∀j ∈ J (43)

4. Solution approach

The 2E-CILRP is a practical subject of logistics network optimization.
Our model aims to find out the optimal location, the inventory and the rout-
ing of transport means while minimising costs, emissions and accident risk.
As mentioned before, the ILRP is known as an NP-hard problem, which
means that it is difficult for exact methods to find the optimal solutions
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for large-scale problems within a reasonable computation time. Therefore,
heuristics and meta-heuristics provide high quality solutions for large-scale
instances (Goodarzian et al., 2021). The literature shows that hybrid ap-
proaches, including k -means clustering, can reduce the complexity of urban
logistics networks and improve computational efficiency for large-scale prob-
lems (Defryn and Sörensen, 2017; Wang et al., 2021, 2020b). Therefore, a
hybrid heuristic approach composed of a modified k-means clustering and
a genetic algorithms is introduced to solve the 2E-CILRP. The flowchart of
the proposed heuristic approach is shown in Fig. 2. The parameters used in
this flowchart are described as follows: k is the number of clusters formed,
Numgen is the current number of generations, Pop is the population size of
individuals and Nmax is the maximum number of generations.

As depicted in Fig. 2, the proposed approach divides the problem into
two steps. The first one consists in grouping and assigning customers and
suppliers to the appropriate distribution centers using a modified k -means
clustering algorithm. As costs, emissions and accident risk related to trans-
portation are proportional to the travelled distance, the Euclidean distance
is adapted to evaluate the similarities of the elements in each cluster. More
precisely, customers geographically close to one another and with similar
products are placed in the same cluster and assigned to the nearest distri-
bution center. Then, based on the clustering and assignment results, the
routing in both echelons and the inventory levels in the distribution cen-
ters are optimized by the genetic algorithm. Finally, the three considered
sustainability objectives are evaluated and the best logistic configuration is
obtained. The clustering procedure and the genetic algorithm are presented
in detail in the following sub-sections.

4.1. Clustering procedure

Clustering belongs to the family of unsupervised learning algorithms
which consists of clustering a set of data according to specific criteria such as
the distance function. It is one of the most efficient methods used to reduce
the complexity of large-scale networks and improve computation time (Sever
et al., 2018). The traditional clustering algorithms, such as k -medoids and
k -means, have been widely adapted in vehicle routing and location problems
(Meng et al., 2018; Rabbani et al., 2017; Wang et al., 2017, 2018, 2020a). In
fact, the second algorithm is commonly used in the literature due to its of
reproduction, wide application and ability to monitor the clustering opera-
tion. In this study, the k -means clustering procedure is adapted to assign
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Figure 2: Flowchart of the proposed clustering-based approach to solve the 2E-CILRP.
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customers and suppliers to the distribution centres according to the euclidean
distance and product similarity. The pseudo-code of the modified k -means
clustering algorithm is described in Algorithm 1.

Algorithm 1: Modified k means clustering algorithm

Input: A set I = {I1, I2, . . . , INc} of customers data, J = {J1, J2,
. . . , JNs} of suppliers data, D = {D1, D2, . . . , DNd} of DCs
data and P = {1, 2, . . . , Nper} of periodes

Output: Clustering and assignment results
1 for t= 1 to P do
2 Select nodes coordinates, demand matrix and DCs capacities
3 Set k as the number of clusters on the basis of the number of DCs
4 Select the DCs as the initial central points of each cluster
5 repeat
6 for i= 1 to I do
7 Calculate the distances between customer i and each

center k
8 Assign customer i to the closest and verified center point
9 Update the k clusters and caluclate the new center points

10 end

11 until Maximum similarity is attained and the clusters are stable
12 Merging and swapping clusters to minimize the number of

clusters
13 end
14 return Clusters results

As described in Algorithm 1, the geographical positions of suppliers, dis-
tribution centres, customers, the capacities of the distribution centres and
the demands of the customers are imported to construct the datasets. Sec-
ondly, we define the number k of maximum clusters to be formed based on the
number of the distribution centres that will be selected as k central points.
Third, all elements are traversed and the distances between each element
and the central points are calculated. Fourth, each element is assigned to
the central points according to the proximity of distances and product simi-
larity. In this step, the capacity constraints of the central points are checked.
Fifth, the k clusters are updated and the new central points are calculated.
The last three steps are applied until all customers will be assigned. Then,
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we perform swap distribution centre location in order to avoid local optima.
In addition, the clusters are merged by respecting the capacity constraints
to minimize the number of distribution centres to be opened. The different
steps of this algorithm are iterated until the formation of the clusters of all
considered planning periods.

4.2. Genetic algorithm

The genetic algorithm, which was first announced in 1970s by Holland
et al. (1992), is one of the approaches intensively applied to find good so-
lutions to NP-hard optimization problems through its evolutionary process.
In this study, a genetic algorithm is developed to deal with the routing and
inventory problem. The pseudo code of the introduced algorithm is given by
Algorithm 2. First, an initial population generation of Pop chromosomes is
generated. Each chromosome should contain relevant information about the
first echelon routing, the inventory plan and the second echelon routing plan
at each period. The chromosome takes the form of a matrix with T rows
and three strings that represent the pickup plan, the inventory in each dis-
tribution center and the delivery plan, respectively. To construct the routes,
we apply a local search algorithm based on the nearest neighbor rules; the
shortest distance. Then, the considered objectives are evaluated and a rank
selection, relying on the economic function, is conducted. Then, the initial
population is improved by two-point crossover and mutation operators in or-
der to produce two offspring with a certain probability. This process will be
continued until the maximum number of generations are attained. Finally,
the best solution with low cost is selected .

5. Results, analysis and discussion

This section presents the computational experiments carried out to as-
sess the effectiveness of the proposed approach in solving the 2E-CILRP and
discuss managerial insights based on the real-world case study results. The
heuristic was coded in Python 3. The MILP model was solved with IBM
ILOG CPLEX 12.9.0 by normalizing and aggregating the three considered
sustainability objectives, as discussed in Aloui et al. (2021a). All the exper-
iments were solved in a PC running Windows 10 Home 64-bit with an Intel
Core i5-10210U@ 1.6 GHz and 16 GB RAM.

To the best of our knowledge, there are no benchmark instances for the
2E-CILRP with sustainability concerns. Therefore, numerical tests on 13

21



Algorithm 2: Genetic algorithm

Input: Cluster data, maximum load transport fleet, set parameters
Output: Best solution

1 Generate the initial population
2 while Numgen < Nmax do
3 Evaluate the objectives function
4 Selection of parents based on the cost function
5 Realize two-point crossover and mutation operations
6 Generate the offspring populations and assess the objectives

function
7 Combine offspring with the initial population

8 end
9 Select the best cost solution and assess the associated emissions and

accident risk
10 return Best configuration

randomly generated small-scale and medium-scale instances are performed
and a comparison between the heuristic and CPLEX results is carried out
in Section 5.1 to evaluate the performance of the suggested approach. For
each benchmark instance, the demands between each supplier-customer pair
were randomly generated in the interval [1000,3000]. Similarly, the co-
ordinates on the x-axis and y-axis of suppliers, customers and distribu-
tion centers are randomly generated in a square of size 200×200. The
distance between two nodes is calculated based on the Euclidean distance
dij=

√
(xi − xj)2 + (yi − yj)2, where (xi, yi) are the coordinates of node i.

The parameter used in all computational experiments are derived from
the literature and are listed in Table 3. For the proposed heuristic, the
population size Pop and the maximum number of iterations Nmax are 100
and 1000, respectively. The crossover and mutation probability are 0.8 and
0.05, respectively (Wang et al., 2018).

5.1. Experiments on small instances

The performance of the proposed heuristic is assessed by means of dis-
tance to solutions found by the CPLEX solver of the MILP model and com-
putation time. For each instance, the best solutions found by the heuristic
over 10 runs and the CPLEX results with a maximum CPU time of 3600
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Table 3: Parameters setting for the numerical experiments

Parameter Value Unit Source
ECd 10000 kwh ADEME (2010)
ec 0.087 kg CO2/L ADEME (2010)
Cd 20000 Kg Assumption
FOd 6000 € Wu et al. (2021b)
Fs 300 € Soysal et al. (2018)
Qs 20000 Kg Soysal et al. (2018)
TsE 0.15 (L/km) Hickman et al. (1999)
TsL 0.31 (L/km) Hickman et al. (1999)
Fv 200 € Soysal et al. (2018)
Qv 10000 Kg Soysal et al. (2018)
TvE 0.13 (L/km) Hickman et al. (1999)
TvL 0.15 (L/km) Hickman et al. (1999)
Cs 0.01 €/Kg Stellingwerf et al. (2018)
eF 2.66 (kg CO2/L) Tassou et al. (2009)
cf 1.5 (€/L) Aloui et al. (2021a)
Ac 2768 (€/L) Mrabti et al. (2020)

seconds are reported. The computational results of 13 instances are sum-
marized in Table 4. More specifically, the first five columns enumerate the
characteristics of each instance. Columns 6, 7 and 8 present the total cost
obtained by the CPLEX solver and the heuristic as well as the percentage
gap between these two solutions, respectively. Columns 9, 10 and 11 show
the total emissions obtained by the CPLEX solver, the total emissions found
by the proposed heuristic and the solution quality deviation of the heuristic
with the CPLEX solver, respectively. Columns 12 to 14 report the accident
risk provided by the MILP model and the heuristic approach as well as the
percentage gap between the latter solution and that of CPLEX, respectively.
Columns 15 to 16 show the CPU time (in seconds) of the CPLEX solver and
the proposed heuristic. The percentage difference between the solution of
the proposed heuristic and the CPLEX solver is estimated as follows:
%Gap=100 Heuristic−CPLEX

CPLEX
.

As shown in Table 4, the proposed heuristic can obtain solutions near to
those obtained by the CPLEX solver in a much less computation time in the
first ten instances. In fact, the cost gap is between -1.03% and 3.75%, with
an average of 0.73%. The emissions gap ranges from 1.13% to 12.18%, with
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Table 4: Summary of test results for the generated instances.

Instance characteristics Total costs Total emissions Accident risk CPU time (s)

ID J D I T CPLEX Heuristic % Gap CPLEX Heuristic % Gap CPLEX Heuristic % Gap CPLEX Heuristic

I1 2 2 7 3 15224,73 15253,88 0,19 2769,28 2800,53 1,13 17,34 18,31 5,56 2,54 3,41

I2 3 3 7 3 8737,82 8784,11 0,53 1873,56 2101,84 12,18 18,12 20,45 12,85 33,08 4,65

I3 3 3 8 3 15815,57 16134,37 2,02 2973,38 3154,59 6,09 20,10 23,21 15,46 80,54 4,18

I4 3 3 9 3 8787,18 8848,07 0,69 2107,35 2216,78 5,19 20,38 21,74 6,68 134,54 12,84

I5 3 3 10 3 16105,25 16109,59 0,03 3120,34 3312,91 6,17 21,34 23,93 12,15 379,70 35,32

I6 3 3 12 3 17268,81 17363,34 0,55 3425,95 3836,25 11,98 27,85 33,69 20,98 954,23 32,12

I7 3 3 13 2 14977,92 14823,40 -1,03 2754,65 2932,69 6,46 17,20 19,79 15,05 1845,15 45,32

I8 3 3 13 3 16945,12 17044,94 0,59 3119,84 3475,64 11,40 23,62 28,73 21,61 2680,13 92,54

I9 3 3 14 3 16762,14 17360,66 3,57 3499,40 3831,46 9,49 27,14 33,34 22,86 3251,43 132,27

I10 4 4 15 3 23418,88 23467,00 0,21 4605,88 4839,77 5,08 30,63 33,57 9,60 3570,12 250,38

I11 4 4 17 3 33981,15 26805,04 -21,12 6955,41 6041,38 -13,14 61,42 57,57 -6,28 3600 386,64

I12 4 4 17 4 NA 32165,54 NA NA 74315,34 NA NA 61,43 NA NA 421,54

I13 2 2 20 4 NA 28654,34 NA NA 6431,54 NA NA 59,31 NA NA 432,76

Average 17093,14 18678,02 -1,25 3382,28 9176,21 5,64 25,92 33,47 12,41 1502,86 142,61

Figure 3: Performance of the proposed heuristic and the CPLEX solver

an average of 7.52%. Regarding the social aspects, the proposed heuristic
provides feasible solutions with a gap varying between 5.56% to 22.86%, with
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an average of 14.28% in the first ten instances. It is important to note that
the solutions obtained by the heuristic approach are close to the optimal so-
lutions for the instances I1 to I7, especially for the economic objective. For
instance I11, our heuristic produces better solutions than CPLEX by almost
21% of the total costs, 13% of the total CO2 emissions and 6% of accident
risk. Moreover, it is obvious that the CPLEX solver cannot find any feasi-
ble solution for the instances I12 and I13 within a given time limit. From
a computational efficiency perspective, the CPU time required for CPLEX
solutions increases exponentially with the rise of the problem size, while the
time of the heuristic is nearly linear, as shown in Fig. 3. Overall, the com-
parison results show that the proposed heuristic can rapidly find reasonably
good and feasible solutions for 2E-CILRP problems as the gaps between the
solutions are not significant. Consequently, our heuristic can be used to
efficiently solve large problems in a reasonable time.

5.2. Performance evaluation on large-sized instances: Algorithm comparison

To verify and validate the effectiveness of the GA algorithm in the pro-
posed approach, GA was compared with the most popular heuristic algo-
rithms for solving logistic optimization problems, namely k -nearest neighbor
algorithm (KNNA) (Mohammed et al., 2017) and particle swarm optimiza-
tion (PSO) (Chrouta et al., 2021; Goksal et al., 2013). The algorithms were
tested and compared using 10 different randomly generated instances with
medium and large-size. In the computational experiments, the maximum
iteration number was set to 10000 iterations for the KNNA algorithm, per-
sonal and social learning confidences were fixed at 2, and an inertia weight
was set to 0.8 for PSO algorithm. The comparison results are presented in
Table 5.

As shown in Table 5, the proposed heuristic based on GA algorithm out-
performs the other two algorithms in terms of total costs, emissions and acci-
dent risk in all tested instances.In fact, the average total costs of the proposed
heuristic is lower than that obtained by the KNNA and PSO algorithms by
2.73% and 8.16%, respectively. In terms of emissions, the GA-based heuristic
allowed saving 8.16% of the total average emissions, compared with KNNA
algorithm, and 10.73% compared with PSO algorithm. In addition, the pro-
posed algorithm can reduce the average accident risk by 3.37%, compared
to KNNA algorithm, and 8.43% compared to PSO. For computation perfor-
mance, the proposed algorithm performs better than the KNNA algorithm.
In some cases, PSO algorithm finds lower quality solutions than those found
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Table 5: Comparison results with two optimization algorithms

Instance
GA KNNA PSO

Costs Emissions Risk CPU Costs Emissions Risk CPU Costs Emissions Risk CPU

I1 8873,13 1910,94 15,53 36,05 9187,76 2243,37 17,46 41,87 9235,65 2276,43 18,03 37,49

I2 10974,83 2419,27 30,37 44,36 11499,62 2573,75 31,48 45,65 11643,66 2622,01 31,72 49,09

I3 11574,15 2800,87 37,55 46,32 12264,02 2991,01 38,32 51,43 11954,12 2875,33 37,99 51,80

I4 11813,21 3217,44 45,40 48,03 12839,68 3468,00 45,46 63,51 12887,01 3699,56 45,89 52,41

I5 12684,33 3568,83 52,72 62,40 12891,13 3939,68 52,93 72,11 12932,35 3712,89 53,01 61,19

I6 13007,05 3364,23 49,00 54,45 12989,39 3691,23 47,76 79,15 13010,79 3721,25 48,59 60,89

I7 16592,60 2957,43 23,10 70,43 16608,85 2986,56 23,67 86,49 16624,78 3015,13 24,27 66,89

I8 20128,25 4178,17 49,26 112,43 20011,85 4877,91 54,87 93,45 20128,64 4214,43 55,58 97,69

I9 20173,33 4540,15 54,46 128,54 21229,51 4780,15 56,50 136,11 21636,93 5869,46 71,94 116,11

I10 24798,85 7764,58 83,00 127,54 25321,43 8431,54 87,28 142,98 27497,98 9128,27 93,93 118,40

Average 15061,97 3672,19 44,04 73,06 15484,32 3998,32 45,57 81,28 15755,19 4113,48 48,10 71,19

by our algorithm with less computational time. Therefore, we can conclude
that the GA-based heuristic is superior to both algorithms for integrated and
collaborative optimization of two-echelon logistic networks.

5.3. Case study

In order to demonstrate the feasibility and effectiveness of the introduced
optimization model in the real world, a case study of four French SMEs in
the agri-food sector is discussed in this section. It consists of four companies
(S1, S2, S3 and S4), four distribution centers (DC1, DC2, DC3 and DC4),
39 customers (C1 to C39) and 4 planning periods; each of which represents a
week. The demand matrix for each client at each week is given in Table A.7.
The companies in question are anonymized for confidentiality reasons. The
geographical positions of each node are presented in Fig. 4 where colours
are used to differentiate suppliers and their customers. For example, blue
color represents supplier S1 and their customers. In the current situation,
each company serves their customers independently of the others while, in
a multi-period collaborative strategy, the companies share the means and
resources to serve their customers in urban areas. The results optimization
results obtained before and after collaboration of the three dimensions of
sustainability, namely the total cost, total CO2 emissions and accident risk,
are summarized in Table 6. The location of distribution centers, the inventory
management and the routing plans for each planning week are presented in
Fig. 5 and Fig. 6, respectively.

The obtained results reveal that the proposed collaborative strategy af-
fects positively the sustainability of transportation operations. Indeed, from
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Figure 4: Suppliers, distribution centers and customers’ locations in the case study.

Table 6: Summary of the results obtained in the initial and collaborative scenarios.

Sustainability Indicator
Integrated decisions planning

% Saving
Initial Collaborative

Total costs (€) 35553,26 28422,48 20,06

Total CO2 emissions (Kg CO2) 6617,87 5534,64 16,37

Accident risk (% ) 56,49 52,15 7,69

an economic point of view, the total cost decreases by 20.06% after collabora-
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Figure 5: Initial distribution plan.

tion in 2E-ILRP. This reduction is due to the fact that collaboration between
several companies can reduce the resources to be exploited. For example, in
this case study, companies can benefit from resource sharing to minimize the
number of distribution centres to be used and the number of routes through
massification of flows, as shown in Fig. 6. From an environmental point
of view, periodic cooperation can save CO2 emissions to 16% through the
sharing of distribution centres and the consolidation of goods. With regard
to the assessed social dimension, the case study results show that joint plan-
ning reduces the risk of accidents by 7.69%, compared to the autonomous
situation by reducing the total distance travelled in all periods. Through
customer reallocation and joint route planning, these distances can be saved.
Vehicle and semitrailer truck loading rates can also be increased to achieve
economies of scale and reduce the number of vehicles in the city. In summary,
the optimization of 2E-CILRP offers considerable benefits to logistics com-
panies that wish to improve the sustainability of their logistics operations by
reducing logistics costs, CO2 emissions and accident risk.
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Figure 6: Distribution plan after collaboration.

5.4. Sensitivity analysis

As this paper discusses the collaboration and resource sharing in the
inventory-location-routing problem, and as demands, distribution center ca-
pacities, vehicle and semitrailer trucks capacities are important input param-
eters, a sensitivity analysis is performed in this section to reveal the impact
of varying these parameters on sustainability objectives and savings achieved
by our model. For this reason, we considered multiplier coefficients for the
base values of these parameters and varied these coefficients for different val-
ues. For example, the base capacities of vehicles and semitrailer trucks were
multiplied by the following values: 0.8, 0.9, 1, 1.1, 1.2, 1.3. The results of
the sensitivity analysis are presented in Table A.8 in Appendix A. Fig. 7
shows the savings in terms of costs, emissions and accident risk, compared
to the autonomous situation in various scenarios.

According to the results illustrated in Table A8, the variation in vehicles
and semitrailer trucks capacities leads to a change in the sustainability ob-
jectives in both configurations (before and after the collaboration). In fact,
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(a) Effect of changing vehicles capacity. (b) Effect of changing semitrailer trucks capacity.

(c) Effect of changing CDs capacity.
(d) Effect of varying demands.

Figure 7: Impact of varying parameters on sustainability savings.

the use of transport means with high capacities allows minimizing total cost,
emissions and accident risks. This reduction is due to the decrease of the
number of trips by increasing the transport means loading rate. However,
the decrease or increase of vehicles and semitrailer trucks capacities provides
almost the same savings in the various scenarios. In addition, the results
indicate that with an increase in distribution centers’ capacities, the costs,
emission levels and accident risks decrease continuously. Besides, as shown
in Fig. 7, when the capacities exceed a certain value, the savings from co-
operation compared to the non-collaborative case become significant. This
finding can be interpreted by the reduction of the travelled distances and the
number of used distribution centers as well as by the increase of the inventory
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quantities by relaxing the distribution centers’ capacities. For example, in
the case where the capacities are multiplied by 3, our model opens only one
distribution center and increases the amount of inventory in order to reduce
the number of trips in the first echelon. As a result, the capacities of distri-
bution centers have significant effects on the savings and decision making in
general. Finally, we may deduce that high demand variation requires send-
ing more products, which increases costs, emissions and accident risks. For
the savings achieved through collaboration, the variation in demand impacts
considerably the emissions and accident risk savings, as shown in Fig. 7.
Nevertheless, the cost savings are very similar in most scenarios.

Through this analysis, we find that the distribution centers capacities
and demands affect the resulting savings from the collaboration. Therefore,
in order to achieve significant savings, decision-makers should adjust these
parameters and choose high capacities values.

6. Conclusion

In the modern era, logistics network management by simultaneously ad-
dressing several challenges, such as integrated decision making and sustain-
ability concerns, constitutes a major issue in the distribution network design.
This study incorporated multi-period location, inventory, and routing deci-
sions with an effective managerial strategy from a sustainable and efficient
two-echelon transportation network. In fact, logistics collaboration was stud-
ied to analyze the effects of resource sharing on the sustainability of logistics
networks. Firstly, a multi-objective model is developed to formulate the 2E-
CILRP with the minimum logistic cost, CO2 emissions and accident risk.
Secondly, due to the complexity of the examined problem, a hybrid heuris-
tic was suggested to solve large-scale problems. The heuristic combines a
k -means clustering algorithm and a genetic algorithm. To evaluate the per-
formance of the proposed heuristic, comparison of the obtained results with
those provided with exact method on small and medium-sized instances was
performed. Experimental findings showed that the heuristic is capable to
generate good solutions in a reasonable computation time. Finally, a case
study in French agri-food sector was discussed to evaluate the practical appli-
cation of the proposed model and approach in the real world. The obtained
results demonstrated that collaboration between companies is beneficial for
reducing sustainability impacts. Comparing with the stand-alone situation,
the sharing of resources and joint planning can achieve savings of almost 20%
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in logistics costs, around 16% in resulting CO2 emissions and also a decrease
of nearly 8% in accident risk.

This study has some important managerial implications that can be sum-
marized as follows: (i) this research can be used to highlight the importance
of integrating strategic, tactical and operational decisions in the network de-
sign with sustainability performance evaluation; (ii) the proposed model and
the solution approach can help logistics and transport decision-makers to
design two-echelon and multi-period network; (iii) the sharing of resources,
such as transportation means and distribution centers in multiple time pe-
riods, can improve the utilization of resources, achieve economies of scale,
and reduce social-environmental aspects. However, there are several factors
that can block its success and continuity, namely the compatibility of the
products, the confidence, and the efficiency of information sharing between
the stakeholders.

Although this study efficiently formulated and solved the 2E-CILRP for
a sustainable transportation system, several suggestions are recommended
for future research. Firstly, this work can be extended to incorporate multi-
objective approaches (NSGA-II, MOPSO, etc.) to find Pareto efficient fron-
tiers. Secondly, it is possible to integrate uncertainties and disruptions
sources in the future development of the optimization model. Finally, the
fair benefit-sharing mechanisms may be incorporated into the optimization
approach to ensure the continuity and success of the collaborative strategy
between participants.
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Appendix A. Demand data and sensitivity analysis results

Table A.7: Customers’ demand (Kg).

Customer From supplier Week 1 Week 2 Week 3 Week 4

1 1 1046 1183 1493 1907

2 2 144 1547 1304 705

3 2 1543 1015 258 1338

4 1 1969 116 1688 1341

5 1 432 1855 616 102

6 2 1842 1345 1888 413

7 3 1123 551 1002 239

8 1 759 659 122 465

9 3 789 863 1680 493

10 1 834 1723 507 1613

11 3 1718 751 629 895

12 1 955 1492 295 1433

13 1 1071 1729 269 155

14 3 303 952 1111 1249

15 1 1057 1849 301 1204

16 4 1372 1938 758 1433

17 4 1886 603 1599 1445

18 3 1247 255 1822 1644

19 2 1237 914 817 819

20 4 1695 1683 125 481

21 4 1436 1901 1432 1200

22 4 1947 1234 1288 868

23 3 609 1892 1500 1375

24 3 430 1932 1676 1507

25 2 1939 999 1664 159

26 1 1867 631 101 879

27 2 848 169 211 740

28 3 1028 952 653 696

29 1 1641 720 835 386

30 2 540 1424 967 508

31 4 1912 220 784 261

32 4 1222 1493 941 1094

33 1 160 1459 775 253

34 2 312 1452 1636 607

35 4 310 1956 971 1937

36 3 460 947 1418 174

37 3 511 611 629 1483

38 2 821 1922 1421 1867

39 1 321 303 600 1738
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Table A.8: Sensitivity analysis results.

Coeficient
Without collaboartion With collaboartion

Costs (€) Emissions (kg) Accident risk (%) Costs (€) Emissions (kg) Accident risk (%)

Vehicles capacity

0,8 36639,33 6772,21 59,68 29142,95 5750,69 56,61

0,9 36218,75 6735,30 58,96 28481,27 5640,08 54,31

1 35553,26 6617,87 56,50 28422,48 5534,64 52,15

1,1 35114,83 6548,93 55,07 28228,54 5545,52 52,45

1,2 34453,50 6438,95 52,70 27351,90 5408,08 49,50

1,3 34028,93 6394,90 51,84 27155,10 5413,82 49,66

Semitrailer trucks capacity

0,8 35528,53 6958,50 61,82 29163,09 5786,81 56,15

0,9 35924,83 6742,86 57,79 28563,10 5630,47 53,45

1 35553,26 6617,87 56,49 28422,48 5534,64 52,15

1,1 35536,96 6588,63 56,50 28084,67 5466,85 51,15

1,2 35523,38 6564,20 56,50 27747,79 5400,70 50,15

1,3 35511,89 6543,66 56,50 27735,23 5378,18 50,15

CDs capacity

0,8 28796,01 6025,19 58,34 35528,53 6755,28 61,82

0,9 35924,83 6624,29 57,79 28563,10 5630,47 53,45

1 35553,26 6617,87 56,50 28422,48 5534,64 52,16

1,1 35390,27 7013,91 53,17 27663,41 5253,78 47,33

1,2 35453,78 6922,54 52,47 27578,66 5186,91 46,64

1,3 35435,88 6843,14 51,87 27452,37 5128,62 45,66

2 35572,36 6751,70 51,18 27516,95 5046,67 45,09

3 35572,37 6751,80 51,18 12200,98 3025,27 38,13

4 35572,38 6751,90 51,18 12193,01 2730,68 34,41

5 12193,02 2730,69 34,41 35572,39 6751,10 51,17

Demand

0,5 33634,54 5875,97 45,60 26196,47 4683,02 39,23

0,7 33628,54 5954,72 45,60 26401,98 4906,66 41,43

0,9 34711,39 6296,14 50,88 27199,85 5157,29 45,37

1 35553,26 6617,87 56,49 28422,48 5534,64 52,15

1,2 36669,32 6920,03 61,58 29464,47 6147,95 61,22
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