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Abstract. In aerodynamic design, both Computational Fluid Dynamics (CFD) simu-
lations and wind tunnel (WT) experiments deliver datasets that are complementary in
terms of uncertainties and density of information. In many situations it is desirable to
use methods that combine all available information while accounting for the strengths of
both sources. In this paper, we combine the sources in a multi-fidelity Gaussian process
(GP) model to foretell the aerodynamic forces and moments. The resulting model accounts
for input-dependent error measurements in both experimental and simulated data. To vali-
date the model, we construct a proper multi-source aerodynamic database containing CFD
and WT data. This database is based on the NASA Common Reference Model. The CFD
simulations are based on Reynolds-averaged Navier-Stokes (RANS) equations. We demon-
strate in numerical settings that the suggested multi-fidelity GP framework outperforms
the single-fidelity one in terms of prediction accuracy at the highest level of fidelity (i.e.
WT data). The resulting model also allows to reconstruct common aerodynamic profiles
(e.g. representations of longitudinal forces) with uncertainties.

Keywords: CFD, wind tunnel tests, multi-fidelity databases, error measurements, sur-
rogate models, Gaussian processes



R. Conde Arenzana, A. F. López-Lopera, S. Mouton, N. Bartoli and T. Lefebvre

1 INTRODUCTION

Nowadays, aerodynamic data for aerospace vehicles are obtained from different sources
such as in-flight tests, wind tunnel (WT) experiments and several types of numerical
simulations [1–4]. All those sources provide information about the same flying aircraft,
but with different characteristics in terms of accuracy, cost, cycle-time and availability [2].
In principle, data collected from flight testing are the most representative of the reality,
but are limited in scope by cost and safety issues. They are also unavailable during most
of the design phase, although data from a previous similar aircraft can actually be useful.
On the other hand, numerical simulations, in particular Computational Fluid Dynamics
(CFD), can be exploited even in early design phases, especially if one bears in mind their
significant advances during the last decades [3]. However, their accuracy is still limited by
issues such as turbulence modelling and discretization errors, and their ability to produce
thousands of flight conditions is also limited by available computational power. Finally,
WT testing lies somewhat in between.

Although these sources of data were sometimes seen as competitors in the past, the
growing consensus today is that they can be used in a complementary manner for the fore-
seeable future [2]. Indeed, their characteristics and the aerodynamic data they generate
are very different, and, in many instances, complementary. For example, flow simulations
are able to provide a complete mapping of the local pressure on the aircraft surface, but
generally for a limited number of flow conditions due to the high recurring computational
cost involved for each new simulation. Quite the opposite is observed in WT data: the
number of pressure measurements is limited by the available room in the model, but any
new flow condition is easily obtained by changing the tunnel conditions. In this con-
text, appropriate data fusion methods are needed to consider these datasets in a unified
framework aiming at fully leveraging the knowledge gathered by the different sources.

For aerodynamic data fusion, due to the cost of experimental tests including both in-
flight and WT tests, many of the previous works focus on simplistic models (e.g. such
the vortex lattice model, VLM), and/or CFD simulations [5–7]. It is often assumed that
Reynolds-averaged Navier-Stokes (RANS) simulations accurately describe aerodynamic
phenomena at a tractable computational cost (in the order of minutes or hours depending
on the mesh resolution and machine capacity). On the other hand, since VLM-based
frameworks are faster but less accurate, they can provide complementary information
that may reinforce aerodynamic databases [5, 6]. As a result, it is possible to meet the
desired requirements in terms of reliability but with the advantage of achieving a non-
negligible reduction of resources. There are only a few works that exploit WT tests as
another source data [see, e.g., 8–12], however they commonly consider a low amount of
data (less than 100 points).

Efforts in this direction have been made [6, 8–10], and in particular, surrogate models
based on Gaussian processes (GPs) are drawing attention in the aerodynamic community
due to its versatility and its ability to quantify uncertainties [11–17]. For example, in [11],
a multi-task GP regression model (also known as co-Kriging) has been proposed, account-
ing for both CFD simulations (Euler and RANS equations) and a notional WT database.
In [14], a multi-fidelity GP framework based on the auto-regressive model proposed by [18]
has been further investigated for (Bayesian) optimization purposes. As shown by [11, 14],
GPs provide promising results that can be exploited for decision tasks when considering
multiple aerodynamic data sources. In fusing such datasets, uncertainty quantification is



R. Conde Arenzana, A. F. López-Lopera, S. Mouton, N. Bartoli and T. Lefebvre

Figure 1: Large Reference Model (LRM) used in the S1-WT at ONERA.

playing a key role. Quantifying and propagating uncertainties is a difficult topic, both in
CFD modeling [see, e.g., 9] and in WT experiments [see, e.g., 19].

Our contributions here are threefold. We first provide a large aerodynamic database
that features the implementation of WT data and CFD simulations based on RANS
equations. Second, we set up simplified uncertainty models of the CFD and WT data,
aiming at defining realistic values for the input varying uncertainties of force coefficients.
Finally, we further investigate a multi-fidelity GP framework that exploits both WT and
CFD data, while accounting for input-varying uncertainties (heteroscedastic case). The
suggested model is based on the auto-regressive GP scheme proposed by [18].

This paper is organized as follows: Section 2 presents the construction of the multi-
source database, explaining how WT and CFD data are collected. Section 3 delves into
the WT and CFD uncertainty models. The heteroscedastic multi-fidelity GP model is
detailed in Section 4. The results are discussed in Section 5. Lastly, Section 6 summarizes
the conclusions and potential future works that could complement this study.

2 CONSTRUCTION OF THE MULTI-SOURCE DATABASE

The construction of a proper database is an essential component to develop a data-
driven aerodynamic model. In addition, different data acquisition schemes can lead to
different features in terms of reliability and lead time, which are usually inversely related.
For this purpose, a multi-source aerodynamic database based on the NASA Common
Reference Model (CRM) [20] is proposed. One of the main contributions here is the
use of WT data provided by ONERA which will be considered as the high-fidelity data.
Figure 1 shows one of the models used in the WT experiments. The low-fidelity data are
obtained from numerical CFD simulations based on RANS equations. Further details are
given in Sections 2.1 and 2.2.

The aerodynamic database contains three inputs: the Mach number (M), the Reynolds
number (Re), and the angle of attack (α [deg]). Figure 2 shows pairwise histograms for
those input parameters. The outputs are the drag coefficient (Cx), the lift coefficient
(Cz), and the pitch moment coefficient (CM). 4D scatter plots of those coefficients are
shown in Fig.3. Section 2.3 describes the methodology considered to construct the design
of experiments (DoE) used to run the simulations and to choose the experimental points
that will be taken into account to train the model.
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Figure 2: Pairwise histograms of the aerodynamic inputs α, Re and M . Results are
shown for both (orange) WT and (blue) CFD data. The panels in the diagonal show 1D
marginal histograms, while the other ones show 2D histograms of pairs of inputs. For the
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Figure 3: 4D scatter plots for the multi-fidelity database generated in Section 2. 3D axes
correspond to the aerodynamic input parameters (α, Re and M), and the colorbar shows
the magnitude of the output coefficient (either Cx, Cz or CM). Results are shown for both
(top) WT and (bottom) CFD data.
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2.1 Wind tunnel (WT) data

Experimental testing is performed in two different ONERA WT centers: the F1-WT,
which focuses on high Re values and M ∈ [0.05, 0.36] [21]; and the S1MA-WT, which
focuses on transonic speeds [22] (see Fig.1). The CRM shape is used to build two Large
Reference Models (LRMs): the first one for S1-WT with a wing span of 3.5m (scale
1/16.835) and the second one for F1-WT with a wing span of 3m (scale 1/19.5). Aeroe-
lastic deformations are considered in the design to produce a shape under load that is
comparable to previous CRM tests in NTF [23] and ETW [24]. In the database construc-
tion, we use the wing-body configuration without tail planes to be consistent with the
CFD model. The boundary layer transition is forced on the wing and fuselage. The WT
models are equipped with hundreds of pressure taps, but for the present study only the
aerodynamic forces measured by internal balances are considered. The measurements are
corrected from the effect of the WT walls thanks to potential flow theory [25], which has
been recently verified to work well even under transonic conditions [26]. They are also
corrected from support effect, using CFD for the S1 database [27], and by performing a
dummy sting test for the F1 database. The extent of WT data is limited by the operating
envelope of the WT and some other experimental considerations, such as the avoidance
of excessive loads on the model support or force balance.

By collecting data from experimental tests performed in the past with the aforemen-
tioned configuration, we construct a WT database composed by 5473 samples. Due to
the cost of WT tests, in further developments (e.g. in the construction of the DoE,
Section 2.3), we use historical WT events instead of performing new tests.

2.2 Numerical CFD data

The RANS equations are the most widespread way to model turbulent flows, and even
though if its calculation is usually related to long-time computations, the use of a coarse
grid allows the extraction of a large set of points in a suitable time. RANS simulations
here are carried out with the elsA software developed at ONERA [28]. In our study, we
use a mesh, namely “L1”, composed of 63.9 × 103 cells (approximately), which can be
retrieved in the DPW5 website.1 The one equation Spalart-Allmaras turbulence model is
used, resulting in computations that are similar to the ones performed in [29]. With this
configuration, seven simulations (executed in parallel) are obtained in about 35 min on a
Intel® Xeon® E5-2680 v4, 14 cores, 2.4 GHz.

2.3 Design of experiments (DoE) via Latin hypercube sampling

For the construction of a DoE that properly covers the input domain, we consider a
nested construction based on a maximin Latin hypercube sampling (LHS). The nested
assumption is contemplated to count on an efficient implementation of the surrogate
model described in Section 4. We must note that standard LHS are usually defined
for hypercube domains [30]. However, this is not our case since we need to account for
physical constraints. For example, experiments with simultaneously high values of M and
α will lead to high-speed deep stall situations that are far outside of the flight envelope
of this aircraft, and are therefore not interesting to include in the database.

1Drag Prediction Workshop 5 : https://aiaa-dpw.larc.nasa.gov/Workshop5/workshop5.html

https://aiaa-dpw.larc.nasa.gov/Workshop5/workshop5.html
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Figure 4: Aerodynamic input space used for the construction of the DoE via LHS.

By considering the different physical constraints based on [31] and on expert knowledge,
it is possible to define the input space in Fig.4a with maximal ranges defined in Tab.1.
Such space can be transformed into a cube (see Fig.4b) by using the parametric transfor-
mation given by

M∗ =
M − 0.1

0.87
, α∗ =

α + 10− 5M

40− 25M∗ , Re∗ = log10(Re) (1)

With this new parametrization (M∗, α∗, Re∗), we can then propose an optimal nested
DoE via LHS. To do so, we use the dedicated LHS function NestedLHS from the Python
toolbox SMT [32], based on the enhanced stochastic evolutionary algorithm proposed
in [33]. This function returns an optimal DoE per each level of fidelity while preserving
a nested construction. After defining the nested DoE, we then map the generated design
points into the original input space using the expressions below:

M = 0.1 + 0.87M∗, α = −10 + 40α∗ + 5M∗ − 25α∗M∗, Re = 10Re
∗

(2)

In our study, we generate a nested DoE with 250 and 1949 design points for the WT
and CFD databases, respectively (see Fig.2). We must note that, to benefit from WT
tests performed in the past, we match the resulting DoE of the highest fidelity level
with respect to the WT database described in Section 2.1. This procedure is based on
a nearest-neighbor scheme where a generated design point is replaced by the nearest
WT input configuration. Although such procedure breaks down the Latin hypercube’s
properties, the resulting DoE still covers the input space properly (see Fig.2).

2.4 Database overview

As shown in Tab.1, CFD data are taken in a parametric space larger than the one of
WT data. This is chosen with the aim of stretching out the study to the entire flight
envelope of the aircraft. This is meant to illustrate the complementary nature of the two
datasets in hands, one being more accurate but covering only a limited domain of the
parametric space, and the other one being used to expand that knowledge, especially in
terms of α and Re values.
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Table 1: Parameters of the CRM aerodynamic database. For each data source, the ranges
of the inputs are shown along with the number of samples that are part of the database.

Wind Tunnel elsA CFD

Mach Number (M) [0.01, 0.95] [0.01, 0.97]
Reynolds Number (Re) [1× 106] [0.77, 6.60] [0.1, 30.0]
Angle of Attack (α) [deg] [-9.3, 20.5] [-10.0, 30.0]
Number of samples 250 1949

The capabilities of the RANS simulations are here pushed to their limits, and sometimes
beyond, with cases that do not converge properly, especially at high AoA (see Section 3.2).
This kind of data would probably be of little use to actually design the aircraft, but are
regarded as sufficient for the purpose of demonstrating the data fusion process.

3 ERROR PROPAGATION ANALYSIS

In assembling data, it is helpful, and sometimes necessary, to know the uncertainty of
samples. We now present how the experimental and numerical uncertainties are modelled.

3.1 WT data

A full analysis of experimental uncertainties is not immediately available for the WT
tests. Indeed, such analysis has always been a complex subject [see, e.g., 19, 34]. Never-
theless, in the framework of this work, a simplified uncertainty model of the experimental
dataset is set up to define realistic values for the uncertainties of Cx, Cz and CM . This
analysis does not consider uncertainties in Mach number, and ignores or overly simplifies
a number of sources such as the manufacturing accuracy of the model. Some sources of
uncertainty (e.g. on wall corrections) are given by an expert estimate that is appropriate
for most of the database, but whose validity is more doubtful beyond stall for example.
In spite of its deficiencies, this uncertainty model is regarded as rich enough for using it
in the data fusion process that is the topic of the present work.

To be consistent with the surrogate model described in Section 4, all the aerodynamic
parameters considered here are regarded as random Gaussian variables. We denote τ 2

X
as the variance parameter of the variable X . In Appendix 8, we provide further details
about the uncertainty model.

As an example, the drag coefficient is obtained from balance and dynamic pressure

measurement as Cx =
A cosα +N sinα

qSref

, where A and N are the axial and normal aero-

dynamic forces in model axes (respectively), q is the dynamic pressure, Sref and Lref are the
reference length and surface area (respectively) of the model. Consequently, the variance
of the error on Cx is given by

τ 2
Cx =

(
cosα

qSref

)2

τ 2
A +

(
sinα

qSref

)2

τ 2
N + C2

x

(
τq
q

)2

+ C2
z τ

2
α. (3)

From Eq.(3), we observe that τ 2
Cx

varies with α. Moreover, as detailed in Appendix 8,
τ 2
q and τ 2

α also depend on the values of M and Cz, which itself also depends on M , Re
and α. This implies that the resulting variances τ 2

Cx
, τ 2

Cz
and τ 2

CM
are input-varying as



R. Conde Arenzana, A. F. López-Lopera, S. Mouton, N. Bartoli and T. Lefebvre

Figure 5: 1D profiles of the force coefficients Cx, Cz and CM with respect to α [deg].
Panels show: the WT data (orange points), CFD data (blue crosses) and the associated
one standard-deviation error intervals (vertical bars). To improve the visibility, four
standard-deviation error intervals (orange bars) are displayed for the WT data.

we illustrate in Fig.5. There, panels show 1D profiles of the Cx, Cz, CM as functions of
α. One of the driving factors for this matter of fact is that the force balance is chosen to
withstand the maximum forces expected during the test, which makes it oversized for the
lowest forces to measure, which occur when the dynamic pressure q is low. In Appendix 8,
we also write the expressions of variance of the errors for Cz and CM .

3.2 CFD simulations

Defining uncertainty on the outcome of CFD simulations is even more difficult than
for experiments, since both physical modeling, discretization, and solution errors play a
role [35]. In particular, the uncertainty associated with turbulence modelling is an active
field of research [36]. A practical solution being not available for the simulations dealt
with in the present work, it is decided to use the convergence history of the force coefficient
as an indication of simulation uncertainty. For that purpose, the standard deviation of
the force coefficients over the last 300 iterations is used. Figure 6 shows an example of
an improperly converged CFD simulation (properly converged CFD results are shown in
Appendix 7), where the flow solver exhibits limit-cycle oscillations, due to the massive
flow separation on the wing upper surface. This is of course a crude approximation of
simulation uncertainty, and certainly not a good practice as underlined by [37]. This
is contemplated however to demonstrate the ability of the GPs to handle this kind of
uncertainty, until better estimates are available.
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Figure 6: Example of a CFD simulation from the database constructed in Section 2,
at M = 0.7563, Re = 0.1 × 106 and α = 8.043 [deg], where limit-cycle oscillations are
encountered. On the left panel, convergence plots (solid lines) after 1000 iterations are
shown for Cx (CXC, in black), Cz (CZC, in red) and CM (CMAAC, in blue). On the
right panel, the pressure coefficient distribution is depicted for the CRM model.

4 MULTI-FIDELITY GAUSSIAN PROCESS MODEL

In this paper, we study a multi-fidelity surrogate model based on Gaussian processes
(GPs). More precisely, we consider the framework proposed by [18]. To account for the
error measurements proposed in Section 3, we adapt the GP model in [18] for the case of
input-varying additive Gaussian noises (heteroscedastic case).

4.1 Gaussian processes

A GP is a collection of random variables, where the resulting joint distribution of those
variables is Gaussian [38]. Let {Y (x),x ∈ D} be a GP in R with compact input space
D ⊂ Rd, e.g. D = [0, 1]d. Then, Y is completely defined by its mean function m : D → R
and covariance function (kernel) k : D ×D → R, i.e.

Y ∼ GP(m, k).

For ease of notation, we focus on centered GPs, i.e. m(·) = 0, but equations can be
generalized for non-centered cases [see, e.g., 38]. An example of a valid (stationary)
covariance function is the squared exponential (SE) kernel given by

k(x,x′) = σ2 exp

(
−

d∑
i=1

θi(xi − x′i)2

)
, (4)

with x,x′ ∈ D, x = (x1, . . . , xd), x = (x′1, . . . , x
′
d), σ

2 the variance parameter and
θ1, . . . , θd the inverse length-scale parameters.

In regression tasks, we aim at fitting a GP to a training dataset D = (xi, f(xi))1≤i≤n,
which relies in the computation of the conditional distribution given by

Y |{Y (x1) = f(x1), . . . , Y (xn) = f(xn)} ∼ GP(µn, cn), (5)
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where the conditional mean function is given by µn(x) = k>n (x)K−1
n yn, with an obser-

vation vector yn = [y1 := f(x1), . . . , yn := f(xn)]>; the conditional covariance func-
tion is given by cn(x,x′) = k(x,x′) − k>n (x)K−1

n kn(x′), with a cross-covariance vector
k>n (x) = (k(x,xi))1≤i≤n and a covariance matrix Kn = (k(xi,xj))1≤i,j≤n. The condi-
tional process in Eq.(5) is then used as a surrogate model to approximate the target
function f . We must note that the kernel k := kσ,θ1,...,θd is parametrized by σ, θ1, . . . , θd
(also known as hyperparameters) that can be estimated via maximum likelihood [38].

4.2 Extension to the multi-fidelity framework

Since the aerodynamic database considers only two data sources (WT and CFD data),
here we focus on a multi-fidelity GP framework with two levels of fidelity. The extension
to more than two levels of fidelity can be obtained recursively as it is shown by [18, 39]. We
denote Ye and Ys as the processes related to the WT experiments and CFD simulations,
respectively. As suggested by [18], we consider the auto-regressive model given by

Ye(x) = ρ(x)Ys(x) + ν(x), (6)

where ρ : D → R is a scale factor between Ys and Ye, and ν : D → R the discrepancy
function tasked with capturing the differences between both fidelity levels beyond scaling.
The scale factor ρ can be a scalar parameter as suggested in [40]. As proposed in [18],
we assume ρ(x) =

∑q
i=1 gi(x)βi where g1, . . . , gq are regression functions (e.g. constant,

linear, quadratic), and β1, . . . , βq are their corresponding weights. We must note that
predictors of the latter weights are obtained by best linear unbiased estimators [18, 38].

Let Ys and ν be two independent (centered) GPs given by Ys ∼ GP(0, ks) and ν ∼
GP(0, kν) with covariance functions ks and kν . Due to the linearity of Eq.(6), we can
show that Ye is also (centered) GP-distributed with covariance function given by

ke(xi,xj) := cov {Ye(xi), Ye(xj)} = ρ(xi)ρ(xj)ks(xi,xj) + kν(xi,xj). (7)

According to our aerodynamic application, we aim at predicting profiles of Ye us-
ing both WT data (xe,i, ye,i)1≤i≤ne and CFD simulations (xs,i, ys,i)1≤i≤ns . Therefore,
we need to compute the conditional distribution of Ye|{Ys(xs,1) = ys,1, . . . , Ys(xs,ns) =
ys,ns , Ye(xe,1) = ye,1, . . . , Ye(xe,ne) = ye,ne} which is also GP-distributed [18]. Note that
this construction allows to exploit CFD data in order to improve the predictability of the
GP model Ye. We refer to [18] for a further discussion about the predictive formulas of
the multi-fidelity GP framework.

In further developments, in order to benefit from efficient computations due to the
nested structure of the aerodynamic databases in Section 2, i.e. (xe,i)1≤i≤ne ⊆ (xs,j)1≤j≤ns ,
we consider the recursive GP formulation proposed in [41].

4.3 Consideration of input-varying noisy observations

To account for additive input-varying noisy observations, we can consider the system:

Y noise
s (xi) = Ys(xi) + εs,i, (8)

Y noise
e (xj) = ρ(xj)Ys(xj) + ν(xj) + εe,j, (9)

where εs,i ∼ N
(
0, τ 2

s,i

)
and εe,j ∼ N

(
0, τ 2

e,j

)
, for all i = 1, . . . , ns and j = 1, . . . , ne. Here

we assume that the additive Gaussian noises are independent and identically distributed,
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and that they are independent of Ys and ν. Then we have that Y noise
s and Y noise

e are
(centered) GP-distributed with covariance functions given by

k̃s(xi,xj) = ks(xi,xj) + τ 2
s,iδxi(xj), (10)

k̃e(xi,xj) = ρ(xi)ρ(xj)ks(xi,xj) + kν(xi,xj) + τ 2
e,iδxi(xj), (11)

with τ 2
s,i and τ 2

e,i the noise variances at the input xi, and δxi(xj) the Dirac delta function
that is equal to one if xi = xj, and zero otherwise. Equation (11) follows a similar
structure than the one in Eq.(7) but with one additional terms τ 2

e,iδxi(xj) that models
the input-varying noises. Since Y noise

s and Y noise
e are GP-distributed, we can establish

the formulas for computing the conditional Gaussian distribution Ye|{Ys(xs,1) + εs,1 =
ys,1, . . . , Ys(xs,ns) + εs,ns = ys,ns , Ye(xe,1) + εe,1 = ye,1, . . . , Ye(xe,ne) + εe,ne = ye,ne}. Those
formulas follow the same structure as the ones for the noise-free case but replacing ks(x,x

′)

to k̃s(x,x
′) and ke(x,x

′) to k̃e(x,x
′). Since the Gaussian noises are mutually independent,

independent of Ys and ν, then the cross-covariance terms will remain unchangeable:

cov
{
Y noise
e (xi), Y

noise
s (xj)

}
= cov {ρ(xi)Ys(xi) + ν(xi) + εe,i, Ys(xj) + εs,j}
= cov {ρ(xi)Ys(xi) + ν(xi), Ys(xj)}
= cov {Ye(xi), Ys(xj)} .

In our application, the noise variances εs,1, . . . , εs,ns and εe,1, . . . , εe,ne are known and
they are defined in Section 3. However, we must note that they can also be estimated
via sensible estimators [42] or via maximum likelihood [43]. In those cases, we need to
account for repetitions of observation, i.e., for a fixed set of aerodynamic inputs x, we have

to execute ne,re times the same WT test and keep the outcomes Y
(1)
e (x), . . . , Y

(ne,re )
e (x).

Taking into account the cost (in both time and resources) of experimental WT tests, we
can easily conclude that the approaches in [42, 43] become expensive. This drawback is
mitigated by considering directly the error propagation analysis described in Section 3.

4.4 1D numerical illustration

Python codes of the resulting heteroscedastic GP framework described in Section 4.3
are available in the Surrogate Modeling Toolbox (SMT) [32], an open-source toolbox de-
veloped by ONERA, ISAE-SUPAERO, University of Michigan and NASA Glenn.

Figure 7 shows 1D predictions under heteroscedastic assumptions either considering an
independent GP model for each level of fidelity or the multi-fidelity GP framework.2 We
consider the one dimensional “benchmark” problem proposed in [44] and used in some
other works related to multi-fidelity surrogate models [14, 45]. The target functions are:

fs(x) = (6x− 2)2 sin(2[6x− 2]), (low-fidelity function)

and
fe(x) = 0.5fs(x) + 10(x− 0.5)− 5, (high-fidelity function)

for x ∈ [0, 1]. As a nested DoE, we proposed 12 and 4 equidistant low-fidelity and high-
fidelity design points, respectively. For illustration, the associated error measurements

2The example in Fig. 7 can be reproduced using the Python-based Jupyter notebook available in SMT:
https://github.com/SMTorg/smt/blob/master/tutorial/SMT_MFK_Noise.ipynb

https://github.com/SMTorg/smt/blob/master/tutorial/SMT_MFK_Noise.ipynb
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Figure 7: Predictions considering (left) an independent GP per level of fidelity or (right)
a multi-fidelity GP (MFGP). Both schemes account for the input-varying noise variances
described in Section 4.4. Each panel shows: the target low-fidelity and high-fidelity
functions (in orange and blue dashed lines, respectively), the design points (dots) with the
corresponding 3 standard-deviation error bars, the resulting predictions (solid lines) and
3 standard-deviation confidence intervals (light areas) provided by the GP frameworks.

are manually fixed and are given by

τ 2
s = (10−1, 3.5× 10−2, 10−3, 3× 10−8, 2.5× 10−2, 2.5× 10−2,

2× 10−2, 1.5× 10−2, 10−1, 5× 10−3, 2.5× 10−6, 5× 10−2),

and τ 2
e = (3× 10−1, 8× 10−2, 2× 10−3, 2× 10−2).

For the GP models, we consider SE kernels (see Eq.(4)), with covariance parameters
estimated via maximum likelihood.3 In Fig.7, we observe that the noise variance of
both independent GPs and the multi-fidelity GP properly cover the error measurements
(vertical bars) at the design points (dots), however, prediction at the high-fidelity level
fe is significantly improved by considering the multi-fidelity GP framework, with a better
approximation where data are scarce (e.g. around x = 0.8).

5 RESULTS

5.1 Assessment of the multi-fidelity GP model

We here assess the performance of the multi-fidelity GP model considering different
percentage of training WT data. The training data are randomly chosen from the nested
database generated in Section 2. We test three different GP models for each coefficient
(Cx, Cz and CM): two independent single-fidelity GPs exploiting data either from CFD
simulations (namely GP-CFD) or WT experiments (namely GP-WT), and a multi-fidelity
GP (MFGP) that exploits both data sources. All the models are trained using the 100%
of the CFD dataset (1949 data points). For the models accounting for WT data (250 data
points), we consider different WT training dataset, i.e. 10%, 30%, 50%, 70% and 90%.
Matérn 5/2 kernels are considered as covariance functions for the GP priors:

k(x,x′) = σ2

3∏
i=1

(
1 +
√

5θi|xi − x′i|+
5

3
θ2
i (xi − x′i)2

)
exp

(
−
√

5θi|xi − x′i|
)
,

3We considered as initial covariance parameters σ2
e = σ2

s = 1, θe = 0.1 and θs = 0.5.
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Figure 8: RMSE results for three different GP models for each coefficient (Cx, Cz and
CM): two independent single-fidelity GPs exploiting data either from CFD simulations
(GP-CDF, green line) or WT experiments (GP-WT, orange), and a multi-fidelity GP
that exploits both data sources (MFGP, blue). All the models are trained using the
100% of the CFD data (1949 data points). For the models accounting for WT data (250
data points), we consider different WT training dataset. Boxplots are computed over ten
different random replicates.

with x = (x1, x2, x3).4 The hyperparameters (σ, θ1, θ2, θ3) are estimated via maximum
likelihood. As mean functions of the priors, we assume linear trends for all the forces
coefficients, i.e. mlinear(x) = a0 + a1x, except for Cx where we consider a quadratic trend
mquadratic(x) = a0 + a1x + a2x

2. The coefficients a0, a1, a2 are obtained via best linear
unbiased estimation within a universal GP framework [38]. Those trends are defined
according to expert knowledge. For the testing step, the predictions of the resulting
models are assessed on a validation WT database containing a thousand test points. The
test WT DoE is constructed via LHS as discussed in Section 2.3.

Figure 8 shows the root mean square error (RMSE)5 results for ten different random
replicates. The RMSE values obtained when considering 100% of the WT data for training
the GP models are also displayed. From Cz and CM profiles, we observe that the MFGP
outperformed the RMSE results of the single-fidelity implementations GP-CFD and GP-

4Other types of kernels (e.g. SE kernels) were tested but the Matérn 5/2 class resulted in more
accurate results.

5RMSE =
√

1
ntest

∑ntest

i=1 (yi − µi)2 with y1, . . . , nyntest
the test observations and µ1, . . . , µntest

the

corresponding GP predictions.
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Figure 9: Scatter plots of the test data vs predictions obtained by two independent GPs
exploiting data from CFD simulations (left) or WT tests (middle), and a multi-fidelity
GP that exploits both types of data (right). Results are shown for Cx (top), Cz (middle)
and CM (bottom). The vertical bars represent the one standard-deviation conditional
predictive errors led by the models. RMSE indicators are shown on top of each panel.

WT, leading to significant improvements when WT training sets are small (e.g. using
less than 30% of the WT data). For the Cx coefficient, although we note smaller RMSE
values when considering only 10% of the WT data, the quality of predictions provided by
the MFGP is degraded when the number of WT data points increases. This drawback is
produced due to WT data are scarce for Cx > 0.2, and therefore, predictions rely mostly
on the biased CFD simulations. This bias is observed in Fig.5, and is also reflected by
the Pearson correlation coefficient. By computing the Pearson coefficient only over the
Cx observations associated to the 250 design points shared by both WT and CFD data,
and for Cx > 0.2, it results in a value of 0.863 (compared to 0.934 for the case where
Cx ≤ 0.2). To mitigate this issue, we can add additional WT data with Cx > 0.2 aiming
at better learning the discrepancy function ν.

In Fig.9, we show scatter plots of the test data vs predictions obtained by the proposed
GP models accounting for the 100% of WT data. Observe that clearer improvements are
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Figure 10: Multi-fidelity GP predictions of common polar of longitudinal forces used in
the analysis of WT experiments. For Re = 7× 106 and different values of M , each panel
shows: the nearest available test points (dots), the conditional GP mean functions (solid
lines) and one standard-deviation predictive confidence intervals (light areas). Confidence
intervals are considered for the horizontal-axes except for the plot with respect to α where
uncertainty is displayed vertically.

obtained for high-values of the lift coefficient Cz. For Cx and CM , we note that significant
mispredictions are obtained for high values. Due to data are scarce for Cx > 0.2 and
CM > 0.15, and the high variability of the CM (see Fig.3 and Fig.5), we can conclude
that the MFGP model could not learn such behaviours from the training dataset. Note
also that those mispredictions are also encountered when considering either the GP-CFD
or GP-WT. As pointed out in the results from Fig.8, this drawback can be mitigated by
considering additional training points for Cx > 0.2 and CM > 0.15. The poor predictions
of the GP-CFD models are justified by the existing bias between the CFD and WT data.

5.2 Representation of longitudinal forces

As discussed in Section 4, one of the main benefits of considering (multi-fidelity) GP
models relies in the associated confidence intervals of predictions. Next, we show how
those confidence intervals can be exploited in the analysis of WT experiments, more
precisely, in the construction of polar representation of longitudinal forces. In Fig.10, for
a fixed Reynolds number Re = 7 × 106 and for different values of Mach number M , we
show the profiles of Cz with respect to α, Cx − C2

z/(πλ), with λ = 9 the LRM model
wing aspect ratio,6 and CM . Confidence intervals are considered for the horizontal-axes
except for the profile with respect to α where the uncertainty is displayed for the vertical-
axe. We observe that the resulting multi-fidelity GP model commonly leads to reasonable
aerodynamic profiles, where higher uncertainties are obtained in regions where data are
not available. We must note that those uncertainties can be reduced by adding new WT
training points on those regions. This may motivate the proposition of adaptive DoE
aiming at reducing uncertainty in multi-fidelity GP models [46, 47]. We do not consider
such improvement in this paper but it can be considered in further developments.

6Since C2
z/(πλ) is a crude estimate of lift-induced drag (from Prandtl lifting-line theory), then the

term Cx − C2
z/(πλ) is an estimate of the drag other than lift induced, sometimes called profile drag.
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6 CONCLUSION

In this paper, several contributions were addressed in the field of aerodynamic data
fusion. First, we constructed a large multi-source aerodynamic database based on the
NASA Common Research Model. The database contains 250 and 1949 data points, from
wind-tunnel tests and CFD simulations (respectively), covering the entire flight envelope
of the model. Second, we set up a simplified uncertainty model of the experimental WT
data aiming at defining realistic values for the input varying uncertainties of force coeffi-
cients. Finally, we adapted a multi-fidelity Gaussian process (GP) framework to account
for input-varying additive noises (heteroscedastic case) in all the levels of fidelity. We
demonstrated, in both a synthetic example and a real-world application, that the result-
ing multi-fidelity GP outperformed single-fidelity ones in terms of predictive capability.

The work presented in this paper can be improved in different ways. A further investiga-
tion may be contemplated with the increase in the number of inputs and outputs. We may
consider the slideslip angle as an input to allow the prediction of the lateral aerodynamic
forces and moments of the aircraft. We can also consider additional data sources, such as
numerical simulation based on VLM or Euler equations. Those sources will be considered
as lower or intermediate fidelity levels in the multi-fidelity GP framework. Finally, to im-
prove the predictability of the GP model, and looking for uncertainty reduction, adaptive
design of experiments can be further investigated accounting for multi-fidelity schemes.
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APPENDIX

7 ADDITIONAL CFD SIMULATION

In this appendix, we show two additional CFD results: an example where elsA has
properly converged after 1000 iterations, and another example where limit-cycle oscilla-
tions are encountered (see Fig.11).

Figure 11: Examples of CFD simulations from the database constructed in Section 2. The
panel description is the same as the one in Fig.6.
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8 EXPERIMENTAL UNCERTAINTY

In this appendix, we give some complementary information required in Section 3. More
precisely, we provide further details about the estimation of error associated to the angle
of attack α, the aerodynamic forces, and the dynamic pressure. According to the structure
of the database constructed in Section 2, a zero sideslip angle is considered.

Experimental error in aerodynamic forces in model axes. The measurement of
the aerodynamic forces is carried out in the body axes by an internal strain-gauge balance.
Each force component is considered to be affected by an uncertainty equal to c = 0.5×10−3

of the balance capacity on this component, independently of the other components:

τA = cAcapa, τN = cNcapa, τMA
= cMA,capa.

We neglect uncertainties associated to the positioning of the balance axes with respect to
the model axes, and to the calculation of the weight of the model, that is subtracted from
raw balance readings to deduce aerodynamic forces.

Error measurements associated to the angle of attack. Since the slideslip angle
is zero, α is given by

α = θ + γa + ∆α, (12)

where θ [deg] is the pitch angle of the model, γa [deg] is the mean upwash angle of the flow
in the wind tunnel, and ∆α [deg] is a corrective term associated to the wall and support
effects. Assuming that θ, γa and ∆α are independent Gaussian random variables, the
variance parameter for α is given by

τ 2
α = τ 2

θ + τ 2
γa + τ 2

∆α, (13)

where τ 2
θ , τ 2

γa and τ 2
∆α are the corresponding noise variance parameters for θ, γa and ∆α,

respectively. τ 2
θ is deduced from uncertainty analysis of the pitch angle sensor. τ 2

γa results
from an uncertainty analysis of the procedure used to determine upwash angle, namely
the model inversion method, which implies again the pitch angle sensor, and the force
balance. τ 2

∆α is computed by considering that most of the wall correction in angle of attack
stems from lift-induced effect. Therefore, τ∆α is made proportional to the lift coefficient.

Experimental error in dynamic pressure. The dynamic pressure is derived from
the value of the total pressure pi and the static pressure p. These values are themselves
deduced from measurements made on reference pressure taps of the wind tunnel, us-
ing tunnel calibration laws. Finally, wall and support corrections results in a blockage
correction ∆q. Finally the dynamic pressure q reads:

q =
γ

γ − 1
p

((
pi
p

) γ−1
γ

− 1

)
+ ∆q

Hence, defining λ = 1 + γ−1
2
M2, the uncertainty on q can be written as:

τ 2
q =

(
γ

2
M2 + λ(λ−

γ
γ−1 − 1)

)2

τ 2
pi

+

(
1− M2

2

)2

τ 2
p + τ 2

∆q.
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Note that the two first terms result from the propagation of the errors in pressure mea-
surements. The last term is added to account for uncertainties in the tunnel calibration
and the wall corrections. Variances τ 2

pi
and τ 2

p are evaluated thanks to an uncertainty
analysis of the pressure sensors involved in the measurements of the reference total and
static pressures, and confirmed by considering redundancy in the measurements. τ∆q was
chosen to be proportional to q.

Experimental error in force coefficients in wind axes. The expression of the vari-
ance of the error on the drag coefficient Cx was already provided in Section 3. Reminding
that A and N are the axial and normal aerodynamic forces in model axes (respectively),

the lift coefficient is expressed as Cz =
−A sinα +N cosα

qSref

. Consequently, the variance

of the error is given by:

τ 2
Cz =

(
sinα

qSref

)2

τ 2
A +

(
cosα

qSref

)2

τ 2
N + C2

z

(
τq
q

)2

+ C2
xτ

2
α.

The pitching moment coefficient equals to CM =
MA

qSrefLref

, where MA is the aerody-

namic pitching force. Then the variance of the error is equal to:

τ 2
CM

=

(
1

qSrefLref

)2

τ 2
MA

+ C2
M

(
τq
q

)2

.
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