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3 Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France

arcelin@apc.in2p3.fr

Abstract. Cosmic shear estimation is an essential scientific goal for
large galaxy surveys. It refers to the coherent distortion of distant galaxy
images due to weak gravitational lensing along the line of sight. It can
be used as a tracer of the matter distribution in the Universe. The
unbiased estimation of the local value of the cosmic shear can be obtained
via Bayesian analysis which relies on robust estimation of the galaxies
ellipticity (shape) posterior distribution. This is not a simple problem as,
among other things, the images may be corrupted with strong background
noise. For current and coming surveys, another central issue in galaxy
shape determination is the treatment of statistically dominant overlapping
(blended) objects. We propose a Bayesian Convolutional Neural Network
based on Monte-Carlo Dropout to reliably estimate the ellipticity of
galaxies and the corresponding measurement uncertainties. We show that
while a convolutional network can be trained to correctly estimate well
calibrated aleatoric uncertainty, -the uncertainty due to the presence
of noise in the images- it is unable to generate a trustworthy ellipticity
distribution when exposed to previously unseen data (i.e. here, blended
scenes). By introducing a Bayesian Neural Network, we show how to
reliably estimate the posterior predictive distribution of ellipticities along
with robust estimation of epistemic uncertainties. Experiments also show
that epistemic uncertainty can detect inconsistent predictions due to
unknown blended scenes.

Keywords: Bayesian Neural Networks · Convolutional Neural Networks
· Epistemic uncertainty · Uncertainty calibration · Cosmology.

1 Introduction

One of the goals of large galaxy surveys such as the Legacy Survey of Space and
Time (LSST, [16]) conducted at the Vera C. Rubin Observatory is to study dark

1 The first author is preparing a PhD thesis at the LORIA Lab in the context of the
AstroDeep Research Project (https://astrodeep.pages.in2p3.fr/website/projects/)
funded by ANR under the grant ANR-19-CE23-0024.
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energy. This component of unknown nature was introduced in the current cosmo-
logical standard model to explain the acceleration of the Universe expansion. One
way to probe dark energy is to study the mass distribution across the Universe.
This distribution mostly follows the dark matter distribution, which does not
interact with baryonic matter (i.e. visible matter) except through gravitation,
as dark matter represents around 85% of the matter in the Universe. Conse-
quently, cosmologists need to use indirect measurement techniques such as cosmic
shear, which measures the coherent distortion of background galaxies images by
foreground matter due to weak gravitational lensing [17]. In astrophysics, gravita-
tional lensing is the distortion of the image of an observed source, induced by the
bending of space-time, thus of the light path, generated by the presence of mass
along the line of sight. The mass acts like a lens, in partial analogy with optical
lenses, as illustrated in Fig.1a. The weak gravitational lensing effect is faint (1%
of galaxy shape measurement) and only statistical tools provide a way to detect
a local correlation in the observed galaxies orientations. This correlation yields a
local value at every point of the observable Universe, defining the cosmic shear
field. As pictured in Fig.1b, in an isotropic and uniform Universe orientations of
galaxies are expected to follow a uniform distribution (left panel). The statistical
average of their oriented elongations, hereafter called complex ellipticities, is
expected to be null. In presence of a lens, a smooth spatial deformation field
modifies coherently the complex ellipticities of neighboring galaxies so that their
mean is no longer zero (right panel).

(a) Gravitational lensing.

Galaxies randomly distributed With shear: slight bias

(b) Cosmic shear.

Fig. 1. (a) Effect of gravitational lensing: the mass bends the light and deforms the
images of the galaxies. (b) Weak lensing: the correlation between orientations and
shapes of neighbour galaxies defines the cosmic shear. In blue: average ellipticity. Left:
the expected ellipticity distribution. Right: the observed ellipticity distribution. Image:
(a) NASA/ESA

The unbiased measurement of cosmic shear is a major ambition of nowadays
cosmology [21]. One avenue to estimate the cosmic shear locally is to combine
individual galaxy ellipticity measurements. By looking deeper into the sky, that
is to older objects, the next generation of telescopes will allow for the detection
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of a very large number of galaxies, potentially leading to very precise shear
measurement and resulting in tight constraints on dark energy parameters.

Methods already exist to estimate galaxy ellipticities through direct mea-
surement on images recorded by telescope cameras ([13] for example). This is
a complex problem as, among other things, the shear signal is carried by faint
galaxies which makes it very sensitive to background noise. Another central issue
for current and coming surveys in galaxy shape determination, is the treatment
of statistically dominant overlapping objects, an effect called blending. A current
survey projects that 58% of the detected objects will appear blended [18] and
this value is expected to reach around 62% for LSST [19]. To overcome this issue,
solutions exist such as deblending [22–24]: the separation of overlapping objects.
Yet, they are not perfect and rely on an accurate detection of blended scenes
which is also a complex problem. As such, in addition to a precise estimation of
the complex ellipticities, a reliable measurement of the uncertainties is crucial in
order to discard, or at least decrease the impact of, unreliable and inaccurate
measurements avoiding as much as possible the introduction of a bias into the
shear estimation.

Classical ellipticity measurement methods usually adopt assumptions about
the shape of the galaxies (for example via the shape of the window function
in [13]) potentially resulting in model bias. In contrast, convolutional neural
networks or CNNs [2] make it possible to learn and recognize complex and diverse
galaxy shapes directly from data without making any other hypothesis than the
representativeness of the training sample. They consequently are appropriate
tools to learn the regression of galaxy ellipticities, even in the presence of noise
and complex distortions. Yet standard CNNs can only measure the aleatoric
uncertainty : the one due to the presence of noise in the data. They are unable
to estimate the epistemic uncertainty, the one due to the limited number of
samples a CNN has been trained with and to the model [1, 9]. This second
type of uncertainty is essential to detect outliers from the training samples,
or formulated accordingly to our problem, to distinguish between reliable or
unreliable galaxy ellipticity estimation. It is only accessible by considering neural
network weights as random variables instead of constants, that is, by adopting a
Bayesian approach. Consequently, we have focused our work on Bayesian Deep
Learning [11] using Monte Carlo dropout (MC dropout) [1] as the mean to apply
Bayesian inference to Deep Learning models.

Foreseeing a Bayesian estimation of the cosmic shear, combining galaxy
ellipticity posteriors estimated directly from images (with blends or not) in
different filters (or bands), this paper focuses on estimating reliable galaxy
ellipticity posteriors from single band images. This is a necessary step to check
that the proposed method efficiently estimates a calibrated aleatoric uncertainty
and is able to minimize the impact of wrongly estimated ellipticity values due to
outliers in the computation of the shear. We compare two networks trained on
isolated galaxy images with or without noise in order to test for the calibration
of aleatoric uncertainty. Regarding outliers, blended scenes are perfect examples.
Note that these are illustrations of aleatoric or epistemic uncertainty sources.
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Most of cosmic shear bias sources such as detection, Point-Spread-Function (PSF)
treatment, or selection for example [17, 21], can fall in one or the other category.
The estimation of galaxy ellipticity posterior from blended scenes in different
bands is a harder problem that we will investigate in further work.

The contributions of this article are 1) to propose a Bayesian Deep Learning
model that solves a complex multivariate regression problem of estimating the
galaxy shape parameters while accurately estimating aleatoric and epistemic
uncertainties; 2) to establish an operational protocol to train such a model based
on multiple incremental learning steps; and 3) to provide experimental evidences
that the proposed method is able to assess whether an ellipticity measurement is
reliable. This is illustrated, in this paper, by the accurate differentiation between
isolated galaxy or blended scenes, considered here as outliers, and the relationship
between epistemic uncertainty and predictive ellipticity error. We also show that
this last result could not be obtained with a classical, non Bayesian network.

The rest of the paper is organized as follows. In Section 2 we briefly describe
the problem to be solved and comment on some of its peculiarities. We detail our
proposed solution in Section 3. We analyse the results obtained on the various
experiments we performed in Section 4, and we conclude and give the directions
of further research in Section 5.

2 Estimating galaxy ellipticity from images

As mentioned previously, it is possible to estimate cosmic shear combining indi-
vidual measurements of galaxy shape. This shape information can be quantified
by the complex ellipticity, which can be defined in cosmology as in Def. 1.

Definition 1. Let E be an ellipse with major axis a, minor axis b, and with θ
as its position angle. The complex ellipticity of E is defined as:

ε = ε1 + ε2 i =
1− q2

1 + q2
e2iθ, (1)

where q = b
a is the axis ratio of the ellipse.

An illustration of the ellipticity parameters is shown in Fig. 2a. The complex
ellipticity defines a bijection between the orientation and the elongation of the
ellipse on one side, and the unit disk on the other side, see Fig. 2b.

However, the process to achieve an unbiased measurement of cosmic shear,
starting with the estimation of ellipticities, is going to be challenging for several
reasons. We test the reliability of our networks prediction on noise and blending,
two of the many possible bias sources in the cosmic shear estimation. Both of
these issues result from the fact that the shear signal is mostly carried by faint
galaxies. By definition, these objects have a low signal-to-noise ratio. The noise
corrupts the galaxy images, making the shape estimation much harder (see Fig.
3b), and can introduce a bias in shear measurement [17].

Also, a large part of these faint objects will appear blended with foreground
galaxies. Even in scenes where objects are only slightly overlapped, the apparent
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(a) Ellipticity parameters: major axis
a, minor axis b, position angle θ.

x

y

0 0.5 1−0.5−1

0.5i

i

−0.5i

−i

(b) Bijective mapping between ellipse
shapes and complex ellipticities.

Fig. 2. Geometric representation of the complex ellipticity. (a) The ellipse parameters.
(b) The complex ellipticity defines a bijection between ellipse shapes and the unit disk.
An ellipticity with low magnitude is close to a circle, while one with a high magnitude
is closer to a straight line. The argument defines the orientation of the ellipse
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(a) Isolated noiseless galaxy
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(c) Blended noisy galaxies

Fig. 3. Three different types of image complexity for the same galaxy: isolated without
noise, isolated with noise, blended with noise. Notice how the noise slightly deforms the
galaxy (b) and how the blended galaxies makes the ellipticity estimation very difficult
(c) when compared to a simple isolated galaxy without noise (a)

shape of the detected object does not correspond to a single galaxy model and
an ellipticity measurement on this image could give a completely wrong result.
Again, this work is the first step of a longer-term goal. Here, we target a reliable
estimation of galaxy ellipticity posterior from single band images. This includes
obtaining a well calibrated aleatoric uncertainty, tested here with and without
the addition of Poisson noise on images, and an epistemic uncertainty allowing
for minimization of the impact of untrustworthy measurement due to outliers
(here, blended scenes).

We simulate LSST-like images, allowing us to control the parameters of the
scene, e.g., the number of galaxies, their location on the image, and the level
and type of noise applied. We consider four categories of simulated data: isolated
centered galaxies without noise, isolated centered galaxies with noise, and blended
scene with and without noise. Images are 64x64 pixels stamps simulated in the
brightest of the six bands corresponding to the LSST filters, each of them selecting
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a different part of the electromagnetic spectrum. These images are simulated
placing, in their center, a galaxy whose ellipticity is to be measured.

The image generating process relies on the GalSim library [14] and is based on
a catalog of parametric models fitted to real galaxies for the third Gravitational
Lensing Accuracy Testing (GREAT3) Challenge [20]. It consists in 1) producing an
image of a centered noiseless isolated galaxy from a model sampled randomly from
the catalog, with its corresponding physical properties (size, shape, orientation,
PSF, brightness, redshift, etc) 2) measuring the complex ellipticity of the galaxy
with the KSB algorithm [13] on the image and record it as the image label, 3)
possibly adding on random image location other galaxy images (from 0 to 5)
to generate blended scenes 4) possibly adding Poisson noise (as in [24]). In this
study and for sake of interpretability, we only provide as input to our CNN
the reference band (the brightest) which we use to define the target ellipticity,
making our images two-dimensional. Once again, while using multiple bands is
useful for blended galaxies [23, 24], here we focus only on predicting the ellipticity
of a single centered galaxy with a correctly estimated uncertainty.
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Fig. 4. Convolutional neural network architecture. (a) The input after augmentation
has dimensions 45x45x1. Each convolutional block starts with a batch normalization
layer and has a PReLU activation. The first convolutional layer is of dimension 45x45x32
with a 5x5 kernel size (in yellow), followed by a 2x2 Max-Pooling operation (in orange).
The second convolutional layer is 22x22x64 with kernel size 3x3, followed by a 2x2
Max-Pooling operation. Then, we add two 11x11x128 convolutional layers with a 3x3
kernel that ends with a final 2x2 Max-Pooling operation, and the resulting feature maps
are flattened into a 3200 fully connected layer (in purple). (b) Each augmented image
gives a 3200 fully connected layer convolutional output (all augmented images share
the same convolutional layers and filters), which are then concatenated into a 12800
fully connected layer. The two final layers have 4096 neurons in the case of an MVN
regression, 2048 else; with Maxout activation [15] and dropout with a rate of 0.5. The
output layer has 5 neurons in the case of an MVN regression
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3 A method to assess uncertainty in ellipticity estimation

3.1 Estimation of noise related uncertainty

Our first goal is to reliably estimate the first layer of complexity in the galaxy
images, the noise. Given the nature of the data, we will be using a CNN [2].
However, training a CNN to solve a standard regression problem with an L2 loss
does not allow us to estimate the uncertainty due to the noise. Therefore, in place
of a complex scalar output, we predict a 2D multivariate normal distribution
(MVN) as an output: given an input image X, whose complex ellipticity is
denoted Y and given weight parameters w, the network outputs an MVN Y ∼
N (µ(X,w), Σ(X,w)). As such, the model is no longer trained on a simple L2
loss but rather on the log-likelihood of the MVN. The mean of the distribution
µ(X,w), which is also the mode, serves as the predicted output, and the covariance
matrix Σ(X,w), which is also an output of the network, represents the so-called
aleatoric uncertainty on the input data X. The model is therefore heteroscedastic,
as Σ(X,w) depends on the input X [9]. This allows our model to estimate the
aleatoric uncertainty for each image individually. The determinant of Σ(X,w),
denoted |Σ(X,w)|, is a scalar measure of uncertainty, as it is directly related to

the differential entropy, ln
(√

(2πe)2|Σ(X,w)|
)

, of an MVN.

The architecture of our network is inspired by the work of Dielman, who
proposed a simple model specifically tuned for the Galaxy Zoo challenge, therefore
adapted to our data [12]. Each image is augmented in four different parts by
cropping thumbnails from high resolution images, centered on spatial modes
of light profile. Then each augmented image is fed to the CNN. The complete
architecture is explained in Fig. 4. More details on the training process are
explained in Section 3.3. Results obtained with this model are given in Section
4.1.

3.2 Estimation of blend related uncertainty

As seen in Section 2, estimating the uncertainty due to the noise in the data is
only one part of the problem. An estimated 60% of the images represent blended
scenes, for which a direct estimation of ellipticity does not make sense in the
context of this work. The uncertainty related to the blended images cannot be
estimated simply with the variance of the MVN distribution. Indeed, in the case
of a blended scene image, the network is not uncertain because of the noise but
rather because this kind of images is not part of the training sample. This can
be characterized by the epistemic uncertainty.

This uncertainty can be estimated using a Bayesian Neural Network (BNN),
which assumes a probability distribution on the weights W of the network instead
of a single point estimate [11]. Given a prior p(w) on W and a set D = {(Xi, Yi)}i
of observations, the resulting posterior distribution p(w|D) ∝ p(D|w) p(w) is
analytically impossible to compute. A variational Bayes optimization method
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is necessary to derive an approximate posterior qθ(w) parameterized by hyper-
parameters θ. In MC dropout [1, 3], the considered search space includes all
approximate posteriors resulting from applying dropout [7], i.e multiplying every
neuron output (of selected layers) by an independent Bernoulli variable. The
dropout rate is set to the conventional value of 0.5, as this leads to an approximate
posterior that can achieve well calibrated uncertainty estimates [1]. However, there
are other ways to define the posteriors such as dropout rate tuning [5], or ensemble
methods by training many networks [6]. During training, standard stochastic
gradient descent techniques can be used, thanks to the reparameterization trick,
to search for an approximate posterior maximizing locally the ELBO [1]. During
testing, the posterior predictive distribution p(Y |X,D) for some input X can be
estimated using Monte Carlo sampling:

p(Y |X,D) ≈
∫
p(Y |X,w)qθ(w)dw ≈ 1

K

K∑
k=1

p(Y |X,wk) , (2)

where (wk)Kk=1 ∼ qθ(w) refer to weights of K independent dropout samples.
In the case of a multivariate regression problem like ours, every distribution

p(Y |X,wk) is a MVN so that the resulting posterior predictive distribution in
Eq. 2 is a Gaussian mixture of order K. The uncertainty underlying this mixture
can be summarized by its covariance matrix Σpred.(X,D) = Cov(Y |X,D). This
matrix accounts for both aleatoric and epistemic uncertainties, whose respective
contributions can actually be separated in a way that generalizes the variance
decomposition described in Depeweg [10]:

Σpred.(X,D) = Σaleat.(X,D) +Σepist.(X,D) , (3)

where the first term represents the aleatoric uncertainty and can be computed as
the mean of the covariance matrices for each of the K output samples:

Σaleat.(X,D) = EW |D(Cov(Y |X,W )) ,

≈ 1

K

K∑
k=1

Σ(X,wk) . (4)

while the second represents the epistemic uncertainty and is estimated as the
empirical covariance matrix of the K mean vectors produced as outputs:

Σepist.(X,D) = CovW |D(E(Y |X,W )) ,

≈ 1

K

K∑
k=1

(µ(X,wk)− µ(X))(µ(X,wk)− µ(X))T . (5)

where µ(X) = 1
K

∑K
k=1 µ(X,wk).

Matrix Σepist.(X,D) defines the epistemic uncertainty as the covariance
matrix of the mean vectors over the posterior. This uncertainty will be high if
the sampled predictions from each model vary considerably with respect to W .
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This would mean that no consistent answer can be deduced from the model and
therefore it would be highly uncertain.

Finally when the context requires to reduce these uncertainty matrices to
uncertainty levels so that they can be compared, their determinants are used to
define two corresponding scalar quantities:

Ualeat.(X,D) = |Σaleat.(X,D)| and Uepist.(X,D) = |Σepist.(X,D)| .

3.3 Training protocol

In order to train a BNN with an MVN output, the model needs to learn both the
mean and the covariance matrix. The network’s training diverges when trying to
learn both at the same time, forcing us to separate the training into two steps.
First, we train a simple neural network without an MVN output - we use only
two output neurons representing the mean - using a L2 loss. Then, we transfer
the filters of the convolutional layers into the model with an MVN output, but
reinitialize the fully connected layers. This allows the model to converge smoothly
as the mean of the MVN distribution has already been learned, allowing the
covariance matrix to be calibrated accordingly.

This protocol works well when training on noiseless images of isolated galaxies
but fails when training on noisy images. Indeed, overfitting occurs during the
training of the network without MVN. When transferring the filters to the MVN
model, the mean of the MVN is not well calibrated enough and the training of the
BNN diverges. To fix this, we adjust the protocol for the model without MVN,
adding noise incrementally during training: we first submit noiseless images, and
modify 5% of the sample, switching from noiseless to noisy images, every 50
epochs for 1000 epochs. This prevents overfitting and allows the MVN model to
converge after the transfer.

4 Experiments

4.1 Estimation of uncertainty related to noise

In this section we show that using an MVN as an output allows for a reliable and
well calibrated estimation of the aleatoric uncertainty, i.e. uncertainty related to
the noise in the data.

In order to show that estimating the ellipticity of galaxies in the presence
of background noise is complex and can induce incorrect predicted ellipticity
values, we first train two simple CNNs without an MVN output: one on noiseless
images and one on noisy images, accordingly tested on noiseless and noisy images
respectively. Figure 5 shows the images of galaxy with their target complex
ellipticity superimposed, as well as the predicted one.

The ellipse represents the estimated shape - with a fixed scale adapted for
visualization - and the arrow is the corresponding complex ellipticity - modified
with half its argument in order to be aligned wih the main axis of the ellipse. On
this example, we can qualitatively see that the galaxy ellipticity on the noisy
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Fig. 5. Galaxy images with the predicted ellipticity superimposed on them. The arrow
and the corresponding elliptic shape are rendered in an arbitrary scale for visualization
purposes. In orange: the true ellipticity. In green: the predicted ellipticity

image is harder to estimate as the noise deforms the shape of the galaxy. Figure
6 generalizes this observation as it shows a sample of the predicted ellipticities
on the complex plane within the unit circle, with the target ellipticity and the
difference between predicted and targeted values.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(a) Predicted ellipticities without noise
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1.0

(b) Predicted ellipticities with noise

Fig. 6. Predicted ellipticities on the complex plane. In red: unit circle. In yellow:
predicted ellipticities. In blue: target ellipticites. In green: difference between true and
predicted values

While the model trained on noiseless data performs really well (Fig. 6a),
it cannot achieve the same level of performance when trained on noisy data,
losing part of its reliability (Fig. 6b). As such, using a simple CNN without any
estimation of aleatoric uncertainty is not satisfying for our application.

We now train two Bayesian Convolutional Neural Networks with an MVN
distribution to estimate both epistemic and aleatoric uncertainties, as seen in
Section 3.2. Like the simple CNN models, we show in Fig. 7, the ellipticities
estimated from the BNNs on the complex plane. We also add the 90% confidence
ellipses of both epistemic, aleatoric and predictive uncertainties. We observe that
in both cases, the epistemic uncertainty is low if not negligible, meaning that



A Bayesian CNN for Robust Galaxy Ellipticity Regression 11

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(a) Predicted ellipticities without noise
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(b) Predicted ellipticities with noise

Fig. 7. Predicted ellipticities on the complex plane. In red: unit circle. In yellow:
predicted ellipticities. In blue: target ellipticites. In light green: difference between true
and predicted values. In pink: 90% epistemic confidence ellipse. In dark green: 90%
aleatoric confidence ellipse. In grey: 90% predictive confidence ellipse

the model is confident in its predictions. Put another way, all K pairs of outputs
µ(X,wk) and Σ(X,wk) are roughly equal to their mean, respectively µ(X,w)
and Σaleat.(X,w), so that, according to Eq. 3 and Eq. 5 , Σepist.(X,w) ≈ 0
and Σpred.(X,w) ≈ Σaleat.(X,w). The aleatoric uncertainty is low for noiseless
images but higher for noisy ones, confirming that the noise corrupting galaxy
images makes it more difficult for the model to consistently give an accurate
ellipticity estimation.

Finally, in order to see if the MVN distribution is well calibrated, we stan-
dardize the output and check if the resulting distribution follows the standard
distribution. More precisely, if we define:

Z(X,w) = Σpred.(X,w)−
1
2 (Y − µ(X,w)) , (6)

then the distributions of its two independent components z1 ∼ Z(X,w)1 and
z2 ∼ Z(X,w)2 should be equivalent to the standard distribution N (0, 1). Note
that this is true only because all K output MVNs are confounded. Figure 8
shows that the standardized distributions for the model trained on noisy images
are indeed well calibrated and therefore the model is neither overestimating nor
underestimating the predictive uncertainty.

4.2 Estimation of uncertainty related to blending

In the previous part we showed that our BNNs are well calibrated. Here we submit
outliers to the networks in order to study the impact on epistemic uncertainty
and whether it can be used to detect them. Our models have only been trained
on images of isolated galaxies, but astrophysical images can contain multiple
overlapped galaxies. In that case, asking the model to measure a single ellipticity
does not make sense. If the epistemic uncertainty behaves as expected, then its
measurement would allow us to detect when a predicted ellipticity is incorrect
due to the presence of multiple galaxies in the image. We fed images of blended
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Fig. 8. Histogram of the standardized distributions on the model trained with noisy
images. In red: standard bell curve. In blue: histogram of the standardized distribution
with the smoothed curve.

scenes to the two models trained on isolated galaxies (with or without noise),
adding noise to the blended scenes only for the model trained on noisy images.

Results shown in Fig. 9 demonstrate that in both cases the predictions are
particularly inexact when compared to the target ellipticity of the central galaxy.
Also, and as expected, the epistemic uncertainty is much higher for these blended
scenes than for isolated galaxy images. However, the aleatoric uncertainty gives
incoherent values as the model has not been trained to evaluate it on blended
images: notice how the aleatoric ellipses are more flattened with a lower area.
Figure 10 permits to visualise the behavior of the epistemic uncertainty. It shows
how the ellipticities sampled with dropout slightly diverge compared to the mean
prediction. Here the model cannot give a consistent answer and therefore its
prediction should be deemed untrustworthy.
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Fig. 9. Predicted ellipticities on the complex plane for blended galaxies images. In red:
unit circle. In yellow: predicted ellipticities. In blue: target ellipticites (label of the
centered galaxy). In light green: difference between true and predicted values. In pink:
90% epistemic confidence ellipse. In dark green: 90% aleatoric confidence ellipse. In
grey: 90% predictive confidence ellipse
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0 10 20 30 40 50 60
0

10

20

30

40

50

60 target
prediction
mc prediction

(b) Blended galaxies with noise

Fig. 10. Blended galaxies images with the predicted ellipticity superimposed on them.
The arrow and the corresponding elliptic shape are rendered in an arbitrary scale
for visualization purposes. In orange: the true ellipticity (label for the galaxy in the
center). In green: the predicted ellipticity. In pink: the individual MC dropout predicted
ellipses. The green ellipticity is therefore the mean of the pink ones. On both images
the prediction is uncertain as the individual MC samples slightly diverge from the mean

To quantify the quality of the epistemic uncertainty when it comes to detecting
incoherent predictions due to outliers, we computed the ROC curves for each
uncertainty type. More precisely, we reduce each covariance matrix (aleatoric,
epistemic and predictive) to a scalar by computing its determinant. We interpret
these estimates as a scoring function to assess whether an image is an outlier,
i.e. a blended image: the higher the score, the more likely the image contains a
blend. Finally, we compute for each of these scoring functions its ROC curve. We
repeat that process for both networks trained with noisy and noiseless data. The
results are shown in Fig. 11.

These ROC curves are also summarized by their associated Area Under
Curve (AUC) on Tab. 11c. The epistemic uncertainty clearly appears as the most
consistent “metric” to detect outliers and therefore to give useful information
about the confidence in the model predictions. Even the predictive uncertainty
performs worse than the epistemic one. This is especially true in the presence
of noise since the aleatoric uncertainty then occupies a more important part
of the predictive one compared to the noiseless case. Notice that the aleatoric
ROC curve is mostly below the diagonal with an AUC below 0.5, meaning it
performs worse than a random classifier. This is due to the fact that the model
has not been trained to evaluate aleatoric uncertainty on blended scenes. As seen
in Fig. 9, the aleatoric ellipses are more flattened in the blended cases, meaning
its determinant is lower. Thus the aleatoric uncertainty is on average lower on
blended scenes when compared to isolated ones.

To compensate, results of the complementary classifier for the aleatoric
uncertainty are shown. It is still not as satisfying as the epistemic uncertainty.
While using epistemic uncertainty to identify inconsistent predictions due to a
lack of knowledge is highly effective, we note that few blended images still have
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(a) ROC curve, model without noise
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(b) ROC curve, model with noise

Uncertainty AUC noiseless AUC noise

Epistemic 0.956 0.969
Aleatoric 0.394 0.306
Aleatoric (inverse) 0.606 0.694
Predictive 0.856 0.594

(c) AUC values

Fig. 11. ROC curves for detecting outliers for aleatoric, epistemic and predictive
uncertainty. (a) ROC curve, model without noise. (b) ROC curve model with noise.
Since the aleatoric ROC curve gives incoherent answers on outliers (see Fig. 9), we also
plot the complementary classifier as a dashed line. (c) AUC values for all uncertainties,
for the model with and without noise. Here, the epistemic uncertainty is clearly the best
to detect outliers, as its AUC value is close to 1 in both noisy and noiseless datasets

low epistemic uncertainty due, for instance, to a large galaxy that obstructs all
of the other ones, making the image actually closer to an isolated galaxy image.

Finally, we evaluate how each type of uncertainty is a reliable representation
of the risk of error in ellipticity prediction. Unfortunately, in the presence of
blended images, the predictive distribution is no longer a simple MVN but a
mixture of K well separated Gaussian distributions. The normalization process
that allowed us to obtain the results presented in Fig. 8 is no longer applicable
here. It is still possible to study the relationship between the uncertainty and the
ellipticity prediction error testing a trivial rule: the higher the uncertainty, the
more important we expect the error to be. To do so, we do three sorting of the
images according to each uncertainty type, from the lowest uncertainty to the
highest, on a scale from 0 to 0.4 for isolated objects, and from 0.4 to 1 for blended
scenes. We then compute the mean ellipticity error considering the proportion of
the sorted data from 0 to 1. For blended scenes the ellipticity prediction error is
computed w.r.t. the ellipticity of the centered galaxy. We repeat this experiment
twice, for networks trained on noiseless and noisy data. Finally we add an ”oracle”
curve where the data is sorted directly according to the ellipticity prediction
error which represents a perfect sorting. Results are shown in Fig. 12.

Once again, epistemic uncertainty proves to be best suited to anticipate
ellipticity predictive error. The samples with the lowest epistemic uncertainty
have the lowest mean ellipticity error and conversely, while samples with low
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aleatoric uncertainty can already have high mean error. Consequently, on real
astrophysical data, when the predictive ellipticity error is obviously unknown,
relying on the epistemic uncertainty to reject, or minimize the impact of, a sample
because of its probable predictive error is the best way to go.
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(a) Mean error curve, model without noise
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(b) Mean error curve, model with noise

Fig. 12. Mean error curves w.r.t. data proportion for aleatoric, epistemic and predictive
uncertainty. (a) Mean error curve without noise. (b) Mean error curve with noise. In
black the threshold between the proportion of isolated galaxies: [0, 0.4] and blended
galaxies: [0.4, 1]. In pink the oracle curve, where the data is sorted by the predictive
error. The closest a curve is to the oracle the better

5 Conclusion

We developed a Bayesian approach to estimate the posterior distribution of
galaxy shape parameters using convolutional neural networks and MC-Dropout.
In addition to a precise measurement of the ellipticities, this approach provides
a calibrated estimation of the aleatoric uncertainty as well as an estimation of
the epistemic uncertainty. We showed that the latter is behaving according to
expectations when applied to different kind of galaxy images, and is well-suited
to identify outliers and to anticipate high predictive ellipticity error. These
results confirm the suitability of Bayesian neural networks for galaxy shape
estimation and incite us to continue exploring their use to go from ellipticity
posterior distributions, estimated from multi-band galaxy images, to cosmic shear
estimation.
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