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In aerodynamic design, both Computational Fluid Dynamics (CFD) simulations and wind tunnel (WT) experiments deliver datasets that are complementary in terms of uncertainties and density of information. In many situations it is desirable to use methods that combine all available information while accounting for the strengths of both sources. In this paper, we combine the sources in a multi-fidelity Gaussian process (GP) model to foretell the aerodynamic forces and moments. The resulting model accounts for input-dependent error measurements in both experimental and simulated data. To validate the model, we construct a proper multi-source aerodynamic database containing CFD and WT data. This database is based on the NASA Common Reference Model. The CFD simulations are based on Reynolds-averaged Navier-Stokes (RANS) equations. We demonstrate in numerical settings that the suggested multi-fidelity GP framework outperforms the single-fidelity one in terms of prediction accuracy at the highest level of fidelity (i.e. WT data). The resulting model also allows to reconstruct common aerodynamic profiles (e.g. representations of longitudinal forces) with uncertainties.

INTRODUCTION

Nowadays, aerodynamic data for aerospace vehicles are obtained from different sources such as in-flight tests, wind tunnel (WT) experiments and several types of numerical simulations [START_REF] Stoliker | Introduction to flight test engineering[END_REF][START_REF] Malik | Role of computational fluid dynamics and wind tunnels in aeronautics R and D[END_REF][START_REF] Johnson | 30 years of development and application of CFD at Boeing commercial airplanes[END_REF][START_REF] Slotnick | CFD vision 2030 study: A path to revolutionary computational aerosciences[END_REF]. All those sources provide information about the same flying aircraft, but with different characteristics in terms of accuracy, cost, cycle-time and availability [START_REF] Malik | Role of computational fluid dynamics and wind tunnels in aeronautics R and D[END_REF]. In principle, data collected from flight testing are the most representative of the reality, but are limited in scope by cost and safety issues. They are also unavailable during most of the design phase, although data from a previous similar aircraft can actually be useful. On the other hand, numerical simulations, in particular Computational Fluid Dynamics (CFD), can be exploited even in early design phases, especially if one bears in mind their significant advances during the last decades [START_REF] Johnson | 30 years of development and application of CFD at Boeing commercial airplanes[END_REF]. However, their accuracy is still limited by issues such as turbulence modelling and discretization errors, and their ability to produce thousands of flight conditions is also limited by available computational power. Finally, WT testing lies somewhat in between.

Although these sources of data were sometimes seen as competitors in the past, the growing consensus today is that they can be used in a complementary manner for the foreseeable future [START_REF] Malik | Role of computational fluid dynamics and wind tunnels in aeronautics R and D[END_REF]. Indeed, their characteristics and the aerodynamic data they generate are very different, and, in many instances, complementary. For example, flow simulations are able to provide a complete mapping of the local pressure on the aircraft surface, but generally for a limited number of flow conditions due to the high recurring computational cost involved for each new simulation. Quite the opposite is observed in WT data: the number of pressure measurements is limited by the available room in the model, but any new flow condition is easily obtained by changing the tunnel conditions. In this context, appropriate data fusion methods are needed to consider these datasets in a unified framework aiming at fully leveraging the knowledge gathered by the different sources.

For aerodynamic data fusion, due to the cost of experimental tests including both inflight and WT tests, many of the previous works focus on simplistic models (e.g. such the vortex lattice model, VLM), and/or CFD simulations [START_REF] Singh | A multi-fidelity approach for aerodynamic performance computations of formation flight[END_REF][START_REF] Zhang | Data fusion and aerodynamic surrogate modeling for handling qualities analysis[END_REF][START_REF] Kou | Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[END_REF]. It is often assumed that Reynolds-averaged Navier-Stokes (RANS) simulations accurately describe aerodynamic phenomena at a tractable computational cost (in the order of minutes or hours depending on the mesh resolution and machine capacity). On the other hand, since VLM-based frameworks are faster but less accurate, they can provide complementary information that may reinforce aerodynamic databases [START_REF] Singh | A multi-fidelity approach for aerodynamic performance computations of formation flight[END_REF][START_REF] Zhang | Data fusion and aerodynamic surrogate modeling for handling qualities analysis[END_REF]. As a result, it is possible to meet the desired requirements in terms of reliability but with the advantage of achieving a nonnegligible reduction of resources. There are only a few works that exploit WT tests as another source data [see, e.g., [START_REF] Kuya | Multifidelity surrogate modeling of experimental and computational aerodynamic data sets[END_REF][START_REF] Mukhopadhaya | Multi-fidelity modeling of probabilistic aerodynamic databases for use in aerospace engineering[END_REF][START_REF] He | Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[END_REF][START_REF] Feldstein | Multifidelity data fusion: Application to blended-wing-body multidisciplinary analysis under uncertainty[END_REF][START_REF] Nigam | Toolset for creation of multi-fidelity probabilistic aerodynamic databases[END_REF], however they commonly consider a low amount of data (less than 100 points).

Efforts in this direction have been made [START_REF] Zhang | Data fusion and aerodynamic surrogate modeling for handling qualities analysis[END_REF][START_REF] Kuya | Multifidelity surrogate modeling of experimental and computational aerodynamic data sets[END_REF][START_REF] Mukhopadhaya | Multi-fidelity modeling of probabilistic aerodynamic databases for use in aerospace engineering[END_REF][START_REF] He | Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[END_REF], and in particular, surrogate models based on Gaussian processes (GPs) are drawing attention in the aerodynamic community due to its versatility and its ability to quantify uncertainties [START_REF] Feldstein | Multifidelity data fusion: Application to blended-wing-body multidisciplinary analysis under uncertainty[END_REF][START_REF] Nigam | Toolset for creation of multi-fidelity probabilistic aerodynamic databases[END_REF][START_REF] Bertram | Theoretical investigations of the new coKriging method for variable-fidelity surrogate modeling: Well-posedness and maximum likelihood training[END_REF][START_REF] Meliani | Multifidelity efficient global optimization: Methodology and application to airfoil shape design[END_REF][START_REF] Bouhlel | Improving Kriging surrogates of high-dimensional design models by partial least squares dimension reduction[END_REF][START_REF] Peherstorfer | Survey of multifidelity methods in uncertainty propagation, inference, and optimization[END_REF][START_REF] Khatamsaz | A comparison of reification and coKriging for sequential multi-information source fusion[END_REF]. For example, in [START_REF] Feldstein | Multifidelity data fusion: Application to blended-wing-body multidisciplinary analysis under uncertainty[END_REF], a multi-task GP regression model (also known as co-Kriging) has been proposed, accounting for both CFD simulations (Euler and RANS equations) and a notional WT database. In [START_REF] Meliani | Multifidelity efficient global optimization: Methodology and application to airfoil shape design[END_REF], a multi-fidelity GP framework based on the auto-regressive model proposed by [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF] has been further investigated for (Bayesian) optimization purposes. As shown by [START_REF] Feldstein | Multifidelity data fusion: Application to blended-wing-body multidisciplinary analysis under uncertainty[END_REF][START_REF] Meliani | Multifidelity efficient global optimization: Methodology and application to airfoil shape design[END_REF], GPs provide promising results that can be exploited for decision tasks when considering multiple aerodynamic data sources. In fusing such datasets, uncertainty quantification is Our contributions here are threefold. We first provide a large aerodynamic database that features the implementation of WT data and CFD simulations based on RANS equations. Second, we set up simplified uncertainty models of the CFD and WT data, aiming at defining realistic values for the input varying uncertainties of force coefficients. Finally, we further investigate a multi-fidelity GP framework that exploits both WT and CFD data, while accounting for input-varying uncertainties (heteroscedastic case). The suggested model is based on the auto-regressive GP scheme proposed by [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF].

This paper is organized as follows: Section 2 presents the construction of the multisource database, explaining how WT and CFD data are collected. Section 3 delves into the WT and CFD uncertainty models. The heteroscedastic multi-fidelity GP model is detailed in Section 4. The results are discussed in Section 5. Lastly, Section 6 summarizes the conclusions and potential future works that could complement this study.

CONSTRUCTION OF THE MULTI-SOURCE DATABASE

The construction of a proper database is an essential component to develop a datadriven aerodynamic model. In addition, different data acquisition schemes can lead to different features in terms of reliability and lead time, which are usually inversely related. For this purpose, a multi-source aerodynamic database based on the NASA Common Reference Model (CRM) [START_REF] Vassberg | Development of a common research model for applied CFD validation studies[END_REF] is proposed. One of the main contributions here is the use of WT data provided by ONERA which will be considered as the high-fidelity data. Figure 1 shows one of the models used in the WT experiments. The low-fidelity data are obtained from numerical CFD simulations based on RANS equations. Further details are given in Sections 2.1 and 2.2.

The aerodynamic database contains three inputs: the Mach number (M ), the Reynolds number (Re), and the angle of attack (α [deg]). Figure 2 shows pairwise histograms for those input parameters. The outputs are the drag coefficient (C x ), the lift coefficient (C z ), and the pitch moment coefficient (C M ). 4D scatter plots of those coefficients are shown in Fig. 3. Section 2.3 describes the methodology considered to construct the design of experiments (DoE) used to run the simulations and to choose the experimental points that will be taken into account to train the model. 

Wind tunnel (WT) data

Experimental testing is performed in two different ONERA WT centers: the F1-WT, which focuses on high Re values and M ∈ [0.05, 0.36] [START_REF] Carrara | Three years of operation of the ONERA pressurized subsonic wind tunnel[END_REF]; and the S1MA-WT, which focuses on transonic speeds [START_REF] Cartieri | Experimental investigations on common research model at ONERA-S1MA-Drag prediction workshop numerical results[END_REF] (see Fig. 1). The CRM shape is used to build two Large Reference Models (LRMs): the first one for S1-WT with a wing span of 3.5m (scale 1/16.835) and the second one for F1-WT with a wing span of 3m (scale 1/19.5). Aeroelastic deformations are considered in the design to produce a shape under load that is comparable to previous CRM tests in NTF [START_REF] Rivers | Experimental investigation of the NASA common research model[END_REF] and ETW [START_REF] Rivers | Comparison of the NASA common research model European transonic wind tunnel test data to NASA national transonic facility test data[END_REF]. In the database construction, we use the wing-body configuration without tail planes to be consistent with the CFD model. The boundary layer transition is forced on the wing and fuselage. The WT models are equipped with hundreds of pressure taps, but for the present study only the aerodynamic forces measured by internal balances are considered. The measurements are corrected from the effect of the WT walls thanks to potential flow theory [START_REF] Vaucheret | Recent calculation progress on wall interferences in industrial wind tunnels[END_REF], which has been recently verified to work well even under transonic conditions [START_REF] Hantrais-Gervois | A methodology to derive wind tunnel wall corrections from RANS simulations[END_REF]. They are also corrected from support effect, using CFD for the S1 database [START_REF] Cartieri | Using RANS computations to calculate support interference effects on the common research model[END_REF], and by performing a dummy sting test for the F1 database. The extent of WT data is limited by the operating envelope of the WT and some other experimental considerations, such as the avoidance of excessive loads on the model support or force balance.

By collecting data from experimental tests performed in the past with the aforementioned configuration, we construct a WT database composed by 5473 samples. Due to the cost of WT tests, in further developments (e.g. in the construction of the DoE, Section 2.3), we use historical WT events instead of performing new tests.

Numerical CFD data

The RANS equations are the most widespread way to model turbulent flows, and even though if its calculation is usually related to long-time computations, the use of a coarse grid allows the extraction of a large set of points in a suitable time. RANS simulations here are carried out with the elsA software developed at ONERA [START_REF] Cambier | The ONERA elsA CFD software: Input from research and feedback from industry[END_REF]. In our study, we use a mesh, namely "L1", composed of 63.9 × 10 3 cells (approximately), which can be retrieved in the DPW5 website. 1 The one equation Spalart-Allmaras turbulence model is used, resulting in computations that are similar to the ones performed in [START_REF] Hue | 5th drag prediction workshop: Computational fluid dynamics studies carried out at ONERA[END_REF]. With this configuration, seven simulations (executed in parallel) are obtained in about 35 min on a Intel ® Xeon ® E5-2680 v4, 14 cores, 2.4 GHz.

Design of experiments (DoE) via Latin hypercube sampling

For the construction of a DoE that properly covers the input domain, we consider a nested construction based on a maximin Latin hypercube sampling (LHS). The nested assumption is contemplated to count on an efficient implementation of the surrogate model described in Section 4. We must note that standard LHS are usually defined for hypercube domains [START_REF] Mckay | A comparison of three methods for selecting vales of input variables in the analysis of output from a computer code[END_REF]. However, this is not our case since we need to account for physical constraints. For example, experiments with simultaneously high values of M and α will lead to high-speed deep stall situations that are far outside of the flight envelope of this aircraft, and are therefore not interesting to include in the database. By considering the different physical constraints based on [START_REF] Da Ronch | Adaptive design of experiments for efficient and accurate estimation of aerodynamic loads[END_REF] and on expert knowledge, it is possible to define the input space in Fig. 4a with maximal ranges defined in Tab.1. Such space can be transformed into a cube (see Fig. 4b) by using the parametric transformation given by

M * = M -0.1 0.87 , α * = α + 10 -5M 40 -25M * , Re * = log 10 (Re) (1) 
With this new parametrization (M * , α * , Re * ), we can then propose an optimal nested DoE via LHS. To do so, we use the dedicated LHS function NestedLHS from the Python toolbox SMT [START_REF] Bouhlel | A Python surrogate modeling framework with derivatives[END_REF], based on the enhanced stochastic evolutionary algorithm proposed in [START_REF] Jin | An efficient algorithm for constructing optimal design of computer experiments[END_REF]. This function returns an optimal DoE per each level of fidelity while preserving a nested construction. After defining the nested DoE, we then map the generated design points into the original input space using the expressions below:

M = 0.1 + 0.87M * , α = -10 + 40α * + 5M * -25α * M * , Re = 10 Re * (2) 
In our study, we generate a nested DoE with 250 and 1949 design points for the WT and CFD databases, respectively (see Fig. 2). We must note that, to benefit from WT tests performed in the past, we match the resulting DoE of the highest fidelity level with respect to the WT database described in Section 2.1. This procedure is based on a nearest-neighbor scheme where a generated design point is replaced by the nearest WT input configuration. Although such procedure breaks down the Latin hypercube's properties, the resulting DoE still covers the input space properly (see Fig. 2).

Database overview

As shown in Tab.1, CFD data are taken in a parametric space larger than the one of WT data. This is chosen with the aim of stretching out the study to the entire flight envelope of the aircraft. This is meant to illustrate the complementary nature of the two datasets in hands, one being more accurate but covering only a limited domain of the parametric space, and the other one being used to expand that knowledge, especially in terms of α and Re values. The capabilities of the RANS simulations are here pushed to their limits, and sometimes beyond, with cases that do not converge properly, especially at high AoA (see Section 3.2). This kind of data would probably be of little use to actually design the aircraft, but are regarded as sufficient for the purpose of demonstrating the data fusion process.

ERROR PROPAGATION ANALYSIS

In assembling data, it is helpful, and sometimes necessary, to know the uncertainty of samples. We now present how the experimental and numerical uncertainties are modelled.

WT data

A full analysis of experimental uncertainties is not immediately available for the WT tests. Indeed, such analysis has always been a complex subject [see, e.g., 19, 34]. Nevertheless, in the framework of this work, a simplified uncertainty model of the experimental dataset is set up to define realistic values for the uncertainties of C x , C z and C M . This analysis does not consider uncertainties in Mach number, and ignores or overly simplifies a number of sources such as the manufacturing accuracy of the model. Some sources of uncertainty (e.g. on wall corrections) are given by an expert estimate that is appropriate for most of the database, but whose validity is more doubtful beyond stall for example. In spite of its deficiencies, this uncertainty model is regarded as rich enough for using it in the data fusion process that is the topic of the present work.

To be consistent with the surrogate model described in Section 4, all the aerodynamic parameters considered here are regarded as random Gaussian variables. We denote τ 2 X as the variance parameter of the variable X . In Appendix 8, we provide further details about the uncertainty model.

As an example, the drag coefficient is obtained from balance and dynamic pressure measurement as

C x = A cos α + N sin α qS ref ,
where A and N are the axial and normal aerodynamic forces in model axes (respectively), q is the dynamic pressure, S ref and L ref are the reference length and surface area (respectively) of the model. Consequently, the variance of the error on C x is given by

τ 2 Cx = cos α qS ref 2 τ 2 A + sin α qS ref 2 τ 2 N + C 2 x τ q q 2 + C 2 z τ 2 α . (3) 
From Eq.( 3), we observe that τ 2 Cx varies with α. Moreover, as detailed in Appendix 8, τ 2 q and τ 2 α also depend on the values of M and C z , which itself also depends on M , Re and α. This implies that the resulting variances τ 2 Cx , τ 2 Cz and τ 2 C M are input-varying as we illustrate in Fig. 5. There, panels show 1D profiles of the C x , C z , C M as functions of α. One of the driving factors for this matter of fact is that the force balance is chosen to withstand the maximum forces expected during the test, which makes it oversized for the lowest forces to measure, which occur when the dynamic pressure q is low. In Appendix 8, we also write the expressions of variance of the errors for C z and C M .

CFD simulations

Defining uncertainty on the outcome of CFD simulations is even more difficult than for experiments, since both physical modeling, discretization, and solution errors play a role [START_REF] Oberkampf | Issues in computational fluid dynamics code verification and validation[END_REF]. In particular, the uncertainty associated with turbulence modelling is an active field of research [START_REF] Mishra | Uncertainty estimation module for turbulence model predictions in SU2[END_REF]. A practical solution being not available for the simulations dealt with in the present work, it is decided to use the convergence history of the force coefficient as an indication of simulation uncertainty. For that purpose, the standard deviation of the force coefficients over the last 300 iterations is used. Figure 6 shows an example of an improperly converged CFD simulation (properly converged CFD results are shown in Appendix 7), where the flow solver exhibits limit-cycle oscillations, due to the massive flow separation on the wing upper surface. This is of course a crude approximation of simulation uncertainty, and certainly not a good practice as underlined by [START_REF] Spalart | On the role and challenges of CFD in the aerospace industry[END_REF]. This is contemplated however to demonstrate the ability of the GPs to handle this kind of uncertainty, until better estimates are available. 

MULTI-FIDELITY GAUSSIAN PROCESS MODEL

In this paper, we study a multi-fidelity surrogate model based on Gaussian processes (GPs). More precisely, we consider the framework proposed by [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF]. To account for the error measurements proposed in Section 3, we adapt the GP model in [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF] for the case of input-varying additive Gaussian noises (heteroscedastic case).

Gaussian processes

A GP is a collection of random variables, where the resulting joint distribution of those variables is Gaussian [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF]. Let {Y (x), x ∈ D} be a GP in R with compact input space D ⊂ R d , e.g. D = [0, 1] d . Then, Y is completely defined by its mean function m : D → R and covariance function (kernel) k : D × D → R, i.e.

Y ∼ GP(m, k).

For ease of notation, we focus on centered GPs, i.e. m(•) = 0, but equations can be generalized for non-centered cases [see, e.g. , 38]. An example of a valid (stationary) covariance function is the squared exponential (SE) kernel given by

k(x, x ) = σ 2 exp - d i=1 θ i (x i -x i ) 2 , (4) 
with x, x ∈ D, x = (x 1 , . . . , x d ), x = (x 1 , . . . , x d ), σ 2 the variance parameter and θ 1 , . . . , θ d the inverse length-scale parameters.

In regression tasks, we aim at fitting a GP to a training dataset D = (x i , f (x i )) 1≤i≤n , which relies in the computation of the conditional distribution given by

Y |{Y (x 1 ) = f (x 1 ), . . . , Y (x n ) = f (x n )} ∼ GP(µ n , c n ), (5) 
where the conditional mean function is given by µ n (x) = k n (x)K -1 n y n , with an observation vector y n = [y 1 := f (x 1 ), . . . , y n := f (x n )] ; the conditional covariance function is given by c n (x, x ) = k(x, x )k n (x)K -1 n k n (x ), with a cross-covariance vector k n (x) = (k(x, x i )) 1≤i≤n and a covariance matrix K n = (k(x i , x j )) 1≤i,j≤n . The conditional process in Eq.( 5) is then used as a surrogate model to approximate the target function f . We must note that the kernel k := k σ,θ 1 ,...,θ d is parametrized by σ, θ 1 , . . . , θ d (also known as hyperparameters) that can be estimated via maximum likelihood [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF].

Extension to the multi-fidelity framework

Since the aerodynamic database considers only two data sources (WT and CFD data), here we focus on a multi-fidelity GP framework with two levels of fidelity. The extension to more than two levels of fidelity can be obtained recursively as it is shown by [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF][START_REF] Gratiet | Bayesian analysis of hierarchical multifidelity codes[END_REF]. We denote Y e and Y s as the processes related to the WT experiments and CFD simulations, respectively. As suggested by [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF], we consider the auto-regressive model given by

Y e (x) = ρ(x)Y s (x) + ν(x), (6) 
where ρ : D → R is a scale factor between Y s and Y e , and ν : D → R the discrepancy function tasked with capturing the differences between both fidelity levels beyond scaling. The scale factor ρ can be a scalar parameter as suggested in [START_REF] Kennedy | Predicting the output from a complex computer code when fast approximations are available[END_REF]. As proposed in [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF], we assume ρ(x) = q i=1 g i (x)β i where g 1 , . . . , g q are regression functions (e.g. constant, linear, quadratic), and β 1 , . . . , β q are their corresponding weights. We must note that predictors of the latter weights are obtained by best linear unbiased estimators [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF][START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF].

Let Y s and ν be two independent (centered) GPs given by Y s ∼ GP(0, k s ) and ν ∼ GP(0, k ν ) with covariance functions k s and k ν . Due to the linearity of Eq.( 6), we can show that Y e is also (centered) GP-distributed with covariance function given by k e (x i , x j ) := cov {Y e (x i ), Y e (x j )} = ρ(x i )ρ(x j )k s (x i , x j ) + k ν (x i , x j ). [START_REF] Kou | Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[END_REF] According to our aerodynamic application, we aim at predicting profiles of Y e using both WT data (x e,i , y e,i ) 1≤i≤ne and CFD simulations (x s,i , y s,i ) 1≤i≤ns . Therefore, we need to compute the conditional distribution of Y e |{Y s (x s,1 ) = y s,1 , . . . , Y s (x s,ns ) = y s,ns , Y e (x e,1 ) = y e,1 , . . . , Y e (x e,ne ) = y e,ne } which is also GP-distributed [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF]. Note that this construction allows to exploit CFD data in order to improve the predictability of the GP model Y e . We refer to [START_REF] Gratiet | Multi-Fidelity Gaussian Process Regression for Computer Experiments[END_REF] for a further discussion about the predictive formulas of the multi-fidelity GP framework.

In further developments, in order to benefit from efficient computations due to the nested structure of the aerodynamic databases in Section 2, i.e. (x e,i ) 1≤i≤ne ⊆ (x s,j ) 1≤j≤ns , we consider the recursive GP formulation proposed in [START_REF] Gratiet | Recursive co-Kriging model for design of computer experiments with multiple levels of fidelity[END_REF].

Consideration of input-varying noisy observations

To account for additive input-varying noisy observations, we can consider the system:

Y noise s (x i ) = Y s (x i ) + ε s,i , (8) 
Y noise e (x j ) = ρ(x j )Y s (x j ) + ν(x j ) + ε e,j , (9) 
where ε s,i ∼ N 0, τ2 s,i and ε e,j ∼ N 0, τ 2 e,j , for all i = 1, . . . , n s and j = 1, . . . , n e . Here we assume that the additive Gaussian noises are independent and identically distributed, and that they are independent of Y s and ν. Then we have that Y noise s and Y noise e are (centered) GP-distributed with covariance functions given by

k s (x i , x j ) = k s (x i , x j ) + τ 2 s,i δ x i (x j ), (10) 
k e (x i , x j ) = ρ(x i )ρ(x j )k s (x i , x j ) + k ν (x i , x j ) + τ 2 e,i δ x i (x j ), (11) 
with τ 2 s,i and τ 2 e,i the noise variances at the input x i , and δ x i (x j ) the Dirac delta function that is equal to one if x i = x j , and zero otherwise. Equation ( 11) follows a similar structure than the one in Eq.( 7) but with one additional terms τ 2 e,i δ x i (x j ) that models the input-varying noises. Since Y noise s and Y noise e are GP-distributed, we can establish the formulas for computing the conditional Gaussian distribution Y e |{Y s (x s,1 ) + ε s,1 = y s,1 , . . . , Y s (x s,ns ) + ε s,ns = y s,ns , Y e (x e,1 ) + ε e,1 = y e,1 , . . . , Y e (x e,ne ) + ε e,ne = y e,ne }. Those formulas follow the same structure as the ones for the noise-free case but replacing k s (x, x ) to k s (x, x ) and k e (x, x ) to k e (x, x ). Since the Gaussian noises are mutually independent, independent of Y s and ν, then the cross-covariance terms will remain unchangeable:

cov Y noise e (x i ), Y noise s (x j ) = cov {ρ(x i )Y s (x i ) + ν(x i ) + ε e,i , Y s (x j ) + ε s,j } = cov {ρ(x i )Y s (x i ) + ν(x i ), Y s (x j )} = cov {Y e (x i ), Y s (x j )} .
In our application, the noise variances ε s,1 , . . . , ε s,ns and ε e,1 , . . . , ε e,ne are known and they are defined in Section 3. However, we must note that they can also be estimated via sensible estimators [START_REF] Ankenman | Stochastic Kriging for simulation metamodeling[END_REF] or via maximum likelihood [START_REF] Binois | Practical heteroscedastic Gaussian process modeling for large simulation experiments[END_REF]. In those cases, we need to account for repetitions of observation, i.e., for a fixed set of aerodynamic inputs x, we have to execute n e,re times the same WT test and keep the outcomes Y 

(x).

Taking into account the cost (in both time and resources) of experimental WT tests, we can easily conclude that the approaches in [START_REF] Ankenman | Stochastic Kriging for simulation metamodeling[END_REF][START_REF] Binois | Practical heteroscedastic Gaussian process modeling for large simulation experiments[END_REF] become expensive. This drawback is mitigated by considering directly the error propagation analysis described in Section 3.

1D numerical illustration

Python codes of the resulting heteroscedastic GP framework described in Section 4.3 are available in the Surrogate Modeling Toolbox (SMT) [START_REF] Bouhlel | A Python surrogate modeling framework with derivatives[END_REF], an open-source toolbox developed by ONERA, ISAE-SUPAERO, University of Michigan and NASA Glenn.

Figure 7 shows 1D predictions under heteroscedastic assumptions either considering an independent GP model for each level of fidelity or the multi-fidelity GP framework. 2 We consider the one dimensional "benchmark" problem proposed in [START_REF] Forrester | Multi-fidelity optimization via surrogate modelling[END_REF] and used in some other works related to multi-fidelity surrogate models [START_REF] Meliani | Multifidelity efficient global optimization: Methodology and application to airfoil shape design[END_REF][START_REF] Bailly | Multifidelity aerodynamic optimization of a helicopter rotor blade[END_REF]. The target functions are: are manually fixed and are given by

f s (x) = (6x -2) 2 sin(2[6x -2]), (
τ 2 s = (10 -1 , 3.5 × 10 -2 , 10 -3 , 3 × 10 -8 , 2.5 × 10 -2 , 2.5 × 10 -2 , 2 × 10 -2 , 1.5 × 10 -2 , 10 -1 , 5 × 10 -3 , 2.5 × 10 -6 , 5 × 10 -2 ),
and

τ 2 e = (3 × 10 -1 , 8 × 10 -2 , 2 × 10 -3 , 2 × 10 -2
). For the GP models, we consider SE kernels (see Eq.( 4)), with covariance parameters estimated via maximum likelihood. 3 In Fig. 7, we observe that the noise variance of both independent GPs and the multi-fidelity GP properly cover the error measurements (vertical bars) at the design points (dots), however, prediction at the high-fidelity level f e is significantly improved by considering the multi-fidelity GP framework, with a better approximation where data are scarce (e.g. around x = 0.8).

RESULTS

Assessment of the multi-fidelity GP model

We here assess the performance of the multi-fidelity GP model considering different percentage of training WT data. The training data are randomly chosen from the nested database generated in Section 2. We test three different GP models for each coefficient (C x , C z and C M ): two independent single-fidelity GPs exploiting data either from CFD simulations (namely GP-CFD) or WT experiments (namely GP-WT), and a multi-fidelity GP (MFGP) that exploits both data sources. All the models are trained using the 100% of the CFD dataset (1949 data points). For the models accounting for WT data (250 data points), we consider different WT training dataset, i.e. 10%, 30%, 50%, 70% and 90%. Matérn 5/2 kernels are considered as covariance functions for the GP priors: with x = (x 1 , x 2 , x 3 ). 4 The hyperparameters (σ, θ 1 , θ 2 , θ 3 ) are estimated via maximum likelihood. As mean functions of the priors, we assume linear trends for all the forces coefficients, i.e. m linear (x) = a 0 + a 1 x, except for C x where we consider a quadratic trend m quadratic (x) = a 0 + a 1 x + a 2 x 2 . The coefficients a 0 , a 1 , a 2 are obtained via best linear unbiased estimation within a universal GP framework [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF]. Those trends are defined according to expert knowledge. For the testing step, the predictions of the resulting models are assessed on a validation WT database containing a thousand test points. The test WT DoE is constructed via LHS as discussed in Section 2.3. Figure 8 shows the root mean square error (RMSE) 5 results for ten different random replicates. The RMSE values obtained when considering 100% of the WT data for training the GP models are also displayed. From C z and C M profiles, we observe that the MFGP outperformed the RMSE results of the single-fidelity implementations GP-CFD and GP- 4 Other types of kernels (e.g. SE kernels) were tested but the Matérn 5/2 class resulted in more accurate results.

k(x, x ) = σ 2 3 i=1 1 + √ 5θ i |x i -x i |+ 5 3 θ 2 i (x i -x i ) 2 exp - √ 5θ i |x i -x i | ,
5 RMSE = WT, leading to significant improvements when WT training sets are small (e.g. using less than 30% of the WT data). For the C x coefficient, although we note smaller RMSE values when considering only 10% of the WT data, the quality of predictions provided by the MFGP is degraded when the number of WT data points increases. This drawback is produced due to WT data are scarce for C x > 0.2, and therefore, predictions rely mostly on the biased CFD simulations. This bias is observed in Fig. 5, and is also reflected by the Pearson correlation coefficient. By computing the Pearson coefficient only over the C x observations associated to the 250 design points shared by both WT and CFD data, and for C x > 0.2, it results in a value of 0.863 (compared to 0.934 for the case where C x ≤ 0.2). To mitigate this issue, we can add additional WT data with C x > 0.2 aiming at better learning the discrepancy function ν.

In Fig. 9, we show scatter plots of the test data vs predictions obtained by the proposed GP models accounting for the 100% of WT data. Observe that clearer improvements are 

Representation of longitudinal forces

As discussed in Section 4, one of the main benefits of considering (multi-fidelity) GP models relies in the associated confidence intervals of predictions. Next, we show how those confidence intervals can be exploited in the analysis of WT experiments, more precisely, in the construction of polar representation of longitudinal forces. In Fig. 10, for a fixed Reynolds number Re = 7 × 106 and for different values of Mach number M , we show the profiles of C z with respect to α, C x -C 2 z /(πλ), with λ = 9 the LRM model wing aspect ratio, 6 and C M . Confidence intervals are considered for the horizontal-axes except for the profile with respect to α where the uncertainty is displayed for the verticalaxe. We observe that the resulting multi-fidelity GP model commonly leads to reasonable aerodynamic profiles, where higher uncertainties are obtained in regions where data are not available. We must note that those uncertainties can be reduced by adding new WT training points on those regions. This may motivate the proposition of adaptive DoE aiming at reducing uncertainty in multi-fidelity GP models [START_REF] Jin | On sequential sampling for global metamodeling in engineering design[END_REF][START_REF] Picheny | Adaptive designs of experiments for accurate approximation of a target region[END_REF]. We do not consider such improvement in this paper but it can be considered in further developments.

CONCLUSION

In this paper, several contributions were addressed in the field of aerodynamic data fusion. First, we constructed a large multi-source aerodynamic database based on the NASA Common Research Model. The database contains 250 and 1949 data points, from wind-tunnel tests and CFD simulations (respectively), covering the entire flight envelope of the model. Second, we set up a simplified uncertainty model of the experimental WT data aiming at defining realistic values for the input varying uncertainties of force coefficients. Finally, we adapted a multi-fidelity Gaussian process (GP) framework to account for input-varying additive noises (heteroscedastic case) in all the levels of fidelity. We demonstrated, in both a synthetic example and a real-world application, that the resulting multi-fidelity GP outperformed single-fidelity ones in terms of predictive capability.

The work presented in this paper can be improved in different ways. A further investigation may be contemplated with the increase in the number of inputs and outputs. We may consider the slideslip angle as an input to allow the prediction of the lateral aerodynamic forces and moments of the aircraft. We can also consider additional data sources, such as numerical simulation based on VLM or Euler equations. Those sources will be considered as lower or intermediate fidelity levels in the multi-fidelity GP framework. Finally, to improve the predictability of the GP model, and looking for uncertainty reduction, adaptive design of experiments can be further investigated accounting for multi-fidelity schemes.

In this appendix, we give some complementary information required in Section 3. More precisely, we provide further details about the estimation of error associated to the angle of attack α, the aerodynamic forces, and the dynamic pressure. According to the structure of the database constructed in Section 2, a zero sideslip angle is considered.

Experimental error in aerodynamic forces in model axes. The measurement of the aerodynamic forces is carried out in the body axes by an internal strain-gauge balance. Each force component is considered to be affected by an uncertainty equal to c = 0.5×10 -3 of the balance capacity on this component, independently of the other components:

τ A = cA capa , τ N = cN capa , τ M A = cM A,capa .
We neglect uncertainties associated to the positioning of the balance axes with respect to the model axes, and to the calculation of the weight of the model, that is subtracted from raw balance readings to deduce aerodynamic forces.

Error measurements associated to the angle of attack. Since the slideslip angle is zero, α is given by α = θ + γ a + ∆α,

where θ [deg] is the pitch angle of the model, γ a [deg] is the mean upwash angle of the flow in the wind tunnel, and ∆α [deg] is a corrective term associated to the wall and support effects. Assuming that θ, γ a and ∆α are independent Gaussian random variables, the variance parameter for α is given by

τ 2 α = τ 2 θ + τ 2 γa + τ 2 ∆α , (13) 
where τ 2 θ , τ 2 γa and τ 2 ∆α are the corresponding noise variance parameters for θ, γ a and ∆α, respectively. τ 2 θ is deduced from uncertainty analysis of the pitch angle sensor. τ 2 γa results from an uncertainty analysis of the procedure used to determine upwash angle, namely the model inversion method, which implies again the pitch angle sensor, and the force balance. τ 2 ∆α is computed by considering that most of the wall correction in angle of attack stems from lift-induced effect. Therefore, τ ∆α is made proportional to the lift coefficient.

Experimental error in dynamic pressure. The dynamic pressure is derived from the value of the total pressure p i and the static pressure p. These values are themselves deduced from measurements made on reference pressure taps of the wind tunnel, using tunnel calibration laws. Finally, wall and support corrections results in a blockage correction ∆q. Finally the dynamic pressure q reads:

q = γ γ -1 p p i p γ-1 γ -1 + ∆q
Hence, defining λ = 1 + γ-1 2 M 2 , the uncertainty on q can be written as:

τ 2 q = γ 2 M 2 + λ(λ -γ γ-1 -1) 2 τ 2 p i + 1 - M 2 2 2 τ 2 p + τ 2 ∆q .
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 1 Figure 1: Large Reference Model (LRM) used in the S1-WT at ONERA.

Figure 2 :Figure 3 :

 23 Figure 2: Pairwise histograms of the aerodynamic inputs α, Re and M . Results are shown for both (orange) WT and (blue) CFD data. The panels in the diagonal show 1D marginal histograms, while the other ones show 2D histograms of pairs of inputs. For the 2D illustrations, darker pixels represent a bigger concentration of points.
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Figure 4 :

 4 Figure 4: Aerodynamic input space used for the construction of the DoE via LHS.

Table 1 :

 1 Parameters of the CRM aerodynamic database. For each data source, the ranges of the inputs are shown along with the number of samples that are part of the database. Wind Tunnel elsA CFD Mach Number (M ) [0.01, 0.95] [0.01, 0.97] Reynolds Number (Re) [1 × 10 6 ] [0.77, 6.60] [0.1, 30.0] Angle of Attack (α) [deg] [-9.3, 20.5] [-10.0, 30.0] Number of samples 250 1949

Figure 5 :

 5 Figure 5: 1D profiles of the force coefficients C x , C z and C M with respect to α [deg]. Panels show: the WT data (orange points), CFD data (blue crosses) and the associated one standard-deviation error intervals (vertical bars). To improve the visibility, four standard-deviation error intervals (orange bars) are displayed for the WT data.

Figure 6 :

 6 Figure 6: Example of a CFD simulation from the database constructed in Section 2, at M = 0.7563, Re = 0.1 × 10 6 and α = 8.043 [deg], where limit-cycle oscillations are encountered. On the left panel, convergence plots (solid lines) after 1000 iterations are shown for C x (CXC, in black), C z (CZC, in red) and C M (CMAAC, in blue). On the right panel, the pressure coefficient distribution is depicted for the CRM model.
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Figure 7 :

 7 Figure7: Predictions considering (left) an independent GP per level of fidelity or (right) a multi-fidelity GP (MFGP). Both schemes account for the input-varying noise variances described in Section 4.4. Each panel shows: the target low-fidelity and high-fidelity functions (in orange and blue dashed lines, respectively), the design points (dots) with the corresponding 3 standard-deviation error bars, the resulting predictions (solid lines) and 3 standard-deviation confidence intervals (light areas) provided by the GP frameworks.

Figure 8 :

 8 Figure8: RMSE results for three GP models for each coefficient (C x , C z and C M ): two independent single-fidelity GPs exploiting data either from CFD simulations (GP-CDF, green line) or WT experiments (GP-WT, orange), and a multi-fidelity GP that exploits both data sources (MFGP, blue). All the models are trained using the 100% of the CFD data (1949 data points). For the models accounting for WT data (250 data points), we consider different WT training dataset. Boxplots are computed over ten different random replicates.

Figure 9 :

 9 Figure 9: Scatter plots of the test data vs predictions obtained by two independent GPs exploiting data from CFD simulations (left) or WT tests (middle), and a multi-fidelity GP that exploits both types of data (right). Results are shown for C x (top), C z (middle) and C M (bottom). The vertical bars represent the one standard-deviation conditional predictive errors led by the models. RMSE indicators are shown on top of each panel.

Figure 10 :

 10 Figure10: Multi-fidelity GP predictions of common polar of longitudinal forces used in the analysis of WT experiments. For Re = 7 × 10 6 and different values of M , each panel shows: the nearest available test points (dots), the conditional GP mean functions (solid lines) and one standard-deviation predictive confidence intervals (light areas). Confidence intervals are considered for the horizontal-axes except for the plot with respect to α where uncertainty is displayed vertically.
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The example in Fig.7can be reproduced using the Python-based Jupyter notebook available in SMT: https://github.com/SMTorg/smt/blob/master/tutorial/SMT_MFK_Noise.ipynb

We considered as initial covariance parameters σ 2 e = σ 2 s = 1, θ e = 0.1 and θ s = 0.5.

Since C 2 z /(πλ) is a crude estimate of lift-induced drag (from Prandtl lifting-line theory), then the term C x -C 2 z /(πλ) is an estimate of the drag other than lift induced, sometimes called profile drag.

ACKNOWLEDGMENTS

This work was supported by ONERA internal research project dedicated to multidisciplinary design optimization, namely MUFIN. We would like to acknowledge Stefan Goertz and Philipp Bekemeyer (The German Aerospace Center DLR) for the further discussions within the collaboration DLR-ONERA AI4aerospace, ONERA-DLR Joint Virtual Center in AI for Aerospace Engineering. We also thanks the role of the wind tunnel teams in Modane-Avrieux and Le Fauga-Mauzac test centers (both in France) in creating the WT database, especially Aurélia Cartieri.

APPENDIX 7 ADDITIONAL CFD SIMULATION

In this appendix, we show two additional CFD results: an example where elsA has properly converged after 1000 iterations, and another example where limit-cycle oscillations are encountered (see Fig. 11).

Figure 11: Examples of CFD simulations from the database constructed in Section 2. The panel description is the same as the one in Fig. 6.

Note that the two first terms result from the propagation of the errors in pressure measurements. The last term is added to account for uncertainties in the tunnel calibration and the wall corrections. Variances τ 2 p i and τ 2 p are evaluated thanks to an uncertainty analysis of the pressure sensors involved in the measurements of the reference total and static pressures, and confirmed by considering redundancy in the measurements. τ ∆q was chosen to be proportional to q.

Experimental error in force coefficients in wind axes. The expression of the variance of the error on the drag coefficient C x was already provided in Section 3. Reminding that A and N are the axial and normal aerodynamic forces in model axes (respectively), the lift coefficient is expressed as

Consequently, the variance of the error is given by:

The pitching moment coefficient equals to

, where M A is the aerodynamic pitching force. Then the variance of the error is equal to: