
HAL Id: hal-03346292
https://hal.science/hal-03346292

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Caching Policies for Delay Minimization in Small Cell
Networks with Coordinated Multi-Point Joint

Transmissions
Guilherme Iecker Ricardo, Alina Tuholukova, Giovanni Neglia, Thrasyvoulos

Spyropoulos

To cite this version:
Guilherme Iecker Ricardo, Alina Tuholukova, Giovanni Neglia, Thrasyvoulos Spyropoulos.
Caching Policies for Delay Minimization in Small Cell Networks with Coordinated Multi-Point
Joint Transmissions. IEEE/ACM Transactions on Networking, 2021, 29 (3), pp.1105-1115.
�10.1109/TNET.2021.3062269�. �hal-03346292�

https://hal.science/hal-03346292
https://hal.archives-ouvertes.fr


Caching Policies for Delay Minimization in
Small Cell Networks with Coordinated Multi-Point

Joint Transmissions
Guilherme I. Ricardo1,2, Alina Tuholukova1,2, Giovanni Neglia2, and Thrasyvoulos Spyropoulos1

1EURECOM, France, guilherme.ricardo@eurecom.fr, thrasyvoulos.spyropoulos@eurecom.fr
2Inria, Université Côte d’Azur, France, giovanni.neglia@inria.fr, tugolukovaalina@gmail.com

Abstract—In 5G and beyond network architectures, operators
and content providers base their content distribution strate-
gies on Heterogeneous Networks, where macro and small cells
are combined to offer better Quality of Service to wireless
users. On top of such networks, edge caching and Coordinated
Multi-Point (CoMP) joint transmissions are used to further
improve performance. In this paper, we address the average
delay minimization problem by first formulating it as a static
optimization problem. Even though the problem is NP-hard we
are able to solve it via an efficient algorithm that guarantees
a 1

2
-approximation ratio. We then proceed to propose two fully

distributed and dynamic caching policies for the same problem.
The first one asymptotically converges to the static optimal
solution under the Independent Reference Model (IRM). The
second one provides better results in practice under real (non-
stationary) request processes. Our online policies outperform
existing dynamic solutions that are PHY-unaware.

Index Terms—Edge caching, CoMP, joint transmission, hetero-
geneous cellular networks, optimization, distributed algorithms.

I. INTRODUCTION

With the ever-growing popularization of social media and
on-demand video streaming, cellular data consumption has
experienced an unprecedented increase. According to latest
CISCO’s forecast [1], by 2023 there will be 13 billion mobile
connections, showing an increase of nearly 50% over 2018.
Network densification is considered a key strategy to cope with
the traffic deluge in future networks [2]. The standard 3G/4G
macro-cell topology will be enriched by a large number of
overlapping and often heterogeneous small cells (e.g., femto,
pico), in order to improve both coverage and capacity.

On top of such a densified network, two additional tech-
niques have been considered to provide higher Quality of
Service (QoS). Assuming that every small base station (BS)
has a limited data storage capacity, the first technique is
caching relevant content, e.g., the most popular content (with
a higher probability of being requested). It allows users to
directly access their desired content from the nearby BSs. As
a consequence, the access latency can be drastically reduced
as well as the backhaul congestion and main servers overload.

This work has been supported by the French government, through the EUR
DS4H Investments in the Future project managed by the National Research
Agency (ANR) with the reference number ANR-17-EURE-0004 as well as the
“5C-for-5G” JCJC project with the reference number ANR-17-CE25-0001.

The second technique is Coordinated Multi-Point (CoMP)
joint transmissions [3]. The idea is that two or more BSs
jointly transmit the requested file to the user. By doing so,
users experience higher rates and, consequently, smaller delays
to obtain the content.

Considering these techniques, in order to provide better
experience for mobile users, our goal is to design strategies to
minimize their experienced delay to get a request served. This
problem can be solved statically, through offline solutions, or
dynamically, through online caching policies.

In offline solutions, there is a centralized entity aware of
the files popularities (assumed to be constant over time) and
the whole network topology. With this information, it is able
to decide which files should be cached at each BS, based on
a given performance metric, e.g., probability of finding the
requested file in the cache, bandwidth usage, original servers
traffic load, etc. Normally, in this kind of approach, the content
placement is split into two phases: (i) the measurement phase
when requests are observed and files popularities are estimated
and (ii) the file placement itself, usually performed during a
low traffic load period.

However, having all this information available is a very
strong assumption and is hardly satisfied in real systems.
Moreover, static content placement may fail to capture short-
term popularity changes. Despite its drawbacks, we use the
offline approach as a comparison baseline for the online
policies.

Online caching policies are distributed algorithms deployed
at every BS, which specify the cache update rules, e.g.,
when and how to update the cache. In our proposed caching
policies, the BSs, using implicit information from their local
neighborhood, estimate the marginal gain (in terms of local
delay savings) for keeping a copy of a cached content. The
marginal gain is used to drive the (probabilistic) caching
decisions for the local cache, with the end goal of maximizing
global performance gain. Since the BSs take decisions on-the-
fly, based on the request process they are exposed to, online
policies turn out to be more reactive to files’ popularity short-
term variability. In comparison with offline solutions, each BS
needs to know and exchange much less information. For these
reasons, online caching policies are more appropriate to be
deployed in real systems.



A. Related Work
The term FemtoCaching was coined in [4], [5] to describe

the framework in which overlapping small cells have some
storage capacity. Assuming that files have known and static
popularities and are requested according to the Independent
Reference Model (IRM), the problem is to find the content
placement maximizing the hit rate. The authors proved that
this problem is NP-hard, so it can be efficiently approximated
by a greedy heuristic, with worst-case performance guarantees.

In this framework, [6] maximizes the hit ratio by jointly op-
timizing content placement and user-association. The authors
of [7] go even further and consider a more dynamic scenario
in which network topology evolves with time, to capture
users’ mobility. Looking at the application layer, [8] and [9]
jointly optimize content allocation and recommendation. The
idea is that the hit rate might increase if users accept the
recommendation of an already cached alternative content. All
these variants of the FemtoCaching problem were proven to
be NP-Hard and efficient heuristics were proposed.

To the best of our knowledge, [10] was one of the first pa-
pers to explore, using the idea of collaborative joint transmis-
sions, the trade-off between hit rate and delay savings. In this
context, it might be more advantageous to eliminate copies of
less popular files in order to make room for multiple copies of
more popular files, creating joint transmissions opportunities
and, consequently, reducing the experienced delay. The authors
proposed a first approach based on a randomized heuristic with
Maximum Ratio Transmission and a second approach based on
Zero-Forcing BeamForming. However, both approaches lack
of theoretical optimality guarantees. First introduced by [11],
and revisited in the present work in Section III, the average
delay minimization in FemtoCaching framework under CoMP
assumption can be formulated as a combinatorial optimization
problem. Although this problem is NP-Hard, submodularity
properties are guaranteed under specific assumptions. Then,
the greedy algorithm can again be used to find a content
allocation that is 1

2 far from the optimal.
A common drawback of the aforementioned works is the

difficulty to find the adequate timescale for popularity esti-
mation that is long enough to provide accurate measurements
and still able to capture short-term variations. Instead, online
policies, such as LRU and its variants, are widely deployed be-
cause they do not require popularity estimation. Additionally,
they enjoy robust analytical performance evaluation tools, like
the celebrated Che’s approximation [12]. Another downside
of static centralized policies is that, in a dense cache network,
having a centralized entity aware of the entire topology may
not be feasible due to the network structure complexity. Online
policies do not face the same issues because each cache takes
individual decisions based on the experienced requests and
possibly some limited information exchange with neighboring
caches.

In [13], the authors study a hierarchy of interacting caches
by considering what they called replication strategies. [14]
introduces two caching policies: LRU-ONE and LRU-ALL.
In the former, each user is assigned to a reference BS. When

a user poses a request, its associated BS will update its cache,
independently of which BS provided the file. In the latter, all
neighboring BSs update their caches. The updates are based
on the Least-Recently-Used (LRU) single-server policy.

In [15], the authors propose a model based on Che’s and
exponential approximations able to evaluate the performances
of interacting caching policies in a dense cellular network.
Moreover, they present the first distributed online policy with
provable convergence properties for the FemtoCaching setup.
In the context of online linear optimization, [16] uses a
projected gradient method to decide how to split files and
store chunks in the cache network. The technique cannot be
applied with CoMP, because in their setting BSs store different
chunks of the same file. The authors in [17] provide a general-
purpose online caching policy and demonstrate its application
in different study cases. They also prove its convergence to
optimal allocations under IRM.

B. Paper Contribution and Organization
This work extends two previous conference papers: It con-

solidates the discussion on the static optimization problem
introduced in [11] and it refines the caching model, case study,
and experimental results from [18].

The main contributions of this paper are summarized below:
• We formalize the static delay minimization problem of

allocating contents in a caching network with CoMP
transmissions. We prove that the problem is NP-Hard.

• For this problem, we prove that, under homogeneous
transmission conditions, the objective function is sub-
modular, so the greedy algorithm provides a solution with
1
2 -approximation ratio.

• We provide more insight on the static problem’s solu-
tion by studying a simple scenario that we called full-
coverage. In this case study, we prove conditions for
the optimal caching strategy to consist of replicating or
diversifying contents throughout the network.

• In a distributed setup for the same problem, we propose
two online policies, qLRU-∆d and 2LRU-∆d. In these
policies, BSs use only local information to update their
cache states, taking a probabilistic drift towards improv-
ing the problem’s objective. qLRU-∆d is able to achieve
optimal allocations under IRM when parameter q tends
to 0. 2LRU-∆d addresses the problem of non-stationary
requests, offering better performance in real scenarios.

• Using an extensive set of simulations, we demonstrate
qLRU-∆d’s convergence properties, and we observe both
policies’ ability to outperform other state-of-the-art poli-
cies in all considered scenarios.

The remainder of the paper is organized as follows. In
Section II, we introduce the caching model and the transmis-
sion protocol. Then, in Section III, we formalize the static
optimization problem, and we further discuss the full-coverage
scenario in Section IV. We introduce online caching policies
in Section V and evaluate their performance in Section VI.
We conclude our paper with an overview of our results and
possible future work in Section VII.



II. SYSTEM MODEL AND OPERATION

A heterogeneous network consists of “multiple tiers (or
layers) of networks of different cell sizes/footprints and/or of
multiple radio access technologies” [19], leading to overlap-
ping cells. This overlap opens the possibility to use CoMP
techniques, as a user is in general in the transmission range
of multiple base stations (BS). While we do assume that all
base stations have the same transmission power (e.g., a dense
network of small cells) or equal capacity size, this is just
for the sake of simplifying the presentation and providing
experiments easier to interpret. Our caching policies do not
require such homogeneity and their theoretical guarantees also
hold when cells differ in terms of transmission power and/or
cache size.

We consider in particular a set [B] of base stations (BSs)
arbitrarily located in a given area A ⊆ R2, where [n] denotes
the set {1, . . . , n}. There is a set [U ] of user equipments (UEs)
spread across area A that can connect to at least one BS.
Let G(b)

u ∈ R+ be the Signal-to-Noise Ratio (SNR) of the
wireless channel between BS b and UE u. If the channel SNR
is below a minimum SNR value, gmin, we assume u and b
cannot communicate, and set G(b)

u = 0.
Each BS is equipped with a cache that can store up to C files

from a catalog [F ] of files. In order to ease our exposition, we
assume that all files have the same size equal to M bits. This
assumption is widely considered in the literature (e.g., [4],
[5], [11], [17], [20]) as large files are often split into smaller
chunks of roughly equal sizes.

Let V = [B]× [F ], where element (b, f) ∈ V represents the
placement of file f in BS b’s cache. Let V (b) = {b}× [F ] be a
subset of V representing the possible file placements in BS b.
The set X ⊆ V is a feasible static allocation if it satisfies the
caches capacity constraints, i.e.,

|X ∩ V (b)|≤ C, ∀b ∈ [B]. (1)

Because of the high density of BSs, each UE u will, in
general, be within communication range of multiple BSs. We
denote by Iu =

{
b ∈ [B] : G

(b)
u > 0

}
the set of UE u’s

neighboring BSs, i.e., all BSs that have UE u within their
coverage area and are able to receive requests and transmit
content back to u. Among these BSs, under allocation X , a
subset Ju,f (X) = {b ∈ Iu : (b, f) ∈ X} is actually caching f .

Assume now that a set of BSs, B ⊆ Iu, uses CoMP to
jointly transmit the same file f to UE u. Then, the end-to-end
delay is given by:

tu(B) =
M

W log2

(
1 +

∑
b∈B

G
(b)
u

) , (2)

where W is the channel bandwidth, so the denominator is the
aggregate channel capacity1 as in [22], [23]. We consider that
tu(∅) = +∞.

1For simplicity, we assume the limiting capacity provided by Shan-
non–Hartley theorem. However, our results are also valid for more realistic
models, e.g., discrete rates dictated by predetermined Modulation and Coding
Schemes (MCS) [21], as long as tu is a non-increasing convex function (see
Lemma I.1).

TABLE I
NOTATION SUMMARY

Symbol Description
[B] set of BSs [B] = {1, 2, . . . , B}
[U ] set of UEs [U ] = {1, 2, . . . , U}
[F ] set of files [F ] = {1, 2, . . . , F}
C cache capacity
M file size
pf popularity of file f
W channel bandwidth
dB backhaul access delay
G

(b)
u SNR of the wireless channel between u and b

V ground set of possible placements
Iu set of UE u’s neighboring BSs
Ju,f (X) set of u’s neighboring BSs caching f under allocation X
tu(B) end-to-end delay between u and BSs in B ⊆ Iu
du,f (X) experienced delay by u to get f under allocation X
d̄(X) average experienced delay
s̄(X) average delay saving
∆d

(b)
u,f (X) marginal delay saving for u by caching f at b under X

We assume that the aggregate request process follows the
IRM model: each request is for file f with probability pf
independently from the past, where p1 ≥ p2 ≥ . . . ≥ pF .
Moreover, each UE is equally likely to have generated the
request. We will consider non-stationary traffic demand later
in Section VI.

Upon every request, the network operates as follows: UE u
broadcasts an inquiry message for file f that is received by its
neighboring BSs in Iu. Then, according to the current cache
state, there are two possibilities:

• If Ju,f (X) = ∅ (Cache Miss), the BS with the highest
SNR, i.e., b∗ = arg max

b∈Iu

{
G

(b)
u

}
downloads f from the

back-end server and then transmits it to u. In this case,
u experiences a delay consisting of (i) the time to fetch
the file through the backhaul network, hereafter denoted
by dB , plus (ii) the end-to-end delay to download from b∗,
i.e., tu({b∗}).

• If Ju,f (X) 6= ∅ (Cache Hit), the BSs in Ju,f (X) can
jointly transmit to u, or the BS with the highest SNR in
Iu\Ju,f (X), say it b′, can retrieve an additional copy of f
and then the BSs in Ju,f (X)∪{b′} can jointly transmit to
u. The delay in the two cases is respectively t(Ju,f (X))
and dB + t(Ju,f (X ∪ {b′})). The system will opt for the
solution with the smallest delay.2

In both cases, the delay experienced by UE u to download
file f under allocation X can be expressed as follows:

du,f (X) = min{tu(Ju,f (X)), dB + tu(Ju,f (X) ∪ {b′})}, (3)

where b′ = arg max
b∈Iu\Ju,f (X)

{
G

(b)
u

}
.

2In scenarios with highly heterogeneous BSs within range of a UE, the ones
currently having a cached copy might have weak SNRs, and the additional
backhaul delay to fetch an additional copy to the BS with highest SNR might
be amortized by the better overall channel performance.



III. OPTIMIZING STATIC CACHE ALLOCATIONS

In this section, we assume contents are prefetched at caches
during low-traffic periods (e.g., at night), as in related works
[5], [6]. Files are allocated with the goal of minimizing
the average experienced delay, assuming file popularities are
known. This corresponds to solving the following problem:

Problem 1 (Average Delay Minimization Problem).

minimize
X⊆V

d̄(X) =
∑
u∈[U ]

1

U

∑
f∈[F ]

pfdu,f (X) (4)

subject to |X ∩ V (b)|≤ C, ∀b ∈ [B].

The objective (4) is the average experienced delay for a
request over all UEs and files and du,f (X) is given by (3).

We start studying Problem 1 in the homogeneous SNR
regime, where we assume that all non-zero SNRs are equal to g
(i.e., G(b)

u = g). We observe that it is hard to find Problem 1’s
exact solution:

Proposition III.1. Problem 1 is NP-Hard, even in the homo-
geneous SNR regime.

The proof is presented in Appendix I-B, and it relies
on reducing the NP-Hard FemtoCaching problem in [5] to
Problem 1.

A simple heuristic to approximate Problem 1 is through the
greedy algorithm described as follows: Start from an empty
solution X = ∅ and then iteratively add to X the element
(b, f) ∈ V that does not violate the constraints (1) and
maximizes the marginal delay gain d̄(X) − d̄(X ∪ {(b, f)}).
We present a formal description in Algorithm 1. In the worst-
case the algorithm goes through BC iterations, in which all
O(BF ) possible placements must be checked, resulting in a
time complexity of O(B2FC).

Algorithm 1: GREEDYAD
input : files popularities pf ,∀f ∈ [F ] and

network topology G(b)
u ,∀b ∈ [B],∀u ∈ [U ]

output: allocation set X
1 X ← ∅
2 while |X|< B · C do
3 δ∗ ← 0
4 for b ∈ [B] do
5 if |X ∩ V (b)|< C then
6 for f ∈ [F ] do
7 δ ← d̄(X)− d̄(X ∪ {(b, f)})
8 if δ > δ∗ then
9 i← b, j ← f, δ∗ ← δ

10 X ← X ∪ {(i, j)}

In order to provide approximation guarantees for
GREEDYAD, we need to express Problem 1 as a maximization
problem. The following problem is equivalent3 to Problem 1.

3Two optimization problems are “equivalent” if they have the same set of
(global) optimizers [24, Section 4.1.3].

Problem 2 (Average Delay Saving Maximization Problem).

maximize
X⊆V

s̄(X) = d(0) − d̄(X) (5)

subject to |X ∩ V (b)|≤ C, ∀b ∈ [B],

where d(0) = dB + M
W log2(1+g) is the delay experienced

upon a cache miss. Function (5) can be seen as the average
delay saving for a request under allocation X .

Now, consider the following lemmas:

Lemma III.2. Function (5) is monotone and submodular.
The proof is presented in Appendix I-C.

Lemma III.3. Constraints (1) define a partition matroid.
This lemma was originally proved in [5, Lemma 2].
Finally, the following theorem provides the approximation

guarantees for GREEDYAD in the homogeneous SNR regime.

Theorem III.4. In the homogeneous SNR regime, GREEDYAD
is a 1/2-approximation algorithm for Problem 2, i.e.,

s̄
(
XGREEDYAD) ≥ 1

2
s̄
(
XOPT) ,

where XGREEDYAD is a solution provided by GREEDYAD and
XOPT is an optimal one.

Proof. Problem 2 involves the maximization of a monotone
submodular set function (Lemma III.2), subject to a parti-
tion matroid constraint (Lemma III.3). Therefore, according
to [25, Theorem 3.1], the greedy algorithm achieves a 1

2 -
approximation ratio.

GREEDYAD can also be used to approximate Problem 1
in the general case, though it does not enjoy the same
approximation guarantees as in the homogeneous SNR regime.
The reason is that the objective function is no longer sub-
modular in the heterogeneous SNR regime as we show in an
example in Appendix I-D. However, we see in Section VI that
GREEDYAD can still provide reasonable results.

The key characteristic of heterogeneous networks for our
problem is the fact that UEs may be connected to multiple BSs
simultaneously. Problem 1 imposes that allocation variables
related to nearby caches are non-trivially coupled in two
levels: (i) If the BS with the best SNR does not cache the
requested file, it may fetch it from the back-end servers and
(ii) neighboring BSs caching the requested file may jointly
transmit it (with CoMP). We illustrate the trade-off created by
these conflicting aspects in Section IV.

IV. CASE STUDY: FULL-COVERAGE SCENARIO

While the previous section provides a formal complexity
analysis for the problem at hand, it does not provide much
insight as to what the optimal allocation looks like in different
scenarios. In order to fill this gap, we investigate some
special instances of the problem that shed some light into the
properties of the optimal cache allocation. We study the full-
coverage scenario, which considers two assumptions: (i) SNRs
are homogeneous and (ii) each UE u can connect to all BSs
(Iu = [B], for all u), so every UE has access to (the same)
aggregate cache capacity of B · C files.



In this scenario, the end-to-end delay (2) is only a function
of the number of copies in the system, then:

t(k) = max
{

M
W log2(1+kg) ,

M
W log2(1+B·g)

}
, (6)

where we consider that we cannot have more than B copies.
We consider t(0) = +∞.

In this case, we can rewrite (3) as follows:

d(|Ju,f (X)|) = min {t(|Ju,f (X)|), dB + t(|Ju,f (X)|+1)} . (7)

We first observe that, in the full-coverage scenario, it is
possible to efficiently compute the optimal allocation:

Proposition IV.1. In the full-coverage scenario, an allocation
provided by GREEDYAD is optimal.

The proof of Proposition IV.1 is presented in Appendix II-A.
For the upcoming results, we define locally optimal alloca-

tions as follows:

Definition 1. A cache allocation X is locally optimal, if it
does not exist another allocation X′ such that d̄(X′) < d̄(X),
where X′ differs from X only by a single file at a single cache.

First, we note that:

Lemma IV.2. In the full-coverage scenario, an allocation is
optimal if and only if it is locally optimal (Definition 1).

The proof of Lemma IV.2 is in Appendix II-B.
Then, we characterize for the full-coverage scenario, the

necessary and sufficient conditions for the optimal allocation
to be one of the two extreme ones: Full-diversity (one copy of
each of the B ·C most popular files is stored in the network),
and full-replication (the C most popular files are cached in
each one of the B BSs).

Proposition IV.3. In the full-coverage scenario, full-diversity
is an optimal allocation if and only if

p1(d(1)− d(2)) ≤ pB·C(d(0)− d(1)), (8)

and full-replication is an optimal allocation if and only if

pC+1(d(0)− d(1)) ≤ pC(d(B − 1)− d(B)). (9)

The proof of Proposition IV.3 is presented in Appendix II-C.
As an application of the results above, Fig. 1 shows, for

a full-coverage scenario, for which regions of the parameter
space (g, dB) a full-diversity and full-replication allocations
are optimal. Files popularities are generated according to Zipf
law with exponent α.

The optimal solution depends on parameters g, dB in a
complex way. Fig. 1 (left) shows a simple setup, where 5
separated regions are formed. For a given value of g, for high
values of dB , we want to avoid paying the high retrieval cost
for as many contents as possible, and then full-diversity is
optimal. As we diminish dB , the miss cost decreases and some
form of replication is beneficial (mixed region), until we reach
a full replication region. However, if we keep reducing dB ,
the optimal allocation moves back to full-diversity (passing

Fig. 1. Extreme allocations regions for different setups. Axes are in log scale.

again through a mixed region). This happens because, when
dB ≈ 0, d(1) = dB + t(2) and d(2) = t(2) (because B = 2).
This makes the LHS of (8) approximately zero and smaller
than the RHS. A more realistic setup is provided in Fig. 1
(right). The fact that we cannot see the full-replication region
is caused by the low difference in popularity of files C and
C + 1, for the specific values of C and α.

However, given an instance of a generic topology, it is not
guaranteed that both directions of the conditions in Propo-
sition IV.3 are going to be satisfied. For example, consider a
specific topology where BSs do not overlap at all. The optimal
allocation is full-replication, even if condition (8) holds. In
this case (and for any topology different from full-coverage),
condition (8) is necessary but not sufficient for full-diversity to
be the optimal allocation. Although Proposition IV.3 does not
hold for general topologies, we can still derive new conditions:

Corollary 1. For general network topologies, assuming homo-
geneous SNRs, the following conditions hold: (i) Inequality (8)
is a necessary condition for the full-diversity allocation to be
locally optimal, and (ii) inequality (9) is a sufficient condition
for the full-replication allocation to be locally optimal.

The proof of Corollary 1 is presented in Appendix II-D.

Corollary 1 can be used to forecast the best caching strategy
for a given network. If files popularities, average SNR and
backhaul access delay can be estimated, it is possible to
analytically measure how close is the optimal allocation to
an “extreme” one. For example, this may help develop an
intuition on how beneficial CoMP joint transmissions can be
for a given network setting.

Although static solutions have good performance and may
eventually be optimal, they can rarely be deployed in practice
because, as discussed in Section I, real systems hardly have
a centralized intelligence aware of the entire network topol-
ogy, transmission characteristics, and stationary files popular-
ities [26]. However, given the tight approximation guarantees
they offer, they work as a useful baseline for dynamic policies.
Next section presents online solutions for the average delay
minimization problem.



V. ONLINE CACHING POLICIES

In this section, we assume that caches are implemented as
LRU-like queues with capacity for storing up to C files. The
most-recently-used file is at the front and least-recently-used
file is at the rear of the queue. The cache can perform three
operations: (i) Insert a new file to the front, (ii) evict the file
at the rear, and (iii) move-to-the-front a file already present.

At every request (u, f) from UE u for file f , after u’s
neighboring BSs serve the file, the respective caches react
to that request by performing a set of operations. These
operations aim to minimize the average experienced delay.
Then, in what follows, we will consider the marginal delay
gain experienced by UE u for having a copy of file f at BS
b as follows:

∆d
(b)
u,f(X) = du,f (X \ {(b, f)})− du,f (X) . (10)

In the next subsections, we introduce two online caching
policies, qLRU-∆d and 2LRU-∆d. We use the notion of
marginal delay gain ∆d

(b)
u,f (X), in (10), to drive the operations

of distributed caching algorithms.

A. qLRU-∆d Caching Policy

The qLRU-∆d caching policy is inspired by qLRU-LAZY
in [15], that is shown to maximize the hit ratio when parameter
q converges to 0, under IRM request process. As we discuss
in detail in Appendix III, we use the results in [17] to
provide similar guarantees for the minimization of the average
experienced delay. In summary, the policy’s core idea is to
perform insertions and moves-to-the-front with probabilities
proportional to the gain (10). The evictions occur to the least-
recently-used cached files.
qLRU-∆d Policy: Upon a request (u, f), given the current

allocation X:
(i) All neighboring BSs caching f (∀b ∈ Ju,f (X)) move f

to the front with probability:

ρ
(b)
u,f(X) = β ·∆d(b)u,f(X), (11)

where constant β guarantees that ρ(b)u,f(X) ∈ (0, 1].
(ii) The remaining BSs (∀b ∈ Iu\Ju,f (X)) evict the file at

the rear and insert f with probability:

q
(b)
u,f(X) = q · σ(b)

u,f(X), (12)

where q ∈ (0, 1] is a dimensionless parameter and:

σ
(b)
u,f(X) = γ ·∆d(b)u,f (X ∪ {(b, f)}) , (13)

where γ guarantees that σ(b)
u,f(X) ∈ (0, 1].

We formalize qLRU-∆d caching policy in Algorithm 2
from the perspective of each BS b. The algorithm is a simple
if-then-else clause triggered by a request message from the
UE. Then, it is O(1) both in terms of run time and exchanged
messages.

Although each BS runs the algorithm individually, the
following result suggests that they manage to reach implicit
coordination that asymptotically leads to an optimal allocation:

Algorithm 2: qLRU-∆d Caching Policy (for BS b)

Input: Ju,f (X), G(b′)
u ,∀b′ ∈ Iu, and dB

1 if b ∈ Ju,f (X) then
2 with prob. ρ(b)u,f (X) in (11) do
3 Move-to-the-front f
4 else
5 with prob. q(b)u,f (X) in (12) do
6 Evict file at the rear
7 Insert f to cache

Proposition V.1. Under IRM request traffic, Che’s [12], [27],
and exponentialization [15] approximations, a network of
qLRU-∆d caches asymptotically achieves an optimal caching
configuration, when q → 0.

Proposition V.1 follows from a more general result [17,
Prop. IV.1] that we adapt in Appendix III. In fact, in this paper,
we adapt the general caching policy qLRU-∆, in [17], to solve
the average delay minimization problem (4). We provide an
intuitive explanation of why qLRU-∆d is optimal.
Intuition: We observe that, as q converges to 0, the cache
exhibits two different dynamics with very different timescales:
The insertion of new files tends to happen more and more
rarely (q(b)u,f (X) converges to 0), while the frequency of
moves-to-the-front for files already in the cache is unchanged
(ρ(b)u,f (X) does not depend on q). A file f at cache b is moved
to the front with a probability proportional to ∆d

(b)
u,f (X), i.e.

proportional to how much the file contributes to reduce the
delay of that specific request. This is a very noisy signal:
Upon a given request, the file is moved to the front or not.
At the same time, as q converges to 0, more and more
moves-to-the-front occur between any two file evictions. The
expected number of moves-to-the-front file f experiences is
proportional to 1) how often it is requested (pf ) and 2) how
likely it is to be moved to the front upon a request (ρ(b)u,f (X)).
Overall, the expected number of moves is proportional to
pf∆d

(b)
u,f (X), i.e. its average contribution to the decrease of

the expected delay. By the law of large numbers, the random
number of moves-to-the-front will be close to its expected
value and the least valuable file in the cache likely occupies
the last position. We can then think that, when a new file is
inserted in the cache, it will replace the file that contributes
the least to the decrease of the expected cost. qLRU-∆d then
behaves as a random greedy algorithm that, driven by the
request process, progressively replaces the least useful file
from the cache, until it reaches a global minimum.

Experiments in Section VI show that, under IRM request
process, the smaller q is, the closer qLRU-∆d’s delay is to
GREEDYAD’s delay, as it is stated by Proposition V.1.

Remark 1. The probability q
(b)
u,f (X) is analogous to q in the

usual qLRU policy. We note that setting q(b)u,f (X) = q, i.e., a
constant value, suffices to prove the asymptotic convergence
of the policy (Proposition V.1). However, we propose (12) to



make it more likely to add new copies to helpers bringing a
larger marginal gain ∆d

(b)
u,f (X ∪ {(b, f)}). This can speed up

the transient dynamics of the policy (see Section VI).
Remark 2. From equations (3) and (10) we see that probabili-
ties ρ(b)u,f and q(b)u,f depend on the allocation of file f at nearby
BSs or, more precisely, on (i) the aggregate SNR all BSs in
Ju,f can achieve when transmitting to u (i.e.,

∑
b′∈Ju,f

G
(b′)
u ),

(ii) the SNR G
(b)
u of the local channel from b to u, and (iii) the

backhaul delay dB . In cellular networks, each UE takes SNR
measurements of BSs within range [28]. Thus, the information
needed to set q(b)u,f and ρ

(b)
u,f can be obtained with negligible

overhead and be piggybacked in uplink communications from
u to the BSs.

B. 2LRU-∆d Caching Policy

While qLRU-∆d converges to a local optimum for static
popularities, in practice, the slow insertion process of qLRU-
∆d, for small values of q, becomes problematic when some
files are popular over a short time scale: A new file gets a
chance to be inserted in the cache on average by every 1/q
requests, and by that time, its popularity may have declined.
In order to gain in reactivity, we propose 2LRU-∆d.

In 2LRU-∆d, each BS maintains two storage layers: A
physical cache and a virtual cache. The physical cache stores
the actual files, while the virtual cache stores files’ iden-
tification data. The identification for file f is denoted by
ID(f ). Here, we introduce the support variables X̂ indicating
the allocation of the files’ IDs at virtual caches throughout
the network. The two-layers structure along with the least-
recently-used eviction rule are the core of plain 2LRU. On
top of these characteristics, 2LRU-∆d additionally performs
insertions and moves-to-the-front with probability proportional
to (10).

2LRU-∆d Policy: Upon a request (u, f), given the current
physical and virtual allocations, X and X̂ , respectively:

(i) All neighboring BSs caching ID(f ) (∀b ∈ Ju,f (X̂))
move ID(f ) to the front of the virtual cache and, if f is
physically cached as well, they move f to the front of
the physical cache with probability ρ

(b)
u,f (X), given by (11),

otherwise they cache f .
(ii) The remaining BSs (∀b ∈ Iu\Ju,f (X̂)) evict the ID at

the rear and insert ID(f ) at the front with probability σ(b)
u,f(X),

given by (13).
We formalize 2LRU-∆d caching policy in Algorithm 3

from the individual perspective of each BS b. As qLRU-∆d,
2LRU-∆d has constant complexity in time and number of
messages.
Remark 3. 2LRU-∆d does not enjoy the same theoretical
guarantees of qLRU-∆d. However, its two-layer structure
works as a more responsive filter, which makes it easier
for 2LRU-∆d to reflect short-term popularity variabilities.
This fact makes 2LRU-∆d more reactive than qLRU, whose
insertion rate may be drastically reduced by parameter q. This
feature is particularly favorable for scenarios where the request
process has strong temporal locality, which is a characteristic

Algorithm 3: 2LRU-∆d Caching Policy (for BS b)

Input: Ju,f (X), Ju,f (X̂), G(b′)
u ,∀b′ ∈ Iu, and dB

1 if b ∈ Ju,f (X̂) then
2 Move-to-the-front ID(f) at virtual cache
3 if b ∈ Ju,f (X) then
4 with prob. ρ(b)u,f (X) in (11) do
5 Move-to-the-front f at physical cache
6 else
7 Evict file at the rear of physical cache
8 Insert f to physical cache
9 else

10 with prob. σ(b)
u,f (X) in (13) do

11 Evict file’s ID at the rear of virtual cache
12 Insert ID(f) to virtual cache

often observed in practice [29]. Additionally, we consider an
insertion probability depending on the average delay in order
to tune the filter to be more selective towards files that may
be supposed to reduce more the delay. Therefore, 2LRU-∆d
is a strong candidate to cope with the delay minimization
problem under non-stationary request processes, as we observe
empirically in Section VI.

VI. PERFORMANCE EVALUATION

In this section, we first consider qLRU-∆d convergence to
the optimal allocation. In particular, we show that it converges
to an allocation similar to the one found by GREEDYAD.
Then, we investigate the proposed solutions’ performance in
a homogeneous SNR regime under synthetic and real request
processes. Finally, we study how heterogeneous SNRs affect
our policies’ performance in a more realistic scenario.

A. Simulation Setup

1) Cellular network: In our experimental setup, we con-
sider files with equal size M = 1.0 Mbits. Each cache can
store C = 100 files (i.e., less than 1% of the catalog, which
is inline with studies about small cell caching [5], [16]). We
consider the Berlin topology, which consists of B = 10 BSs
located across an area A according to the positions of T-mobile
BSs in Berlin extracted from [30]. We call network density
the average number of BSs covering a UE and we assume
homogeneous spatial user density. The backhaul-access delay
is dB = 100 ms and the channel bandwidth is W = 5 MHz,
for all pairs BS-UE (which are values consistent with related
literature [11], [17]).

2) Request Generation Mechanisms: We simulate a discrete
time process, where, at every step, a UE is chosen uniformly at
random to generate the next request. We consider the following
mechanisms:
• Stationary Request Process: Simulations have a warm up

phase and a measurement phase each consisting of 100
million requests. At every request, a file is chosen from
a catalog of F = 106 files according to a Zipf law with
exponent α = 1.2, unless otherwise stated.



Fig. 2. Convergence analysis: Delay (left) and allocation (right) as q converges
to 0, for α = 1.2, dB = 100ms, and g = 10dB.

• Non-stationary Request Process: We additionally con-
sider a request process based on a real trace from Akamai
Content Delivery Network [31], consisting of 17 million
requests observed during 5 consecutive days. The trace
is described in [32]. Files popularities may vary over
different time scales.

3) Algorithms and Policies: Besides our proposed greedy
algorithm (Section III) and online policies (Section V), we
consider the following solutions in our performance analysis:
• GREEDYHR: Static allocation determined by a greedy

algorithm that aims to maximize the hit ratio.
• LRU-ONE and LRU-ALL [14]. Upon request (u, f), in

LRU-ONE, only a fixed BS bu ∈ Iu updates its cache,
whereas in LRU-ALL, all BSs b ∈ Iu update their caches.

• qLRU-LAZY and 2LRU-LAZY [15]. Upon request
(u, f), if it is a hit, BS b ∈ Iu updates its cache only
if Ju,f (X) = {b}, if it is a miss, a BS b∗ is randomly
chosen to serve and possibly insert the file into its cache.
The updates and insertions are based on plain qLRU and
2LRU, respectively.

• LFU-ALL. Each cache keeps track of how often every
file has been requested. The least-frequently-requested
cached file is evicted to make room for new insertions.

B. Numerical Results

1) Convergence Analysis for qLRU-∆d
To study the convergence of qLRU-∆d, we consider the

homogeneous SNR regime with SNR g = 10dB, for all
connected pairs BS-UE, and the stationary request process. We
show that, as q tends to 0, qLRU-∆d converges to the optimal
static solution similar to the one provided by GREEDYAD.

Fig. 2 (left) shows the average delay of qLRU-∆d and
GREEDYAD for different values of q. As q decreases,
qLRU-∆d’s average delay converges to GREEDYAD’s one.
Fig. 2 (right) shows the distance between qLRU-∆d and
GREEDYAD. The distance dist(P1, P2) between policies P1

and P2 is defined as the cosine distance4 between their
occupancy vectors θ, which are F × 1 vectors containing the
fraction of time every file spent on average in a cache during

4The cosine distance between vectors u and v is given by dist(u, v) =

1− 〈u,v〉
‖u‖2‖v‖2

, where 〈·, ·〉 denotes the inner product.

Fig. 3. Convergence analysis: α variation with dB = 100ms (left) and dB
variation with α = 1.2 (right), for q = 0.001.

Fig. 4. Average delay (left) and hit ratio (right) of different policies after
every 100 requests under IRM in a Berlin topology.

the measurement phase. For GREEDYAD, we can compute
directly θ from the allocation matrix. As q decreases, the
distance between qLRU-∆d and GREEDYAD decreases, indi-
cating that qLRU-∆d tends to store the same files GREEDYAD
stores.

Observation 1. qLRU-∆d converges to the optimal solu-
tion provided by GREEDYAD as q → 0.

Fig. 3 shows the average delay achieved by GREEDYAD and
qLRU-∆d for different values of Zipf exponent α (left) and
backhaul-access delay dB (right), when q = 0.001. We observe
that the two curves almost match for all different parameter
choices, indicating that the convergence is achieved in multiple
settings.

Observation 2. For sufficiently small q, qLRU-∆d achieves
delays close to GREEDYAD across different network set-
tings and popularity distributions.

Now, for a fixed network density of 9.4 and for each online
policy, we show the average delay Fig. 4 (left) and the hit ratio
Fig. 4 (right) after every 100 requests. In this plot, we can
observe the policies convergence process. Files popularities
follow a Zipf law with exponent α = 1.2 and we also take
g = 10dB and dB = 100ms. We fix q = 0.001 for qLRU-∆d
and qLRU-LAZY.

First, we highlight that qLRU-like policies have worse
performance in the beginning due to the lower insertion rate
(caused by parameter q), until the point where they stabilize



Fig. 5. Average delay of different policies versus density in Berlin topology
with IRM request process (α = 1.2).

and present better results (after 107 requests in this scenario).
Despite their noticeably faster convergence, 2LRU-like poli-
cies reach performance levels close to the qLRU-like ones.
This fact reveals 2LRU-∆d higher reactivity and suggests its
suitability for dealing with non-stationary request processes.

Observation 3. Despite their slightly worse performance
under IRM, 2LRU-like policies present faster convergence.

2) Effect of Network Density
We consider the homogeneous SNR regime with g = 10dB,

for all connected pairs BS-UE. We fix the BSs positions and
vary the transmission range to achieve network densities from
1.1 (almost isolated BSs) to 9.4 (highly overlapped network,
with approximately 73% of UEs covered by all 10 BSs). We
fix q = 0.001 for qLRU-∆d and qLRU-LAZY.

In the first setting, we assume a stationary request pro-
cess. In Fig. 5, we show the normalized average delay as
function of the network density, for different policies and
algorithms. The qLRU-∆d result is very close to GREEDYAD
one, reasserting its convergence across different densities.
qLRU-∆d reaches performance gains of up to 20% related
to GREEDYHR and other hit-rate-maximization policies. If
compared to simpler policies, such as LRU-ALL and LRU-
ONE, qLRU-∆d achieves performance gains of up to 27%.

Observation 4. Under stationary requests, qLRU-∆d out-
performs other policies, presenting nearly optimal results.

In Fig. 6, we show the hit ratio corresponding to the
experiment previously described. Policies like qLRU-LAZY
and 2LRU-LAZY [15] outperform other policies as they are
designed to maximize the hit ratio, even though they have
inferior performance in terms of average delay (see Fig. 5).

Observation 5. As expected, policies targeting the hit ratio
in general perform worse in terms of average delay.

In the second setting, we assume the non-stationary request
process. The greedy allocation in this case was determined
by estimating the files popularities over 5 days. However,

Fig. 6. Hit ratio of different policies versus density in Berlin topology with
IRM request process (α = 1.2).

Fig. 7. Performance analysis of various policies in a real topology with
Akamai trace.

real request processes exhibit strong temporal locality features.
Static allocations based on time-average popularities smooth
out the variability over short time scale. Consequently, we
observe in Fig. 7 that GREEDYAD and GREEDYHR perform
worse than most of the online policies.

Observation 6. Under non-stationary requests, static solu-
tions tend to perform worse than online policies.

On the contrary, 2LRU-like policies are highly reactive
and may be able to capture short-time popularity variations,
promising better performance. Fig. 7 shows that indeed 2LRU-
∆d outperforms both GREEDYAD and qLRU-∆d by 12% and
6%, respectively. Moreover, 2LRU-∆d provides performance
gains of around 15% in comparison with 2LRU-LAZY and
23% in comparison with LRU-ALL.

Observation 7. Under non-stationary requests, 2LRU-∆d
outperforms all other policies.

3) Heterogeneous SNR Regime
In the online policies simulations, at every request (u, f),



Fig. 8. Slow SNR variability regime: Berlin topology with density 5.9,
g0 = 10.0dB, and dB = 100.0ms following trace-based request process.

the SNRs G(b)
u ,∀b ∈ Iu are chosen uniformly at random within

a range, i.e., G(b)
u ∈ [g0−∆g, g0+∆g]. For the static solutions,

we simply calculate in advance the average experienced delay
for each UE to download from k = 0, . . . , |Iu| cached copies,
and apply the greedy algorithm as if SNRs were homoge-
neous. We consider the same Berlin topology, with density
of 5.9 BSs/UE, on average, and file requests follow again
the (non-stationary) Akamai trace. Moreover, we consider two
different scenarios for SNR variability:

• Slow SNR variability regime: SNRs can be considered
constant from the moment the request is posed until it is
served.

• Fast SNR variability regime: SNRs change over the
timescale corresponding to the backhaul retrieval time.
As a consequence, the BS that retrieves an additional
copy (b′ in (3)) may not have the highest SNR by the
time the copy is available.

First, in Fig. 8, we show the performance of the caching
policies under slow SNR variability regime. We present the
average delay as a function of the SNR variation ∆g. We
observe that all curves decrease for smaller values of SNR
variation (∆g ∈ [1.0, 7.0]). The average delay tends to increase
again for larger SNR variation (∆g ≥ 9.0) for the hit-ratio
maximization schemes. The fact that the BS with the highest
SNR serves the requested file mitigates the miss cost for the
delay-based schemes. Our proposed policies also outperform
other schemes. The maximum observed performance gain
(related to 2LRU-∆d and LRU-ALL) moderately increases
with ∆g, going from 13% to around 15%.

Observation 8. The proposed policies outperform other
schemes and the SNR variation has low impact on the
schemes’ relative performance gains.

The SNR variability may be interpreted as the BSs using
different transmission powers, which is a common characteris-
tic of real heterogeneous cellular networks (e.g., in an overlay
of femto, pico, and macro cells). The previous experimental

Fig. 9. Fast SNR variability regime: Berlin topology with density 5.9,
g0 = 10.0dB, and dB = 100.0ms following trace-based request process.

result suggests that dynamic policies are resilient to different
transmission conditions and may achieve satisfactory results
even in these scenarios.

In a similar fashion, in Fig. 9, we show the performance
of the caching policies under fast SNR variability regime. All
policies presents a strictly increasing behavior. This fact is
explained by Jensen’s inequality, since the delay is now a
convex random function: Given g = g0+∆g and g′ = g0−∆g,
the delay reduction achieved with the larger g is smaller than
the delay increase due to the smaller g′.

Observation 9. In a scenario with more unstable transmis-
sion conditions (fast SNR variability), the average delay
strictly increases with the SNR variation.

VII. DISCUSSION AND CONCLUSIONS

In this paper we proposed static and online solutions for the
experienced delay minimization problem in a FemtoCaching
architecture with CoMP joint transmissions. We formulated
the static optimization problem and provided a greedy al-
gorithm with approximation guarantees under homogeneous
SNR regime. In this regime, we studied the full-coverage
scenario that gives us more insight on the possible solutions.
Then, we introduced two novel online caching policies able
to minimize delay under IRM and to provide good results
under a real request process. In our experiments, we observed
qLRU-∆d’s convergence and evaluated all proposed cache
schemes performances under different request processes and
SNR regimes. We conclude that our caching policies achieve
considerable performance gains with negligible additional de-
ployment complexity.

Interesting future works include, for example, studying the
problem under heterogeneous file size assumption. Besides the
files popularities and network transmission conditions (SNRs
and backhaul access time), the files’ sizes would affect the
problem solution by imposing different costs in terms of both
storage and transmission time.



REFERENCES

[1] CISCO, “Cisco annual internet report (2018–2023),” CISCO, Tech. Rep.,
March 2020.

[2] N. Bhushan et al., “Network densification: the dominant theme for
wireless evolution into 5g,” IEEE Communications Magazine, vol. 52,
no. 2, pp. 82–89, Feb. 2014.

[3] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata,
and K. Sayana, “Coordinated multipoint transmission and reception in
LTE-advanced: deployment scenarios and operational challenges,” IEEE
Communications Magazine, vol. 50, no. 2, pp. 148–155, Feb. 2012.

[4] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” in 2012 Proceedings IEEE INFOCOM,
March 2012, pp. 1107–1115.

[5] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, Dec 2013.

[6] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Transactions on
Communications, vol. 62, no. 10, pp. 3665–3677, Oct 2014.

[7] T. Wang, L. Song, and Z. Han, “Dynamic femtocaching for mobile
users,” in 2015 IEEE Wireless Communications and Networking Con-
ference (WCNC), March 2015, pp. 861–865.

[8] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache
hits: Improving performance through recommendation and delivery of
related content,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp. 1300–1313, 2018.

[9] M. Costantini, T. Spyropoulos, T. Giannakas, and P. Sermpezis, “Ap-
proximation guarantees for the joint optimization of caching and rec-
ommendation,” in IEEE ICC 2020, Dublin, IRELAND, 06 2020.

[10] W. C. Ao and K. Psounis, “Distributed caching and small cell
cooperation for fast content delivery,” in Proceedings of the 16th
ACM International Symposium on Mobile Ad Hoc Networking and
Computing, ser. MobiHoc ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 127–136. [Online]. Available:
https://doi.org/10.1145/2746285.2746300

[11] A. Tuholukova, G. Neglia, and T. Spyropoulos, “Optimal cache allo-
cation for Femto helpers with joint transmission capabilities,” in IEEE
ICC 2017, 21-25 May 2017, Paris, France, Paris, FRANCE, 05 2017.

[12] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[13] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1–12:28, May 2016.

[14] A. Giovanidis and A. Avranas, “Spatial multi-lru caching for wireless
networks with coverage overlaps,” SIGMETRICS Perform. Eval. Rev.,
vol. 44, no. 1, pp. 403–405, Jun. 2016.

[15] E. Leonardi and G. Neglia, “Implicit coordination of caches in small cell
networks under unknown popularity profiles,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 6, pp. 1276–1285, June 2018.

[16] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to
cache with no regrets,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019, pp. 235–243.

[17] G. Neglia, E. Leonardi, G. I. Ricardo, and T. Spyropoulos, “A Swiss
Army Knife for Dynamic Caching in Small Cell Networks,” 2019,
arXiv:1912.10149.

[18] G. Ricardo, G. Neglia, and T. Spyropoulos, “Caching policies for delay
minimization in small cell networks with joint transmissions,” in IEEE
ICC 2020, Dublin, IRELAND, 06 2020.

[19] H. Sun and R. Q. Hu, Heterogeneous cellular networks. John Wiley
& Sons, 2013.

[20] G. Neglia, D. Carra, and P. Michiardi, “Cache Policies for
Linear Utility Maximization,” IEEE/ACM Transactions on Networking,
vol. 26, no. 1, pp. 302–313, 2018. [Online]. Available:
https://doi.org/10.1109/TNET.2017.2783623

[21] G. Arvanitakis, T. Spyropoulos, and F. Kaltenberger, “An analytical
model for flow-level performance in heterogeneous wireless networks,”
IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp.
1488–1501, 2018.

[22] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[23] W. C. Ao and K. Psounis, “Distributed caching and small cell coopera-
tion for fast content delivery,” in MobiHoc. ACM, 2015, pp. 127–136.

[24] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[25] A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin, “Simultaneous
placement and scheduling of sensors,” in 2009 International Conference
on Information Processing in Sensor Networks. IEEE, 2009, pp. 181–
192.

[26] M. Leconte et al., “Placing dynamic content in caches with small
population,” in IEEE INFOCOM 2016, 2016.

[27] R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222 – 250, 1977.

[28] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution:
From Theory to Practice. Wiley, 2011.

[29] S. Traverso et al., “Temporal Locality in Today’s Content Caching: Why
It Matters and How to Model It,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5–12, Nov. 2013.

[30] “Openmobilenetwork.” [Online]. Available: openmobilenetwork.org/
[31] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A

Platform for High-performance Internet Applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[32] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and
D. Tsigkari, “Access-time-aware cache algorithms,” ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 2, no. 4, pp. 21:1–21:29, Nov. 2017.

[33] J. Edmonds, “Matroids and the greedy algorithm,” Mathematical pro-
gramming, vol. 1, no. 1, pp. 127–136, 1971.

Guilherme Iecker Ricardo received a B.Sc. degree
in Computer and Information Engineering and a
M.Sc. degree in Systems Engineering and Computer
Science, both from Universidade Federal do Rio de
Janeiro, Brazil, in 2016 and 2018, respectively. Cur-
rently, he is pursuing a Ph.D. degree in Université
Côte d’Azur, in a collaboration between EURECOM
and INRIA, Sophia Antipolis research centers in
France.

Alina Tuholukova received a Master’s degree from
the University of Nice Sophia Antipolis, France, in
2015. Then, she worked as a research engineer at
Inria, Sophia Antipolis until 2016.

Giovanni Neglia received the master’s degree in
electronic engineering and the Ph.D. degree in
telecommunications from the University of Palermo,
Italy, in 2001 and 2005, respectively. He has been a
Researcher at Inria, Sophia Antipolis, France, since
September 2008. In 2005, he was a Research Scholar
at the University of Massachusetts, Amherst, MA,
USA, visiting the Computer Networks Research
Group. Before joining Inria, he was a post-doctorate
at the University of Palermo and an External Scien-
tific Advisor of Maestro Team at Inria.

Thrasyvoulos Spyropoulos received the Diploma
in Electrical and Computer Engineering from the
National Technical University of Athens, Greece,
and a Ph.D degree in Electrical Engineering from
the University of Southern California. He was a
post-doctoral researcher at INRIA and then, a senior
researcher with the Swiss Federal Institute of Tech-
nology (ETH) Zurich. He is currently an Assistant
Professor at EURECOM, Sophia-Antipolis. He is the
recipient of the best paper award in IEEE SECON
2008, and IEEE WoWMoM 2012.



APPENDIX I
ADDITIONAL CONTENT FOR SECTION III

A. Homogeneous SNR Additional Notation

In the homogeneous SNR regime, the delay experienced by
UE u to download file f under allocation X is a function
of the number of cached copies of f in its neighboring BSs,
|Ju,f (X)|:

du(|Ju,f (X)|) = min {tu(|Ju,f (X)|),
dB + tu(|Ju,f (X)|+1)} .

(14)

In this case, we cannot allow two-steps transmissions when
all neighboring BSs are already providing a cached copy of the
requested file, i.e., Ju,f (X) = Iu. Then, to avoid this issue,
we redefine tu as follows:

tu(k) = max
{

M
W log2(1+k·g) ,

M
W log2(1+|Iu|·g)

}
, (15)

where we truncate the delay at its minimum allowed value.
We consider tu(0) = +∞.

B. Proof of Proposition III.1

We want to show that the FemtoCaching problem [5] can
be reduced to Problem 1. We use the additional notation
introduced in Appendix I-A for homogeneous SNR regime.
The homogeneous version of the FemtoCaching problem is:

Problem 3 (Homogeneous FemtoCaching Problem).

minimize
X⊂V

d̄F (X) =
1

U

∑
u,f

pf ·
(
1Ju,f (X)=∅ · dB + t(1)

)
,

(16)

subject to constraints (1), where d̄F (X) is the average delay
for the FemtoCaching problem and t(1) = M

W log2(1+g) is given
by (15) dropping subscript u, since every UE is covered by at
least one BS.

Assume further that popularities can be written as rational
numbers, i.e.,

pf =
mf

n
,mf , n ∈ N,∀f ∈ [F ]. (17)

We observe that, given any two allocations X,X ′, such that,
d̄F (X) 6= d̄F (X ′), it holds that:

∣∣d̄F (X)− d̄F (X ′)
∣∣ = (18)

=

∣∣∣∣∣∣ 1

U

∑
u,f

pf (1Ju,f (X) · dB + t(1))

− 1

U

∑
u,f

pf (1Ju,f (X′) · dB + t(1))

∣∣∣∣∣∣ (19)

=
1

n · U

∣∣∣∣∣∣
∑
u,f

mf (1Ju,f (X) · dB + t(1))

−
∑
u,f

mf (1Ju,f (X′) · dB + t(1))

∣∣∣∣∣∣ (20)

=
dB
n · U

∣∣∣∣∣∣
∑
u,f

mf

(
1Ju,f (X) − 1Ju,f (X′)

)∣∣∣∣∣∣ (21)

≥ dB
n · U

. (22)

Equality (19) is the direct application of the FemtoCaching
problem’s objective (16). We use the popularities’ rational
notation in (17) to derive (20). The absolute part of (21) always
results in a positive integer, which leads to inequality (22).

We take a large enough value for the SNR g, such that the
following inequality holds:

dB
n · U

> t(1). (23)

Then, Problem 1’s objective can be written as:

d̄(X) =

=
1

U

∑
u,f

pfdu(|Ju,f (X)|) (24)

=
1

U

∑
u,f

pf

(
1Ju,f (X)=∅d

(0) + 1Ju,f (X) 6=∅du(|Ju,f (X)|)
)

(25)

=
1

U

∑
u,f

pf
(
1Ju,f (X)=∅(dB + t(1)) + 1Ju,f (X)6=∅t(1)

−1Ju,f (X)6=∅t(1) + 1Ju,f (X)6=∅du(|Ju,f (X)|)
)

(26)

=
1

U

∑
u,f

pf
(
1Ju,f (X)=∅dB + t(1)

)
− 1

U

∑
u,f

pf1Ju,f (X)6=∅ (t(1)− du(|Ju,f (X)|)) (27)

= d̄F (X)− 1

U

∑
u,f

pf1Ju,f (X)6=∅(t(1)− du(|Ju,f (X)|)).

(28)

Equality (24) is an adaptation of Problem 1’s objective to the
homogeneous SNR regime, where we replace the general delay
function (3) with (14). Equation (25) comes from the fact that,
if Ju,f (X) = ∅ (i.e., cache miss), the delay is d(0) = dB+t(1)
(first defined in Problem 2) or, if Ju,f (X) 6= ∅ (i.e., cache hit),
the delay is du(|Ju,f (X)|). Note that this decomposition is
at first redundant, given that definition (14) covers both miss
and hit cases. We obtain (27) by simply putting the indicator
functions from (26) in evidence. Finally, we observe that the
first term in (27) is exactly the definition of the FemtoCaching
objective function, which yields (28).

Observe that du(|Ju,f (X)|)) < t(1), then the following
relation holds:

d̄F (X) ≥ d̄(X) ≥ d̄F (X)− t(1). (29)

Now, we prove that, given two allocations X,X ′,

d̄F (X) < d̄F (X ′)⇔ d̄(X) < d̄(X ′) (30)

and then solving Problem 1 brings the solution to Problem 3.



First, we prove d̄F (X) < d̄F (X ′)⇒ d̄(X) < d̄(X ′):

Hypothesis 1: d̄F (X) < d̄F (X ′)

d̄(X) ≤ d̄F (X) by (29)

≤ d̄F (X ′)− dB
n · U

by Hyp. 1 and (22)

< d̄F (X ′)− t(1) by (23)
≤ d̄(X ′) by (29)

Second, we prove d̄(X) < d̄(X ′)⇒ d̄F (X) < d̄F (X ′):

Hypothesis 2: d̄(X) < d̄(X ′)

d̄F (X ′) ≥ d̄(X ′)

> d̄(X)− t(1)

≥ d̄F (X) by (29)

Then, because both implications hold, (30) also holds and,
therefore, Problem 3 can be reduced to Problem 1. Because
Problem 3 is NP-hard [5] and we can reduce it to Problem 1,
then Problem 1 is NP-hard.

C. Proof of Lemma III.2

We start proving the following lemma:

Lemma I.1. For any u and any k1, k2 ∈ Z+, such that k1 ≤
k2, the following inequality holds:

tu(k1)− tu(k1 + 1) ≥ tu(k2)− tu(k2 + 1). (31)

Proof. Let h(x) = M
W log2(1+g·x) . Function h can be written

as a function composition h(x) = (w ◦ y)(x), where w(x) =
M

W log2(x)
= M ln(2)

W ·
(

1
ln(x)

)
and y(x) = 1+g·x. Function y is

affine. Function w first and second derivatives are, respectively,
w′(x) = M ln(2)

W ·
(
−1

x ln2(x)

)
and w′′(x) = M ln(2)

W ·
(

ln(x)+2
x2 ln3(x)

)
.

For x > 1, w′(x) < 0, which makes w decreasing, and
w′′(x) > 0, which makes w convex. Because h is the compo-
sition of a convex decreasing function and an affine increasing
function, h is also a convex decreasing function for x > 1.
Moreover, because tu is the point-wise maximum between h
and constant M

W log2(1+|Iu|·g)
, tu is a non-increasing convex

function. This means that the function l(k) = tu(k)−tu(k+1)
is also non-increasing. Therefore, inequality (31) holds.

We separate the proof of Lemma III.2 in two parts, one for
each desired property of s̄(X).

Monotonicity: Let X ⊂ X ′ ⊂ V and consider the case
where X ′ = X ∪{(b′, f ′)}. We can apply this argument item-
by-item to prove the case for general X and X ′. By definition,
the set function (5) is monotone if:

s̄(X) ≤ s̄(X ′)⇔ d̄(X) ≥ d̄(X ′)

⇔
∑
u,f

pfdu(|Ju,f (X)|) ≥
∑
u,f

pfdu(|Ju,f (X ′)|) (32)

We observe that ∀f 6= f ′, the LHS equals the RHS in (32),
so we focus on cases where f = f ′. Similarly, we consider

only the set of users covered by BS b′, that we call U(b′).
Then, (32) becomes:

s̄(X) ≤ s̄(X ′)⇔

⇔ pf ′

∑
u∈U(b′)

(du(|Ju,f ′(X)|)− du(|Ju,f ′(X)|+1)) ≥ 0.

Notice that tu(k) is non-increasing, which makes du(k)
non-increasing as well (see (14)). Then, du(|Ju,f ′(X)|) −
du(|Ju,f ′(X)|+1) ≥ 0 and, therefore, (5) is monotone.

Submodularity: Let X ⊂ X ′ ⊂ V and (b′, f ′) ∈ V \X ′.
The set function (5) is submodular if:

s̄(X ∪ {(b′, f ′)})− s̄(X) ≥ s̄(X ′ ∪ {(b′, f ′)})− s̄(X ′)⇔
⇔ d̄(X)− d̄(X ∪ {(b′, f ′)} ≥ d̄(X)− d̄(X ∪ {(b′, f ′)}

⇔
∑
u,f

pf (du(|Ju,f (X)|)− du(|Ju,f (X ∪ {(b′, f ′)})|))

≥
∑
u,f

pf (du(|Ju,f (X ′)|)− du(|Ju,f (X ′ ∪ {(b′, f ′)})|))

We observe that ∀f 6= f ′, the LHS equals the RHS in
the inequality above, so we focus on cases where f = f ′.
Similarly, we consider only the set of users covered by BS b′,
i.e., U(b′). Then, the inequality above becomes:

pf ′

∑
u∈U(b′)

du(|Ju,f ′(X)|)− du(|Ju,f ′(X)|+1)

≥ pf ′

∑
u∈U(b′)

du(|Ju,f ′(X ′)|)− du(|Ju,f ′(X ′)|+1).
(33)

We will prove (33) by showing that for each u,

du(|Ju,f ′(X)|)− du(|Ju,f ′(X)|+1)

≥ du(|Ju,f ′(X ′)|)− du(|Ju,f ′(X ′)|+1)

and, since it refers to a single file f ′, we can simplify the
notation defining k = |Ju,f ′(X)| and k′ = |Ju,f ′(X ′)|. If we
prove the inequality above for k′ = k + 1, then it will hold
∀k′ ≥ k + 1. Thus, we need to show that ∀u ∈ U(b′),

du(k)− du(k + 1) ≥ du(k + 1)− du(k + 2). (34)

However, the delay du is the minimum of two functions
(see (14)). We observe that du(k) = tu(k) ⇒ du(k + 1) =
tu(k + 1). In fact,

du(k) = tu(k)⇒
⇒ tu(k) ≤ dB + tu(k + 1)⇒
⇒ tu(k)− tu(k + 1) ≤ dB ⇒
⇒ tu(k + 1)− tu(k + 2) ≤ dB ⇒ (by Lemma I.1)
⇒ du(k + 1) = tu(k + 1).

Then, we need to consider only four cases:
Case (I): du(k) = tu(k), du(k + 1) = tu(k + 1), and

du(k + 2) = tu(k + 2). Then, (34) is written as:

tu(k)− tu(k + 1) ≥ tu(k + 1)− tu(k + 2),

which is always true by Lemma I.1.



Case (II): du(k) = dB + tu(k+ 1), du(k+ 1) = tu(k+ 1),
and du(k + 2) = tu(k + 2). Then, (34) is written as:

dB + tu(k + 1)− tu(k + 1) ≥ tu(k + 1)− tu(k + 2)

dB ≥ tu(k + 1)− tu(k + 2),

which is true as du(k+ 1) = tu(k+ 1) and then tu(k+ 1) ≤
dB + tu(k + 2).

Case (III): du(k) = dB + tu(k + 1), du(k + 1) = dB +
tu(k + 2), and du(k + 2) = tu(k + 2). Then, (34) becomes:

dB + tu(k + 1)− dB + tu(k + 2)

≥ dB + tu(k + 2)− tu(k + 2)⇔
⇔ dB ≤ tu(k + 1)− tu(k + 2),

which is true as du(k+ 1) = dB + tu(k+ 2) and then tu(k+
1) > dB + tu(k + 2).

du(k + 1) = dB + tu(k + 2)⇔ tu(k + 1) > dB + tu(k + 2).

Case (IV): du(k) = dB + tu(k + 1), du(k + 1) = dB +
tu(k+2), du(k+2) = dB + tu(k+3). This case is analogous
to Case (I).

D. Problem 2 is not submodular in the heterogeneous case.

Let X ⊂ X ′ ⊂ V and (b′, f ′) ∈ V \X ′. Consider
a numerical setting consisting of a catalog [F ] and BSs
[B] = {1, 2, 3, 4}. Let f1 ∈ [F ], X = {(b1, f1)}, X ′ =
{(b1, f1), (b2, f1)}, and (b′, f ′) = (b3, f1). Additionally, con-
sider that UE u is located in the region covered by all
BSs simultaneously, and the power-base SNRs are Gu =
[30.0, 30.0, 10.0, 100.0]. We consider dB = 10.0ms, M =
1Mbit, and W = 5MHz.

We list below the experienced delay before and after adding
a copy of f1 to BS b3 in allocations X and X ′.

du,f1(X) = dB + tu ({b1, b4}) = 38.4ms
du,f1(X ∪ {(b3, f1)}) = tu ({b1, b3}) = 37.3ms

du,f1(X ′) = tu ({b1, b2}) = 33.7ms
du,f1(X ′ ∪ {(b3, f1)}) = tu ({b1, b2, b3}) = 32.5ms

Then, we calculate and compare the gain for making such
placement in both allocations:

dB + tu ({b1, b4})− tu ({b1, b3}) = 1.1

< 1.2 = tu ({b1, b2})− tu ({b1, b2, b3})

However, as shown in Appendix I-C, if s̄(X) is submodular,
the following inequality must hold

du,f (X)− du,f (X ∪ {(b′, f ′)})
≥ du,f (X ′)− du,f (X ′ ∪ {(b′, f ′)}).

Therefore, s̄(X) is not submodular in general.

APPENDIX II
ADDITIONAL CONTENT FOR SECTION IV

In this appendix we provide the proofs for the results on the
Full-Coverage scenario. We use the same notation introduced
in Section IV.

A. Proof of Proposition IV.1

For every file f ∈ [F ], we generate B objects f (1), . . . , f (B)

with weight w(f (k)) = pf (d(k−1)−d(k)) > 0. We gather all
objects generated this way in F = {f (1), . . . , f (B),∀f ∈ [F ]}.
The total weight of any subset A ⊂ F is w(A) =

∑
e∈A

w(e).

We observe that any cache allocation X can be mapped to
a set A ⊂ F such that w(A) = s̄(X) and |A|= B ·C. In fact,
let kf be the number of copies of file f in allocation X , then
A = {f (i) : 1 ≤ i ≤ kf ,∀f ∈ [F ], kf > 0} has the desired
property. The opposite also holds, any set A = {f (i) : 1 ≤
i ≤ kf ,∀f ∈ [F ], kf > 0} with |A|= B · C can be mapped
to an allocation X , such that w(A) = s̄(X). The mapping is
detailed in Alg. 4.

Algorithm 4: Mapping
input : A set A
output: Allocation set X

1 X ← ∅
2 i← 0
3 for f ∈ [F ] do
4 if kf > 0 then
5 for h ∈ [kf ] do
6 X ← X ∪ {((i mod B) + 1, f)}
7 i← i+ 1

Consider the problem:

maximize
A⊂F

w(A),

subject to |A|= B · C.
(35)

This is a weight maximization problem, so a greedy algo-
rithm finds the optimal solution A∗ (see [33]). A∗ can be
written as A∗ = {f (i) : 1 ≤ i ≤ kf ,∀f ∈ [F ], kf > 0}.
Suppose it is not the case, i.e., ∃f | f (k) ∈ A∗ but f (h) 6∈ A∗,
for some h < k. Then, there is a set A′ = A∗\{f (k)}∪{f (h)},
such that w(A′) > w(A∗), contradicting the optimality of A∗.

As A∗ = {f (i) : 1 ≤ i ≤ kf ,∀f ∈ [F ], kf > 0}, A∗
can be mapped to an allocation X∗ with s̄(X∗) = w(A∗).
We claim that X∗ is an optimal solution of Problem 2. In
fact, any other allocation X can be mapped to a set A with
s̄(X) = w(A) ≤ w(A∗) = s̄(X∗).

Finally, consider the ordered set of choices of GREEDYAD
for Problem 2, and map them to corresponding elements of A
(the h-th choice of a copy of f by GREEDYAD corresponds
to add f (h) to A). These choices are possible choices for the
greedy algorithm in the problem defined in (35). It follows
that GREEDYAD provides an optimal solution for Problem 2.



B. Proof of Lemma IV.2

The necessary part is trivial: If an allocation is optimal, it
provides the minimum delay among all possible allocations.

To prove the sufficient part, we consider a locally optimal
allocation X . We prove that X is optimal by contradiction.

Consider the problem introduced in the proof of Propo-
sition IV.1. The optimal greedy algorithm iteratively builds
a solution generating the following sequence of allocations:
A∗0 = ∅,A∗1,A∗2, . . . ,A∗B·C . We observe that each A∗i corre-
sponds to a valid allocation.

Let A be the set corresponding to X . We order the elements
in A in decreasing order of their weights, generating the
following sequence: A0 = ∅,A1, . . . ,AB·C . We assume that
A is not optimal, i.e., w(A∗) > w(A). Then, there is an index
h, such that w(A∗h) > w(Ah) and w(A∗m) = w(Am), for
m < h. Let Ah = Ah−1 ∪ {f̄ (h)}. Then, there is an element
f̂ (k) ∈ A∗h ∩ Ac

h, such that,

w(f̂ (k)) = w(A∗h)− w(A∗h−1)

> w(Ah)− w(Ah−1) = w(f̄ (h)).

Moreover, f̂ (k) 6∈ A as w(Am)−w(Am−1) is not increasing.
Consider h′ = max{l|f̄ (l) ∈ A} ≥ h. It holds that

w(f̄ (h
′)) ≤ w(f̄ (h)) < w(f̂ (k)). Also, k′ = min{l|f̂ (l) /∈

A} ≤ k. It holds w(f̂ (k
′)) ≥ w(f̂ (k)).

If Ã = A \ {f̄ (h′)} ∪ {f̂ (k′)}, then w(Ã) > w(A) and Ã
has been obtained from A replacing a single element, which
contradicts the fact that X is locally optimal.

C. Proof of Proposition IV.3

As provided by Lemma IV.2, in the full-coverage scenario,
an allocation is optimal iff it is not possible to replace any file
in a cache and reduce the expected delay d̄. Let us consider
first the full-diversity allocation. It is evident that it cannot be
advantageous to replace one of the B · C most popular files
with a less popular file j > B ·C. The full-diversity allocation
is then optimal iff it is not worthy to replace any file i ∈ [B ·C]
with an additional copy of a file j ∈ [B ·C] \ {i}. This is the
case iff:

pidB ≥ pj(d(1)− d(2)),∀i ∈ [B · C], j ∈ [B · C] \ {i},

i.e., the delay increase due to the cost to retrieve i through the
backhaul is larger than the delay decrease due to the possibility
to have two BSs jointly transmitting j. The minimum of the
left-hand side of the inequality above is achieved when i =
B ·C (the least popular file in cache), and the maximum of the
right-hand side is achieved when j = 1 (most popular file).
Then, the set of inequalities above is satisfied iff

pB·CdB ≥ p1 (d(1)− d(2)) ,

i.e., we can restrain to consider the possibility to replace the
least popular of the B ·C files with an additional copy of the
most popular file 1.

The reasoning for the full-replication allocation is similar:
in this case we need to ensure that replacing one of the B

copies of file C with (a first copy of) file C + 1 does not
reduce the expected delay, i.e.,

pC+1dB ≤ pC(d(B − 1)− d(B)).

D. Proof of Corollary 1

We prove each part of the corollary separately:
First, we want to show that, for general topologies, if full-

diversity is locally optimal, then (8) holds. Let X be a full-
diversity allocation and X ′ be an allocation that differs from
X by a single file, i.e., and X ′ = (X \ {(b, f1)}) ∪ {(b, f2)},
for any b ∈ [B] and f1, f2 ∈ [F ], such that (b, f1) ∈ X , and
(b, f2) 6∈ X . Let ku,f = |Ju,f (X)| and k′u,f = |Ju,f (X ′)|. If
full-diversity is locally optimal, then:

d̄(X) ≤ d̄(X ′)⇔

⇔
∑
u∈[U ]

1

U

∑
f∈[F ]

pfd(ku,f ) ≤
∑
u∈[U ]

1

U

∑
f∈[F ]

pfd(k′u,f ).

We denote by U(b) the set of users covered by BS b. Notice
that, ∀u 6∈ U(b), d(ku,f ) = d(k′u,f ) so their contributions
to the LHS and RHS of the inequality above cancel out.
Similarly, all files different from f1 and f2 will have equal
contributions on both sides, also being canceled out. Then,
we can write:

d̄(X) ≤ d̄(X ′)⇔

⇔ 1

|U(b)|
∑

u∈U(b)

(pf1d(ku,f1) + pf2d(ku,f2))

≤ 1

|U(b)|
∑

u∈U(b)

(
pf1d(k′u,f1) + pf2d(k′u,f2)

)
⇔ 1

|U(b)|
∑

u∈U(b)

pf2
(
d(ku,f2)− d(k′u,f2)

)
≤ 1

|U(b)|
∑

u∈U(b)

pf1
(
d(k′u,f1)− d(ku,f1)

)
.

(36)

Observe that ∀u ∈ U(b), 2 ≥ k′u,f2 > ku,f2 ≥ 0. Then, it
holds that:

pf2(d(1)− d(2)) ≤ 1

|U(b)|
∑

u∈U(b)

pf2
(
d(ku,f2)− d(k′u,f2)

)
.

(37)
Similarly, ∀u ∈ U(b), ku,f1 = 1 and k′u,f1 = 0. Then:

1

|U(b)|
∑

u∈U(b)

pf1
(
d(k′u,f1)− d(ku,f1)

)
= pf1(d(0)− d(1)).

(38)
Putting together (37) and (38) with (36), we obtain:

pf2(d(1)− d(2)) ≤ 1

|U(b)|
∑

u∈U(b)

pf2
(
d(ku,f2)− d(k′u,f2)

)
≤ 1

|U(b)|
∑

u∈U(b)

pf1
(
d(k′u,f1)− d(ku,f1)

)
= pf1(d(0)− d(1)). (39)



Then, we have that:

d̄(X) ≤ d̄(X ′)⇒

⇒ 1

|U(b)|
∑

u∈U(b)

pf2
(
d(ku,f2)− d(k′u,f2)

)
≤ 1

|U(b)|
∑

u∈U(b)

pf1
(
d(k′u,f1)− d(ku,f1)

)
⇒

⇒ pf2(d(1)− d(2)) ≤ pf1(d(0)− d(1)).

In particular, we can take f1 = B · C, f2 = 1, and b such
that (b, 1) 6∈ X and we obtain:

p1(d(1)− d(2)) ≤ pB·C(d(0)− d(1)).

Therefore, if full-diversity is locally optimal, then (8) holds.
Second, we want to show that, for general topologies, if (9)

holds, then full-replication is locally optimal. Equivalently, we
prove that if full-replication is not locally optimal, then (9)
does not hold. If a full-replication allocation Y is not locally
optimal, then there exists b, f1, f2, with (b, f1) ∈ Y , (b, f2) 6∈
Y , such that (Y \ {(b, f1)}) ∪ {(b, f2)} has a smaller delay
than Y . Note that every file C < f ≤ f2 leads to an even
larger reduction to the delay, so we consider f2 = C + 1 and
Y ′ = (Y \{(b, f1)})∪{(b, C+1)}. Let ku,f = |Ju,f (Y )| and
k′u,f = |Ju,f (Y ′)|. Using a similar reasoning to the first part
of the proof, we have that:

1

|U(b)|
∑

u∈U(b)

pC+1

(
d(ku,C+1)− d(k′u,C+1

)
>

1

|U(b)|
∑

u∈U(b)

pf1
(
d(k′u,f1)− d(ku,f1)

)
.

(40)

Observe that ∀u ∈ U(b), ku,C+1 = 0 and k′u,C+1 = 1.
Then, it holds that:

pC+1 (d(0)− d(1)) =

=
1

|U(b)|
∑

u∈U(b)

pC+1

(
d(ku,C+1)− d(k′u,C+1

)
. (41)

Also, ∀u ∈ U(b), ku,f1 = B and k′u,f1 = ku,f1 − 1. Then:

1

|U(b)|
∑

u∈U(b)

pf1
(
d(k′u,f1)− d(ku,f1)

)
=

= pf1(d(B − 1)− d(B)).

(42)

Putting together (41) and (42) with (40), we obtain:

pC+1 (d(0)− d(1)) > pf1(d(B − 1)− d(B))

≥ pC(d(B − 1)− d(B))

that contradicts (9).
Therefore, if (9) holds, then full-replication is locally opti-

mal.

APPENDIX III
ADAPTATION OF FRAMEWORK [17] TO THE DELAY

MINIMIZATION PROBLEM

The idea of this appendix is to derive qLRU-∆d from the
general policy qLRU-∆ proposed in [17].

The first important adaptation, is regarding the gain function∑
u∈[U ]

∑
f∈[F ] λu,fγu,f (X), where λu,f is the request rate of

file f from user u. In our setting we can consider λu,f = pf/U
and

γu,f (X) = du,f (∅)− du,f (X), (43)

which is analogous to the “delay saving” function introduced
in Section III.

We define the marginal gain related to the performance
improvement experienced by UE u for retaining file f in the
cache of BS b given an allocation X:

∆γ
(b)
u,f (X) =

= γu,f (X)− γu,f (X \ {(b, f)})
= du,f (∅)− du,f (X)− (du,f (∅)− du,f (X \ {(b, f)}))
= du,f (X \ {(b, f)})− du,f (X)

= ∆d
(b)
u,f (X), (44)

where ∆d
(b)
u,f (X) matches the definition of marginal delay

gain (10) introduced in Section V. Since we are interested
in maximizing the gain, the policy is going to behave as a
random greedy algorithm that considers the marginal gain to
take probabilistic caching decisions.

The policy qLRU-∆ performs move-to-the-front with prob-
ability:

p
(b)
f (u) = β ·∆γ(b)u,f (X) by [17, Eq. (6)]

= β ·∆d(b)u,f (X) by (44)

= ρ
(b)
u,f (X), by def. (11)

which is the move-to-the-front probability used in qLRU-∆d,

if the normalization factor is β =

(
max

u,f,b,xf

∆d
(b)
u,f (X)

)−1
.

Similarly, upon a miss, qLRU-∆ inserts the file with
probability:

q
(b)
f (u) = q(b) · δ ·∆γ(b)u,f (X ∪ {(b, f)}) by [17, Eq. (7)]

= q · δ ·∆d(b)u,f (xf ∪ {(b, f)}) by (44)

= q
(b)
u,f (xf ), by def. (12)

which is the insertion probability used in qLRU-∆d, if we set

δ=

(
max

u,f,b,xf

∆d
(b)
u,f (X ∪ {(b, f)})

)−1
and q(b) = q,∀b ∈ [B].

Since we are able to map all the quantities of our problem
to the ones in [17], we conclude that qLRU-∆d is a special
instance of qLRU-∆ which targets the delay minimization
and, therefore, it enjoys the same optimality guarantees.


