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Introduction

The logistics service networks are important components that allow the supply chain to achieve a variety of objectives, ranging from low cost to high responsiveness, and improve its overall profitability and competitiveness [START_REF] Javid | Incorporating location, routing and inventory decisions in supply chain network design[END_REF][START_REF] Chen | Supply chain collaboration for sustainability: A literature review and future research agenda[END_REF]. In fact, the design and management of the logistics networks are critical issues in any supply chain optimization due to their crucial role in the development of society and the protection of environment [START_REF] Comi | Last-mile delivering: Analysis of environment-friendly transport[END_REF][START_REF] Muñoz-Villamizar | The impact of shipment consolidation strategies for green home delivery: a case study in a mexican retail company[END_REF][START_REF] Kermanshah | Cyber-physical technologies in freight operations and sustainability: A case study of smart gps technology in trucking[END_REF][START_REF] Mahmoudi | Determining the relative importance of sustainability evaluation criteria of urban transportation network[END_REF][START_REF] Kiba-Janiak | An assessment tool of the formulation and implementation a sustainable integrated passenger and freight transport strategies. an example of selected european and australian cities[END_REF]. Thus, to remain competitive in today's growing market, companies should implement efficient strategies for designing and managing their distribution networks for sustainable cities. In this direction, logistics collaboration between companies can considerably increase their logistics operations efficiencies and strengthen the city's growth in socio-environmental terms [START_REF] Russo | A multi-method approach to design urban logistics hubs for cooperative use[END_REF][START_REF] Vargas | Towards sustainable collaborative logistics using specialist planning algorithms and a gain-sharing business model: A uk case study[END_REF][START_REF] Strulak-Wójcikiewicz | Exploring opportunities of using the sharing economy in sustainable urban freight transport[END_REF]. In logistics networks, collaboration can be horizontal or vertical. The first type occurs when logistics stakeholders at different levels of the supply chain, such as the manufacturers, distributors, carriers and retailers, pool their resources and performance information to enhance the operational efficiency [START_REF] Ferrell | Horizontal collaboration: opportunities for improved logistics planning[END_REF][START_REF] Dolati Neghabadi | Impact of operational constraints in city logistics pooling efficiency[END_REF][START_REF] Ferrero | Car-sharing services: An annotated review[END_REF]. However, the second type involves companies at the same level of the supply chain performing similar activities. These entreprises can benefit from economies of scale by working together, e.g. cooperation between two wholesalers [START_REF] Pan | Horizontal collaborative transport: survey of solutions and practical implementation issues[END_REF].

Recently, interest in collaborative practices has gained momentum, and many studies have been conducted to find solutions that can increase the effectiveness of freight transportation operations through horizontal collaboration [START_REF] Soysal | Modeling a green inventory routing problem for perishable products with horizontal collaboration[END_REF][START_REF] Akyol | Determining time windows in urban freight transport: A city cooperative approach[END_REF]. Indeed, by pooling resources, customers are delivered to closer distribution centres, which reduces the travelled distances and transportation costs [START_REF] Habibi | Collaborative hub location problem under cost uncertainty[END_REF]. Moreover, companies can make sustainable savings by increasing transport fleet fill rates, and reducing fixed costs, empty trips and fuel consumption. This mode of collaboration has been widely applied during the last years in several decision problems, especially in the vehicle routing problem [START_REF] Wang | Two-echelon collaborative multidepot multi-period vehicle routing problem[END_REF].

Location-allocation, inventory management and vehicle routing problems are major issues emerging in the distribution network design and planning.

Traditionally, these decisions were addressed sequentially or independently. They were also approached before vehicle routing and inventory management (Aloui et al., 2021b). The literature proved that the integrated planning decisions have a major impact on the overall supply chain success in terms of cost, quality and service time due to the great interdependence between the various problems [START_REF] Farias | Model and exact solution for a two-echelon inventory routing problem[END_REF][START_REF] Nagy | Location-routing: Issues, models and methods[END_REF][START_REF] Liu | A heuristic method for the combined location routing and inventory problem[END_REF]. Although the integration of planning decisions has gained momentum in the last years, collaborative and integrated planning research is in its infancy. In fact, few recent studies have developed integrated models for the collaborative network design and planning. More recently, in preliminary work (Aloui et al., 2021a), the two-echelon collaborative inventory-locationrouting problem (2E-CILRP) with environmental considerations has been modelled for the first time. In the 2E-CILRP, the transportation providers cooperate to optimize their location, inventory and routing decisions. In other words, they determine the distribution centres to be opened, customer and supplier allocation, routes and quantity of goods to be stocked in each period. However, the growing socio-environmental concerns have led companies to focus more on integrating economic, environmental and social objectives in the global performance assessment. To the best of our knowledge, the 2E-CILRP under sustainability considerations has not yet been addressed in the literature. To fill this gap, in this study, planning decisions are integrated and three sustainability dimensions are evaluated in the two-echelon collaborative logistics network design. For this purpose, a description and formulation of the problem using a mixed integer linear programming are presented. Besides, due to the NP-hard nature of the considered problem, a new hybrid approach with modified k -means clustering and genetic algorithm is proposed to solve large-scale 2E-CILRP. Moreover, a case study of agri-food SMEs in France is sudied to show the sustainable benefits of the developed optimization approach on both society and environment.

The remainder of this paper is organised as follows. Section 2 provides a review of the relevant works dealing with the integrated and collaborative planning and the inventory-location-routing problem. The 2E-CILRP is described and modelled in Section 3. Section 4 depicts the developed solution methodology to solve the 2E-CILRP. The computational results are presented in Section 5. Finally, Section 6 concludes this study and provides some future research directions.

Literature review

There are many rich review studies about collaborative freight transportation planning. For instance, we can cite (Aloui et al., 2021b;[START_REF] Gansterer | Collaborative vehicle routing: a survey[END_REF][START_REF] Pan | Horizontal collaborative transport: survey of solutions and practical implementation issues[END_REF][START_REF] Verdonck | Collaborative logistics from the perspective of road transportation companies[END_REF][START_REF] Guajardo | A review on cost allocation methods in collaborative transportation[END_REF][START_REF] Cleophas | Collaborative urban transportation: Recent advances in theory and practice[END_REF]. This research domain is still developing and the number of research works dealing with it has increased during the last decade to achieve better performance of existing systems and attain sustainability goals [START_REF] Mahmoudi | Determining the relative importance of sustainability evaluation criteria of urban transportation network[END_REF]. This section presents a brief state-of-the-art related to this issue. It includes four parts. The first part examines the collaborative strategy in independent urban transport planning. The second focuses on the literature about the integrated and collaborative planning problems to assess the existing state-of-the-art knowledge. On the other hand, the third part reviews the literature on the classical ILRP as well as some variants of the problem. Finaly, the fourth part presents the main contributions of this paper with respect to the current literature.

Collaborative and independent urban planning

The logistics network planning problem has been a main research subject for almost a century [START_REF] Zheng | Integrated optimization of location, inventory and routing in supply chain network design[END_REF]. It concerns decision making at different levels. For instance, the strategic level decisions implicated in the distribution network planning problem are the location of facilities and the allocation of customers and suppliers. The tactical level decision is mainly the inventory management, while the operational planning is related to the vehicle routing problem [START_REF] Yavari | Demand management to cope with routes disruptions in location-inventory-routing problem for perishable products[END_REF].

However, the collaborative logistics network design problem has received very little consideration in the literature. For instance, [START_REF] Tang | Location of distribution centers in a multi-period collaborative distribution network[END_REF] have addressed the problem of locating urban consolidation centers in a multi-period collaborative distribution network for horticultural products in France by minimizing transportation costs and facility opening costs. Also, [START_REF] Fernández | On carriers collaboration in hub location problems[END_REF] have investigated the collaborative hub location problem by proposing a MILP to minimize the freight distribution costs. Recently, [START_REF] Mrabti | The pooling of sustainable freight transport[END_REF] have studied the two-echelon collaborative distribution network design problem using multiobjective optimization of emissions and costs.

In the last few years, several studies dealing with collaborative routing problems in urban areas have been published [START_REF] Cleophas | Collaborative urban transportation: Recent advances in theory and practice[END_REF]Aloui et al., 2021b;[START_REF] Yadav | Sustainable collection and transportation of municipal solid waste in urban centers[END_REF]. For example, [START_REF] Montoya-Torres | On the impact of collaborative strategies for goods delivery in city logistics[END_REF] have investigated the collaborative routing problem in urban logistics. The authors have evaluated the economic and environmental benefits of collaborative freight transport in the city of Bogotá, Colombia. Similarly, [START_REF] Muñoz-Villamizar | Shortand mid-term evaluation of the use of electric vehicles in urban freight transport collaborative networks: a case study[END_REF] have assessed the environmental and operational impact of the implementation of electric vehicle fleets in collaborative urban freight distribution. [START_REF] Yao | Assessment of collaboration in city logistics: From the aspects of profit and co2 emissions[END_REF] analyzed the performance of collaboration in urban logistics by considering profit and CO 2 emission aspects. [START_REF] Moutaoukil | Pooling supply chain: literature review of collaborative strategies[END_REF] have solved the vehicle routing problem with time windows in order to study the impact of last-mile delivery under environmental concerns. [START_REF] Mancini | The collaborative consistent vehicle routing problem with workload balance[END_REF] have introduced the collaborative consistent vehicle routing problem with workload balance. In addition, [START_REF] Wang | Two-echelon collaborative multidepot multi-period vehicle routing problem[END_REF] have investigated the issues of collaboration between logistic operators in the two-echelon collaborative multi-depot and multi-period vehicle routing problems from the economic perspective. Furthermore, Dolati Neghabadi et al. ( 2021) have discussed the impacts of operational constraints on the effectiveness of city freight pooling. Very recently, Strulak-Wójcikiewicz and Wagner (2021) have shown the benefits of vehicle sharing in sustainable urban goods transport.

Collaborative and integrated planning

The traditional optimization method is generally used to approach sequencially the different decisions in order to impose the solution obtained from one level to the next one in the hierarchy of decisions. Although this technique is very intuitive and simple to apply, many studies have shown that it may lead to sub-optimal decision-making [START_REF] Guerrero | Hybrid heuristic for the inventory location-routing problem with deterministic demand[END_REF][START_REF] Darvish | Sequential versus integrated optimization: Production, location, inventory control, and distribution[END_REF][START_REF] Nagy | Location-routing: Issues, models and methods[END_REF]. For this reason, several researchers have focused, in recent years, on the integration of different decisions in order to improve the global efficiency of logistics networks. Although integrated planning is in its early stages in the field of collaborative logistics, few studies have attempted to integrate two or three decision problems, such as Location-Routing Problem (LRP), Inventory-Routing Problem (IRP), Location-Inventory Problem (ILP) and Inventory-Location-Routing Problem (ILRP), in a collaborative environment.

In fact, the LRP combines the decisions about the location of distribution centers, the allocation of customers and suppliers and the vehicle routing. [START_REF] Ouhader | Combining facility location and routing decisions in sustainable urban freight distribution under horizontal collaboration: how can shippers be benefited? Mathematical Problems in Engineering[END_REF] have studied the two-echelon Location-Routing Problem (2E-LRP) to evaluate the synergies of horizontal collaboration and the combination of the operational and strategic planning in urban freight transport. The authors have proposed a multi-objective MILP model to optimize logistics costs, minimize CO 2 emissions and increase the created job opportunities.The results of their study have revealed that horizontal collaboration can reduce substantially CO 2 emissions and increase the transportation cost savings. However, such collaboration may minimize the number of the created job opportunities. Consequently, [START_REF] Ouhader | Assessing the economic and environmental benefits of horizontal cooperation in delivery: Performance and scenario analysis[END_REF] have recently focused on how to balance both economic and environmental concerns in a collaborative strategy using the -constraint method. However, despite the complexity of this problem, the exact method has been used to solve only small instances of the model using a commercial solver. The single-echelon and mono-period collaborative LRP has been studied by [START_REF] Quintero-Araujo | Using horizontal cooperation concepts in integrated routing and facility-location decisions[END_REF] and [START_REF] Nataraj | Consolidation centers in city logistics: A cooperative approach based on the location routing problem[END_REF] to design urban distribution networks. The authors have proposed multiple scenarios with different levels of collaboration. These scenarios have been solved using metaheuristics to minimize the distribution costs and evaluate a posteriori the CO 2 emissions. Combining inventory management and vehicle routing decisions results in a complex optimization in logistics known as the IRP. The latter has been investigated by [START_REF] Stellingwerf | Quantifying the environmental and economic benefits of cooperation: A case study in temperature-controlled food logistics[END_REF] in the case of temperature-controlled food distribution. The authors have suggested a MILP to evaluate the economic and environmental advantages of horizontal collaboration in a single-echelon and muliple time period IRP. From a similar perspective, [START_REF] Soysal | Modeling a green inventory routing problem for perishable products with horizontal collaboration[END_REF] have addressed this problem in a collaborative context between suppliers of perishable products by taking into account environmental impacts and uncertainty of demand. In the studies of [START_REF] Soysal | Modeling a green inventory routing problem for perishable products with horizontal collaboration[END_REF] and [START_REF] Stellingwerf | Quantifying the environmental and economic benefits of cooperation: A case study in temperature-controlled food logistics[END_REF], the models have been solved by the exact method using the CPLEX solver and no heuristics were proposed to solve the large-scale problems. Recently, in [START_REF] Fardi | An extended robust approach for a cooperative inventory routing problem[END_REF], a Mixed Integer Programming (MIP) formulation and metaheuristic algorithms have been developed to solve the single-echelon and collaborative IRP. As for the LIP models, their objective is to determine both the storage plans at the distribution centers (DCs) and the location allocation decisions [START_REF] Zhang | A coordinated location-inventory problem in closedloop supply chain[END_REF][START_REF] Zheng | Integrated optimization of location, inventory and routing in supply chain network design[END_REF]. In the collaborative logistics literature, this problem has been dealt with only once by [START_REF] Hacardiaux | Assessing the environmental benefits of horizontal cooperation using a location-inventory model[END_REF]. The authors have introduced a Mixed Integer Quadratic Program (MIQP) to address the LIP and evaluate the environmental benefits of horizontal collaboration while satisfying uncertain demands. This model has been validated on small instances using the CPLEX solver. However, these research works have generally focused on combining two planning decisions.

They have evaluated only the economic and environmental dimensions of sustainability. Recently, due to the necessity of incorporating inventory and routing decisions in the design of logistics networks, Aloui et al. (2021a) have conducted a preliminary study where the 2E-CILRP has been modelled, using a MILP formulation, and solved by the CPLEX solver. In this study, only logistics costs and CO 2 emissions have been evaluated and just small-sized instances have been tested.

Inventory-location-routing problem

Different cases of the ILRP have been dealt with in the literature. The ILRP with one echelon, involving a set of depots and a set of retailers, has been studied by [START_REF] Guerrero | Hybrid heuristic for the inventory location-routing problem with deterministic demand[END_REF] and [START_REF] Zhang | Hybrid metaheuristic solutions to inventory location routing problem[END_REF]. In fact, it has been modelled using MILP formulation, by minimizing strategic as well as tactical and operational costs. On the other hand, it has been solved by exact and approximate methods. Likewise, [START_REF] Yavari | Demand management to cope with routes disruptions in location-inventory-routing problem for perishable products[END_REF] have examined the multi-period and mono-echelon ILRP for perishable products under road disruptions at certain periods. The problem has been modelled using MILP, by maximizing the total profit, and solved applying a genetic algorithm.

The two-echelon ILRP with a single manufacturer/supplier has been discussed in several works. For example, [START_REF] Hiassat | A genetic algorithm approach for locationinventory-routing problem with perishable products[END_REF] and [START_REF] Rafie-Majd | Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm[END_REF] have addressed it in the case of a perishable product. They have solved this problem by applying a genetic algorithm and lagrangian relaxation algorithm that minimizes the total costs. Similarly, Saif-Eddine et al. ( 2019) have investigated the ILRP with a single supplier and following an inventory strategy at the customers. The problem has been formulated, by optimizing the total supply chain cost, and solved with an improved genetic algorithm. [START_REF] Saragih | A heuristic method for location-inventoryrouting problem in a three-echelon supply chain system[END_REF] have examined a heuristic method to solve the two-echelon ILRP (2E-ILRP) in which one supplier, a set of depots and a set of customers have been considered. The main objective of this study is to determine the location of the depots, the allocation of retailers to the opened depots, the inventory in the different logistic entities and the routing of the vehicles from the depots to the retailers by minimizing the total cost. More recently, Wu et al. (2021a) have studied the multi-period two-echelon ILRP by taking into account time windows at retailers and vehicle fuel consumption. To solve this problem, the authors have developed a hybrid two-stage metaheuristic approach to reduce the total costs. Although cost efficiency is a prerequisite for sustainable performance, it is insufficient for achieving sustainability objectives [START_REF] Lin | A genetic algorithm-based optimization model for supporting green transportation operations[END_REF]. In fact, there are very few studies that have incorporated social and environmental concerns in integrated decisions optimization. For instance, [START_REF] Karakostas | Adaptive variable neighborhood search solution methods for the fleet size and mix pollution location-inventory-routing problem[END_REF] have focused on the green ILRP to optimize CO 2 emissions and the total cost. They have developed a general variable neighborhood search-based framework to address this problem. [START_REF] Zhalechian | Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty[END_REF] have examined the two-echelon ILRP for a sustainable closed-loop supply chain by taking into account the CO 2 emission, wasted energy and the negative impacts on economic development. Recently, [START_REF] Biuki | An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network[END_REF] have addressed the multi-echelon ILRP of perishable products to design sustainable logistics networks. They have also developed a multi-objective mixed integer programming under carbon tax policy and two hybrid metaheuristics to solve this problem.

Research gap and contributions of the study

A comparative overview of the existing research works and the present one is presented in Table 1. From the latter, we notice that although the related studies have addressed several collaborative transportation planning issues, they suffer from the following problems: (i) Collaboration as a strategy applied to optimize configurations has not been extensively studied in the context of the integrated two-echelon logistics network planning; (ii) most studies dealing with integrated planning have used only commercial solvers to solve small-scale problems, but they have ignored large-scale problems; (iii) minimal attention has been paid to the three sustainability objectives in integrated logistics network planning; (iv) existing ILRP studies have rarely considered multiple suppliers and ignore the collaboration in different echelons.

To fill this research gap, The main contributions of this study are summarized as follows: (i) implementating logistical collaboration between Less Than Truckload (LTL) carriers in the two-echelon ILRP; (ii) proposing a multi-objective model to design collaborative and sustainable two-echelon logistics networks by minimizing the total cost, CO 2 emissions and accident risk; (iii) perfroming an exact resolution and proposing a hybrid heuristic based on k -means clustering and genetic algorithms to efficiently solve the large-scale 2E-CILRP by taking sustainability explicitly into consideration.

Problem description and model formulation

Problem statement

Compared to the traditional 2E-ILRP in which the functioning of companies is relatively independent, the 2E-CILRP is defined to optimize a twoechelon distribution network through collaboration and resource sharing. In fact, it can effectively improve the loading rate of the transport means and improve the effectiveness of the logistics network operation. In this study, the considered two-echelon distribution network is composed of a set of suppliers, a set of distribution centres and a set of customers in urban areas to be served. CILRP is formally defined in this study as a complete graph G = (V, E) where V denotes the set of nodes including the set of customers I ={1, ..., N Customers }, the set of potential distribution centers D={1, ...,N DCs } and the set of suppliers J ={1,...,N Suppliers } and A={(i,j): i,j ∈ V; i = j} is the set of edges that includes the delivery and pickup arcs. Each customer has a non-constant and deterministic demand q t ij from one supplier j at each period t ∈ T ={1, ..., N periods }. For regulatory constraints in urban cities, the customers are served by a homogeneous fleet of light vehicles with a fixed capacity Qv and a fixed cost F v. On the other hand, customer i can be visited no more than once by one of the vehicles and served from only one distribution center where demands must be consolidated. In this case, direct transport from supplier to customer is not possible. Each potential distribution d ∈ D has a storage capacity C d and a fixed cost F O d when it is open. To transport goods between suppliers and distribution centers, a homogeneous fleet of semitrailer trucks with a fixed capacity Qs and a fixed cost F s is used in the first echelon.

The aim of the studied problem is to determine the distribution centres to be opened, the customers and suppliers assignment, the routes as well as the inventory quantity in each period to minimize the total cost of the CDs opening, routing and storage and to reduce the CO 2 emissions and the accident rate so that the final customer demands will be met during each time period.

The model sets, parameters and decision variables of this paper are presented in Table 2.

Sustainability indicators

In the related literature, performance assessment of the transport systems is based essentially on the economic indicators (Aloui et al., 2021b). However, in this study, we take into account the triple bottom-lines of sustainability. From the economic perspective of sustainability, we consider the different costs related to the use of distribution centres and transport means, the storage of products in the distribution centres and the transport activities. From the environmental point of view, we take into account the CO 2 emissions resulting from transport activities and distribution centres functioning. On the other hand and from the social perspective, we consider the accident rate caused by transport.

Cost calculation

The cost function, in model formulation, is calculated by adding the fixed costs (C F ) of opening distribution centres and operating transport means, the inventory cost (C I ) and the transport cost in the first and second level (C T ) by applying Equation (1).

C = C F + C I + C T (1)
The fixed costs are calculated by summing the costs of purchasing the transport means and the opening costs of the selected installations (Equation (1)). Equal to 1 if the arc(i ;j ) is traversed in period t by a vehicle/semitrailer truck 1; otherwise 0

C F = d∈D y d F O d + t∈T d∈D j∈J x t d,j F s + t∈T d∈D i∈I x t d,i F v (2)
f t i,j
Semitrailer truck/vehicle load on the arc (i ; j ) if a semitrailer truck/vehicle travels directly from the node i to the node j in the period t, (i, j ) ∈ A1 ∪ A2

The inventory cost is calculated with the multiplication of the inventory amount in each period by the unit inventory cost (Equation (3)).

C I = t∈T d∈D j∈J c I I t jd (3)
Finally, to compute the transport costs, the formula proposed by [START_REF] Pan | Environmental and economic issues arising from the pooling of smes' supply chains: case study of the food industry in western france[END_REF] is used. Indeed, this cost depends principally on the semitrailer truck/ vehicle load and the travelled distance (see Equation ( 4)). In the first part of Equation ( 4)), the fuel consumption of an empty vehicle/semitrailer truck (T v E ) is simply multiplied by the number of the used vehicle/semitrailer truck. In the second part, the fuel consumption related to the vehicle/semitrailer truck load (T v L -T v E ) are multiplied by the volume of products expressed in full vehicle/semitrailer truck. To obtain the total transport costs , the amount of fuel consumed per km is multiplied by the distance and the fuel price and summed for all deliveries and pickups.

C T = t∈T (i,j)∈A1 d ij c f [x t ij T s E + (T s L -T s E ) f t ij Q s ] + t∈T (i,j)∈A2 d ij c f [x t ij T v E + (T v L -T v E ) f t ij Q v ] (4) 

Emissions calculation

As mentioned above, the CO 2 emissions result from the means of transport (E t ) and the distribution centres functioning (E f ). Therefore, the total emissions of the distribution network are quantified by summing these two components using Equation ( 5).

E = E t + E f (5)
To calculate the CO 2 emissions, we use the approach proposed by [START_REF] Pan | Environmental and economic issues arising from the pooling of smes' supply chains: case study of the food industry in western france[END_REF]. This method is largely employed in collaborative transport planning [START_REF] Hacardiaux | Assessing the environmental benefits of horizontal cooperation using a location-inventory model[END_REF]Ouhader andEl Kyal, 2017, 2020;Aloui et al., 2021a). It has the advantage of taking into account vehicle/semitrailer truck loading rates, which is an important factor of improvement when cooperating. The CO 2 emissions due to the transportation depend on the weight loaded by the vehicle/semitrailer truck, the vehicle/semitrailer truck capacity and the travelled distance. To determine the total transportation CO 2 emissions, we add up the collection and delivery emissions using Equation ( 6).

E t = t∈T (i,j)∈A1 d ij e F [x t ij T s E + (T s L -T s E ) f t ij Q s ] + t∈T (i,j)∈A2 d ij e F [x t ij T v E + (T v L -T v E ) f t ij Q v ] (6) 
To estimate the emissions generated by the operation of distribution centres, we utilize the same approach applied in Aloui et al. (2021a). This approach is based on the reports ADEME (2005,2010) where the CO 2 emissions are estimated using a fuel conversion factor e c for the consumed energy (See Equation ( 7)).

E c = d∈D e c EC d y d (7)

Accident rate calculation

Modelling social considerations is a complex task that was not given great attention in the literature [START_REF] Pan | Horizontal collaborative transport: survey of solutions and practical implementation issues[END_REF]. In this paper, the social dimension is represented by the risk rate related to traffic accidents. Indeed, previous studies have shown that this rate depends principally on the travelled distance [START_REF] Abdullahi | Modelling and multi-criteria analysis of the sustainability dimensions for the green vehicle routing problem[END_REF]. To do this, we adopt the formula proposed by [START_REF] Palšaitis | Heavyweight and oversized cargo transportation risk management[END_REF] to estimate the accident rate A r per thousand kilometers (Equation ( 8)).

A r = Ac 1000 Distance 365 (8)

As can be seen in Equation ( 8), distance is inversely proportional to accident rates. Therefore, we estimate the accident rate A for the travelled distance d ij from nodes i and j with respect to the reference distance d ref .

Finally, the accident rate A is calculated by applying Equation (9).

A = t∈T (i,j)∈A1∪A2 A ref d i,j d ref x t i,j (9) 

Model formulation for 2E-CILRP

The model presented in this section relies on a recently-proposed 2E-CILRP formulation (Aloui et al., 2021a) in which three objective functions of minimizing costs (10), reducing CO 2 emissions (11) and minimizing accident rates (12) are considered.

M inimize C

(10)

M inimize E (11) M inimize A (12)
3.3.1. Location-allocation constraints Constraints (13) ensure that customers and suppliers can be assigned to a distribution center only if it is open. Constraints ( 14) force each customer (respectively supplier) to be assigned to only one distribution center. Constraints ( 15) and ( 16) guarantee that the capacities of the distribution centers are not exceeded. Constraints ( 17)-( 22) eliminate the routes that do not start and finish at the same distribution center. They also allow allocating customers and suppliers. More precisely, constraints ( 17) and ( 18) ensure that arc (j, d ) is traversed if and only if the supplier j is assigned to the distribution center d at time t. Similarly, constraints (20) and ( 21) eliminate the infeasible routes in the second echelon (Distribution centerscustomers). Constraints ( 19) and ( 22) guarantee that the routes between two suppliers/customers are eliminated if they are assigned to two different distribution centers.

z t id ≤ y d ∀t ∈ T, ∀i ∈ I ∪ J, ∀d ∈ D (13) d∈D z t id ≤ 1 ∀t ∈ T, ∀i ∈ I ∪ J (14) j∈J i∈I z t id q t ij ≤ C d z d ∀t ∈ T, ∀d ∈ D (15) j∈J Q t jd ≤ C d z d ∀t ∈ T, ∀d ∈ D (16) x t dj ≤ z t jd ∀t ∈ T, ∀j ∈ J, ∀d ∈ D (17) x t jd ≤ z t jd ∀t ∈ T, ∀j ∈ J, ∀d ∈ D (18) x t jj + z t jd + z t j d ≤ 2 ∀t ∈ T, ∀j, j ∈ J, ∀d, d ∈ D (19) x t di ≤ z t id ∀t ∈ T, ∀i ∈ I, ∀d ∈ D (20) x t id ≤ z t id ∀t ∈ T, ∀i ∈ I, ∀d ∈ D (21) x t ii + z t id + z t i d ≤ 2 ∀t ∈ T, ∀i, i ∈ I, ∀d, d ∈ D (22)
3.3.2. Maximum level inventory policy constraints Constraints (23) define the initial inventory level in the distribution centers. Constraints ( 24) calculate the stock level in the distribution centers at each planning period. Constraints (25) ensure that the inventory amount at each distribution center does not exceed the available storage capacity. Constraints (26) express that the amount of goods to be delivered to the distribution center d will never exceed its capacity for each planning period.

I 0 jd = 0 ∀j ∈ J, ∀d ∈ D ( 23 
)
I t jd = Q t jd + I t-1 jd - i∈I q t ij z t id ∀j ∈ J, d ∈ D, t ∈ T (24) I t jd ≤ C d y d ∀j ∈ J, ∀d ∈ D, ∀t ∈ T (25) j∈J Q t jd ≤ C d y d - j∈J I t-1 jd ∀d ∈ D, ∀t ∈ T (26) 

Constraints in the first echelon

Constraints (27) ensure that each supplier must be visited only once at most in each period. Constraints ( 28) and ( 29) ensure an equal number of incoming and outgoing arcs. Constraints (30) guarantee the flow conservation for the collection process. Constraints (31) ensure that the loaded quantity on the semitrailer will not exceed its capacity on the arc (i, j ). Constraints (32) guarantee that the semitrailer truck is empty when starting from an open distribution center.

i∈J∪D x t ij ≤ 1 ∀t ∈ T, ∀j ∈ J (27) j∈J x t dj = j∈J x t jd ∀t ∈ T, ∀d ∈ D (28) i∈J∪D x t ij = i∈J∪D x t ji ∀t ∈ T, ∀j ∈ J (29) i∈J∪D f t ji - i∈J∪D f t ij = d∈D Q t jd ∀t ∈ T, ∀j ∈ J (30) f t ij ≤ Q s x t ij ∀t ∈ T, ∀i, j ∈ J ∪ D (31) j∈J f t dj ≤ 0 ∀t ∈ T, ∀d ∈ D (32)
3.3.4. Constraints in the second echelon Constraints ( 33)-( 38) concern the delivery process. They present conditions similar to those of the pickup process ( 27)-( 28);

i∈I∪D x t ji ≤ 1 ∀t ∈ T, ∀i ∈ I (33) i∈I x t di = i∈I x t id ∀t ∈ T, ∀d ∈ D (34) j∈I∪D x t ji = j∈I∪D x t ij ∀t ∈ T, ∀i ∈ I (35) j∈I∪D f t ji - j∈J∪D f t ij = j∈J q t ij ∀t ∈ T, ∀i ∈ I (36) f t ij ≤ Q v x t ij ∀t ∈ T, ∀i, j ∈ I ∪ D (37) i∈I f t id ≤ 0 ∀t ∈ T, ∀d ∈ D (38) 
3.3.5. Other constraints Constraints (39)-( 43) specify the nature of each decision variable used in this modelling.

y d ∈ {0, 1} ∀d ∈ D (39) z t id ∈ {0, 1} ∀t ∈ T, ∀d ∈ D, ∀i ∈ I ∪ J (40) x t ij ∈ {0, 1} ∀t ∈ T, ∀(i, j) ∈ A1 ∪ A2 (41) f t ij ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A1 ∪ A2 (42) Q t jd , I t jd ≥ 0 ∀t ∈ T, ∀d ∈ D, ∀j ∈ J (43)

Solution approach

The 2E-CILRP is a practical subject of logistics network optimization. Our model aims to find out the optimal location, the inventory and the routing of transport means while minimising costs, emissions and accident risk. As mentioned before, the ILRP is known as an NP-hard problem, which means that it is difficult for exact methods to find the optimal solutions for large-scale problems within a reasonable computation time. Therefore, heuristics and meta-heuristics provide high quality solutions for large-scale instances [START_REF] Goodarzian | A new bi-objective green medicine supply chain network design under fuzzy environment: Hybrid metaheuristic algorithms[END_REF]. The literature shows that hybrid approaches, including k -means clustering, can reduce the complexity of urban logistics networks and improve computational efficiency for large-scale problems [START_REF] Defryn | A fast two-level variable neighborhood search for the clustered vehicle routing problem[END_REF][START_REF] Wang | Two-echelon collaborative multidepot multi-period vehicle routing problem[END_REF]Wang et al., , 2020b)). Therefore, a hybrid heuristic approach composed of a modified k-means clustering and a genetic algorithms is introduced to solve the 2E-CILRP. The flowchart of the proposed heuristic approach is shown in Fig. 2. The parameters used in this flowchart are described as follows: k is the number of clusters formed, N um gen is the current number of generations, P op is the population size of individuals and N max is the maximum number of generations.

As depicted in Fig. 2, the proposed approach divides the problem into two steps. The first one consists in grouping and assigning customers and suppliers to the appropriate distribution centers using a modified k -means clustering algorithm. As costs, emissions and accident risk related to transportation are proportional to the travelled distance, the Euclidean distance is adapted to evaluate the similarities of the elements in each cluster. More precisely, customers geographically close to one another and with similar products are placed in the same cluster and assigned to the nearest distribution center. Then, based on the clustering and assignment results, the routing in both echelons and the inventory levels in the distribution centers are optimized by the genetic algorithm. Finally, the three considered sustainability objectives are evaluated and the best logistic configuration is obtained. The clustering procedure and the genetic algorithm are presented in detail in the following sub-sections.

Clustering procedure

Clustering belongs to the family of unsupervised learning algorithms which consists of clustering a set of data according to specific criteria such as the distance function. It is one of the most efficient methods used to reduce the complexity of large-scale networks and improve computation time [START_REF] Sever | The dynamic shortest path problem with time-dependent stochastic disruptions[END_REF]. The traditional clustering algorithms, such as k -medoids and k -means, have been widely adapted in vehicle routing and location problems [START_REF] Meng | A new distance with derivative information for functional k-means clustering algorithm[END_REF][START_REF] Rabbani | Solving a bi-objective location routing problem by a nsga-ii combined with clustering approach: application in waste collection problem[END_REF][START_REF] Wang | Cooperation and profit allocation in two-echelon logistics joint distribution network optimization[END_REF][START_REF] Wang | Two-echelon location-routing optimization with time windows based on customer clustering[END_REF]Wang et al., , 2020a)). In fact, the second algorithm is commonly used in the literature due to its of reproduction, wide application and ability to monitor the clustering operation. In this study, the k -means clustering procedure is adapted to assign customers and suppliers to the distribution centres according to the euclidean distance and product similarity. The pseudo-code of the modified k -means clustering algorithm is described in Algorithm 1. As described in Algorithm 1, the geographical positions of suppliers, distribution centres, customers, the capacities of the distribution centres and the demands of the customers are imported to construct the datasets. Secondly, we define the number k of maximum clusters to be formed based on the number of the distribution centres that will be selected as k central points. Third, all elements are traversed and the distances between each element and the central points are calculated. Fourth, each element is assigned to the central points according to the proximity of distances and product similarity. In this step, the capacity constraints of the central points are checked. Fifth, the k clusters are updated and the new central points are calculated. The last three steps are applied until all customers will be assigned. Then, we perform swap distribution centre location in order to avoid local optima. In addition, the clusters are merged by respecting the capacity constraints to minimize the number of distribution centres to be opened. The different steps of this algorithm are iterated until the formation of the clusters of all considered planning periods.

Genetic algorithm

The genetic algorithm, which was first announced in 1970s by [START_REF] Holland | Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[END_REF], is one of the approaches intensively applied to find good solutions to NP-hard optimization problems through its evolutionary process. In this study, a genetic algorithm is developed to deal with the routing and inventory problem. The pseudo code of the introduced algorithm is given by Algorithm 2. First, an initial population generation of P op chromosomes is generated. Each chromosome should contain relevant information about the first echelon routing, the inventory plan and the second echelon routing plan at each period. The chromosome takes the form of a matrix with T rows and three strings that represent the pickup plan, the inventory in each distribution center and the delivery plan, respectively. To construct the routes, we apply a local search algorithm based on the nearest neighbor rules; the shortest distance. Then, the considered objectives are evaluated and a rank selection, relying on the economic function, is conducted. Then, the initial population is improved by two-point crossover and mutation operators in order to produce two offspring with a certain probability. This process will be continued until the maximum number of generations are attained. Finally, the best solution with low cost is selected .

Results, analysis and discussion

This section presents the computational experiments carried out to assess the effectiveness of the proposed approach in solving the 2E-CILRP and discuss managerial insights based on the real-world case study results. The heuristic was coded in Python 3. The MILP model was solved with IBM ILOG CPLEX 12.9.0 by normalizing and aggregating the three considered sustainability objectives, as discussed in Aloui et al. (2021a). All the experiments were solved in a PC running Windows 10 Home 64-bit with an Intel Core i5-10210U@ 1.6 GHz and 16 GB RAM.

To the best of our knowledge, there are no benchmark instances for the 2E-CILRP with sustainability concerns. Therefore, numerical tests on 13 2768 (€/L) [START_REF] Mrabti | The pooling of sustainable freight transport[END_REF] seconds are reported. The computational results of 13 instances are summarized in Table 4. More specifically, the first five columns enumerate the characteristics of each instance. Columns 6, 7 and 8 present the total cost obtained by the CPLEX solver and the heuristic as well as the percentage gap between these two solutions, respectively. Columns 9, 10 and 11 show the total emissions obtained by the CPLEX solver, the total emissions found by the proposed heuristic and the solution quality deviation of the heuristic with the CPLEX solver, respectively. Columns 12 to 14 report the accident risk provided by the MILP model and the heuristic approach as well as the percentage gap between the latter solution and that of CPLEX, respectively. Columns 15 to 16 show the CPU time (in seconds) of the CPLEX solver and the proposed heuristic. The percentage difference between the solution of the proposed heuristic and the CPLEX solver is estimated as follows: %Gap=100 Heuristic-CP LEX CP LEX . As shown in Table 4, the proposed heuristic can obtain solutions near to those obtained by the CPLEX solver in a much less computation time in the first ten instances. In fact, the cost gap is between -1.03% and 3.75%, with an average of 0.73%. The emissions gap ranges from 1.13% to 12.18%, with an average of 7.52%. Regarding the social aspects, the proposed heuristic provides feasible solutions with a gap varying between 5.56% to 22.86%, with an average of 14.28% in the first ten instances. It is important to note that the solutions obtained by the heuristic approach are close to the optimal solutions for the instances I1 to I7, especially for the economic objective. For instance I11, our heuristic produces better solutions than CPLEX by almost 21% of the total costs, 13% of the total CO 2 emissions and 6% of accident risk. Moreover, it is obvious that the CPLEX solver cannot find any feasible solution for the instances I12 and I13 within a given time limit. From a computational efficiency perspective, the CPU time required for CPLEX solutions increases exponentially with the rise of the problem size, while the time of the heuristic is nearly linear, as shown in Fig. 3. Overall, the comparison results show that the proposed heuristic can rapidly find reasonably good and feasible solutions for 2E-CILRP problems as the gaps between the solutions are not significant. Consequently, our heuristic can be used to efficiently solve large problems in a reasonable time.

Performance evaluation on large-sized instances: Algorithm comparison

To verify and validate the effectiveness of the GA algorithm in the proposed approach, GA was compared with the most popular heuristic algorithms for solving logistic optimization problems, namely k -nearest neighbor algorithm (KNNA) [START_REF] Mohammed | Solving vehicle routing problem by using improved k-nearest neighbor algorithm for best solution[END_REF] and particle swarm optimization (PSO) [START_REF] Chrouta | A modified multi swarm particle swarm optimization algorithm using an adaptive factor selection strategy[END_REF][START_REF] Goksal | A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery[END_REF]. The algorithms were tested and compared using 10 different randomly generated instances with medium and large-size. In the computational experiments, the maximum iteration number was set to 10000 iterations for the KNNA algorithm, personal and social learning confidences were fixed at 2, and an inertia weight was set to 0.8 for PSO algorithm. The comparison results are presented in Table 5.

As shown in Table 5, the proposed heuristic based on GA algorithm outperforms the other two algorithms in terms of total costs, emissions and accident risk in all tested instances.In fact, the average total costs of the proposed heuristic is lower than that obtained by the KNNA and PSO algorithms by 2.73% and 8.16%, respectively. In terms of emissions, the GA-based heuristic allowed saving 8.16% of the total average emissions, compared with KNNA algorithm, and 10.73% compared with PSO algorithm. In addition, the proposed algorithm can reduce the average accident risk by 3.37%, compared to KNNA algorithm, and 8.43% compared to PSO. For computation performance, the proposed algorithm performs better than the KNNA algorithm. In some cases, PSO algorithm finds lower quality solutions than those found by our algorithm with less computational time. Therefore, we can conclude that the GA-based heuristic is superior to both algorithms for integrated and collaborative optimization of two-echelon logistic networks.

Case study

In order to demonstrate the feasibility and effectiveness of the introduced optimization model in the real world, a case study of four French SMEs in the agri-food sector is discussed in this section. It consists of four companies (S1, S2, S3 and S4), four distribution centers (DC1, DC2, DC3 and DC4), 39 customers (C1 to C39) and 4 planning periods; each of which represents a week. The demand matrix for each client at each week is given in Table A.7. The companies in question are anonymized for confidentiality reasons. The geographical positions of each node are presented in Fig. 4 where colours are used to differentiate suppliers and their customers. For example, blue color represents supplier S1 and their customers. In the current situation, each company serves their customers independently of the others while, in a multi-period collaborative strategy, the companies share the means and resources to serve their customers in urban areas. The results optimization results obtained before and after collaboration of the three dimensions of sustainability, namely the total cost, total CO 2 emissions and accident risk, are summarized in Table 6. The location of distribution centers, the inventory management and the routing plans for each planning week are presented in Fig. 5 and Fig. 6, respectively.

The obtained results reveal that the proposed collaborative strategy affects positively the sustainability of transportation operations. Indeed, from an economic point of view, the total cost decreases by 20.06% after collabora- tion in 2E-ILRP. This reduction is due to the fact that collaboration between several companies can reduce the resources to be exploited. For example, in this case study, companies can benefit from resource sharing to minimize the number of distribution centres to be used and the number of routes through massification of flows, as shown in Fig. 6. From an environmental point of view, periodic cooperation can save CO 2 emissions to 16% through the sharing of distribution centres and the consolidation of goods. With regard to the assessed social dimension, the case study results show that joint planning reduces the risk of accidents by 7.69%, compared to the autonomous situation by reducing the total distance travelled in all periods. Through customer reallocation and joint route planning, these distances can be saved. Vehicle and semitrailer truck loading rates can also be increased to achieve economies of scale and reduce the number of vehicles in the city. In summary, the optimization of 2E-CILRP offers considerable benefits to logistics companies that wish to improve the sustainability of their logistics operations by reducing logistics costs, CO 2 emissions and accident risk. 

Sensitivity analysis

As this paper discusses the collaboration and resource sharing in the inventory-location-routing problem, and as demands, distribution center capacities, vehicle and semitrailer trucks capacities are important input parameters, a sensitivity analysis is performed in this section to reveal the impact of varying these parameters on sustainability objectives and savings achieved by our model. For this reason, we considered multiplier coefficients for the base values of these parameters and varied these coefficients for different values. For example, the base capacities of vehicles and semitrailer trucks were multiplied by the following values: 0.8, 0.9, 1, 1.1, 1.2, 1.3. The results of the sensitivity analysis are presented in Table A.8 in Appendix A. Fig. 7 shows the savings in terms of costs, emissions and accident risk, compared to the autonomous situation in various scenarios.

According to the results illustrated in Table A8, the variation in vehicles and semitrailer trucks capacities leads to a change in the sustainability objectives in both configurations (before and after the collaboration). In fact, the use of transport means with high capacities allows minimizing total cost, emissions and accident risks. This reduction is due to the decrease of the number of trips by increasing the transport means loading rate. However, the decrease or increase of vehicles and semitrailer trucks capacities provides almost the same savings in the various scenarios. In addition, the results indicate that with an increase in distribution centers' capacities, the costs, emission levels and accident risks decrease continuously. Besides, as shown in Fig. 7, when the capacities exceed a certain value, the savings from cooperation compared to the non-collaborative case become significant. This finding can be interpreted by the reduction of the travelled distances and the number of used distribution centers as well as by the increase of the inventory quantities by relaxing the distribution centers' capacities. For example, in the case where the capacities are multiplied by 3, our model opens only one distribution center and increases the amount of inventory in order to reduce the number of trips in the first echelon. As a result, the capacities of distribution centers have significant effects on the savings and decision making in general. Finally, we may deduce that high demand variation requires sending more products, which increases costs, emissions and accident risks. For the savings achieved through collaboration, the variation in demand impacts considerably the emissions and accident risk savings, as shown in Fig. 7. Nevertheless, the cost savings are very similar in most scenarios. Through this analysis, we find that the distribution centers capacities and demands affect the resulting savings from the collaboration. Therefore, in order to achieve significant savings, decision-makers should adjust these parameters and choose high capacities values.

Conclusion

In the modern era, logistics network management by simultaneously addressing several challenges, such as integrated decision making and sustainability concerns, constitutes a major issue in the distribution network design. This study incorporated multi-period location, inventory, and routing decisions with an effective managerial strategy from a sustainable and efficient two-echelon transportation network. In fact, logistics collaboration was studied to analyze the effects of resource sharing on the sustainability of logistics networks. Firstly, a multi-objective model is developed to formulate the 2E-CILRP with the minimum logistic cost, CO 2 emissions and accident risk. Secondly, due to the complexity of the examined problem, a hybrid heuristic was suggested to solve large-scale problems. The heuristic combines a k -means clustering algorithm and a genetic algorithm. To evaluate the performance of the proposed heuristic, comparison of the obtained results with those provided with exact method on small and medium-sized instances was performed. Experimental findings showed that the heuristic is capable to generate good solutions in a reasonable computation time. Finally, a case study in French agri-food sector was discussed to evaluate the practical application of the proposed model and approach in the real world. The obtained results demonstrated that collaboration between companies is beneficial for reducing sustainability impacts. Comparing with the stand-alone situation, the sharing of resources and joint planning can achieve savings of almost 20% in logistics costs, around 16% in resulting CO 2 emissions and also a decrease of nearly 8% in accident risk.

This study has some important managerial implications that can be summarized as follows: (i) this research can be used to highlight the importance of integrating strategic, tactical and operational decisions in the network design with sustainability performance evaluation; (ii) the proposed model and the solution approach can help logistics and transport decision-makers to design two-echelon and multi-period network; (iii) the sharing of resources, such as transportation means and distribution centers in multiple time periods, can improve the utilization of resources, achieve economies of scale, and reduce social-environmental aspects. However, there are several factors that can block its success and continuity, namely the compatibility of the products, the confidence, and the efficiency of information sharing between the stakeholders.

Although this study efficiently formulated and solved the 2E-CILRP for a sustainable transportation system, several suggestions are recommended for future research. Firstly, this work can be extended to incorporate multiobjective approaches (NSGA-II, MOPSO, etc.) to find Pareto efficient frontiers. Secondly, it is possible to integrate uncertainties and disruptions sources in the future development of the optimization model. Finally, the fair benefit-sharing mechanisms may be incorporated into the optimization approach to ensure the continuity and success of the collaborative strategy between participants. 

  Figure 1: The distribution network before and after collaboration.
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Algorithm 1 :8 11 until

 111 Modified k means clustering algorithm Input: A set I = {I 1 , I 2 , . . . , I N c } of customers data, J = {J 1 , J 2 , . . . , J N s } of suppliers data, D = {D 1 , D 2 , . . . , D N d } of DCs data and P = {1, 2, . . . , N per } of periodes Output: Clustering and assignment results 1 for t= 1 to P do 2 Select nodes coordinates, demand matrix and DCs capacities 3 Set k as the number of clusters on the basis of the number of DCs 4 Select the DCs as the initial central points of each cluster 5 repeat 6 for i= 1 to I do 7 Calculate the distances between customer i and each center k Assign customer i to the closest and verified center point 9 Update the k clusters and caluclate the new center points 10 end Maximum similarity is attained and the clusters are stable 12 Merging and swapping clusters to minimize the number of clusters 13 end 14 return Clusters results

Figure 3 :
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Figure 4 :
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  (a) Effect of changing vehicles capacity. (b) Effect of changing semitrailer trucks capacity. (c) Effect of changing CDs capacity. (d) Effect of varying demands.
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 7 Figure 7: Impact of varying parameters on sustainability savings.

Table 1 :

 1 Overview of the related literature on collaborative and integrated planning, and the ILRP

	Paper	Logistics cooperation	Network echelons	Decision problem Location Inventory Routing Economic Environmental Social Evaluated sustainability	Suppliers	Solution approach
	Tang et al. (2016)		3		-	-		-	-	Multiple	Exact
	Fernández and Sgalambro (2020)		1		-	-		-	-	Multiple	Heuristic
	Mrabti et al. (2020)		2		-				-	Multiple	Exact
	Montoya-Torres et al. (2016)		1	-	-				-	Multiple	Heuristic
	Muñoz-Villamizar et al. (2019)		1	-	-				-	Multiple	Exact
	Yao et al. (2019)		1	-	-	-			-	Multiple	Heuristic
	Moutaoukil et al. (2012)		1	-	-				Multiple	Exact
	Mancini et al. (2021)		1	-	-			-	-	Multiple	Heuristic
	Wang et al. (2021)		2	-	-			-	-	Multiple	Heuristic
	Dolati Neghabadi et al. (2021)		1	-	-			-	-	Multiple	Heuristic
	Strulak-Wójcikiewicz and Wagner (2021)		1	-	-	-	-	-	Multiple Exploratory
	Ouhader and El Kyal (2017)		2		-				Multiple	Exact
	Soysal et al. (2018)		1	-					-	Multiple	Exact
	Stellingwerf et al. (2018)		1	-					-	Multiple	Exact
	Quintero-Araujo et al. (2019)		1		-				-	Multiple	Heuristic
	Nataraj et al. (2019)		1		-				-	Multiple	Heuristic
	Fardi et al. (2019)		1	-					-	Multiple	Heuristic
	Ouhader and El Kyal (2020)		2		-				-	Multiple	Exact
	Hacardiaux and Tancrez (2020)		2			-			-	Multiple	Exact
	Aloui et al. (2021a)		2						-	Multiple	Exact
	Guerrero et al. (2013)	-	1					-	-	Single	Heuristic
	Zhang et al. (2014)	-	1					-	-	Single	Heuristic
	Yavari et al. (2020)	-	1					-	-	Single	Heuristic
	Hiassat et al. (2017)	-	2					-	-	Single	Heuristic
	Rafie-Majd et al. (2018)	-	2					-	-	Single	Heuristic
	Saif-Eddine et al. (2019)	-	2					-	-	Single	Heuristic
	Saragih et al. (2019)	-	2					-	-	Single	Heuristic
	Wu et al. (2021a)	-	2					-	-	Single	Heuristic
	Karakostas et al. (2020)	-	1						-	Single	Heuristic
	Zhalechian et al. (2016)	-	2						Multiple	Heuristic
	Biuki et al. (2020)	-	3						Multiple	Heuristic
	The current paper		2						Multiple	Heuristic

Table 2 :

 2 Notations and definitions used in the mathematical modelling.

	Notation	Description
	Sets	
	J	Set of suppliers
	D	Set of distribution centers
	I	Set of customers
	A1, A2	The set of arcs of the pickup and delivery routing
	T	Set of planning periods
	Parameters	
	C d	Storage capacity of the distribution center d
	F O d	Fixed cost of the distribution center d
	EC d	Average energy consumption of the distribution centre d
	Qs	Semitrailer truck loading capacity
	Qv	Vehicle loading capacity
	Fs	Semitrailer truck operating cost
	Fv	Vehicle operating cost
	T s Decision variables	
	y d	Equal to 1 if the distribution center d is open 1; otherwise 0
	z t id	Equal to 1 if the node i is assigned to the center d ; otherwise 0, i
		∈ I ∪ J, d ∈ D
	Q t jd	Quantity delivered by supplier j to the center d in the period t
	I t jd	Inventory level of product j in the center d at period t
	x t i,j	

E Fuel consumption rate by an empty semitrailer truck (L/Km) T s L Fuel consumption rate by a fully-loaded semitrailer truck (L/Km) T v E Fuel consumption rate by an empty vehicle (L/Km) T v L Fuel consumption rate by a fully-loaded vehicle (L/Km) c I Unit cost of storage in distribution centre (e/Kg) c f Fuel price per litre (e/L) e F Fuel to CO 2 emissions factor (Kg CO 2 /L) e c CO 2 emitted by unit energy consumption (Kg CO 2 /kwh) A c Number of accidents per year d i,j

Distance between two nodes i and j : i, j ∈ J ∪ D ∪ I q t ij Demand of customer i from supplier j in the period t

Table 3 :

 3 Parameters setting for the numerical experiments

	Parameter Value Unit	Source
	EC d	10000 kwh	ADEME (2010)
	e c	0.087 kg CO 2 /L	ADEME (2010)
	C d	20000 Kg	Assumption
	F O d	6000 €	Wu et al. (2021b)
	F s	300	€	Soysal et al. (2018)
	Q s	20000 Kg	Soysal et al. (2018)
	T s E	0.15	(L/km)	Hickman et al. (1999)
	T s L	0.31	(L/km)	Hickman et al. (1999)
	F v	200	€	Soysal et al. (2018)
	Q v	10000 Kg	Soysal et al. (2018)
	T v E	0.13	(L/km)	Hickman et al. (1999)
	T v L	0.15	(L/km)	Hickman et al. (1999)
	C s	0.01	€/Kg	Stellingwerf et al. (2018)
	e F	2.66	(kg CO 2 /L) Tassou et al. (2009)
	c f	1.5	(€/L)	Aloui et al. (2021a)
	A c			

Table 4 :

 4 Summary of test results for the generated instances.

	Instance characteristics		Total costs			Total emissions			Accident risk		CPU time (s)
	ID J D I	T	CPLEX Heuristic % Gap CPLEX Heuristic % Gap CPLEX Heuristic % Gap CPLEX Heuristic
	I1 2 2 7	3	15224,73 15253,88	0,19	2769,28 2800,53	1,13	17,34	18,31	5,56	2,54	3,41
	I2 3 3 7	3	8737,82	8784,11	0,53	1873,56 2101,84	12,18	18,12	20,45	12,85	33,08	4,65
	I3 3 3 8	3	15815,57 16134,37	2,02	2973,38 3154,59	6,09	20,10	23,21	15,46	80,54	4,18
	I4 3 3 9	3	8787,18	8848,07	0,69	2107,35 2216,78	5,19	20,38	21,74	6,68	134,54	12,84
	I5 3 3 10	3	16105,25 16109,59	0,03	3120,34 3312,91	6,17	21,34	23,93	12,15	379,70	35,32
	I6 3 3 12	3	17268,81 17363,34	0,55	3425,95 3836,25	11,98	27,85	33,69	20,98	954,23	32,12
	I7 3 3 13	2	14977,92 14823,40	-1,03	2754,65 2932,69	6,46	17,20	19,79	15,05 1845,15	45,32
	I8 3 3 13	3	16945,12 17044,94	0,59	3119,84 3475,64	11,40	23,62	28,73	21,61 2680,13	92,54
	I9 3 3 14	3	16762,14 17360,66	3,57	3499,40 3831,46	9,49	27,14	33,34	22,86 3251,43	132,27
	I10 4 4 15	3	23418,88 23467,00	0,21	4605,88 4839,77	5,08	30,63	33,57	9,60	3570,12	250,38
	I11 4 4 17	3	33981,15 26805,04 -21,12 6955,41 6041,38	-13,14	61,42	57,57	-6,28	3600	386,64
	I12 4 4 17	4	NA	32165,54	NA	NA	74315,34	NA	NA	61,43	NA	NA	421,54
	I13 2 2 20	4	NA	28654,34	NA	NA	6431,54	NA	NA	59,31	NA	NA	432,76
	Average		17093,14 18678,02	-1,25	3382,28 9176,21	5,64	25,92	33,47	12,41 1502,86	142,61

Table 5 :

 5 Comparison results with two optimization algorithms

	Instance	Costs	GA Emissions Risk CPU	Costs	KNNA Emissions Risk CPU	Costs	PSO Emissions Risk CPU
	I1	8873,13	1910,94	15,53 36,05 9187,76	2243,37	17,46 41,87 9235,65	2276,43	18,03 37,49
	I2	10974,83	2419,27	30,37 44,36 11499,62	2573,75	31,48 45,65 11643,66	2622,01	31,72 49,09
	I3	11574,15	2800,87	37,55 46,32 12264,02	2991,01	38,32 51,43 11954,12	2875,33	37,99 51,80
	I4	11813,21	3217,44	45,40 48,03 12839,68	3468,00	45,46 63,51 12887,01	3699,56	45,89 52,41
	I5	12684,33	3568,83	52,72 62,40 12891,13	3939,68	52,93 72,11 12932,35	3712,89	53,01 61,19
	I6	13007,05	3364,23	49,00 54,45 12989,39	3691,23	47,76 79,15 13010,79	3721,25	48,59 60,89
	I7	16592,60	2957,43	23,10 70,43 16608,85	2986,56	23,67 86,49 16624,78	3015,13	24,27 66,89
	I8	20128,25	4178,17	49,26 112,43 20011,85	4877,91	54,87 93,45 20128,64	4214,43	55,58 97,69
	I9	20173,33	4540,15	54,46 128,54 21229,51	4780,15	56,50 136,11 21636,93	5869,46	71,94 116,11
	I10	24798,85	7764,58	83,00 127,54 25321,43	8431,54	87,28 142,98 27497,98	9128,27	93,93 118,40
	Average 15061,97	3672,19	44,04 73,06 15484,32	3998,32	45,57 81,28 15755,19	4113,48	48,10 71,19

Table 6 :

 6 Summary of the results obtained in the initial and collaborative scenarios.

	Sustainability Indicator	Integrated decisions planning % Saving Initial Collaborative
	Total costs (€)	35553,26	28422,48	20,06
	Total CO 2 emissions (Kg CO 2 ) 6617,87	5534,64	16,37
	Accident risk (% )	56,49	52,15	7,69

Table A .

 A 8: Sensitivity analysis results.

		Coeficient	Without collaboartion Costs (€) Emissions (kg) Accident risk (%) Costs (€) Emissions (kg) Accident risk (%) With collaboartion
		0,8	36639,33	6772,21	59,68	29142,95	5750,69	56,61
		0,9	36218,75	6735,30	58,96	28481,27	5640,08	54,31
	Vehicles capacity	1 1,1	35553,26 35114,83	6617,87 6548,93	56,50 55,07	28422,48 28228,54	5534,64 5545,52	52,15 52,45
		1,2	34453,50	6438,95	52,70	27351,90	5408,08	49,50
		1,3	34028,93	6394,90	51,84	27155,10	5413,82	49,66
		0,8	35528,53	6958,50	61,82	29163,09	5786,81	56,15
		0,9	35924,83	6742,86	57,79	28563,10	5630,47	53,45
	Semitrailer trucks capacity	1 1,1	35553,26 35536,96	6617,87 6588,63	56,49 56,50	28422,48 28084,67	5534,64 5466,85	52,15 51,15
		1,2	35523,38	6564,20	56,50	27747,79	5400,70	50,15
		1,3	35511,89	6543,66	56,50	27735,23	5378,18	50,15
		0,8	28796,01	6025,19	58,34	35528,53	6755,28	61,82
		0,9	35924,83	6624,29	57,79	28563,10	5630,47	53,45
		1	35553,26	6617,87	56,50	28422,48	5534,64	52,16
		1,1	35390,27	7013,91	53,17	27663,41	5253,78	47,33
	CDs capacity	1,2 1,3	35453,78 35435,88	6922,54 6843,14	52,47 51,87	27578,66 27452,37	5186,91 5128,62	46,64 45,66
		2	35572,36	6751,70	51,18	27516,95	5046,67	45,09
		3	35572,37	6751,80	51,18	12200,98	3025,27	38,13
		4	35572,38	6751,90	51,18	12193,01	2730,68	34,41
		5	12193,02	2730,69	34,41	35572,39	6751,10	51,17
		0,5	33634,54	5875,97	45,60	26196,47	4683,02	39,23
		0,7	33628,54	5954,72	45,60	26401,98	4906,66	41,43
	Demand	0,9	34711,39	6296,14	50,88	27199,85	5157,29	45,37
		1	35553,26	6617,87	56,49	28422,48	5534,64	52,15
		1,2	36669,32	6920,03	61,58	29464,47	6147,95	61,22

Combine offspring with the initial population 8 end 9 Select the best cost solution and assess the associated emissions and accident risk 10 return Best configuration randomly generated small-scale and medium-scale instances are performed and a comparison between the heuristic and CPLEX results is carried out in Section 5.1 to evaluate the performance of the suggested approach. For each benchmark instance, the demands between each supplier-customer pair were randomly generated in the interval [1000,3000]. Similarly, the coordinates on the x-axis and y-axis of suppliers, customers and distribution centers are randomly generated in a square of size 200×200. The distance between two nodes is calculated based on the Euclidean distance d ij = (x i -x j ) 2 + (y i -y j ) 2 , where (x i , y i ) are the coordinates of node i.

The parameter used in all computational experiments are derived from the literature and are listed in Table 3. For the proposed heuristic, the population size P op and the maximum number of iterations N max are 100 and 1000, respectively. The crossover and mutation probability are 0.8 and 0.05, respectively [START_REF] Wang | Two-echelon location-routing optimization with time windows based on customer clustering[END_REF].

Experiments on small instances

The performance of the proposed heuristic is assessed by means of distance to solutions found by the CPLEX solver of the MILP model and computation time. For each instance, the best solutions found by the heuristic over 10 runs and the CPLEX results with a maximum CPU time of 3600 Appendix A. Demand data and sensitivity analysis results