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Abstract. Multidisciplinary Design Optimization (MDO) methods aim at adapting nu-
merical optimization techniques to the design of engineering systems involving multiple
disciplines or components. Among MDO architectures, various ones are considering the
resolution of the Multidisciplinary Design Analysis (MDA). In our study, the system of
interest being an aircraft, the resolution of the MDA will be provided by the Future Air-
craft Sizing Tool with Overall Aircraft Design (FAST-OAD), a point mass approach that
estimates the required fuel and energy consumption for a given set of top-level aircraft
requirements. In this context, a large number of mixed continuous, integer and categorical
variables that arise from aircraft design has to be tackled by the optimization process.

Recently, there has been a growing interest in mixed variables constrained Bayesian
optimization based on Gaussian process surrogate models. In this setting, most existing
approaches severely increase the dimension of the covariance matrix related to the sur-
rogate. In fact, the construction of the Gaussian process model may not be scalable to
practical applications involving a large number of mixed variables.

In this paper, we address this issue by constructing a covariance kernel for the surrogate
model that depends on only a few hyperparameters. The new kernel is constructed based on
the information obtained from the partial least squares method. The obtained numerical
results lead to interesting results for the optimization of a baseline aircraft and to reduce
the fuel consumption of “DRAGON”, a new hybrid electric propulsion aircraft, with a high
number of mixed variables and for a small budget of time-consuming evaluations.

Keywords: Green Aircraft, Future Aircraft, Multidisciplinary Design Optimization,
Bayesian Optimization, Surrogate-based Optimization, Gaussian Process
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1 INTRODUCTION

New aircraft configurations with a lower footprint on the environment (also known as
Eco-aircraft design) have seen a resurgence of interest [1]. In this context, one targets
to minimize the footprint on the environment of the aircraft using a Multidisciplinary
Design Analysis (MDA) [2–4] with dedicated disciplines such as emissions, noise, ... The
process of finding the best configuration, known as Multidisciplinary Design Optimization
(MDO), is formulated as a minimization constrained problem where the objective and
the constraints functions are typically expensive-to-evaluate and their derivatives are not
available.

In the context of aircraft design, the MDO process generally involves mixed continuous-
categorical design variables. For instance, the size of aircraft structural parts can be
described using continuous variables; in case of thin-sheet stiffened sizing, they represent
panel thicknesses and stiffening cross-sectional areas. The set of discrete variables can
encompass design variables such as the number of panels, the list of cross sectional areas
or the material choices. Thus, the regarded optimization problem is of the following form:

min
w=(x,z,c)∈Ω×S×Fl

{f(w) s.t. g(w) ≤ 0 and h(w) = 0} (1)

where Ω ⊂ Rn represents the bounded continuous design set for the n continuous variables;
S ⊂ Zm represents the bounded integer set where L1, ..., Lm are the numbers of levels
of the m quantitative integer variables on which we can define an order relation and
Fl = {1, . . . , L1} × {1, . . . , L2} × . . . × {1, . . . , Ll} is the design space for l categorical
qualitative variables with their respective L1, ..., Ll levels.
f : Rn × Zm × Fl 7→ R is the objective function, g : Rn × Zm × Fl 7→ Rng gives the

inequality constraints, and h : Rn×Zm×Fl 7→ Rnh returns the equality constraints. The
functions f , g, and h are typically expensive-to-evaluate simulations with no exploitable
derivative information.

When only continuous design variables are optimized (i.e., S × Fl is reduced to a
single choice), Bayesian optimization (BO) is shown to be a powerful strategy for solving
problem (1) [5]. BO uses Gaussian processes (GPs) [6–10] to define response surfaces,
the sequential enrichment is performed by maximizing a given acquisition function [6].
The latter is meant to model a compromise between exploration of new zones in the
design space and exploitation (i.e. minimization) of the GPs. For general mixed integer
problems, several modeling strategies to build GPs have been proposed [11, 12]. Based on
these GPs models, a trade-off acquisition function was adapted for optimization [13]. Some
other modelling strategies consist in computing a continuous model for each category [14],
either by continuously relaxing the design variables [15], by using a multi-armed bandit
strategy to handle the categorical choices [16] or by considering a Gower distance to model
simultaneously the proximity over categorical and continuous variables [17]. Recently, a
continuous relaxation BO based method [18] to tackle mixed integer variables has been
shown to solve efficiently expensive-to-evaluate optimization problems. In fact, using
continuous relaxation within BO leads to better results. However, the relaxation of the
categorical design variables increases the number of the hyperparameters needed (to be
tuned) associated with the GP model. This in particular constrained the method in [18]
to be used only for small dimensional optimization problems. Since, the construction of
the GP model may not be scalable to practical applications involving a large number of
mixed variables.
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In this work, we show how to reduce the computational cost related to the construction
of the mixed categorical GP model as proposed in [15]. Our proposed approach allows
in particular to solve higher dimensional mixed integer MDO problems. The method
relies on combining continuous relaxation and the use of principle components analysis
to reduce the number of the hyperparameters (known as KPLS [19, 20], Kriging model
with Partial Least Squares). The good potential of the proposed approach is showed over
a set of analytical test cases.

The performance of the proposed approach is also confirmed on two MDO applications
from the FAST-OAD framework [21]: “CERAS” and “DRAGON”. FAST-OAD is an open-
source Python framework that provides a flexible way to build and solve the Overall Air-
craft Design problems by assembling discipline models from various sources: FAST-OAD
currently comes with some bundled, quick and simple, models dedicated to commercial
aircraft. In this paper, FAST-OAD will resolve an MDA problem that mainly: (a) sizes
the geometry of main aircraft components, (b) computes mass and centers of gravity of
aircraft parts, (c) estimates the aerodynamics and propulsion along the computed mission,
and (d) return the fuel consumption related to the mission. These estimated quantities
will be used to define the objective and the constraints of our two optimization problems.

The outline of the paper is as follows. In Section 2, a detailed review of the Bayesian
optimization framework is given. The continuous relaxation as well as the use of the KPLS
technique are detailed in Section 3. Section 4 presents our academical tests as well as the
obtained results on the two regarded MDO test cases. Conclusions and perspectives are
finally drawn in Section 5.

2 CONTINUOUS CONSTRAINED BAYESIAN OPTIMIZATION

In this section, we will only consider that all the design variables are continuous in
problem (1). Namely, the design space will be restricted to Ω ⊂ Rn; hence w = x in
the optimization problem (1). The Efficient Global Optimization (EGO) framework [6]
suggests to use the GP model to find the global minimum of an expensive-to-evaluate
black-box objective function (based on the preliminary results of Močkus [7]). In general,
a GP is used to fit a response surface model from an initial set of points known as the
Design of Experiments (DoE) [8, 9, 22]. The GP provides a mean response hypersurface
as well as a pointwise estimation of its variance. Thereafter, we will consider that our
unknown black-box objective function f is a realization of an underlying distribution of
mean f̂ and of standard deviation sf such that f(.) ∼ GP (f̂(.), [sf ]2(.)).

Let nt be the number of already evaluated points in Rn of the deterministic function
f and ∀i ∈ {1, .., nt}, let xi = (xi1, ..., x

i
n) ∈ Rn be the ith point with its respective n

continuous variables values, we can define the known data as (x, yf ). The stochastic
model [23] writes as: f(xi) = µ(xi) + εi ∈ R with εi the error term between f and the
model approximation µ(x). The errors terms are considered iid of variance σ2.

LetR be the error correlation matrix between the inputs pointsRij = Corr(ε(xi), ε(xj)).
The correlation function Corr is computed using a kernel function k that relies on n hy-
perparameters θ estimated typically using maximum likelihood estimator (MLE) [24]. Let
ri(x

∗) = Corr(ε(x∗), ε(xi)) for a given x∗, then

f̂(x∗) = µ̂f + r(x∗)TR−1(yf − 1µ̂f ), (2)
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and

[sf ]2(x∗) = [σ̂f ]2
[
1− r(x∗)TR−1r(x∗) +

(1− 1TR−1r(x∗))2

1TR−11

]
, (3)

where µ̂f and σ̂f , respectively, are the maximum likelihood estimator of µ and σ given
the data set (x, yf ).

Within EGO, at a given iteration t, a GP surrogate, referred as Kriging, model of
the black-box f is computed from the current DoE. Henceforth, one wants to estimate
the best new point to evaluate, as it is costly, by taking into account all the available
information to converge as fast as possible to the real optimum of the black-box. The
point that we will evaluate next is the one that gives the best improvement a priori
according to an acquisition function like the Expected Improvement (EI). The objective
value as this new point will then be evaluated and used to enrich the surrogate database.
The hyperparameters that characterize and define the model are updated at each iteration
until convergence. The Bayesian optimization process is thus made from these GPs in an
iterative manner.

To tackle constrained Bayesian optimization, EGO was extended to Super-Efficient
Global Optimization (SEGO) method [10]. SEGO uses surrogate models of the constraints
to give an estimation of the search space Ωf . The latter was enhanced to tackle multi-
modal and equality constraints with the Upper Trust Bound (UTB) criterion [25, 26].

The acquisition function that we use is the WB2s (Watson and Barnes 2nd criterion
with scaling) [26] that is known to be more robust than the Expected improvement (EI)
criterion; especially in high dimension. WB2s can be seen as smooth version compared
to the WB2 [10] criterion and is less multimodal compared to EI. Algorithm 1 details
the SEGO optimization procedure.

Algorithm 1: SEGO for continuous inputs.

Result: Solution of the problem (1) over the continuous design space Ω.
Inputs: Initial DoE D0 and set t = 0. The search space Ω.
while the stopping criterion is not satisfied do

1. Build the surrogate model of the objective to obtain the mean and
standard deviation prediction at a given point: (f̂ , sf ) from the DoE Dt.

2. Build the surrogate model for each constraint i,j: (ĝi, s
g
i ), (ĥj, s

h
j ) from the

DoE Dt and compute an estimation of the search space Ωf .

3. Construct the acquisition function WB2s.

4. Maximize the acquisition function WB2s over Ωf : xt = arg max
x∈Ωf

WB2s(x).

5. Add xt, f(xt), g(xt), h(xt) to the DoE Dt+1. Increment t.

end

3 MIXED CATEGORICAL CONSTRAINED BAYESIAN OPTIMIZATION

To handle mixed categorical design variables, we propose to use the continuous re-
laxation method that has been recently shown to be well-suited for expensive discrete
problems [15, 18]. The main drawback of such method is that it enlarges the dimension
of the design space according to the size of the categorical space. To overcome such issue,
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we propose to combine continuous relaxation with the well-known partial least-square
procedure [20] to reduce the number of the GP hyperparameters.

For mixed categorical design variables, the proposed treatment relies on continuous
relaxation. The design space Ω× S × Fl is relaxed to a continuous space Ω′ constructed
on the following way:

• ∀i ∈ {1, . . . ,m}, the variable zi is relaxed within its bounds and treated as contin-
uous.

• ∀j ∈ {1, . . . , l}, we use a relaxed one-hot encoding [27] for cj and add Lj new
continuous dimensions into Ω′.

Therefore, we get, after relaxation, a new design space Ω′ ⊆ Rn′
where n′ = n + m +∑l

j=1 Lj > n+m+ l.
The nature of the variables should be respected when evaluating a point in the relaxed

space so we define the inverse operator Project that projects a point X ∈ Ω′ to its closer
point wX in Ω × S × Fl. Namely, Project rounds the value of an integer variable zi to
the closer value among its Li levels and, for a categorical variable cj, Project selects the
level which corresponding dimension value is the highest.

In this work, when building the Kriging model, the error correlation will be estimated
using a squared exponential (or Gaussian) correlation kernel over the relaxed design space.
We denote by Xwi = Relax(wi) the relaxation in Ω′ of a point wi ∈ Ω × S × Fl. The
mixed categorical kernel is

k(Xwi

, Xwj

) =
n′∏
p=1

exp
(
−θp

(
Xwi

p −Xwj
p

)2
)
, θp ∈ R+ (4)

This kernel relies on n′ hyperparameters θp estimated by maximum of likelihood such that
the more the number of variables n′ for the problem, the more the number of hyperpa-
rameters to optimize. Reducing this number leads to a better estimation for the hyperpa-
rameters, a more convenient optimization of the likelihood and makes the model scalable
for high-dimensional problems. To do so, the Partial Least Squares (PLS) method [28]
searches the direction that maximizes the variance between the input and output vari-
ables. This is done by a projection into a smaller space spanned by the so-called principal
components. The number of principal components d that corresponds to the new number
of hyperparameters for KPLS is chosen to be much lower than n′. The resulting PLS
squared exponential kernel is given by

k(Xwi

, Xwj

) =
d∏

q=1

n′∏
p=1

exp
(
−θq

(
bq∗pX

wi
p − bq∗pXwj

p

)2
)
,∀ θq ∈ R+ (5)

where [bq∗p]p,q are scalars that measure the influence of the input variables on the out-
put yf . Combining this model construction with SEGO gives the method described in
Algorithm 2.
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Algorithm 2: SEGO for mixed categorical inputs using KPLS

Result: Solution of the problem (1) over the mixed categorical design space
Ω× S × Fl.

Inputs: Initial DoE D0 and set t = 0. The search space Ω× S × Fl.
while the stopping criterion is not satisfied do

1. Relax continuously integer and categorical input variables to a real bounded
space Ω′ of dimension n′ = n+m+

∑l
j=1 Lj. Namely, we continuously relax

the mixed categorical DoE Dt = {wi}i ∈ (Ω× S × Fl)nt to a continuous
DoE D

′
t = {Xwi}i ∈ (Ω′)nt using the relaxation procedure Relax.

2. Use PLS to reduce the number of the hyperparameters from n′ to d
(d << n′), during the construction of the GP models (for the objective
function f and the constraints g and h) related to the DoE D

′
t .

3. Build an estimation of the feasible domain Ω′f ⊂ Ω′ with the criterion UTB
and construct the acquisition function WB2s.

4. Maximize the acquisition function WB2s over Ω′f :
Xt = arg max

X∈Ω′
f

WB2s(X).

5. Project the obtained continuous solution over Ω× S × Fl:
wt = Project(Xt).

6. Add wt, f(wt), g(wt), h(wt) to the DoE Dt+1. Increment t.

end

4 RESULTS

In this section, we carry out experiments for unconstrained and constrained test cases,
with several number of variables and an increasing complexity. We optimize analytical
test cases as a benchmark study and then we solve aircraft design optimization problems
as a validation and application of the present work.

4.1 Implementation choices

In order to compare, we used several optimization algorithms detailed hereafter: Bandit-
BO, NSGA2, SEGO with Kriging, SEGO with Gower distance and the proposed method,
SEGO coupling Kriging and PLS.

The Bandit-BO implementation used is the one by Nguyen et al. [16], we are not
considering parallelization or batch evaluations. Bandit-BO creates a GP model for each
arm, so it requires at least 2 × Nc initial points, Nc being the number of categorical
possibilities for the problem inputs. If we are not using Bandit-BO, for constrained
optimization, we are using a continuous relaxed Latin hypercube sampling and then we
project the output points to obtain the mixed integer DoE.

The NSGA2 [29] algorithm used is the implementation from the toolbox pymoo [30]
with the default parameters (probability of crossover = 1, eta = 3). Fronts are not relevant
in our study as we are considering single-objective optimization.

The optimization with SEGO is made from SEGOMOE [26] for both constrained and
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unconstrained cases. For SEGO using Gower distance [17] (denoted by SEGO+GD),
we are considering the implementation of the Surrogate Modeling Toolbox (SMT) [31],
an open-source python toolbox where some computations associated to the present work
have been done. The same holds for SEGO and Kriging coupled with PLS to reduce
to d the number of hyperparameters (denoted SEGO+KPLS dD). As the PLS could
potentially lead to numerical instabilities, we are using the homoscedastic noise that
maximizes the likelihood as a so-called nugget. For SEGO using Kriging (denoted by
SEGO+KRG), we also use the implementation from the toolbox SMT. For the constrained
analytical test cases, we are using the UTB criterion [25]. Some adaptions have been
done to Bandit-BO and NSGA2 to consider both integer and categorical variables. As
NSGA2 can only consider integer variables, categorical variables are treated as integer
ones. Contrarily, Bandit-BO can treat only categorical variables so integer variables
are treated as categorical ones. For Kriging, Kriging with PLS or Gower distance, the
hyperparameters are optimized with COBYLA [32] and the chosen model regression is
constant. When optimizing with SEGO, the acquisition function is maximized using
ISRES [33] to find some interesting starting points and SNOPT [34] to finalize the process
based on these starting points. The squared exponential kernel is the only one considered
for these methods.

In order to compute some statistical data (median and variance), we are doing 20
repetitions of the optimization process for a given method and an initial DoE size. We
consider that a constraint is respected if the constraint violation is smaller than the
threshold value 10−4.

4.2 Benchmark test cases including unconstrained and constrained optimiza-
tion problems

In this section, a benchmark of different problems is proposed in order to compare the
efficiency of the proposed algorithm with some state-of-the-art methods. The first ten are
analytical cases, with or without constraints in order to provide some data profiles and
the last two concern some more complex applications for aircraft conceptual design.

4.2.1 Unconstrained optimization

To begin with, we validate our method on unconstrained problems up to 14 dimensions.
The first analytical test case is a modified Branin function [14], denoted by “Branin
5”, where the first variable is an integer x1 ∈ {−5,−4, . . . , 9, 10} and the second one
x2 ∈ [0, 10] is a continuous variable. As this problem is only 2-dimensional, SEGO-KRG
is considered without the coupling with the PLS technique. For Bandit-BO, we represent
x1 as a bandit with 16 arms associated to the 16 integer values from 0 to 15. Therefore,
an initial DoE of at least 32 points is required for Bandit-BO. A smaller initial DoE is also
considered for NSGA2 and SEGO-KRG in order to compare the convergence according
to the DoE size: 5 points or 32 points. For a given DoE size (5 or 32), 20 different initial
DoE are obtained via Latin hypercube sampling in order to compute some statistical
data (median and variance) about the convergence results. In Fig.1a, the medians and
the associated quartiles (25% and 75%) of the 20 runs are illustrated for each of the
three algorithms. The initial DoE is shown before the black dotted line. For the DoE
with 32 initial points, we are doing 50 iterations of the methods Bandit-BO and SEGO-
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KRG, for a total of 82 evaluations. For NSGA2, 200 iterations are performed. When the
DoE size is reduced to 5 points, 200 iterations of SEGO-KRG are made and compared
to 300 evaluations for NSGA2. These comparisons show that SEGO-KRG outperforms
BANDIT-BO and NSGA2 in terms of convergence. Moreover, we find that a smaller
initial DoE performs better for SEGO, that is a known result [35].

To compare the dispersion of the best results over the 20 runs, Fig.1b shows the boxplots
for SEGO-KRG, Bandit-BO and NSGA2 after 50 iterations associated to a initial DoE of
32 points. These plots show that, not only SEGO-KRG converges better in median but
also it is the only method to converge for every of the 20 initial DoE. However, Bandit-BO
converges better than NSGA2 on this test case.

(a) Convergence curves. (b) Boxplot with a DoE of 32 points.

Figure 1: “Branin 5” obtained optimization results. The Boxplots are generated, after
50 iterations, using the 20 best points.

The second analytical test case is a toy function that consists in the choice between
a set of 10 1-dimensional continuous functions [13], denoted by “Set 1”, where the first
variable is a categorical variable x1 ∈ {0, 1, . . . , 9} and the second one x2 ∈ [0, 1] is a
continuous variable. This problem only has 2 variables but, as the relaxed space is in
dimension 11, SEGO with KPLS is then considered to compare with SEGO with Kriging
such that we can see how reducing the number of spatial correlations from 11 to 5 in the
model can impact the optimization process. For Bandit-BO, we represent x1 as a bandit
with 10 arms from 0 to 9 and an initial DoE with a minimum of 20 points is required.
As previously for NSGA2 and SEGO-KRG, two initial DoE sizes are considered with
5 points and 20 points. For a given DoE size, 20 different initial DoE are obtained to
compute statistics on the convergence results. In Fig.2, the medians and the associated
quartiles (25% and 75%) of the 20 runs are illustrated for each of the four algorithms.
The initial DoE is shown before the black dotted line. For the DoE with 20 initial points
in Fig.2b, 50 iterations of the methods Bandit-BO, SEGO+KPLS 5D and, SEGO-KRG
are performed for a total of 70 evaluations and for NSGA2 200 iterations are performed.
When the DoE size is reduced to 5 points in Fig.2a, 200 iterations of SEGO-KRG are
done and compared to 300 evaluations for NSGA2. These convergence plots show that
the smaller the DoE, the faster the convergence. Also, KPLS slows the convergence
at the start but this dimension reduction does not change the convergence overall and
the incumbent is even better at the end with KPLS than without. On this test case,
Bandit-BO method does not perform well. To compare the dispersion of the best results
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over the 20 runs, Fig.2c shows the boxplots for SEGO-KRG, Bandit-BO, NSGA2 and,
SEGO+KPLS 5D after 50 iterations associated to a initial DoE of 20 points. These plots
show that SEGO+KPLS does not converge properly because 2 runs are outliers that
did not have converged whereas with NSGA2 and SEGO-KRG, there is only one outlier.
Nevertheless, NSGA2 is not as precise as SEGO-KRG on average.

(a) Convergence curves using 5 points initial
DoE

(b) Convergence curves using 20 points initial
DoE.

(c) Boxplots with a DoE of 20 points.

Figure 2: “Set 1” obtained optimization results.

4.2.2 Constrained optimization

For constrained optimization, Bandit-BO can not be considered as it can not deal with
constraints, so SEGO is only compared to NSGA2. The first constrained test case is a
modified Branin function [11] with one constraint, denoted by “Branin 3”, where the
two first variables are categorical variables with 2 levels each such that there is 4 possible
Branin function variations and the two last variables are the continuous ones.

This problem has 4 variables in the initial space and 6 in the relaxed one, so SEGO
with Kriging is applied without any dimension reduction technique. According to the
previous experiments, a small initial DoE with 5 points is considered in order to obtain
better results for a given number of evaluations. In Fig.3a, the medians and the associated
quartiles (25% and 75%) of the 20 runs are illustrated for NSGA2 and SEGO-KRG. The
initial DoE is shown before the black dotted line, then 50 iterations of SEGO-KRG are
performed and compared with 200 iterations of NSGA2. To compare the dispersion of
the best results over the 20 runs, Fig.3b shows the boxplots for SEGO-KRG and NSGA2
after 50 iterations. On this low-dimension constrained case, the mixed integer version of
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SEGO with Kriging is shown to perform well and be adapted to the constrained mixed
optimization.

(a) Convergence curves. (b) Boxplots.

Figure 3: “Branin 3” optimization results.

The second constrained test case is an augmented dimension modified Branin func-
tion [11] with one constraint, denoted by “Branin 4”. The firsts two variables are cat-
egorical with 2 levels each and the 10 last variables are continuous. Therefore, we can
see the test case as a set of 4 continuous augmented 10-dimensional Branin functions.
This problem has 12 variables in the initial space and 14 in the relaxed space. SEGO
with KPLS is considered with 2 principal components for the PLS technique to compare
the dimension reduction with SEGO-KRG. As previously an initial DoE with 5 points
is chosen and shown before the dotted line in Fig.4a. The medians and the associated
quartiles (25% and 75%) of the 20 runs are illustrated for NSGA2 and SEGO. On this
graph, 50 iterations of SEGO-KRG are compared with 200 iterations of NSGA2. To com-
pare the dispersion of the best results over the 20 runs, Fig.4b shows the boxplots for
SEGO-KRG, SEGO-KPLS 2D and NSGA2 after 50 iterations. On this high-dimension
constrained case, our method is still efficient.

(a) Convergence curves. (b) Boxplots.

Figure 4: “Branin 4” optimization results.

These four analytical cases have shown that SEGO performs better than both Bandit-
BO for mixed integer Bayesian Optimization and NSGA2 for constrained optimization.
It has been shown that the PLS technique allows the method to be scalable for high-
dimension and even to give better results than Kriging by carrying favor to the most
relevant space.
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4.2.3 Overall benchmark results

For 10 different test cases (3 constrained and 7 unconstrained) we are considering 20
runs with differents DoE sampled by Latin hypercube sampling for a total of 200 instances.
The resulting percentages of instances that have converged after a given budget for every
method are plotted on Fig.5. For unconstrained test cases, in order to compare with
Bandit-BO, the size of the initial DoE is given by min{5, 2×Nc} where Nc is the number
of categorical possibilities and for constrained test cases, we took 5 points for the initial
DoE size. This allow us to compare Bandit-BO, SEGO, SEGO with Gower Distance,
SEGO with KPLS and NSGA2. Some tests are in dimension 2, so in order to compare
with the same number of hyperparameters for all tests, we had to choose between 1 or 2
principal components for KPLS. As the number of points increases, the projected points
are really closed to each other, so, to insure a certain stability, we choose KPLS with 2
principal components and noise evaluation, denoted by KPLS_2D in the following.

These 10 test cases were extracted from several state-of-the-art papers [11–14, 17, 36,
37] from dimension 2 to 12, with integer, continuous and/or categorical variables. For
constrained case, we keep only the inputs that gives a constraint violation smaller than
10−4. A problem is considered solved if the error to the known solution is smaller than 2%
on Fig.5a and smaller than 0.5% on Fig.5b. The mean error after the 50 iterations can be
found in Tab.1. SEGO with PLS gives the smaller errors on constrained test cases but, for
unconstrained ones, SEGO-KRG performs the best. As we can see on the data profiles,
SEGO-KRG and SEGO+KPLS_2D are similar and outperform the three others methods.
However, SEGO with PLS being less efficient on unconstrained test cases, SEGO-KRG
gives better results over all tests. These preliminary results are promising and some more
realistic applications are considered in the next section.

(a) Data profiles for a tolerance of 2% (b) Data profiles for a tolerance of 0.5%

Figure 5: Data profiles generated using 10 analytical test cases

Table 1: Mean errors of each method after 50 iterations.

ERRORS NSGA2 Bandit-BO SEGO+KRG SEGO+KPLS 2D SEGO+GD
Unconstrained test cases 14.29% 5.84% 2.27% 5.74% 8.41%
Constrained test cases 58.27% - 27.61% 25.41% 47.83%
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4.3 Aircraft design test cases

For the core MDO application, we apply FAST-OAD on two different aircraft design
problems. The first one named “CERAS” is a classic well-known aircraft and the second
“DRAGON” is a more innovative new one that is currently under development. This time,
as the evaluations are expensive, we are doing only 10 runs instead of 20. For each run,
we draw a random starting DoE of 5 points. As we have no equality constraint and a
small budget, we will not force the constraints to be as large as possible and we will use
only the mean prediction of the constraint models and not the UTB criterion [25]. Also,
to have realistic results, the constraints violation will be forced to be less than 10−3.

4.3.1 CERAS

To validate the results of section 4.2 on a real test case, we are considering the data
from the CEntral Reference Aircraft System (“CERAS”) based on an Airbus A320 aircraft.
The problem to solve is a constrained optimization problem with 6 continuous design
variables, 2 categorical variables and 2 integer ones, for a total of 10 design variables. The
presented version of SEGO (with or without the PLS technique) is used as an optimizer in
a Multidisciplinary feasible (MDF) architecture where the MDA is computed with FAST-
OAD. The optimization problem is described in Tab.2 where the total number of variables
is reported using the relaxation technique.

Table 2: Definition of the “CERAS” optimization problem.
Function/variable Nature Quantity Range

Minimize Fuel mass cont 1

with respect to x position of MAC cont 1 [16., 18.] (m)
Wing aspect ratio cont 1 [5., 11.]

Vertical tail aspect ratio cont 1 [1.5, 6.]
Horizontal tail aspect ratio cont 1 [1.5, 6.]

Wing taper aspect ratio cont 1 [0., 1.]
Angle for swept wing cont 1 [20., 30.] (◦)

Total continuous variables 6
Cruise altitude discrete 1 {30k,32k,34k,36k} (ft)

Number of engines discrete 1 {2,3,4}
Total discrete variables 2
Tail geometry cat 2 levels {T-tail, no T-tail}

Engine position cat 2 levels {front or rear engines}
Total categorical variables 2
Total relaxed variables 12

subject to 0.05 < Static margin < 0.1 cont 2
Total constraints 2

We are testing 3 methods, NSGA2, SEGO with Kriging and SEGO with KPLS over 10
DoEs and 200 iterations. As for the analytical test cases, Fig.6a shows that PLS method
speeds up the optimization process at the start. However, the boxplots of the final results
on Fig.6b show that, at the end, the KPLS and Kriging versions give similar results while
KPLS uses 3 times less correlation length hyperparameters. The Kriging version starts
slower but catches up with KPLS quickly and for every given budget Kriging gives better
results than NSGA2. The best configuration is obtained after a SEGO+KPLS 4D opti-
mization, the optimal result is given in Tab.3. The optimal aircraft geometries obtained



P. Saves, N. Bartoli, Y. Diouane, Th. Lefebvre, J. Morlier, C. David, E. Nguyen Van and S. Defoort

using each of the three methods and the baseline are plotted in Fig.7. As SEGO with
Kriging is almost the same as the best, SEGO+KRG and SEGO+KPLS are grouped on
the geometries. With KPLS we obtain a constraint margin of 0.500 and an objective of
16722.73 kg.

(a) Convergence curves. (b) Boxplots.

Figure 6: “CERAS” optimization results using a DoE of 5 points. The Boxplots are gener-
ated, after 200 iterations, using the 10 best points.

Table 3: “CERAS” Optimal aircraft configuration.

Name Nature Value

Fuel mass cont 16722.55 kg
static margin cont 0.0495

x position of MAC cont 16.2825 m
Wing aspect ratio cont 11
VT aspect ratio cont 6
HT aspect ratio cont 6
Wing taper ratio cont 0.5099
Wing sweep angle cont 30.0 ◦

Cruise altitude discrete 36,000 ft
Tail geometry cat T-tail

Engine position cat Front engine
Number of engines discrete 2

From an aircraft design point of view, the obtained optimized values can be surprising
for some parameters, but are logical given the limits of current models in FAST-OAD:

• as the flight ceilings (buffeting, aerodynamics, ...) are not computed, the algorithm
logically goes toward high altitudes,

• the mass of a strongly swept wing is not properly computed, and does not bring
enough penalty on such configuration,

• similarly, the models do not compute the additional mass that should be required
for a T-tail with such a large aspect ratio on vertical tail.

However, the capabilities of the proposed algorithm are very promising for a conceptual
design stage where a lot of architecture choices are still undetermined, leading to a large
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combinatorial problem. In that perspective, the ability of the method to capture the right
trends regarding number of engines (integer) and their position (categorical) is a good
perspective, that needs to be confirmed with an even more complex design case using
many categorical and integer variables. The “DRAGON” hybrid aircraft case described
below provides this feature.

Figure 7: “CERAS” best configurations geometries.

4.3.2 DRAGON

The “DRAGON” aircraft concept in Fig.8 has been introduced by ONERA in 2019 [38]
within the scope of the European CleanSky 2 program 1 which sets the objective of 30%
reduction of CO2 emissions by 2035 with respect to 2014 state of the art. ONERA
responded to this objective by proposing a distributed electric propulsion aircraft that
improves the aircraft fuel consumption essentially by increasing the propulsive efficiency.
Such efficiency increase is obtained through improvement of the bypass ratio by distribut-
ing a large number of small electric fans on the pressure side on the wing rather than
having large diameter turbofans. This design choice avoids the problem associated with
large under-wing turbofans and at the same time allows the aircraft to travel at transonic
speed. Thus the design mission set for “DRAGON” is 150 passengers over 2750 Nautical
Miles at Mach 0.78.

Figure 8: “DRAGON” aircraft concept.

The employment of a distributed propulsion comes at a certain cost; a turbo-electric
propulsive chain is necessary to power the electric fans which brings additional complexity
and weight. Typically, turboshafts coupled to electric generators are generating the elec-
trical power on board the aircraft. The power is then carried to the electric fans through an
electric architecture ensuring robustness to single component failure. This safety feature
is obtained with redundant components as depicted in Fig.9. The baseline configuration

1https://www.cleansky.eu/technology-evaluator

https://www.cleansky.eu/technology-evaluator
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is two turboshafts, four generators, four propulsion buses with cross-feed and forty fans.
This configuration was selected for an initial study as it satisfies the safety criterion. How-
ever it was not designed to optimize aircraft weight. The turboelectric propulsive chain
being an important weight penalty, it is of particular interest to optimize the chain and
particularly the number and type of each component, characterized by some discrete or
particular values.

Figure 9: “DRAGON” turboelectric propulsive architecture.

To know how optimizing the fuel mass will impact the aircraft design, we are considering
the problem described in Tab.4 where the Mean Average Chord is referred as MAC and
the Takeoff Field Length as TOFL. We consider this problem as a test case involving a
large number of mixed integer variables and four constraints. The problem to solve is a
constrained optimization problem with 8 continuous design variables and 4 integer ones,
for a total of 12 design variables.

Table 4: Definition of the “DRAGON” optimization problem.
Function/variable Nature Quantity Range

Minimize Fuel mass cont 1

with respect to Cruise Mach number cont 1 [0.6, 0.8]
TOFL for sizing cont 1 [1800., 2500.] (m)

Climb reserve for sizing cont 1 [300., 800.](ft/min)
Fan operating pressure ratio cont 1 [1.05, 1.45]

Span cont 1 [30., 36.] (m)
Angle for swept wing cont 1 [20., 40.] (◦)

Wing taper aspect ratio cont 1 [0.2, 0.5]
Engine length to diameter ratio cont 1 [1., 5.]

Total continuous variables 8
Electric motors and fan number discrete 1 {16,24,32,40}

Electric cores number discrete 1 {2,4,6,8}
Generators per turbomachine discrete 1 {1,2,4,8}

Turbomachines number discrete 1 {2,3,4}
Total discrete variables 4

Total relaxed variables 12

subject to Climb time < 29 (s) cont 1
TOFL < 2200 (m) cont 1

Climb reserve > 500 (ft/min) cont 1
Fan radius < 0.1 MAC (m) cont 1

Total constraints 4
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To validate our method, we are comparing, in Fig.10, SEGO with KPLS (4 hyper-
parameters) with its more expensive version using Kriging and with NSGA2. The best
method after 50 iterations is the proposed one involving PLS regression as shown in the
boxplots in Fig.10b. In Fig.10a, after 200 iterations, we still find that SEGO is better
than NSGA2 and that the PLS helps for the convergence. After 50 iterations, SEGO
seems to have almost converged whereas NSGA2 takes twice the number of iterations.

Like for “CERAS”, we find that the best configuration found with SEGO and Kriging
with and without PLS regression are almost the same. The best configuration found is
described in Tab.5.

(a) Convergence curves. (b) Boxplots.

Figure 10: “DRAGON” optimization results using a DoE of 5 points. The Boxplots are
generated, after 200 iterations, using the 10 best points.

Table 5: “DRAGON” Optimal aircraft configuration.

Name Nature Value

Fuel mass cont 9055 kg
Climb time cont 28.95 s

TOFL cont 1865.67 m
Climb reserve at beginning of cruise cont 583.165 ft/min

fan radius cont 0.1 MAC

Cruise Mach number cont 0.7233
TOFL for sizing cont 2091.72 m

Climb reserve for sizing cont 572.12 ft/min
Fan operating pressure ratio cont 1.099

Span cont 36.0 m
Angle for swept wing cont 20.0◦

Wing taper aspect ratio cont 0.298
Engine length to diameter ratio cont 5.0
Electric motors and fan number discrete 40

Electric cores number discrete 6
Generators per turbomachine discrete 1

Turbomachines number discrete 2

The observation of the optimization results from an aircraft design point of view leads
to surprising conclusions, ultimately resulting in questioning the validity of the models
utilized for the design. Among which:

• The optimal fan operating pressure ratio slightly less than 1.1 reveals a default in
the coarse drag model used to assess the additional installation drag of distributed
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electric propulsion.

• The sizing rules of the architecture is based on the default architecture and do not
apply as easily to this new arrangement. Specifically connecting 40 motors to 6
cores of equal power is not straight forward.

• Additionally the safety analysis and cabling design for this new architecture have
to be performed offline and may not be satisfying. Especially since the generator
redundancy is removed by the optimization.

However, we can notice the clear direction taken by the optimizer to use the maximum
number of motors with a low fan operating pressure ratio and constrained fan diameter.
This also drives the motor length to diameter ratio to high values giving a clear indication
for the choice of electric motor technology. A trade off is being made between propulsion
efficiency, installation drag and space limitation which represents one of the challenge of
DRAGON. The fact that such a trade off with continuous and discrete variables can be
made is a great advantage for the study of aircraft with distributed electric propulsion. In
future work, the flexibility of the optimization could allows us to view the architecture not
only defined with discrete variables but provide a selection of architectures as categorical
variables. This can help identify the most efficient architecture and most important
redundancy or interconnection to install.

5 CONCLUSION AND PERSPECTIVES

To conclude, we have observed on both analytical and industrial cases than SEGO
with KPLS is well-suited and efficient for a mixed integer high-dimensional constrained
efficient global optimization problem. We have seen that continuous relaxation allows
straightforward use of continuous GP but can be impractical as it increases the compu-
tational effort required to build the surrogate model. By using the PLS regression, it is
possible to reduce the computational cost and makes the continuous relaxation affordable
in practical contexts. This method has been applied to aircraft design optimization and
contributed to the development of an MDA tool designing future aircraft configurations.

Future works will involve mixed integer Gaussian kernels for high-dimensional black-
box problems to compare with this method. The number of components for PLS should
be chosen from a global strategy and not beforehand and we expect KPLS to be useful for
mixed integer Gaussian Kernels dimension reduction. For the Aircraft Design, the MDA
for the “DRAGON” concept will soon be treated through overall aircraft design within FAST-
OAD. The FAST-OAD Tool is still in development and will be made even more flexible
and general.
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