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Equivalent one-dimensional �rst-order linear hyperbolic1

systems and range of the minimal null control time with2

respect to the internal coupling matrix3

Long Hu* Guillaume Olive�4

September 16, 20215

Abstract6

In this paper, we are interested in the minimal null control time of one-dimensional7

�rst-order linear hyperbolic systems by one-sided boundary controls. Our main result is an8

explicit characterization of the smallest and largest values that this minimal null control time9

can take with respect to the internal coupling matrix. In particular, we obtain a complete10

description of the situations where the minimal null control time is invariant with respect11

to all the possible choices of internal coupling matrices. The proof relies on the notion of12

equivalent systems, in particular the backstepping method, a canonical LU -decomposition13

for boundary coupling matrices and a compactness-uniqueness method adapted to the null14

controllability property.15

Keywords. Hyperbolic systems, Boundary controllability, Minimal null control time, Equiv-16

alent systems, Backstepping method, LU -decomposition, Compactness-uniqueness method17
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1 Introduction and main result19

1.1 Problem description20

In this article we are interested in the null controllability properties of the following class of21

one-dimensional �rst-order linear hyperbolic systems, which appears for instance in linearized22

Saint-Venant equations and many other physical models of balance laws (see e.g. [BC16, Chapter23

1] and many references therein):24 
∂y

∂t
(t, x) + Λ(x)

∂y

∂x
(t, x) = M(x)y(t, x),

y−(t, 1) = u(t), y+(t, 0) = Qy−(t, 0),

y(0, x) = y0(x).

(1)25

In (1), t > 0, x ∈ (0, 1), y(t, ·) is the state at time t, y0 is the initial data and u(t) is the26

control at time t. We denote by n ≥ 2 the total number of equations of the system. The matrix27
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Λ ∈ C0,1([0, 1])n×n is assumed to be diagonal:28

Λ = diag(λ1, . . . , λn), (2)29

with m ≥ 1 negative speeds and p ≥ 1 positive speeds (m+ p = n) such that:30

λ1(x) < · · · < λm(x) < 0 < λm+1(x) < · · · < λm+p(x), ∀x ∈ [0, 1]. (3)31

Finally, the matrix M ∈ L∞(0, 1)n×n couples the equations of the system inside the domain and32

the constant matrix Q ∈ Rp×m couples the equations of the system on the boundary x = 0.33

All along this paper, for a vector (or vector-valued function) v ∈ Rn and a matrix (or matrix-
valued function) A ∈ Rn×n, we use the notation

v =

(
v−
v+

)
, A =

(
A−− A−+

A+− A++

)
,

where v− ∈ Rm, v+ ∈ Rp and A−− ∈ Rm×m, A−+ ∈ Rm×p, A+− ∈ Rp×m, A++ ∈ Rp×p.34

We recall that the system (1) is well posed in (0, T ) for every T > 0: for every y0 ∈ L2(0, 1)n

and u ∈ L2(0, T )m, there exists a unique solution

y ∈ C0([0, T ];L2(0, 1)n) ∩ C0([0, 1];L2(0, T )n)

to the system (1). By solution we mean �solution along the characteristics�, this will be detailed35

in Section 2 below.36

The regularity C0([0, T ];L2(0, 1)n) of the solution allows us to consider control problems in37

the space L2(0, 1)n:38

De�nition 1.1. Let T > 0. We say that the system (1) is:39

� exactly controllable in time T if, for every y0, y1 ∈ L2(0, 1)n, there exists u ∈ L2(0, T )m40

such that the corresponding solution y to the system (1) in (0, T ) satis�es y(T, ·) = y1.41

� null controllable in time T if the previous property holds at least for y1 = 0.42

Clearly, exact controllability implies null controllability, but the converse is not true in general.43

These notions also depend on the time T and, since controllability in time T1 implies controlla-44

bility in time T2 for every T2 ≥ T1, it is natural to try to �nd the smallest possible control time,45

the so-called �minimal control time�. This problem was recently completely solved in [HO21]46

for the notion of exact controllability and we will investigate here what happens for the null47

controllability.48

De�nition 1.2. For any Λ,M and Q as above, we denote by Tinf (Λ,M,Q) ∈ [0,+∞] the
minimal null control time of the system (1), that is

Tinf (Λ,M,Q) = inf {T > 0 | the system (1) is null controllable in time T} .

The time Tinf (Λ,M,Q) is named �minimal� null control time according to the current liter-49

ature, despite it is not always a minimal element of the set. We keep this naming here, but we50

use the notation with the �inf� to avoid eventual confusions. The time Tinf (Λ,M,Q) ∈ [0,+∞]51

is thus the unique time that satis�es the following two properties:52

� If T > Tinf (Λ,M,Q) , then the system (1) is null controllable in time T .53

� If T < Tinf (Λ,M,Q) , then the system (1) is not null controllable in time T .54
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Finally, let us introduce the elementary times T1(Λ), . . . , Tn(Λ) de�ned by55

Ti(Λ) =


∫ 1

0

1

−λi(ξ)
dξ if i ∈ {1, . . . ,m} ,∫ 1

0

1

λi(ξ)
dξ if i ∈ {m+ 1, . . . , n} .

(4)56

For the rest of this article it is important to keep in mind that the assumption (3) implies the57

following order relation among Ti(Λ):58 {
T1(Λ) ≤ · · · ≤ Tm(Λ),

Tm+p(Λ) ≤ · · · ≤ Tm+1(Λ).
(5)59

1.2 The LCU decomposition60

An important feature of the present article is that no assumption will be required on the boundary61

coupling matrices Q. To be able to handle such a general case and state our main result we62

introduce a notion of canonical form.63

De�nition 1.3. We say that a matrix Q0 ∈ Rp×m is in canonical form if either Q0 = 0 or there
exist an integer ρ ≥ 1, row indices r1, . . . , rρ ∈ {1, . . . , p} with r1 < · · · < rρ and distinct column
indices c1, . . . , cρ ∈ {1, . . . ,m} such that{

q0
ij = 1 if (i, j) ∈ {(r1, c1), . . . , (rρ, cρ)} ,
q0
ij = 0 otherwise.

For Q0 = 0 we set ρ = 0 for convenience.64

Note that we necessarily have ρ = rankQ0.65

Example 1.4. The matrices

Q0
1 =


0 1 0

0 0 1
0 0 0

1 0 0

 , Q0
2 =


1 0 0 0

0 1 0 0
0 0 0 0

0 0 1 0

 .

are both in canonical form, with

for Q0
1: (r1, c1) = (1, 2), (r2, c2) = (2, 3), (r3, c3) = (4, 1),

for Q0
2: (r1, c1) = (1, 1), (r2, c2) = (2, 2), (r3, c3) = (4, 3).

Using the Gaussian elimination we can transform any matrix into a canonical form, this is66

what we will call in this article the �LCU decomposition� (for Lower�Canonical�Upper decom-67

position). More precisely, we have68

Proposition 1.5. For every Q ∈ Rp×m, there exists a unique Q0 ∈ Rp×m such that the following69

two properties hold:70

(i) There exists an upper triangular matrix U ∈ Rm×m with only ones on its diagonal and
there exists an invertible lower triangular matrix L ∈ Rp×p such that

LQU = Q0.
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(ii) Q0 is in canonical form.71

We call Q0 the canonical form of Q.72

We mention that, because of possible zero rows or columns of Q0, the matrices L and U are73

in general not unique.74

With this proposition, we can extend the de�nition of the indices (r1, c1), . . . , (rρ, cρ) to any75

nonzero matrix:76

De�nition 1.6. For any nonzero matrix Q ∈ Rp×m, we denote by (r1, c1), . . . , (rρ, cρ) the77

positions of the nonzero entries of its canonical form (r1 < · · · < rρ).78

As previously mentioned, the existence of the LCU decomposition is a direct consequence of79

the Gaussian elimination, where the matrix U corresponds to rightward column substitutions,80

whereas the matrix L corresponds to downward row substitutions and then normalization to 1 of81

the remaining nonzero entries. Let us present some examples which will make this point clearer.82

Example 1.7. We illustrate how to �nd the decomposition of Proposition 1.5 in practice. Con-
sider

Q1 =


0 1 2
0 2 5
0 1 2
4 −4 4

 , Q2 =


1 1 −1 2
3 5 −1 8
0 1 1 1
−1 3 6 4

 .

Let us deal with Q1 �rst. We look at the �rst row, we take the �rst nonzero entry as pivot. We83

remove the entries to the right on the same row by doing the column substitution C3 ← C3−2C2,84

which gives85

Q1U1 = Q1

1 0 0
0 1 −2
0 0 1

 =


0 1 0
0 2 1
0 1 0
4 −4 12

 . (6)86

We now look at the next row and take as new pivot the �rst nonzero entry that is not in the
column of the previous pivot, that is, not in C2. Since there is no entry to the right of this new
pivot, there is nothing to do and we move to the next row. Since this next row has no nonzero
element which is not in C2, C3, we move again to the next and last row. We take as new pivot
the �rst nonzero entry that is not in C2 or C3 and we remove the entries to the right on the
same row by doing the column substitutions C2 ← C2 + C1 and C3 ← C3 − 3C1, which gives

Q1U1U2 = Q1U1

1 1 −3
0 1 0
0 0 1

 =


0 1 0
0 2 1
0 1 0
4 0 0

 .

Working then on the rows with downward substitutions only (starting with the �rst row) and87

�nally normalizing to 1 the remaining nonzero entries, we see that Q1 becomes Q0
1 of Example88

1.4. Similarly, it can be checked that the canonical form of Q2 is in fact Q0
2 of Example 1.4.89

Remark 1.8. Observe that we only need to compute the matrix U in order to �nd the indices90

(r1, c1), . . . , (rρ, cρ).91

The uniqueness of the LCU decomposition is less straightforward and we refer for instance92

to the arguments in the proof of [DJM06, Theorem 1] or to [HO21, Appendix A] for a proof.93
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Remark 1.9. In the Gaussian elimination process described above, we absolutely do not want to94

perform any permutation of the rows. This is because we have ordered the speeds of our system95

in a particular way (recall (3)). The fact that we use right multiplication by upper triangular96

matrices and left multiplication by lower triangular matrices is also dictated by this choice of97

order (for instance in [HO21] the speeds were ordered di�erently and right multiplication by98

lower triangular matrices was considered instead).99

1.3 Literature100

Boundary controllability of one-dimensional �rst-order hyperbolic systems has been widely inves-
tigated since the late 1960s. Two pioneering works are [Rus67] and the celebrated survey paper
[Rus78], in which the author established the null controllability of the system (1) in any time
T ≥ T[Rus](Λ), where T[Rus](Λ) is the sum of the largest transport times from opposite directions,
that is,

T[Rus](Λ) = Tm+1(Λ) + Tm(Λ).

An important feature of this result is that it is valid whatever are the internal and boundary101

coupling matrices M and Q. In other words, the time T[Rus](Λ) gives an upper bound for the102

minimal null control time Tinf(Λ,M,Q) with respect to these matrices.103

In general, no better time can be expected. More precisely, it is easy to see that there exist104

matrices M and Q such that Tinf(Λ,M,Q) = T[Rus](Λ) (simply take M = 0 and Q the matrix105

whose entries are all equal to zero except for q1,m = 1). However, for most of the matricesM and106

Q, this upper bound is too large. Indeed, by just slightly restricting the class of such matrices107

(in particular, for Q), it is possible to have a strictly better upper bound than T[Rus](Λ).108

This fact was already observed in [Rus78], where the author tried to �nd the minimal null109

control time in the particular case of conservation laws (M = 0), rightly by looking more closely110

at the properties of the boundary coupling matrix. He could not solve this problem though and111

he left it as an open problem ([Rus78, Remark p. 656]). This was eventually solved few years112

later in [Wec82], where the author gave an explicit expression of the minimal null control time113

in terms of some indices related to Q.114

Concerning systems of balance laws (M 6= 0), �nding the minimal null control time for115

arbitraryM and Q is still an open challenging problem. Recently, there has been a resurgence on116

the characterization of such a time. A �rst result in this direction has been obtained in [CN19]117

with an improvement of the upper bound T[Rus](Λ) for a certain class of boundary coupling118

matrices Q. More precisely, they considered the class B de�ned by119

B =
{
Q ∈ Rp×m

∣∣ (8) is satis�ed for every i ∈ {1, . . . ,min {p,m− 1}}
}
, (7)120

where the condition (8) is:121

the i× i matrix formed from the �rst i rows and the �rst i columns of Q is invertible, (8)122

(it is understood that the set B is empty when m = 1). For this class of boundary coupling123

matrices, the authors then showed that the upper bound T[Rus](Λ) can be reduced to the time124

T[CN](Λ) de�ned by125

T[CN](Λ) =


max

{
max

k∈{1,...,p}
Tm+k(Λ) + Tk(Λ), Tm(Λ)

}
if m ≥ p,

max
k∈{1,...,m}

Tm+k(Λ) + Tk(Λ) if m < p.
(9)126
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This was �rst done for some generic internal coupling matrices or under rather stringent con-127

ditions ([CN19, Theorem 1.1 and 1.5]) but the same authors were then able to remove these128

restrictions in [CN21a, Theorem 1 and 3].129

On the other hand, when the boundary coupling matrix Q is full row rank, the problem
of �nding the minimal null control time, and not only an upper bound, has also been recently
completely solved in [HO21]. More precisely, it is proved in [HO21, Theorem 1.12 and Remark
1.3] that

rankQ = p =⇒ Tinf(Λ,M,Q) = max

{
max

k∈{1,...,p}
Tm+k(Λ) + Tck(Λ), Tm(Λ)

}
.

We see in this case that the minimal null control time has the remarkable property to be in-130

dependent of the internal coupling matrix M . In particular, this is the same time as the one131

found for conservation laws in [Wec82], yet with a more explicit expression. For m > p, this132

generalizes the aforementioned results of [CN19, CN21a] in two ways: �rstly, this is a result for133

arbitrary full row rank boundary coupling matrices (not only for Q ∈ B) and, secondly, this134

obviously establishes that no better time can be obtained (even for Q ∈ B this is not proved in135

[CN19, CN21a]). We mention this because the results of the present paper will share these two136

features.137

For the special case of 2 × 2 systems, the minimal null control time has also been found in138

[CVKB13] when the boundary coupling matrix (which is then a scalar) is not zero and in [HO20]139

when the boundary coupling is reduced to zero. Notably, in the second situation, the minimal140

null control time depends on the behavior of the internal coupling matrix M ([HO20, Theorem141

1.5]).142

Finally, we would like to mention the related works [CHOS21, CN21b, AKM21] concerning143

time-dependent systems and [Li10, LR10, Hu15, CN20a, CN20b] for quasilinear systems.144

As we have discussed, �nding what exactly is the minimal null control time turns out to be a145

di�cult task. Instead, in this article we propose to look for the smallest and largest values that146

the minimal null control time Tinf(Λ,M,Q) can take with respect to the internal coupling matrix147

M . Our main result is an explicit and easy-to-compute formula for both of these times. We will148

also completely characterize all the parameters Λ and Q for which Tinf(Λ,M,Q) is invariant with149

respect to all M ∈ L∞(0, 1)n×n. We will show that our results generalize all the known works150

that have been previously quoted. In the course of the proof we will obtain some new results151

even for conservation laws (M = 0), notably with an explicit feedback law stabilizing the system152

in the minimal time.153

Our proof relies on the notion of equivalent systems, in particular the backstepping method154

with the results of [HDMVK16, HVDMK19], the introduction of a canonical LU -decomposition155

for boundary coupling matrix Q in the same spirit as in [HO21], as well as a compactness-156

uniqueness method adapted to the null controllability inspired from the works [CN21a, DO18].157

1.4 Main result and comments158

As we have seen in the previous section, to explicitly characterize Tinf(Λ,M,Q) for arbitrary M159

and Q is still a challenging open problem. Instead, we propose to �nd the smallest and largest160

values that it can take with respect to the internal coupling matrix M .161

De�nition 1.10. We de�ne

Tinf(Λ, Q) = inf
{
Tinf (Λ,M,Q)

∣∣ M ∈ L∞(0, 1)n×n
}
,

Tsup(Λ, Q) = sup
{
Tinf (Λ,M,Q)

∣∣ M ∈ L∞(0, 1)n×n
}
.
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The main result of the present paper is the following explicit characterization of these two162

quantities:163

Theorem 1.11. Let Λ ∈ C0,1([0, 1])n×n satisfy (2)-(3) and let Q ∈ Rp×m be �xed.164

(i) We have165

Tinf(Λ, Q) = max

{
max

k∈{1,...,ρ}
Tm+rk(Λ) + Tck(Λ), Tm+1(Λ), Tm(Λ)

}
, (10)166

where we recall that the indices (rk, ck) are de�ned in De�nition 1.6.167

(ii) We have168

Tsup(Λ, Q) = max

{
max

k∈{1,...,ρ0}
Tm+k(Λ) + Tck(Λ), Tm+ρ0+1(Λ) + Tm(Λ)

}
, (11)169

where ρ0 is the largest integer i ∈ {1, . . . , p} such that

the i×m matrix formed from the �rst i rows of Q has rank i,

with ρ0 = 0 if the �rst row of Q is equal to zero.170

In the statement of Theorem 1.11, we use the convention that the unde�ned quantities are171

simply not taken into account, which more precisely gives:172

� If ρ = 0, then Tinf(Λ, 0) = max {Tm+1(Λ), Tm(Λ)}.173

� If ρ0 = 0, then Tsup(Λ, Q) = Tm+1(Λ) + Tm(Λ).174

� If ρ0 = p, then Tsup(Λ, Q) = max
{

maxk∈{1,...,p} Tm+k(Λ) + Tck(Λ), Tm(Λ)
}
.175

An equivalent de�nition of ρ0 is (when the �rst row of Q is not equal to zero)176

ρ0 = max {i ∈ {1, . . . , p} | rk = k, ∀k ∈ {1, . . . , i}} . (12)177

We emphasize that ρ0 is de�ned for any Q, it is not a condition like Q ∈ B.178

By investigating the possibilities of equality Tinf(Λ, Q) = Tsup(Λ, Q), we obtain the following179

important consequence of Theorem 1.11:180

Corollary 1.12. Let Λ ∈ C0,1([0, 1])n×n satisfy (2)-(3) and let Q ∈ Rp×m be �xed. The map181

M 7−→ Tinf(Λ,M,Q) is constant on L∞(0, 1)n×n if, and only if, Λ and Q satisfy182

ρ0 = p or

(
0 < ρ0 < p and max

k∈{1,...,ρ0}
Tm+k(Λ) + Tck(Λ) ≥ Tm+ρ0+1(Λ) + Tm(Λ)

)
.

(13)183

Remark 1.13. In the proof of Theorem 1.11, we will show in fact that the in�mum in (10) and184

the supremum in (11) are reached for some special matrices M . More precisely, we will show185

that:186

� The in�mum in (10) is reached for M = 0.187

� The supremum in (11) is reached for M = 0 if the condition (13) holds.188
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� If the condition (13) fails, then the supremum in (11) is reached for the matrix M whose
entries are all equal to zero, except for

mm+i,m(x) =
λm+i(x)− λm(x)

−λm(x)
`i,ρ0+1, ∀i ∈ {ρ0 + 1, . . . , p} ,

where L−1 = (`ij)1≤i,j≤p and L is any matrix L coming from the LCU decomposition of189

Q.190

Example 1.14. For Q1 ∈ R4×3 and Q2 ∈ R4×4 of Example 1.7 we have (recall (5))

Tinf(Λ, Q1) = max {T4(Λ) + T2(Λ), T5(Λ) + T3(Λ), T7(Λ) + T1(Λ), T4(Λ), T3(Λ)}
= max {T4(Λ) + T2(Λ), T5(Λ) + T3(Λ)} ,

Tsup(Λ, Q1) = max {T4(Λ) + T2(Λ), T5(Λ) + T3(Λ), T6(Λ) + T3(Λ)}
= max {T4(Λ) + T2(Λ), T5(Λ) + T3(Λ)}
= Tinf(Λ, Q1),

and

Tinf(Λ, Q2) = max {T5(Λ) + T1(Λ), T6(Λ) + T2(Λ), T8(Λ) + T3(Λ), T5(Λ), T4(Λ)}
= max {T5(Λ) + T1(Λ), T6(Λ) + T2(Λ), T8(Λ) + T3(Λ), T4(Λ)} ,

Tsup(Λ, Q2) = max {T5(Λ) + T1(Λ), T6(Λ) + T2(Λ), T7(Λ) + T4(Λ)} .

Remark 1.15. If during the computations of the indices (rk, ck) we arrive at the last column,191

that is if we have192

ck0 = m, (14)193

for some k0 ∈ {1, . . . , p}, then there is no need to �nd the next indices to be able to compute194

Tinf(Λ, Q) and Tsup(Λ, Q) since we know that the corresponding times will not be taken into195

account (because of (5)). For instance, for the matrix Q1 of Example 1.7 we can stop after the196

very �rst step (6) since it gives c2 = 3, there is no need to go on and compute U2.197

Remark 1.16. Theorem 1.11 and its corollary generalize all the results of the literature that198

we are aware of on the null controllability of systems of the form (1) (except for the special case199

n = 2, which has been completely solved in [CVKB13, HO20]):200

� When the matrix Q is full row rank, that is,201

rankQ = p, (15)202

exact and null controllability are equivalent properties for the system (1) (see e.g. [HO21,203

Remark 1.3]) and it has been shown in [HO21, Theorem 4.1] that Tinf(Λ,M,Q) is inde-204

pendent of M in that situation. Under the rank condition (15), it is clear that ρ0 = p and205

the condition (13) is thus satis�ed. It then follows from Corollary 1.12 that Tinf(Λ,M,Q)206

is independent of M . Therefore, our result encompasses the one of [HO21].207

� When m ≤ p and Q ∈ B (de�ned in (7)), it has been established in [CN21a, Theorem 1]
that

Tsup(Λ, Q) ≤ T[CN](Λ),
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where we recall that T[CN](Λ) is given by (9). In that case, we see that rk = ck = k for
every k ∈ {1, . . . ,m− 1} and either ρ0 = m− 1 or ρ0 = m. In all cases, we can check that

max

{
max

k∈{1,...,ρ0}
Tm+k(Λ) + Tck(Λ), Tm+ρ0+1(Λ) + Tm(Λ)

}
= T[CN](Λ).

Therefore, item (ii) of Theorem 1.11 generalizes [CN21a, Theorem 1], which corresponded208

only to the inequality �≤� and only valid for matrices Q ∈ B, but excluded for instance209

the matrices presented in Example 1.7. We mention that, since the speeds are ordered, we210

cannot simply renumber the unknowns so that, after this transformation, the new matrix211

Q belongs to B.212

� In fact, when ρ0 = m in the previous point, the minimal null control time does not depend
on M . More generally, if the condition (14) holds for some k0 ≤ ρ0, then the condition
(13) is satis�ed (because of (5)) and it follows from Corollary 1.12 that

Tinf(Λ,M,Q) = max
k∈{1,...,k0}

Tm+k(Λ) + Tck(Λ).

For instance, this condition is satis�ed when the matrix Q has the block decomposition

Q =

(
Q′

Q′′

)
, rankQ′ = m,

where Q′ ∈ Rm×m and Q′′ ∈ R(p−m)×m.213

1.5 Equivalent systems214

The proof of our main result will �rst consist in transforming our initial system (1) into �equiva-215

lent� systems (from a controllability point of view) which have a simpler coupling structure. Let216

us make this notion of equivalent systems precise here. We will introduce it for a slightly broader217

class of systems than (1) because of the nature of the transformations that we will use in the218

sequel, this will be clear from Section 3. All the systems of this paper will have the following219

form:220 
∂y

∂t
(t, x) + Λ(x)

∂y

∂x
(t, x) = M(x)y(t, x) +G(x)y−(t, 0),

y−(t, 1) = u(t), y+(t, 0) = Qy−(t, 0),

y(0, x) = y0(x),

(16)221

where M ∈ L∞(0, 1)n×n and Q ∈ Rp×m as before, and G ∈ L∞(0, 1)n×m. Therefore, (16) is222

similar to (1) but it has the extra term with G. This system is well posed and the notions of223

controllability are similarly de�ned (see Section 2 below).224

In what follows, we will refer to a system of the general form (16) as

(Λ,M,Q,G).

When a system does not contain a parameter (M or G) we will use the notation − rather than225

writing 0, for instance we will use (Λ,M,Q,−) when the system does not contain G. The minimal226

null control time of the system (Λ,M,Q,G) will be denoted by Tinf(Λ,M,Q,G) (for consistency,227

we will keep using the notation Tinf(Λ,M,Q) rather than Tinf(Λ,M,Q,−)).228

Let us now give the precise de�nition of what we mean by equivalent systems in this work:229
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De�nition 1.17. We say that two systems (Λ,M1, Q1, G1) and (Λ,M2, Q2, G2) are equivalent,
and we write

(Λ,M1, Q1, G1) ∼ (Λ,M2, Q2, G2),

if there exists an invertible bounded linear transformation

L : L2(0, 1)n −→ L2(0, 1)n,

such that, for every T > 0, the induced map L̃ : C0([0, T ];L2(0, 1)n) −→ C0([0, T ];L2(0, 1)n)
de�ned by (L̃y)(t) = L(y(t)) for every t ∈ [0, T ] satis�es

L̃(S1) = S2,

where Si (i = 1, 2) denotes the space of all the solutions y to the system (Λ,Mi, Qi, Gi) in (0, T ).230

It is not di�cult to check that ∼ is an equivalence relation and that two equivalent systems231

share the same controllability properties:232

Proposition 1.18. Let (Λ,M1, Q1, G1) ∼ (Λ,M2, Q2, G2) be two equivalent systems. Then, for233

every T > 0, the system (Λ,M1, Q1, G1) is null controllable in time T if, and only if, the system234

(Λ,M2, Q2, G2) is null controllable in time T .235

In particular, two equivalent systems have the same minimal null control time. However, the236

converse is not true in general, an example has been detailed in Appendix A.237

Remark 1.19. Let us emphasize that the notion of equivalent systems that we introduced here238

does not care how the control from one system is obtained from the control of the other system.239

It is di�erent from the notion of (feedback) equivalence introduced in the seminal work [Bru70]240

in �nite dimension, which was designed to transfer the stabilization properties of one system to241

another and thus required a more speci�c link between the two systems.242

1.6 Outline of the proof243

Since the proof of our main result involves many transformations, let us give a quick overview of244

the main steps before going into detail:245

1) First of all, we show in Section 3 that

(Λ,M,Q,−) ∼ (Λ,−, Q,G),

for some G. It is nothing but a fundamental result of [HVDMK19, HDMVK16] that we246

rephrase here with the notion of equivalent systems. Consequently, we only have to focus247

on systems of the form (Λ,−, Q,G) in the sequel, which have the advantage of having a248

simpler coupling structure.249

2) In Section 4, we show that the boundary coupling matrix Q can always be assumed in
canonical form (De�nition 1.3):

(Λ,−, Q,G) ∼ (Λ,−, Q0, G̃),

for some G̃. This is an important step that greatly simpli�es the coupling structure of the250

system.251
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3) Notably, this allows us to characterize in Section 5 the smallest value of the minimal null
control time. More precisely, we �rst establish that

inf
{
Tinf(Λ,−, Q0, G̃)

∣∣∣ G̃ ∈ L∞(0, 1)n×m
}

is equal to the quantity on the right-hand side of the equality (10). This is done by using252

a similar argument to the one in [HO20]. We then show how to deduce the corresponding253

result for the initial system (Λ,M,Q,−), thus proving the �rst part of our main result.254

4) In view of the proof of the second part of our main result, we �rst show in Section 6 how
to use the canonical form of Q0 to prove that

(Λ,−, Q0, G̃) ∼

(
Λ,−, Q0,

(
G̃−−
Ĝ+−

))
,

for some Ĝ+− which has the following structure:255

ĝm+i,ck = 0, ∀k ∈ {1, . . . , ρ} , ∀i ≥ rk. (17)256

5) In Section 7 we then prove that the coupling term G̃−− has no in�uence on the minimal
null control time:

Tinf

(
Λ,−, Q0,

(
G̃−−
Ĝ+−

))
= Tinf

(
Λ,−, Q0,

(
0

Ĝ+−

))
.

Unlike all the other steps, the proof is not based on the construction of a suitable trans-257

formation, it is based on a general compactness-uniqueness method adapted to the null258

controllability property and inspired from the previous works [CN21a, DO18].259

6) Finally, in Section 8, we characterize the largest value of the minimal null control time.
More precisely, we �rst show that

sup

{
Tinf

(
Λ,−, Q0,

(
0

Ĝ+−

)) ∣∣∣∣ Ĝ+− satis�es (17)

}
is equal to the quantity on the right-hand side of the equality (11). We then show how260

to deduce the corresponding result for the initial system (Λ,M,Q,−), thus proving the261

second part of our main result.262

Remark 1.20. All the steps described above are constructive, except for the one invoking a263

compactness-uniqueness argument. It would be interesting to be able to replace this step by a264

constructive approach (if possible).265

2 Notations and solution along the characteristics266

Before proceeding to the proof of our main result, we introduce in this section some notations267

and recall some results concerning the well-posedness of the non standard systems of the form268

(16).269
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2.1 The characteristics270

We start with the characteristic curves associated with the system (16).271

� First of all, throughout this paper it is convenient to extend λ1, . . . , λn to functions of R272

(still denoted by the same) such that λ1, . . . , λn ∈ C0,1(R) and273

λ1(x) < · · · < λm(x) ≤ −ε < 0 < ε ≤ λm+1(x) < · · · < λm+p(x), ∀x ∈ R, (18)274

for some ε > 0 small enough. Since all the results of the present paper depend only on the275

values of λ1, . . . , λn in [0, 1], they do not depend on such an extension.276

In what follows, i ∈ {1, . . . , n} is �xed.277

� Let χi be the �ow associated with λi, i.e. for every (t, x) ∈ R × R, the function s 7−→278

χi(s; t, x) is the solution to the ordinary di�erential equation (ODE)279 
∂χi
∂s

(s; t, x) = λi(χi(s; t, x)), ∀s ∈ R,

χi(t; t, x) = x.
(19)280

The existence and uniqueness of a (global) solution to the ODE (19) follows from the281

(global) Cauchy-Lipschitz theorem (see e.g. [Har02, Theorem II.1.1]). The uniqueness also282

yields the important group property283

χi (σ; s, χi(s; t, x)) = χi(σ; t, x), ∀σ, s ∈ R. (20)284

� Let us now introduce the entry and exit times sin
i (t, x), sout

i (t, x) ∈ R of the �ow χi(·; t, x)
inside the domain [0, 1], i.e. the respective unique solutions to{

χi(s
in
i (t, x); t, x) = 1, χi(s

out
i (t, x); t, x) = 0, if i ∈ {1, . . . ,m} ,

χi(s
in
i (t, x); t, x) = 0, χi(s

out
i (t, x); t, x) = 1, if i ∈ {m+ 1, . . . , n} .

Their existence and uniqueness are guaranteed by the condition (18).285

� Since λi does not depend on time, we have an explicit formula for the inverse function
θ 7−→ χ−1

i (θ; t, x). Indeed, it solves
∂(χ−1

i )

∂θ
(θ; t, x) =

1
∂χi
∂s

(
χ−1
i (θ; t, x); t, x

) =
1

λi(θ)
, ∀θ ∈ R,

χ−1
i (x; t, x) = t,

which gives

χ−1
i (θ; t, x) = t+

∫ θ

x

1

λi(ξ)
dξ.

It follows that286 
sin
i (t, x) = t−

∫ 1

x

1

−λi(ξ)
dξ, sout

i (t, x) = t+

∫ x

0

1

−λi(ξ)
dξ, if i ∈ {1, . . . ,m} ,

sin
i (t, x) = t−

∫ x

0

1

λi(ξ)
dξ, sout

i (t, x) = t+

∫ 1

x

1

λi(ξ)
dξ, if i ∈ {m+ 1, . . . , n} .

(21)287
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� We have the following monotonic properties:288 
∂sin
i

∂t
> 0,

∂sin
i

∂x
> 0,

∂sout
i

∂t
> 0,

∂sout
i

∂x
> 0, if i ∈ {1, . . . ,m} ,

∂sin
i

∂t
> 0,

∂sin
i

∂x
< 0,

∂sout
i

∂t
> 0,

∂sout
i

∂x
< 0, if i ∈ {m+ 1, . . . , n} ,

(22)289

and the following inverse formula, valid for every s, t ∈ R:290 {
s < sout

i (t, 1) ⇐⇒ sin
i (s, 0) < t, if i ∈ {1, . . . ,m} ,

s < sout
i (t, 0) ⇐⇒ sin

i (s, 1) < t, if i ∈ {m+ 1, . . . , n} .
(23)291

� Note as well that (recall (4))292

Ti(Λ) =

{
sout
i (0, 1) if i ∈ {1, . . . ,m} ,
sout
i (0, 0) if i ∈ {m+ 1, . . . , n} .

(24)293

� Finally, we introduce the non negative and increasing function φi ∈ C1,1(R) de�ned by294

φi(x) =


∫ x

0

1

−λi(ξ)
dξ if i ∈ {1, . . . ,m} ,∫ x

0

1

λi(ξ)
dξ if i ∈ {m+ 1, . . . , n} .

(25)295

Note that it is a bijection from [0, 1] to [0, Ti(Λ)].296

2.2 Solution along the characteristics297

Let us now introduce the notion of solution for systems of the form (16). To this end, we have
to restrict our discussion to the domain where the system evolves, i.e. on (0, T ) × (0, 1), T > 0
being �xed. For every (t, x) ∈ (0, T )× (0, 1), we have

(s, χi(s; t, x)) ∈ (0, t)× (0, 1), ∀s ∈ (s̄in
i (t, x), t),

where we introduced
s̄in
i (t, x) = max

{
0, sin

i (t, x)
}
< t.

We now proceed to formal computations in order to introduce the notion of solution for298

non smooth functions y. Writing the i-th equation of the system (16) along the characteristic299

χi(s; t, x) for s ∈ [s̄in
i (t, x), t], and using the chain rules yields the ODE300 

d

ds
yi (s, χi(s; t, x)) =

n∑
j=1

mij (χi(s; t, x)) yj (s, χi(s; t, x)) +

m∑
j=1

gij (χi(s; t, x)) yj (s, 0) ,

yi
(
s̄in
i (t, x), χi(s̄

in
i (t, x); t, x)

)
= bi

(
y0
i , ui, y−(·, 0)

)
(t, x),

(26)301

where the initial condition bi(y
0
i , ui, y−(·, 0))(t, x) is given by the appropriate boundary or initial302

conditions in (16):303

� for i ∈ {1, . . . ,m},304

bi
(
y0
i , ui, y−(·, 0)

)
(t, x) =

{
ui(s

in
i (t, x)) if sin

i (t, x) > 0,

y0
i (χi(0; t, x)) if sin

i (t, x) < 0,
(27)305
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� for i ∈ {m+ 1, . . . , n},306

bi
(
y0
i , ui, y−(·, 0)

)
(t, x) =


m∑
j=1

qi−m,jyj(s
in
i (t, x), 0) if sin

i (t, x) > 0,

y0
i (χi(0; t, x)) if sin

i (t, x) < 0.

(28)307

Integrating the ODE (26) over s ∈ [s̄in
i (t, x), t], we obtain the following system of integral equa-

tions:

yi(t, x) = bi
(
y0
i , ui, y−(·, 0)

)
(t, x) +

n∑
j=1

∫ t

s̄ini (t,x)

mij(χi(s; t, x))yj(s, χi(s; t, x)) ds

+

m∑
j=1

∫ t

s̄ini (t,x)

gij (χi(s; t, x)) yj (s, 0) ds. (29)

This leads to the following notion of solution called �solution along the characteristics�:308

De�nition 2.1. Let T > 0, y0 ∈ L2(0, 1)n and u ∈ L2(0, T )m be �xed. We say that a function
y : (0, T )× (0, 1) −→ Rn is a solution to the system (16) in (0, T ) if

y ∈ C0([0, T ];L2(0, 1)n) ∩ C0([0, 1];L2(0, T )n),

and if the integral equation (29) is satis�ed for every i ∈ {1, . . . , n} and for a.e. (t, x) ∈ (0, T )×309

(0, 1).310

Using the Banach �xed-point theorem and suitable estimates, we can establish that the system311

(16) is globally well posed in this sense:312

Theorem 2.2. For every T > 0, y0 ∈ L2(0, 1)n and u ∈ L2(0, T )m, there exists a unique313

solution y ∈ C0([0, T ];L2(0, 1)n) ∩ C0([0, 1];L2(0, T )n) to the system (16) in (0, T ). Moreover,314

we have315

‖y‖C0([0,T ];L2(0,1)n) + ‖y‖C0([0,1];L2(0,T )n) ≤ C
(∥∥y0

∥∥
L2(0,1)n

+ ‖u‖L2(0,T )m

)
, (30)316

for some C > 0 that does not depend on y0 nor u.317

For a proof of this result, we refer for instance to [CHOS21, Appendix A.2] (see also [CN19,318

Lemma 3.2] in the L∞ setting).319

3 Backstepping transformation320

In this section, we use a Volterra transformation of the second kind to transform our initial321

system (1) into a system with a simpler coupling structure, this is the so-called backstepping322

method for partial di�erential equations. The content of this section is quite standard by now323

(yet, formulated di�erently here), see for instance [HVDMK19, Section 2.2] (or [CN19, Section324

2]).325
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3.1 Removal of the diagonal terms326

First of all, we perform a simple preliminary transformation in order to remove the diagonal terms
in M . This is only a technical step, which is nevertheless necessary in view of the existence of
the transformation that we will use in the next section, see Remark 3.3 below. For convenience,
we introduce the set

M =
{
M ∈ L∞(0, 1)n×n

∣∣ mii = 0, ∀i ∈ {1, . . . , n}
}
.

Proposition 3.1. There exists a map Ψ : L∞(0, 1)n×n −→ M such that, for every M ∈
L∞(0, 1)n×n, we have

(Λ,M,Q,−) ∼ (Λ,Ψ(M), Q,−).

Proof. � We are going to use the spatial transformation

ỹ(t, x) = E(x)y(t, x),

where E = diag(e1, . . . , en) ∈W 1,∞(0, 1)n×n is the diagonal matrix whose entries are

ei(x) = exp

(
−
∫ x

0

mii(ξ)

λi(ξ)
dξ

)
.

Clearly, this transformation is invertible on L2(0, 1)n.327

� Assume now that y is a solution to the system (Λ,M,Q,−) for some y0 and u and let us328

show that ỹ is then a solution to the system (Λ,Ψ(M), Q,−) for some ỹ0 and ũ, where329

Ψ(M) will be determined below. We do it formally but this can be rigorously justi�ed.330

� The initial data is obviously ỹ0(x) = E(x)y0(x).331

� The boundary condition at x = 0 is clearly satis�ed since ỹ(t, 0) = y(t, 0).332

� Looking at the boundary condition at x = 1, the control ũ is

ũ(t) = ỹ−(t, 1) = E−−(1)y−(t, 1).

� Using the equation satis�ed by y and the fact that Λ and E commute, a computation
shows that

∂ỹ

∂t
(t, x) + Λ(x)

∂ỹ

∂x
(t, x) =

(
E(x)M(x) + Λ(x)

∂E

∂x
(x)

)
y(t, x).

Consequently, ỹ satis�es the desired equation if we take

(Ψ(M))(x) =

(
E(x)M(x) + Λ(x)

∂E

∂x
(x)

)
E(x)−1.

Now that Ψ is clearly identi�ed, similar computations show that, conversely, if ỹ is a333

solution to the system (Λ,Ψ(M), Q,−) for some ỹ0 and ũ, then y is a solution to the334

system (Λ,M,Q,−) for some y0 and u.335

� Finally, it is clear that Ψ(M) ∈M by construction.336

337
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3.2 Backstepping transformation338

We now recall an important result from [HVDMK19] and [HDMVK16] that we present here
using the notion of equivalent system. To this end, we introduce the set

F =
{
A ∈ L∞(0, 1)n×n

∣∣ A−+ = A+− = 0
}
.

Theorem 3.2. For every A ∈ F , there exists a map ΓA : M −→ L∞(0, 1)n×m such that, for
every M ∈M, we have

(Λ,M,Q,−) ∼ (Λ,−, Q,ΓA(M)).

Proof. � We are going to use the spatial transformation

ỹ(t, x) = y(t, x)−
∫ x

0

K(x, ξ)y(t, ξ) dξ,

where K ∈ L∞(T )n×n and T is the triangle

T = {(x, ξ) ∈ (0, 1)× (0, 1) | x > ξ} .

This transformation is always invertible on L2(0, 1)n since it is a Volterra transformation339

of the second kind (see e.g. [Hoc73, Theorem 2.5]).340

� Assume now that y is a solution to the system (Λ,M,Q,−) for some y0 and u and let us341

show that ỹ is then a solution to the system (Λ,−, Q,ΓA(M)) for some ỹ0 and ũ, where342

ΓA(M) will be determined below. We do it formally but this can be rigorously justi�ed.343

� The initial data is obviously ỹ0(x) = y0(x)−
∫ x

0
K(x, ξ)y0(ξ) dξ.344

� The boundary condition at x = 0 is clearly satis�ed since ỹ(t, 0) = y(t, 0).345

� Looking at the boundary condition at x = 1, the control ũ is346

ũ(t) = ỹ−(t, 1) = y−(t, 1)−
∫ 1

0

H(ξ)y(t, ξ) dξ, (31)347

where H(ξ) =
(
K−−(1, ξ) K−+(1, ξ)

)
.348

� Using the equation satis�ed by y, integrating by parts, and using the boundary con-
dition satis�ed by y at x = 0, we have

∂ỹ

∂t
(t, x) + Λ(x)

∂ỹ

∂x
(t, x) =

−
∫ x

0

(
Λ(x)

∂K

∂x
(x, ξ) +

∂K

∂ξ
(x, ξ)Λ(ξ) +K(x, ξ)

(
∂Λ

∂ξ
(ξ) +M(ξ)

))
y(t, ξ) dξ

+ (M(t, x) +K(x, x)Λ(x)− Λ(x)K(x, x)) y(t, x)

−K(x, 0)Λ(0)

(
IdRm×m

Q

)
y−(t, 0).

Consequently, ỹ satis�es the desired equation if we take349

(ΓA(M))(x) = −K(x, 0)Λ(0)

(
IdRm×m

Q

)
, (32)350
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and provided that the kernel K satis�es the so-called kernel equations:351 Λ(x)
∂K

∂x
(x, ξ) +

∂K

∂ξ
(x, ξ)Λ(ξ) +K(x, ξ)

(
∂Λ

∂ξ
(ξ) +M(ξ)

)
= 0,

Λ(x)K(x, x)−K(x, x)Λ(x) = M(x).

(33)352

The existence of a solution to these equations will be discussed next.353

Now that ΓA is clearly identi�ed, similar computations show that, conversely, if ỹ is a354

solution to the system (Λ,−, Q,ΓA(M)) for some ỹ0 and ũ, then y is a solution to the355

system (Λ,M,Q,−) for some y0 and u.356

357

Remark 3.3. If we write the second condition of (33) component-wise:358

(λi(x)− λj(x)) kij(x, x) = mij(x), (34)359

then we see that for i = j we shall necessarily have mii = 0. Therefore, it is necessary that360

M ∈ M (otherwise the equation (34), and thus the kernel equations (33), have no solution).361

This explains why we had to perform a preliminary transformation in Section 3.1 to reduce the362

general case to this one.363

From [HDMVK16, Section VI], we know that the kernel equations (33) have a solution (see364

also [HVDMK19, Remark A.2] to see how to deal with space-varying speeds). More precisely,365

we can extract the following result:366

Theorem 3.4. For every A ∈ F , for every M ∈ M, there exists a unique solution K ∈367

L∞(T )n×n to the kernel equations (33) with:368

� For every i, j ∈ {1, . . . ,m}:369

kij(1, ξ) = aij(ξ), if i > j,

kij(x, 0) = aij(x), if i ≤ j.
(35)370

� For every i, j ∈ {m+ 1, . . . , n}:371

kij(x, 0) = aij(x), if i ≥ j,
kij(1, ξ) = aij(ξ), if i < j.

(36)372

Moreover, we have the following additional regularities:

K ∈ C0((0, 1];L2(0, x)n×n), K(x, ·) ∈ L∞(0, x)n×n, ∀x ∈ (0, 1].

K ∈ C0([0, 1);L2(ξ, 1)n×n), K(·, ξ) ∈ L∞(ξ, 1)n×n, ∀ξ ∈ [0, 1).

As before, the notion of solution is to be understood in the sense of solution along the charac-
teristics. By K ∈ C0((0, 1];L2(0, x)n×n) we mean that ‖K(xn, ·)−K(x, ·)‖L2(0,min{xn,x})n×n →
0 as xn → x, for every x ∈ (0, 1], with a similar de�nition for K ∈ C0([0, 1);L2(ξ, 1)n×n). Despite
not mentioned in the literature, these important regularities can be deduced from the system of
integral equations satis�ed by the kernel. In particular, it shows that H and ΓA(M) de�ned in
(31) and (32) have the following regularities:

H ∈ L∞(0, 1)m×n, ΓA(M) ∈ L∞(0, 1)n×m.
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Remark 3.5. The set F corresponds to the set of boundary conditions that are free to choose373

for the kernel equations. The freedom for the boundary condition (35) was already used in the374

works [HDM15, HDMVK16, HVDMK19] in order to give to (ΓA(M))−− a structure of strictly375

lower triangular matrix. However, in the present paper this will not be used and it is the other376

boundary condition (36) that will turn out to be essential (see Section 6 below).377

4 Reduction of the boundary coupling matrix378

In this section we perform some transformations to show that we can always assume that the379

boundary coupling matrix Q is in canonical form. More precisely, we prove the following result:380

Proposition 4.1. For every invertible upper triangular matrix U ∈ Rm×m and every invertible
lower triangular matrix L ∈ Rp×p, there exists a map Θ : L∞(0, 1)n×m −→ L∞(0, 1)n×m such
that, for every G ∈ L∞(0, 1)n×m, we have

(Λ,−, Q,G) ∼ (Λ,−, LQU,Θ(G)) .

Proof. � For any i, j ∈ {1, . . . , n}, we denote by ζij the solution to the ODE
d

ds
ζij(s) =

λj(ζij(s))

λi(s)
, ∀s ∈ R,

ζij(0) = 0.

� We �rst prove that, for every invertible upper triangular matrix U ∈ Rm×m, there exists
a map Θ−− : L∞(0, 1)m×m −→ L∞(0, 1)m×m such that, for every G ∈ L∞(0, 1)n×m, we
have

(Λ,−, Q,G) ∼
(

Λ,−, QU,
(

Θ−−(G−−)
G+−U

))
.

To this end, we are going to use the spatial transformation381

ỹi(t, x) =


m∑
k=i

uikyk(t, ζik(x)) for i ∈ {1, . . . ,m} ,

yi(t, x) for i ∈ {m+ 1, . . . , n} ,
(37)382

where U−1 = (uik)1≤i,k≤m. Let us �rst show that this transformation is well de�ned and383

invertible. We can check that, for i ≤ k ≤ m, we have (recall (25))384

ζik(x) = φ−1
k (φi(x)). (38)385

In particular, for such indices, ζik is a C1-di�eomorphism from (0, 1) to a subset of (0, 1)
and thus the transformation (37) is well de�ned on L2(0, 1)n. Besides, using the property
ζkj(ζik(x)) = ζij(x) for i ≤ k ≤ j, we can check that its inverse is given by

yk(t, x) =


m∑
j=k

ukj ỹj(t, ζkj(x)) for k ∈ {1, . . . ,m} ,

ỹk(t, x) for k ∈ {m+ 1, . . . , n} .
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� Assume now that y is a solution to the system (Λ,−, Q,G) for some y0 and u and let us

show that ỹ is then a solution to the system (Λ,−, QU, G̃) for some ỹ0 and ũ, where

G̃ =

(
Θ−−(G−−)
G+−U

)
,

and where Θ−−(G−−) will be determined below. Once again, we do it formally but this386

can be rigorously justi�ed.387

� The initial data is obviously

ỹ0
i (x) =


m∑
k=i

uiky0
k(ζik(x)) for i ∈ {1, . . . ,m} ,

y0
i (x) for i ∈ {m+ 1, . . . , n} .

� The boundary condition at x = 0 is clearly satis�ed since ỹ+ = y+ and ỹ−(t, 0) =388

U−1y−(t, 0).389

� Looking at the boundary condition at x = 1, the control ũ is

ũi(t) = ỹi(t, 1) =

m∑
k=i

uikyk(t, ζik(1)), ∀i ∈ {1, . . . ,m} .

� It is clear that ỹ+ = y+ satis�es the desired equation. Let us now �x i ∈ {1, . . . ,m}.
A computation shows that

∂ỹi
∂t

(t, x) + λi(x)
∂ỹi
∂x

(t, x)−
m∑
j=1

g̃ij(x)ỹj(t, 0) =

m∑
k=i

uik
(
−λk(ζik(x)) + λi(x)

∂ζik
∂x

(x)

)
∂y

∂x
(t, ζik(x))

+

m∑
`=1

 m∑
k=i

uikgk`(ζik(x))−
∑̀
j=1

g̃ij(x)uj`

 y`(t, 0).

Consequently, ỹi satis�es the desired equation, provided that

m∑
k=i

uikgk`(ζik(x))−
∑̀
j=1

g̃ij(x)uj` = 0, ∀` ∈ {1, . . . ,m} .

This uniquely determines g̃ij for i, j ∈ {1, . . . ,m} (and thus Θ−−):

g̃ij(x) =

j∑
`=1

(
m∑
k=i

uikgk`(ζik(x))

)
u`j .

Now that Θ−− is clearly identi�ed, similar computations show that, conversely, if ỹ is a390

solution to the system (Λ,−, QU, G̃) for some ỹ0 and ũ, then y is a solution to the system391

(Λ,−, Q,G) for some y0 and u.392
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� Similarly, we can prove that, for every invertible lower triangular matrix L ∈ Rp×p, there
exists a map Θ+− : L∞(0, 1)p×m −→ L∞(0, 1)p×m such that, for every G ∈ L∞(0, 1)n×m,
we have

(Λ,−, Q,G) ∼
(

Λ,−, LQ,
(

G−−
Θ+−(G+−)

))
.

This can be done using the spatial transformation

ỹi(t, x) =


yi(t, x) for i ∈ {1, . . . ,m} ,

i∑
k=m+1

`i−m,k−myk (t, ζik(x)) for i ∈ {m+ 1, . . . , n} ,

((38) is still valid for the indices considered) where L = (`ij)1≤i,j≤p and taking

g̃ij(x) =

i∑
k=m+1

`i−m,k−mgkj(ζik(x)),

for i ∈ {m+ 1, . . . , n} and j ∈ {1, . . . ,m}, where G̃ denotes the matrix

G̃ =

(
G−−

Θ+−(G+−)

)
.

393

5 Smallest value of the minimal null control time394

Thanks to the result of previous section it is from now on su�cient to consider boundary coupling395

matrices which are in canonical form. This is a big step forward, which already allows us to396

characterize the smallest value of the minimal null control time.397

5.1 Characterization for systems (Λ,−, Q,G)398

We start with systems of the form (Λ,−, Q,G), we will discuss in the next section how to deduce399

the corresponding result for the initial system (Λ,M,Q,−).400

Theorem 5.1. Let Q0 ∈ Rp×m be in canonical form, G ∈ L∞(0, 1)n×m and T > 0 be �xed.401

(i) If the system (Λ,−, Q0, G) is null controllable in time T , then necessarily402

T ≥ max

{
max

k∈{1,...,ρ}
Tm+rk(Λ) + Tck(Λ), Tm+1(Λ), Tm(Λ)

}
. (39)403

(ii) If T satis�es the condition (39), then the system (Λ,−, Q0,−) (i.e. with G = 0) is null404

controllable in time T with control u = 0.405

As for Theorem 1.11, we use the convention that the unde�ned quantities are simply not taken406

into account, which means that the condition (39) is reduced to T ≥ max {Tm+1(Λ), Tm(Λ)}407

when ρ = 0 (i.e. when Q0 = 0).408

This result shows in particular that the smallest value that Tinf(Λ,−, Q0, G) can take with409

respect to G ∈ L∞(0, 1)n×m is equal to the quantity on the right-hand side of the inequality in410

(39). This can be extended to arbitrary boundary coupling matrices thanks to Proposition 4.1.411
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Proof of Theorem 5.1. We use the ideas of the proof of [HO20, Lemma 3.3].412

1) We �rst show that it is necessary that

T ≥ max {Tm+1(Λ), Tm(Λ)} .

We point out that for this �rst step there is no need to assume that Q0 is in canonical413

form. Assume that T < max {Tm+1(Λ), Tm(Λ)}. Then, there exists i ∈ {1, . . . , n} such414

that T < Ti(Λ). Let ωi be the open subset de�ned by415

ωi =
{
x ∈ (0, 1)

∣∣ sin
i (T, x) < 0

}
. (40)416

Then, we have (see (24), (23) and (22))

T < Ti(Λ) ⇐⇒ ωi 6= ∅.

For x ∈ ωi, the null controllability condition yi(T, x) = 0 is equivalent to (see (29))

0 = y0
i (χi(0;T, x)) +

∫ T

0

m∑
j=1

gij (χi(s;T, x)) yj(s, 0) ds.

Since y0
i ∈ L2(0, 1) is arbitrary and x ∈ ωi 7−→ χi(0;T, x) is a C1-di�eomorphism (its

inverse is given by ξ 7−→ χi(T ; 0, ξ) thanks to (20)), this shows that the bounded linear
operator K : L2(0, T )m −→ L2(ωi) de�ned by

(Kh)(x) = −
∫ T

0

m∑
j=1

gij (χi(s;T, x))hj(s) ds,

is surjective. This is impossible since its range is clearly a subset of L∞(ωi), which is a417

proper subset of L2(ωi).418

2) Suppose now that ρ 6= 0 (otherwise we are done) and that T is such that

max {Tm+1(Λ), Tm(Λ)} ≤ T < Tm+rk0
(Λ) + Tck0 (Λ),

where k0 ∈ {1, . . . , ρ} is any index such that

Tm+rk0
(Λ) + Tck0 (Λ) = max

k∈{1,...,ρ}
Tm+rk(Λ) + Tck(Λ).

We have seen in the previous step that the condition T ≥ max {Tm+1(Λ), Tm(Λ)} means
that all the subsets ωi de�ned in (40) are empty. In particular (recall also (22)),

sin
m+rk0

(T, x) > 0, ∀x ∈ (0, 1).

Therefore, the null controllability condition ym+rk0
(T, x) = 0 is equivalent to (see (29) and419

recall that Q0 is in canonical form)420

0 = yck0 (sin
m+rk0

(T, x), 0) +

∫ T

sinm+rk0
(T,x)

m∑
j=1

gm+rk0 ,j

(
χm+rk0

(s;T, x)
)
yj(s, 0) ds. (41)421

Let us now introduce the open subset ω̃ de�ned by

ω̃ =
{
x ∈ (0, 1)

∣∣∣ sin
ck0

(sin
m+rk0

(T, x), 0) < 0
}
.
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Using that Tm+rk0
(Λ) + Tck0 (Λ) = sout

m+rk0
(sout
ck0

(0, 1), 0) (see (24) and (21)), we can show
by a similar reasoning as in the �rst step that

T < Tm+rk0
(Λ) + Tck0 (Λ) ⇐⇒ ω̃ 6= ∅.

For x ∈ ω̃, the identity (41) becomes (see (29))

0 = y0
ck0

(χck0 (0; sin
m+rk0

(T, x), 0))

+

m∑
j=1

∫ sinm+rk0
(T,x)

s̄inck0
(sinm+rk0

(T,x),0)

gck0 j

(
χck0 (s; sin

m+rk0
(T, x), 0)

)
yj (s, 0) ds

+

∫ T

sinm+rk0
(T,x)

m∑
j=1

gm+rk0 ,j

(
χm+rk0

(s;T, x)
)
yj(s, 0) ds.

This leads to a contradiction by using the same argument as at the end of the �rst step.422

3) Finally, it is not di�cult to see from (29) that, when G = 0, the control u = 0 brings the423

solution of the system (Λ,−, Q0) to zero in any time T satisfying (39).424

425

5.2 Proof of the �rst part of Theorem 1.11426

Let us now show how the previous results yield the desired characterization of the smallest427

minimal null control time for the initial system (Λ,M,Q,−).428

Proof of item (i) of Theorem 1.11. � Let M ∈ L∞(0, 1)n×n and Q ∈ Rp×m be �xed. Let429

T > 0 be such that the system (Λ,M,Q,−) is null controllable in time T .430

� By Proposition 3.1 and Theorem 3.2, there exists G ∈ L∞(0, 1)n×m such that the431

system (Λ,−, Q,G) is null controllable in time T .432

� From Proposition 4.1, there exists G̃ ∈ L∞(0, 1)n×m such that the system (Λ,−, Q0, G̃)433

is null controllable in time T , where Q0 is the canonical form of Q.434

� By item (i) of Theorem 5.1 we obtain that T has to satisfy the condition (39).435

This establishes the following lower bound:

Tinf(Λ,M,Q) ≥ max

{
max

k∈{1,...,ρ}
Tm+rk(Λ) + Tck(Λ), Tm+1(Λ), Tm(Λ)

}
,

valid for every M ∈ L∞(0, 1)n×n.436

� This lower bound is reached for M = 0, this follows from Theorem 5.1 and Proposition 4.1437

(using that Θ(0) = 0).438

439

22



5.3 Comments on the case M = 0440

Let us conclude this section with some interesting remarks on the case M = 0. For M = 0, we441

can combine Theorem 5.1 with Proposition 4.1 (with G = 0, in which case their proofs are greatly442

simpli�ed) to obtain a completely di�erent proof of [Wec82, Theorems 1 and 2]. Our proof has443

several advantages. Firstly, we directly obtain a more explicit expression of the minimal null444

control time (see e.g. [HO21, Remark 1.15]). On the other hand, we do not need to use the445

so-called duality and we are able to obtain an explicit control. More precisely, we can extract446

the following result from item (ii) of Theorem 5.1 and the proof of Proposition 4.1:447

Proposition 5.2. Let Q ∈ Rp×m and T satisfy (39). Then, the system (Λ,−, Q,−) is �nite-time448

stabilizable with settling time T , with the following explicit feedback law:449

ui(t) = −
m∑

k=i+1

uikyk(t, ζik(1)), i ∈ {1, . . . ,m} , (42)450

where U−1 = (uik)1≤i,k≤m and U is any matrix U coming from the LCU decomposition of Q.451

We recall that the previous statement simply means that, if we replace the i-th component452

of u by the right-hand side of the formula (42) in the system (1) (with M = 0), then the453

corresponding solution satis�es y(T, ·) = 0 for every y0 ∈ L2(0, 1)n. We also recall that systems454

with such boundary conditions are well posed (see e.g. [CN19, Section 3] in the L∞ setting).455

A similar result was obtained in the proof of [CN19, Proposition 1.6] when Q ∈ B (de�ned456

in (7)), our result generalizes it to arbitrary Q ∈ Rp×m. Let us illustrate with an example that457

the feedback law that we have obtained (42) is also the same as in this reference when Q ∈ B.458

Example 5.3. Let us consider the 6 × 6 system used as example in [CN19, p. 1155]: we take
p = m = 3, the negative speeds are

λ1 = −4 < λ2 = −2 < λ3 = −1 < 0,

the positive speeds are arbitrary (subject to (3)), and we take the boundary coupling matrix

Q =

1 −1 −1
1 0 2
a b c

 ,

where a, b, c ∈ R are arbitrary numbers.459

Then, the Gaussian elimination easily shows that Q ∈ B and

U =

1 1 −2
0 1 −3
0 0 1

 , U−1 =

1 −1 −1
0 1 3
0 0 1

 .

The feedback law is thus given by
y1(t, 1) = y2

(
t,

1

2

)
+ y3

(
t,

1

4

)
,

y2(t, 1) = −3y3

(
t,

1

2

)
,

y3(t, 1) = 0.

Remark 5.4. Let us also add that another advantage of not using the duality is that it can460

be useful to deal with other functional settings (e.g. C1, provided that the inequality in (39) is461

strict).462
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6 Reduction to a canonical system463

We are now left with the proof of the second part of Theorem 1.11, which is more di�cult and464

require more work.465

In this section, we will show how to use the canonical structure of the boundary coupling
matrix to remove some coupling terms in the matrix G+−. For any Q ∈ Rp×m, we introduce the
set

C(Q) =
{
G+− ∈ L∞(0, 1)p×m

∣∣ gm+i,ck = 0, ∀k ∈ {1, . . . , ρ} , ∀i ≥ rk
}

(C(0) = L∞(0, 1)p×m).466

The goal of this section is to prove the following result:467

Proposition 6.1. Assume that Q0 ∈ Rp×m is in canonical form. Then, there exists a map468

Υ : L∞(0, 1)p×m −→ C(Q0) such that, for every G ∈ L∞(0, 1)n×m, we have469

(Λ,−, Q0, G) ∼
(

Λ,−, Q0,

(
G−−

Υ(G+−)

))
. (43)470

Proof. We assume that ρ 6= 0 since otherwise there is nothing to prove. Reproducing the proof
of Theorem 3.2 with the kernel

K =

(
0 0
0 K++

)
,

we see that we have (43) if we take

(Υ(G+−))(x) = G+−(x)−K++(x, 0)Λ++(0)Q0 −
∫ x

0

K++(x, ξ)G+−(ξ) dξ,

and provided that K++ satis�esΛ++(x)
∂K++

∂x
(x, ξ) +

∂K++

∂ξ
(x, ξ)Λ++(ξ) +K++(x, ξ)

∂Λ++

∂ξ
(ξ) = 0,

Λ++(x)K++(x, x)−K++(x, x)Λ++(x) = 0.

This is an uncoupled system with many solutions (as we already know from Theorem 3.4). Let471

us �nd a particular one that guarantees that Υ(G+−) ∈ C(Q0). Let i, j ∈ {m+ 1, . . . , n} be472

�xed. The equation for kij is simply473 λi(x)
∂kij
∂x

(x, ξ) +
∂kij
∂ξ

(x, ξ)λj(ξ) + kij(x, ξ)
∂λj
∂ξ

(ξ) = 0,

kij(x, x) = 0, if i 6= j.

(44)474

Let s 7−→ ζij(s;x, ξ) be the associated characteristic passing through (x, ξ):
∂ζij
∂s

(s;x, ξ) =
λj(ζij(s;x, ξ))

λi(s)
,

ζij(x;x, ξ) = ξ.

The solutions to (44) are explicit:475

� If i ≥ j, then there exists a unique solution to (44) which satis�es kij(x, 0) = aij(x)
(aij ∈ L∞(0, 1) is arbitrary) and it is given by

kij(x, ξ) =

aij(s
in
ij(x, ξ))

λj(0)

λj(ξ)
if ξ < ζij(x; 0, 0),

0 if ξ > ζij(x; 0, 0),
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where sin
ij(x, ξ) ∈ (0, x) is the unique solution to

ζij(s
in
ij(x, ξ);x, ξ) = 0.

� If i < j, then there exists a unique solution to (44) which satis�es kij(1, ξ) = aij(ξ)
(aij ∈ L∞(0, 1) is arbitrary) and it is given by

kij(x, ξ) =

aij(ζij(1;x, ξ))
λj(ζij(1;x, ξ))

λj(ξ)
if ξ < ζij(x; 1, 1),

0 if ξ > ζij(x; 1, 1).

We choose aij = 0 for i < j, so that kij = 0 for such indices. Let us now �x the remaining aij
to ensure that Υ(G+−) ∈ C(Q0). To this end, we �x i ∈ {m+ 1, . . . , n} such that Ei 6= ∅, where

Ei = {α ∈ {1, . . . , ρ} | m+ rα ≤ i} .

The (i, cα)-th entry of Υ(G+−) is equal to zero if, and only if,

0 = gicα(x)−
n∑

`=m+1

ki`(x, 0)λ`(0)q0
`−m,cα −

∫ x

0

n∑
`=m+1

ki`(x, ξ)g`,cα(ξ) dξ.

Using the explicit formulas for kij and the assumption that Q0 is in canonical form, for α ∈ Ei
this identity is equivalent to

0 = gicα(x)− ai,m+rα(x)λm+rα(0)−
i∑

`=m+1

∫ ζi`(x;0,0)

0

ai`(s
in
i`(x, ξ))

λ`(0)

λ`(ξ)
g`,cα(ξ) dξ.

Using the change of variable θ 7−→ ξ = ζi`(x; θ, 0) with the property

sin
i`(x, ζi`(x; θ, 0)) = sin

i`(θ, 0) = θ,

and isolating the terms for ` = m + rβ with β ∈ Ei, this gives the following system of Volterra476

equations of the second kind:477

ai,m+rα(x)λm+rα(0) +
∑
β∈Ei

∫ x

0

ai,m+β(θ)hi,α,m+β(x, θ) dθ = fiα(x), α ∈ Ei, (45)478

with L∞ kernel

hiα`(x, θ) =
λ`(0)

λ`(ζi`(x; θ, 0))
g`cα(ζi`(x; θ, 0))

∂ζi`
∂θ

(x; θ, 0),

and L∞ right-hand side

fiα(x) = gicα(x)−
∑
`∈Fi

∫ x

0

ai`(θ)hiα`(x, θ) dθ,

Fi = {` ∈ {m+ 1, . . . , i} | ` 6∈ {m+ r1, . . . ,m+ rρ} or ` ∈ {m+ rβ | β 6∈ Ei}} .

Setting
ai` = 0, ∀` ∈ Fi,

we have fiα = gicα and, once fiα is known, the remaining values ai,m+rα , α ∈ Ei, are uniquely479

determined by solving the system (45).480

481
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Remark 6.2. Let us point out that it is also possible to transform the matrix G−− into a strictly
lower triangular matrix by using the kernel

K =

(
K−− 0

0 0

)
,

and by appropriately choosing some boundary conditions for K−− (this is the same proof as482

above with Q0 = Id). In summary, whatever Q ∈ Rp×m and G ∈ L∞(0, 1)n×m are, we have483

shown that we can always �nd some transformations so that we are reduced to the case where:484

� Q is in canonical form.485

� G−− is strictly lower triangular.486

� G+− ∈ C(Q).487

Let us add that, in general, it is not possible to remove more terms by using some transforma-488

tions (e.g. the backstepping method). In other words, there is in general no simpler equivalent489

system. An example has been detailed in Appendix A. In this sense, systems (Λ,−, Q,G) with490

the above structure could be called �in canonical form�.491

7 Reduction by compactness-uniqueness492

In this section, we show that, even though we can not in general fully remove G−− by using493

some transformations (Remark 6.2), nevertheless, the two systems share the same minimal null494

control time:495

Theorem 7.1. Let Q ∈ Rp×m be �xed. For every G ∈ L∞(0, 1)n×m, we have496

Tinf(Λ,−, Q,G) = Tinf

(
Λ,−, Q,

(
0

G+−

))
. (46)497

Remark 7.2. Let us emphasize once again that it is impossible to prove Theorem 7.1 by using498

some transformations to pass from one system to the other (e.g. backstepping). In other words,499

these two systems are in general not equivalent (in the sense of De�nition 1.17). Therefore, a500

di�erent method is necessary to prove Theorem 7.1. We will do it thanks to a compactness-501

uniqueness method adapted to the null controllability property.502

7.1 A compactness-uniqueness method for the null controllability503

We will present here a general compactness-uniqueness method adapted to the null controllability504

property. We will see in the next section how to use it in order to obtain Theorem 7.1.505

First of all, let us brie�y recall some basic facts about abstract linear control systems. All506

along this section,H and U are two complex Hilbert spaces, A : D(A) ⊂ H −→ H is the generator507

of a C0-semigroup (S(t))t≥0 on H and B ∈ L(U,D(A∗)′). Here and in what follows, E′ denotes508

the anti-dual of the complex space E, that is the complex (Banach) space of all continuous509

conjugate linear forms. We will use the convention that an inner product of a complex Hilbert510

space is conjugate linear in its second argument. One of the reason why we have to consider511

complex (and not real) spaces is because we will use below a condition involving the spectral512

elements of the operator A, we will explain how to deal with real Banach spaces in practice at513

the end of this section in Remark 7.8.514
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Let us now consider the evolution problem associated with the pair (A,B), i.e.515 
d

dt
y(t) = Ay(t) +Bu(t), t ∈ (0, T ),

y(0) = y0,
(47)516

where T > 0, y(t) is the state at time t, y0 is the initial data and u(t) is the control at time t.517

Let us recall a standard procedure to de�ne a notion of solution in H to (47) for non smooth
functions. We formally multiply (47) by a smooth function z, integrate over an arbitrary time
interval (0, τ) ⊂ (0, T ), perform an integraton by parts and use the adjoints to obtain the identity

〈y(τ), z(τ)〉H −
〈
y0, z(0)

〉
H

+

∫ τ

0

〈
y(t),− d

dt
z(t)−A∗z(t)

〉
H

dt =

∫ τ

0

〈u(t), B∗z(t)〉U dt.

Particularizing this identity for the solution z to the so-called adjoint system518 −
d

dt
z(t) = A∗z(t), t ∈ (0, τ),

z(τ) = z1,
(48)519

i.e. z(t) = S(τ − t)∗z1, where z1 is arbitrary, this leads to the following notion of solution in H:520

De�nition 7.3. Let T > 0, y0 ∈ H and u ∈ L2(0, T ;U) be �xed. We say that a function521

y : [0, T ] −→ H is a solution to (47) if y ∈ C0([0, T ];H) and522 〈
y(τ), z1

〉
H
−
〈
y0, z(0)

〉
H

=

∫ τ

0

〈u(t), B∗z(t)〉U dt, (49)523

for every τ ∈ (0, T ] and z1 ∈ D(A∗), where z ∈ C0([0, τ ];D(A∗)) is the solution to the adjoint524

system (48).525

For the system (47) to be well posed in this sense, the space H has to satisfy some properties.526

De�nition 7.4. We say that H is an admissible subspace for the system (A,B) if the following527

regularity property holds:528

∀τ > 0, ∃C > 0,

∫ τ

0

‖B∗z(t)‖2U dt ≤ C
∥∥z1
∥∥2

H
, ∀z1 ∈ D(A∗), (50)529

where z ∈ C0([0, τ ];D(A∗)) is the solution to the adjoint system (48).530

We recall that, thanks to basic semigroup properties, it is equivalent to prove (50) for one531

single τ > 0.532

If H is an admissible subspace for (A,B), then the map

z1 ∈ D(A∗) 7−→
∫ τ

0

〈u(t), B∗z(t)〉U dt,

can be extended to a continuous conjugate linear form on H. Thus, we have a natural de�nition533

for the map τ ∈ [0, T ] 7−→ y(τ) ∈ H through the formula (49). It can be proved that this map534

is also continuous and that it depends continuously on y0 and u on compact time intervals (see535

e.g. [Cor07, Theorem 2.37]). This establishes the so-called well-posedness of the abstract control536

system (47) in H.537

Now that we have a notion of continuous solution for the system (47) in the space H, we can538

speak of its controllability properties in H.539
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De�nition 7.5. We say that the system (47) is null controllable in time T if, for every y0 ∈ H,
there exists u ∈ L2(0, T ;U) such that the corresponding solution y ∈ C0([0, T ];H) to the system
(47) satis�es

y(T ) = 0.

It is also well known that controllability has a dual concept named observability. We have540

the following characterization (see e.g. [Cor07, Theorem 2.44]):541

Theorem 7.6. Let T > 0 be �xed. The system (A,B) is null controllable in time T if, and only
if, there exists C > 0 such that, for every z1 ∈ D(A∗),

‖z(0)‖2H ≤ C
∫ T

0

‖B∗z(t)‖2U dt,

where z ∈ C0([0, T ];D(A∗)) is the solution to the adjoint system (48) (with τ = T ).542

After these basic reminders, we can now clearly introduce the general compactness-uniqueness543

result on which the proof of Theorem 7.1 will rely on.544

Theorem 7.7. Let H and U be two complex Hilbert spaces. Let A : D(A) ⊂ H −→ H be the545

generator of a C0-semigroup (S(t))t≥0 on H and let B ∈ L(U,D(A∗)′). We assume that H is546

an admissible subspace for (A,B) and that (A,B) satis�es the so-called Fattorini-Hautus test,547

namely:548

ker(λ−A∗) ∩ kerB∗ = {0} , ∀λ ∈ C. (51)549

Assume in addition that there exists T0 > 0 such that, for every T > T0, the following two550

properties hold:551

(i) There exist two complex Banach spaces E1, E2, a compact operator P : E1 −→ E2, a linear
operator L : D(A∗) −→ E1 and C > 0 such that, for every z1 ∈ D(A∗),

‖z(0)‖2H ≤ C

(∫ T

0

‖B∗z(t)‖2U dt+
∥∥PLz1

∥∥2

E2

)
, (52)

∥∥Lz1
∥∥2

E1
≤ C

(
‖z(0)‖2H +

∫ T

0

‖B∗z(t)‖2U dt

)
, (53)

where z ∈ C0([0, T ];D(A∗)) is the solution to the adjoint system (48) (with τ = T ).552

(ii) For every 0 < t1 < t2 < T − T0, there exists C > 0 such that, for every z1 ∈ D(A∗),553

‖z(t2)‖2H ≤ C
(
‖z(t1)‖2H +

∫ t2

t1

‖B∗z(t)‖2U dt

)
, (54)554

where z ∈ C0([0, T ];D(A∗)) is the solution to the adjoint system (48) (with τ = T ).555

Then, the system (A,B) is null controllable in time T for every T > T0.556

The proof of this result is postponed to Appendix B for the sake of the presentation. It is557

based on arguments developed in the proofs of [CN21a, Theorem 2] and [DO18, Lemma 2.6] (see558

also the references therein). Let us just mention at this point that, in general, the compactness-559

uniqueness method is designed for the exact controllability property. It is only thanks to the560

property (54) that we are able to consider the null controllability property here.561
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Remark 7.8. In most applications we encounter real systems, that is H and U are real Banach562

spaces. To apply what precedes, we have to consider their so-called complexi�cations as well563

as the complexi�cations of the operators A and B. By splitting the complex system (i.e. the564

system corresponding to these complexi�cations) into real and imaginary parts, it is not di�cult565

to check that the real system is controllable if, and only if, so is the complex system.566

7.2 Proof of Theorem 7.1567

Let us now show how to use the general result Theorem 7.7 in order to obtain Theorem 7.1. We568

only prove the inequality �≤� in (46) (which is the most important one), the other inequality569

can be established similarly. Let then T0 > 0 be such that570 (
Λ,−, Q,

(
0

G+−

))
(55)571

is null controllable in time T0 and let us show that necessarily Tinf(Λ,−, Q,G) ≤ T0. This will572

follow from Theorem 7.7 once we will have checked that the system (Λ,−, Q,G) satis�es all the573

assumptions of this result.574

First of all, we have to recast the system (Λ,−, Q,G) as an abstract evolution system of the575

form (47). This is quite standard. To identify what are the operators A and B (in fact, we �rst576

�nd A∗ and B∗), we repeat the procedure that led to De�nition 7.3 on the system (16) (with577

M = 0), where taking the adjoints is replaced by an integration by parts in space. This gives578

the following.579

� The state and control spaces are

H = L2(0, 1)n (= L2(0, 1;Cn)), U = Cm.

They are equipped with their usual inner products.580

� The unbounded linear operator A : D(A) ⊂ H −→ H is de�ned for every y ∈ D(A) by

(Ay)(x) = −Λ(x)
∂y

∂x
(x) +G(x)y−(0), x ∈ (0, 1),

with domain

D(A) =
{
y ∈ H1(0, 1)n

∣∣ y−(1) = 0, y+(0) = Qy−(0)
}
.

� It is clear that D(A) is dense in H since it contains C∞c (0, 1)n. A computation shows that

D(A∗) =

{
z ∈ H1(0, 1)n

∣∣∣∣ z−(0) = R∗z+(0) +

∫ 1

0

K(ξ)∗z(ξ) dξ, z+(1) = 0

}
,

where R ∈ Rp×m and K ∈ L∞(0, 1)n×m are de�ned by

R = −Λ++(0)QΛ−−(0)−1, K(ξ) = −G(ξ)Λ−−(0)−1,

and we have, for every z ∈ D(A∗),

(A∗z)(x) = Λ(x)
∂z

∂x
(x) +

∂Λ

∂x
(x)z(x), x ∈ (0, 1).
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� The control operator B ∈ L(U,D(A∗)′) is given for every u ∈ U and z ∈ D(A∗) by

〈Bu, z〉D(A∗)′,D(A∗) = 〈u,−Λ−−(1)z−(1)〉Cm .

Note that B is well de�ned since Bu is continuous on H1(0, 1)n (by the trace theorem581

H1(0, 1)n ↪→ C0([0, 1])n) and since the graph norm ‖·‖D(A∗) and ‖·‖H1(0,1)n are equivalent582

norms on D(A∗).583

� Finally, the adjoint B∗ ∈ L(D(A∗), U) is given for every z ∈ D(A∗) by

B∗z = −Λ−−(1)z−(1).

We can prove that A is closed and that both A,A∗ are quasi-dissipative, so that A generates584

a C0-semigroup by a well-known corollary of Lumer-Phillips theorem.585

Since the other properties to check depend on the adjoint system, it is convenient to write it
explicitly: 

∂z

∂t
(t, x) + Λ(x)

∂z

∂x
(t, x) = −∂Λ

∂x
(x)z(t, x),

z−(t, 0) = R∗z+(t, 0) +

∫ 1

0

K(ξ)∗z(t, ξ) dξ, z+(t, 1) = 0,

z(T, x) = z1(x).

Using the method of characteristics it is easy to prove the estimate (50) for τ ≤ T1(Λ), which586

shows that H is an admissible subspace for (A,B).587

Therefore, the abstract control system is well posed in H. To rigorously justify that this pair588

(A,B) is �the� abstract form of (Λ,−, Q,G) we have to reason in terms of notions of solution:589

Proposition 7.9. The solution to system (Λ,−, Q,G) in the sense of De�nition 2.1 coincides590

with the solution to abstract system (47) in the sense of De�nition 7.3 corresponding to the pair591

(A,B) introduced above.592

Proof. We argue by approximation. Let y0 ∈ L2(0, 1)n, u ∈ L2(0, T )m be �xed and let y be the593

corresponding solution to system (Λ,−, Q,G) in the sense of De�nition 2.1.594

� We take two approximations (y0,k)k ⊂ H1
0 (0, 1)n and (uk)k ⊂ H1

0 (0, T )m such that595

y0,k → y0 in L2(0, 1)n, uk → u in L2(0, T )m. (56)596

Let yk be the solution corresponding to y0,k and uk in the sense of De�nition 2.1. Since
y0,k and uk obviously satisfy the C0 compatibility conditions

y0,k
− (1) = uk(0), y0,k

+ (0) = Qy0,k
− (0),

we can prove that

yk ∈ C0([0, T ];H1(0, 1)n) ∩ C0([0, 1];H1(0, T )n)

(for instance, by adapting the �xed point approach of [CHOS21, Appendix A.2] in the above597

space � the regularity G ∈ L∞(0, 1)n×m is enough after a suitable change of variable). In598

particular, yk ∈ H1((0, T )× (0, 1))n and it satis�es (16) almost everywhere (with M = 0,599

y = yk, u = uk and y0 = y0,k).600
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� Repeating the procedure that led to De�nition 7.3 we easily check that yk is the solution
to abstract system (47) in the sense of De�nition 7.3, i.e. it satis�es identity (49) (with
y = yk, y0 = y0,k and u = uk). Using (56) and

yk → y in C0([0, T ];L2(0, 1)n),

(this follows from (30) and (56)), we can pass to the limit k → +∞ in this identity to601

obtain that y is the solution to abstract system (47) in the sense of De�nition 7.3.602

603

We will now check that our pair (A,B) satis�es the assumptions of Theorem 7.7.604

� The Fattorini-Hautus test (51) is easy to check. Indeed, if λ ∈ C and z ∈ D(A∗) are such
that A∗z = λz and B∗z = 0, then in particular z ∈ H1(0, 1)n solves the system of linear
ODEs 

∂z

∂x
(x) = Λ(x)−1

(
−∂Λ

∂x
(x) + λIdRn×n

)
z(x), x ∈ (0, 1),

z(1) = 0,

so that z = 0 by uniqueness.605

Below, C denotes a positive number that may change from line to line but that never depends606

on z1 or t.607

� The inequality (54) is also not di�cult to check. Indeed, for 0 < t1 < t2 < T − T0, using
the method of characteristics, we have

‖z−(t2, ·)‖2L2(0,1)m ≤ C
(
‖z−(t1, ·)‖2L2(0,1)m +

∫ t2

t1

‖z−(t, 1)‖2Cm dt

)
,

and, provided that T0 ≥ Tm+1(Λ) and using that z+(·, 1) = 0, we also have

‖z+(t2, ·)‖2L2(0,1)p ≤ C ‖z+(t1, ·)‖2L2(0,1)p .

We recall that, since the system (55) is null controllable in time T0 by assumption, we608

necessarily have T0 ≥ Tm+1(Λ) (see the �rst step of the proof of Theorem 5.1).609

� Let us now investigate the estimate (52). Let T > T0. We will prove that there exists610

H ∈ L∞((0, T )× (0, T ))m×m such that, for every z1 ∈ L2(0, 1)n,611

‖z(0, ·)‖2L2(0,1)n ≤ C

∫ T

0

‖z−(t, 1)‖2Cm dt+

∫ T

0

∥∥∥∥∥
∫ T

0

H(t, s)z−(s, 0) ds

∥∥∥∥∥
2

Cm
dt

 . (57)612

Let us �rst make some preliminary observations. We denote by ζ the solution to the adjoint613

system of (55) in (0, T ) with �nal data z1, and we set614

θ = z − ζ. (58)615

Clearly, it satis�es

∂θ

∂t
(t, x) + Λ(x)

∂θ

∂x
(t, x) = −∂Λ

∂x
(x)θ(t, x),

θ−(t, 0) = R∗θ+(t, 0) +

∫ 1

0

K+−(ξ)∗θ+(t, ξ) dξ +

∫ 1

0

K−−(ξ)∗z−(t, ξ) dξ, θ+(t, 1) = 0,

θ(T, x) = 0.
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Using the method of characteristics, we immediately see that616

θ+ = 0. (59)617

Consequently, θ− solves

∂θ−
∂t

(t, x) + Λ−−(x)
∂θ−
∂x

(t, x) = −∂Λ−−
∂x

(x)θ−(t, x),

θ−(t, 0) =

∫ 1

0

K−−(ξ)∗z−(t, ξ) dξ,

θ−(T, x) = 0.

Since T > T0 ≥ Tm(Λ), using the method of characteristics, it is not di�cult to see that,
for t ∈ (0, T ), we have

‖θ−(t, 0)‖2Cm =

∥∥∥∥∫ 1

0

K−−(ξ)∗z−(t, ξ) dξ

∥∥∥∥2

Cm

≤ C

∥∥∥∥∥
∫ T

t

H(t, s)z−(s, 0) ds

∥∥∥∥∥
2

Cm
+

∫ t

0

‖z−(s, 1)‖2Cm ds

 , (60)

for some H ∈ L∞((0, T ) × (0, T ))m×m independent of z1. Let us now prove the desired
estimate (57). Since by assumption the system (55) is null controllable in time T0, and
thus in time T > T0, the solution ζ to its adjoint system satis�es (see Theorem 7.6)

‖ζ(0, ·)‖2L2(0,1)n ≤ C
∫ T

0

‖ζ−(t, 1)‖2Cm .

Recalling (58) and (59), it follows that

‖z(0, ·)‖2L2(0,1)n ≤ 2 ‖θ(0, ·)‖2L2(0,1)n + 2 ‖ζ(0, ·)‖2L2(0,1)n

= 2 ‖θ−(0, ·)‖2L2(0,1)m + 2 ‖ζ(0, ·)‖2L2(0,1)n

≤ 2 ‖θ−(0, ·)‖2L2(0,1)m + C

∫ T

0

‖ζ−(t, 1)‖2Cm

≤ 2 ‖θ−(0, ·)‖2L2(0,1)m + 2C

∫ T

0

‖θ−(t, 1)‖2Cm + 2C

∫ T

0

‖z−(t, 1)‖2Cm .

On the other hand, using the method of characteristics and the condition θ−(T, ·) = 0, we
have

‖θ−(0, ·)‖2L2(0,1)m +

∫ T

0

‖θ−(t, 1)‖2Cm ≤ C
∫ T

0

‖θ−(t, 0)‖2Cm dt.

Combined with (60) this leads to the desired estimate (57).618

� The estimate (57) suggests to consider the linear operators

P : L2(0, T )m −→ L2(0, T )m, L : D(A∗) −→ L2(0, T )m,

de�ned by

(Pv)(t) =

∫ T

0

H(t, s)v(s) ds, (Lz1)(s) = z−(s, 0).

From the previous point, (52) is ful�lled. It is also well-known that operators of the form of619

P are compact. Finally, we easily check with the method of characteristics that L satis�es620

the remaining estimate (53). This concludes the proof of Theorem 7.1.621

32



8 Largest value of the minimal null control time622

In this last section we will �nally prove the second part of Theorem 1.11.623

8.1 Characterization for systems (Λ,−, Q,G)624

We start with systems of the form (Λ,−, Q,G), we will deal with the initial system (Λ,M,Q,−)625

in the next section.626

Theorem 8.1. Let Q0 ∈ Rp×m be in canonical form and let G ∈ L∞(0, 1)n×m with G−− = 0627

and G+− ∈ C(Q0).628

(i) The system (Λ,−, Q0, G) is null controllable in time T for every629

T ≥ max

{
max

k∈{1,...,ρ0}
Tm+k(Λ) + Tck(Λ), Tm+ρ0+1(Λ) + Tm(Λ)

}
, (61)630

where we recall that ρ0 is de�ned in the statement of Theorem 1.11.631

(ii) Assume that the condition (13) fails and let G ∈ Rn×m be the constant matrix whose entries
are all equal to zero except for

gm+ρ0+1,m = 1.

If the corresponding system (Λ,−, Q0, G) is null controllable in time T , then T has to satisfy632

the condition (61).633

As for Theorem 1.11, we use the convention that the unde�ned quantities are simply not634

taken into account, which more precisely gives:635

� If ρ0 = 0, then the condition (61) is T ≥ Tm+1(Λ) + Tm(Λ).636

� If ρ0 = p, then the condition (61) is T ≥ max
{

maxk∈{1,...,p} Tm+k(Λ) + Tck(Λ), Tm(Λ)
}
.637

In the second part of the statement we only discussed the case when (13) fails since otherwise638

the time on the right-hand side of the inequality in (61) coincides with the time on the right-hand639

side of the inequality in (39) and it follows from item (i) of Theorem 5.1 that item (i) of Theorem640

8.1 then becomes a necessary and su�cient condition.641

This result shows in particular that the largest value that Tinf(Λ,−, Q0, G) can take with642

respect to G ∈ L∞(0, 1)n×m when G−− = 0 and G+− ∈ C(Q0) is equal to the quantity on the643

right-hand side of the inequality in (61). This can be extended to arbitrary boundary coupling644

matrices and arbitrary G ∈ L∞(0, 1)n×m thanks to Proposition 4.1, Proposition 6.1 and Theorem645

7.1.646

Proof of Theorem 8.1. 1) We begin with the proof of the �rst item. Let �rst i ∈ {1, . . . ,m}
be �xed. Since T ≥ Ti(Λ), which means that sin

i (T, x) > 0 for every x ∈ (0, 1) as we have
seen in the �rst step of the proof of Theorem 5.1, and since G−− = 0 by assumption, the
null controllability condition yi(T, ·) = 0 is equivalent to (see (29) and (27))

ui
(
sin
i (T, ·)

)
= 0 in (0, 1).

Since i ≤ m, the map x 7−→ sin
i (T, x) is non decreasing (see (22)) with sin

i (T, 1) = T . Thus,647

the previous condition is also equivalent to648

ui = 0 in
(
sin
i (T, 0), T

)
. (62)649
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2) Let us now consider i ∈ {m+ 1, . . . , n}. Since T ≥ Ti(Λ), the null controllability condition
yi(T, x) = 0 is equivalent to (see (29) and (28))

ai(x) + bi(x) = 0,

where

ai(x) =

m∑
j=1

j 6∈{c1,...,cρ0}

(
q0
i−m,jyj

(
sin
i (T, x), 0

)
+

∫ T

sini (T,x)

gij (χi(s;T, x)) yj(s, 0) ds

)
,

and

bi(x) =

ρ0∑
k=1

(
q0
i−m,ckyck

(
sin
i (T, x), 0

)
+

∫ T

sini (T,x)

gick (χi(s;T, x)) yck(s, 0) ds

)
.

� We �rst consider the case i ≥ m+ ρ0 + 1 (which happens only if ρ0 < p). Clearly, we650

have bi = 0 in that situation since Q0 is in canonical form, G+− ∈ C(Q0) and (12).651

Let us show that we can choose uj for j 6∈ {c1, . . . , cρ0} so that ai = 0 as well. Since652

x 7−→ sin
i (T, x) is non increasing for i ≥ m + 1 (recall (22)), it is su�cient to choose653

it such that654

yj(·, 0) = 0 in
(
sin
i (T, 1), T

)
. (63)655

Since T ≥ Tm+ρ0+1(Λ) + Tm(Λ) by assumption, we have in particular T ≥ Ti(Λ) +
Tj(Λ) for the indices i, j considered (recall (5)). This condition can be written as
T ≥ sout

i (sout
j (0, 1), 0) (see (21) and (24)) or, equivalently (see (23)),

sin
j (sin

i (T, 1), 0) ≥ 0.

Since s 7−→ sin
j (s, 0) is increasing (see (22)), this is equivalent to

sin
j (s, 0) > 0, ∀s ∈

(
sin
i (T, 1), T

)
.

As a result, we see that (63) holds if, and only if, (see (29), (27) and recall that
G−− = 0)

uj(s
in
j (·, 0)) = 0 in

(
sin
i (T, 1), T

)
.

Using again that s 7−→ sin
j (s, 0) is increasing, this means that

uj = 0 in
(
sin
j (sin

i (T, 1), 0), sin
j (T, 0)

)
.

Observe that this is compatible with (62) since these two intervals are disjoint.656

� Let us now consider the case i ≤ m+ ρ0 (which happens only if ρ0 6= 0). Since Q0 is657

in canonical form, G+− ∈ C(Q0) and (12), we see that ai(x) + bi(x) = 0 is equivalent658

to659

ai(x) + yci−m
(
sin
i (T, x), 0

)
+

ρ0∑
k=i−m+1

∫ T

sini (T,x)

gick (χi(s;T, x)) yck(s, 0) ds = 0. (64)660

Let us show that we can choose uc1 , . . . , ucρ0 so that this identity is satis�ed. By
assumption, we have T ≥ Ti(Λ) + Tci−m(Λ) for every i ∈ {m+ 1, . . . ,m+ ρ0}. As in
the previous point we can check that this condition can be written as

sin
ci−m(sin

i (T, 1), 0) ≥ 0.

34



Since x 7−→ sin
ci−m(sin

i (T, x), 0) is decreasing (see (22)), this is equivalent to

sin
ci−m(sin

i (T, x), 0) > 0, ∀x ∈ (0, 1).

As a result, we see that (64) holds if, and only if, (see (29), (27) and recall that
G−− = 0)

uci−m

(
sin
ci−m(sin

i (T, x), 0)
)

= −ai(x)−
ρ0∑

k=i−m+1

∫ T

sini (T,x)

gick (χi(s;T, x)) yck(s, 0) ds.

Since ai is known (it only concerns uj for j 6∈ {c1, . . . , cρ0}), we see by induction
(starting with i = m + ρ0) that this formula determines the values of uci−m in the
interval (

sin
ci−m(sin

i (T, 1), 0), sin
ci−m(T, 0)

)
(the map x 7−→ sin

ci−m(sin
i (T, x), 0) is non increasing and sin

i (T, 0) = T ). Observe once661

again that this is compatible with (62) since these two intervals are disjoint.662

This concludes the proof of the �rst item (i) of Theorem 8.1.663

3) Let us now prove item (ii) of Theorem 8.1. Assume that the condition (13) fails, let G664

be the constant matrix introduced in the statement, and assume that the corresponding665

system (Λ,−, Q0, G) is null controllable in time T . Since (13) fails, the condition (61) is666

simply667

T ≥ Tm+ρ0+1(Λ) + Tm(Λ). (65)668

Since the system (Λ,−, Q0, G) is null controllable in time T by assumption, the following
2× 2 subsystem also has to be null controllable in time T :

∂ym
∂t

(t, x) + λm(x)
∂ym
∂x

(t, x) = 0,

∂ym+ρ0+1

∂t
(t, x) + λm+ρ0+1(x)

∂ym+ρ0+1

∂x
(t, x) = ym(t, 0),

ym(t, 1) = um(t), ym+ρ0+1(t, 0) = q0
ρ0+1,mym(t, 0).

Let us show that, whether q0
ρ0+1,m = 1 or q0

ρ0+1,m = 0, we necessarily have (65). If
q0
ρ0+1,m = 1, then this follows from item (i) of Theorem 5.1. Let us then consider the
case q0

ρ0+1,m = 0. As before, it is clearly necessary that T ≥ Tm+ρ0+1(Λ) and, under this
condition, the null controllability condition ym+ρ0+1(T, x) = 0 becomes equivalent to (see
(29) and (28)) ∫ T

sinm+ρ0+1(T,x)

ym(s, 0) ds = 0.

Using the change of variable ξ 7−→ s = sin
m+ρ0+1(T, ξ), this holds if, and only if,∫ x

0

ym(sin
m+ρ0+1(T, ξ), 0)

∂sin
m+ρ0+1

∂ξ
(T, ξ) dξ = 0.

Taking the derivative with respect to x, this is also equivalent to

ym(sin
m+ρ0+1(T, ·), 0) = 0 in (0, 1).

It is now not di�cult to see that we can choose um such that this condition holds if, and669

only if, we have (65).670

671
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8.2 Proof of the second part of Theorem 1.11672

Let us now show how to combine all the previous results in order to obtain the desired charac-673

terization of the largest minimal null control time for the initial system (Λ,M,Q,−).674

Proof of item (ii) of Theorem 1.11. Let Q ∈ Rp×m be �xed.675

1) � By item (i) of Theorem 8.1, we have

Tinf(Λ,−, Q0, G) ≤ max

{
max

k∈{1,...,ρ0}
Tm+k(Λ) + Tck(Λ), Tm+ρ0+1(Λ) + Tm(Λ)

}
,

for every G ∈ L∞(0, 1)n×m with G−− = 0 and G+− ∈ C(Q0), where Q0 is the676

canonical form of Q.677

� By Theorem 7.1, this inequality remains true for every G ∈ L∞(0, 1)n×m with G+− ∈678

C(Q0).679

� By Proposition 6.1, this inequality remains true for every G ∈ L∞(0, 1)n×m.680

� By Proposition 4.1, this inequality remains true by changing Q0 into Q.681

� By Proposition 3.1 and Theorem 3.2, this inequality remains true for the system682

(Λ,M,Q,−) for any M ∈ L∞(0, 1)n×n.683

In summary, we have established the following upper bound:

Tinf(Λ,M,Q) ≤ max

{
max

k∈{1,...,ρ0}
Tm+k(Λ) + Tck(Λ), Tm+ρ0+1(Λ) + Tm(Λ)

}
,

valid for every M ∈ L∞(0, 1)n×n.684

2) Let us now show that this upper bound is reached for some special M . If the condition685

(13) is satis�ed, then this upper bound coincides with the lower bound, and we know that686

this latter is reached for M = 0 (Remark 1.13). Let us now assume that the condition (13)687

is not satis�ed.688

� Then, we know from Theorem 8.1 that this upper bound is the minimal null control
time of the system (Λ,−, Q0, G) for the constant matrix G ∈ Rn×m whose entries are
all equal to zero except for

gm+ρ0+1,m = 1.

Let us now �nd the corresponding matrix M .689

� We decompose Q in its canonical form: LQU = Q0. By Proposition 4.1, this upper
bound is the minimal null control time of the system (Λ,−, Q, Ĝ) for any Ĝ such

that Θ(Ĝ) = G. Now, it follows from the proof of Proposition 4.1 that, for constant
matrices, Θ is simply given by

Θ(Ĝ) =

(
U−1Ĝ−−U

LĜ+−U

)
, ∀Ĝ ∈ Rn×m.

Therefore, Ĝ is the matrix whose entries are all equal to zero except for

ĝm+i,m = `i,ρ0+1, ∀i ∈ {ρ0 + 1, . . . , p} ,

where L−1 = (`ij)1≤i,j≤p.690
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� By Theorem 3.2, this upper bound is the minimal null control time of the system
(Λ,M,Q,−) for anyM ∈M such that ΓA(M) = Ĝ for some A ∈ F . Let us determine
A and M such that this identity holds. By de�nition of ΓA(M) (see (32)), this is
equivalent to {

0 = −K−−(x, 0)Λ−−(0)−K−+(x, 0)Λ++(0)Q,

Ĝ+− = −K+−(x, 0)Λ−−(0)−K++(x, 0)Λ++(0)Q,

where K is the solution to the kernel equations (33) with additional boundary condi-
tions (35)-(36) provided by A. Let us rewrite these kernel equations by blocks:

Λ−−(x)
∂K−−
∂x

(x, ξ) +
∂K−−
∂ξ

(x, ξ)Λ−−(ξ)

+K−−(x, ξ)

(
∂Λ−−
∂ξ

(ξ) +M−−(ξ)

)
+K−+(x, ξ)M+−(ξ) = 0,

Λ−−(x)K−−(x, x)−K−−(x, x)Λ−−(x) = M−−(x).
Λ−−(x)

∂K−+

∂x
(x, ξ) +

∂K−+

∂ξ
(x, ξ)Λ++(ξ)

+K−−(x, ξ)M−+(ξ) +K−+(x, ξ)

(
∂Λ++

∂ξ
(ξ) +M++(ξ)

)
= 0,

Λ−−(x)K−+(x, x)−K−+(x, x)Λ++(x) = M−+(x).
Λ++(x)

∂K+−

∂x
(x, ξ) +

∂K+−

∂ξ
(x, ξ)Λ−−(ξ)

+K+−(x, ξ)

(
∂Λ−−
∂ξ

(ξ) +M−−(ξ)

)
+K++(x, ξ)M+−(ξ) = 0,

Λ++(x)K+−(x, x)−K+−(x, x)Λ−−(x) = M+−(x).
Λ++(x)

∂K++

∂x
(x, ξ) +

∂K++

∂ξ
(x, ξ)Λ++(ξ)

+K+−(x, ξ)M−+(ξ) +K++(x, ξ)

(
∂Λ++

∂ξ
(ξ) +M++(ξ)

)
= 0,

Λ++(x)K++(x, x)−K++(x, x)Λ++(x) = M++(x).

Note that the subsystems satis�ed by (K−−,K−+) and (K+−,K++) are not coupled.
By uniqueness of the solution to these equations (see Theorem 3.4), we see that

M−+ = 0 =⇒ K−+ = 0,

M++ = A++ = 0, M−+ = 0 =⇒ K++ = 0,

M−− = A−− = 0, K−+ = 0 =⇒ K−− = 0.

Therefore, it only remains to determine M+− such that

K+−(x, 0) = −Ĝ+−Λ−−(0)−1.

Let i ∈ {m+ 1, . . . , n} and j ∈ {1, . . . ,m} be �xed. The equation for kij is now691

simply692 
λi(x)

∂kij
∂x

(x, ξ) +
∂kij
∂ξ

(x, ξ)λj(ξ) + kij(x, ξ)
∂λj
∂ξ

(ξ) = 0,

kij(x, x) =
mij(x)

λi(x)− λj(x)
.

(66)693
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Let s 7−→ ζij(s;x, ξ) be the associated characteristic passing through (x, ξ):
∂ζij
∂s

(s;x, ξ) =
λj(ζij(s;x, ξ))

λi(s)
,

ζij(x;x, ξ) = ξ.

The solution to (66) is explicit:

kij(x, ξ) =
mij(s

in
ij(x, ξ))

λi(sin
ij(x, ξ))− λj(sin

ij(x, ξ))

λj(s
in
ij(x, ξ))

λj(ξ)
,

where sin
ij(x, ξ) ∈ (0, x) is the unique solution to

ζij
(
sin
ij(x, ξ);x, ξ

)
= sin

ij(x, ξ).

Thus, the desired condition kij(·, 0) = −ĝij/λj(0) is equivalent to

mij(s
in
ij(x, 0)) =

λi(s
in
ij(x, 0))− λj(sin

ij(x, 0))

−λj(sin
ij(x, 0))

ĝij , x ∈ (0, 1).
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A An example of non equivalent hyperbolic systems701

In this appendix we present an explicit example of hyperbolic systems which are not equivalent702

in the sense of De�nition 1.17. This example is important to illustrate that, in general, it is not703

possible to obtain a simpler system than the one we obtained in the present article if we only704

use invertible transformations (see Remark 6.2). It also motivates the use of the compactness-705

uniqueness method to establish the important result Theorem 7.1. We refer to [CN19, Section706

4.3] for a close but di�erent example.707

We consider the following simple 3× 3 systems with constant coe�cients:708 

∂y1

∂t
(t, x)− ∂y1

∂x
(t, x) = 0,

∂y2

∂t
(t, x)− 1

2

∂y2

∂x
(t, x) = ay1(t, 0),

∂y3

∂t
(t, x) +

∂y3

∂x
(t, x) = by2(t, 0),

(67)709

where a, b ∈ R are some parameters, and with boundary conditions710 {
y1(t, 1) = u1(t),

y2(t, 1) = u2(t),
y3(t, 0) = y1(t, 0). (68)711
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We are in the case m = 2, p = 1 and the matrices Λ, G and Q are

Λ =

 −1 0 0
0 −1/2 0
0 0 1

 , G = Gab =

 0 0
a 0
0 b

 , Q =
(

1 0
)
.

Note as well that we are in an ideal con�guration:712

� Q is in canonical form.713

� (Gab)−− is strictly lower triangular.714

� (Gab)+− ∈ C(Q).715

Clearly, ρ = ρ0 = 1 and (r1, c1) = (1, 1). It follows from the results of the present article
(actually, a direct proof is also possible) that the minimal null control time of the system (67)-(68)
is

Tinf(Λ,−, Q,Gab) = 2, ∀a, b ∈ R.

In particular, the system (67)-(68) is null controllable in time T for every T > 2. Let us now716

study the null controllability properties of this system in this critical time:717

Proposition A.1. The system (67)-(68) is null controllable in time T = 2 if, and only if,718

ab 6∈ Σ =

{
−
(π

2
+ kπ

)2
∣∣∣∣ k ∈ N

}
. (69)719

Remark A.2. It follows from this result and Proposition 1.18 that

(Λ,−, Q,Gab) is not equivalent to (Λ,−, Q,Gcd), if ab ∈ Σ, cd 6∈ Σ.

In particular, it is not possible to transform the system (Λ,−, Q,Gab) into (Λ,−, Q,G0b) or720

(Λ,−, Q,Ga0) when ab ∈ Σ (in other words, we cannot remove (Gab)−− nor (Gab)+− in this721

case).722

Proof of Proposition A.1. The solution to the system (67)-(68) is explicit (see Section 2):

y1(t, x) =

{
u1(t− 1 + x) if t− 1 + x > 0,

y0
1(t+ x) if t− 1 + x < 0,

y2(t, x) =


u2(t− 2(1− x)) + a

∫ t

t−2(1−x)

y1(s, 0) ds if t− 2(1− x) > 0,

y0
2

(
t

2
+ x

)
+ a

∫ t

0

y1(s, 0) ds if t− 2(1− x) < 0,

y3(t, x) =


y1(t− x, 0) + b

∫ t

t−x
y2(s, 0) ds if t− x > 0,

y0
3(−t+ x) + b

∫ t

0

y2(s, 0) ds if t− x < 0.

Clearly, the null controllability condition y1(2, ·) = 0 is satis�ed if, and only if,

u1 = 0 in (1, 2).
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Similarly, the null controllability condition y2(2, ·) = 0 holds if, and only if,

u2(t) = −a
∫ 2

t

y1(s, 0) ds, t ∈ (0, 2).

Thus, the control u2 is uniquely determined once the values of the control u1 in (0, 1) are known.
The remaining condition y3(2, x) = 0 is equivalent to

y1(2− x, 0) + b

∫ 2

2−x
y2(s, 0) ds = 0,

and thus to

u1(1− x) + b

∫ 2

2−x
y0

2

(s
2

)
ds+ abx

∫ 1

0

y0
1(θ) dθ + ab

∫ 2

2−x

∫ s

1

u1(θ − 1) dθds = 0.

Using the change of variables t = 1− x and σ = θ − 1, this is also equivalent to723

u1(t) + ab

∫ 1

t

∫ s

0

u1(σ) dσds = f(t), t ∈ (0, 1), (70)724

where we introduced the following function depending only on the initial data:725

f(t) = −b
∫ 2

1+t

y0
2

(s
2

)
ds− ab(1− t)

∫ 1

0

y0
1(θ) dθ. (71)726

This identity can be rewritten as727

(Id−K)

(
u1∫ ·

0
u1(σ) dσ

)
=

(
f
0

)
, (72)728

where K : L2(0, 1)2 −→ L2(0, 1)2 is the operator de�ned by(
K

(
α
β

))
(t) =

(
−ab

∫ 1

t
β(s) ds∫ t

0
α(s) ds

)
.

Since K is compact, the Fredholm alternative says that (72) has a solution if, and only if,729 (
f
0

)
∈ (ker(Id−K∗))⊥. (73)730

A simple computation shows that(
K∗
(
α̃

β̃

))
(s) =

( ∫ 1

s
β̃(t) dt

−ab
∫ s

0
α̃(t) dt

)
.

It follows that

(
α̃

β̃

)
∈ ker(Id−K∗) if, and only if, β̃(s) = −ab

∫ s
0
α̃(t) dt and α̃ solves the following

second order linear ODE: 
α̃′′(s)− abα̃(s) = 0,

α̃′(0) = 0,

α̃(1) = 0.

We can check that this ODE has a nonzero solution if, and only if,

ab ∈ Σ,

where Σ is the set introduced in (69). It follows that we have two possibilities:731
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� If ab 6∈ Σ, then ker(Id −K∗) = {0} and (72) has a (unique) solution u1. This shows that732

the system (67)-(68) is null controllable in time T = 2.733

� If ab ∈ Σ, then there exists a nonzero

(
α̃

β̃

)
∈ ker(Id−K∗). Necessarily, α̃ 6= 0 and thus

∃f ∈ C∞c (0, 1), 〈α̃, f〉L2(0,1) 6= 0.

It is clear that we can construct y0
2 and y0

1 that satisfy (71) for this f (take for instance734

y0
1 = 0 and y0

2(x) = f ′(2x − 1)/b for x ∈ [1/2, 1] and y0
2(x) = 0 otherwise, note that735

b 6= 0 in the case considered). For such a f , the condition (73) fails and thus there is no736

corresponding solution u1 to (70), meaning that the system (67)-(68) is not null controllable737

in time T = 2.738

739

Remark A.3. We have seen during the proof that, when ab 6∈ Σ, the control that brings the740

solution to zero in the critical time T = 2 is unique (it can also be written explicitly).741

B Proof of the abstract compactness-uniqueness result742

The goal of this appendix is to give a proof of Theorem 7.7. It is inspired from the proofs of743

[CN21a, Theorem 2] and [DO18, Lemma 2.6] (see also the references therein).744

Here and in what follows, it will be more convenient to work with the expression S(t)∗z1

rather than z(t) = S(T − t)∗z1. The corresponding assumptions (52), (53) and (54) become:

∥∥S(T )∗z1
∥∥2

H
≤ C

(∫ T

0

∥∥B∗S(t)∗z1
∥∥2

U
dt+

∥∥PLz1
∥∥2

E2

)
, (74)

∥∥Lz1
∥∥2

E1
≤ C

(∥∥S(T )∗z1
∥∥2

H
+

∫ T

0

∥∥B∗S(t)∗z1
∥∥2

U
dt

)
, (75)

∥∥S(T − t2)∗z1
∥∥2

H
≤ C

(∥∥S(T − t1)∗z1
∥∥2

H
+

∫ T−t1

T−t2

∥∥B∗S(t)∗z1
∥∥2

U
dt

)
. (76)

1) Let T > T0 be �xed. By duality (see Theorem 7.6), we have to prove that there exists745

C > 0 such that, for every z1 ∈ D(A∗),746

∥∥S(T )∗z1
∥∥2

H
≤ C

∫ T

0

∥∥B∗S(t)∗z1
∥∥2

U
dt. (77)747

We argue by contradiction and assume that the observability inequality (77) does not hold.
Then, there exists a sequence (z1

n)n≥1 ⊂ D(A∗) such that, for every n ≥ 1,

∥∥S(T )∗z1
n

∥∥2

H
> n

∫ T

0

∥∥B∗S(t)∗z1
n

∥∥2

U
dt.

In particular S(T )∗z1
n 6= 0 and we can normalize z1

n, still denoted by the same, in such a
way that ∥∥S(T )∗z1

n

∥∥
H

= 1,

∫ T

0

∥∥B∗S(t)∗z1
n

∥∥2

U
dt −−−−−→

n→+∞
0.
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Using the estimate (75) we obtain that

(Lz1
n)n≥1 is bounded in E1.

Since P is compact, we can extract a subsequence, still denoted by (z1
n)n≥1, such that

(PLz1
n)n≥1 converges in E2.

Using now the estimate (74), we obtain that (S(T )∗z1
n)n≥1 is a Cauchy sequence in H, and

thus converges: there exists f ∈ H such that

S(T )∗z1
n −−−−−→

n→+∞
f in H.

Besides, f 6= 0 since ‖f‖H = 1. In other words, we have shown that748

NT 6= {0} , (78)749

where Nτ is the subspace de�ned for every τ > 0 by

Nτ =

{
f ∈ H

∣∣∣∣∣ ∃(z1
n)n≥1 ⊂ D(A∗),

S(τ)∗z1
n −−−−−→

n→+∞
f in H,

B∗S(·)∗z1
n −−−−−→

n→+∞
0 in L2(0, τ ;U)

}
.

Let us now study the properties of these subspaces.750

2) First of all, it forms a non-increasing sequence of subspaces:751

Nτ2 ⊂ Nτ1 , ∀τ2 ≥ τ1 > 0. (79)752

Indeed, if f ∈ Nτ2 and (z1
n)n≥1 ⊂ D(A∗) denotes an associated sequence, then we easily753

check that f ∈ Nτ1 by considering the sequence (S(τ2 − τ1)∗z1
n)n≥1.754

3) Let us now show that755

dimNτ < +∞, ∀τ > T0. (80)756

By Riesz theorem, it is equivalent to show that the closed unit ball of Nτ is compact. Let
then (fk)k≥1 ⊂ Nτ be such that

∥∥fk∥∥
H
≤ 1 for every k ≥ 1. Let (z1,k

n )n≥1 ⊂ D(A∗) be an
associated sequence. In particular, for every k ≥ 1, there exists nk ≥ 1 such that, denoting
by w1,k = z1,k

nk
, we have∥∥S(τ)∗w1,k − fk

∥∥
H
≤ 1

k
,
∥∥B∗S(·)∗w1,k

∥∥
L2(0,τ ;U)

≤ 1

k
, ∀k ≥ 1.

Since (fk)k≥1 is bounded, so is (S(τ)∗w1,k)k≥1. Using the same reasoning as in Step 1),757

we deduce from the estimates (75) and (74) that (S(τ)∗w1,k)k≥1 is a Cauchy sequence. It758

follows that (fk)k≥1 is a Cauchy sequence as well, and thus converges.759

4) The next step is to establish that760

Nτ ⊂ D(A∗), A∗(Nτ ) ⊂ Nτ−ε, ∀τ ∈ (T0, T ), ∀ε ∈ (0, τ − T0). (81)761

Let then f ∈ Nτ . By de�nition, there exists a sequence (z1
n)n≥1 ⊂ D(A∗) such that

S(τ)∗z1
n −−−−−→

n→+∞
f in H, (82)

B∗S(·)∗z1
n −−−−−→

n→+∞
0 in L2(0, τ ;U). (83)
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Using the estimate (76) with t1 = T − τ and t2 = T − (τ − ε), we see that

(S(τ − ε)∗z1
n)n≥1 is bounded in H.

As before, it follows from the estimates (75) and (74) that there exists g ∈ H such that762

S(τ − ε)∗z1
n −−−−−→

n→+∞
g in H. (84)763

Noting (82), by uniqueness of the limit, we have

f = S(ε)∗g.

Let us now prove that g ∈ D(A∗). By de�nition of the domain of the generator of a
semigroup, we have to show that, for any sequence tn > 0 with tn → 0 as n → +∞, the
sequence

un =
S(tn)∗g − g

tn

converges in H as n→ +∞ and that its limit does not depend on the sequence (tn)n. Let764

n0 ≥ 1 be large enough so that tn ≤ ε for every n ≥ n0. From (84) and (83) we easily see765

that766

S(t)∗g ∈ Nτ−ε, ∀t ∈ [0, ε]. (85)767

Thus,
un ∈ Nτ−ε, ∀n ≥ n0.

Let now µ ∈ ρ(A∗) 6= ∅ be �xed and let us introduce the following norm on Nτ−ε:

‖z‖−1 =
∥∥(µ−A∗)−1z

∥∥
H
.

Since (µ−A∗)−1g ∈ D(A∗), we have768

(µ−A∗)−1un =
S(tn)∗ − Id

tn
(µ−A∗)−1g −−−−−→

n→+∞
A∗(µ−A∗)−1g in H. (86)769

Therefore, (un)n≥n0
is a Cauchy sequence in Nτ−ε for the norm ‖·‖−1. Since Nτ−ε is �nite

dimensional (reall (80)), all the norms are equivalent on Nτ−ε. Thus, (un)n≥n0
is a Cauchy

sequence for the usual norm ‖·‖H as well and, as a result, converges for this norm. It is
clear from (86) that its limit does not depend on the sequence (tn)n. This shows that
g ∈ D(A∗) and thus f = S(ε)∗g ∈ D(A∗). In addition, we have

A∗f = A∗S(ε)∗g = lim
h→0+

S(ε)∗g − S(ε− h)∗g

h
∈ Nτ−ε (by (85)).

This shows that A∗(Nτ ) ⊂ Nτ−ε.770

5) Let us now prove that
Nτ ⊂ kerB∗, ∀τ ∈ (T0, T ).

Let ε ∈ (0, τ − T0) be arbitrary. We use the same notations as in the previous step.
Since, by assumption, H is an admissible subspace for (A,B) (see De�nition 7.4), the map
z1 ∈ D(A∗) 7−→ B∗S(ε− ·)∗z1 ∈ L2(0, ε;U) can be extended to a bounded linear operator
Ψ ∈ L(H,L2(0, ε;U)). From (84) and continuity of Ψ, we have

ΨS(τ − ε)∗z1
n −−−−−→

n→+∞
Ψg, in L2(0, ε;U).
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Since z1
n ∈ D(A∗), we have (ΨS(τ − ε)∗z1

n)(t) = B∗S(τ − t)z1
n for t ∈ (0, ε). From (83) and

uniqueness of the limit, we deduce that

Ψg = 0.

Since g ∈ D(A∗), we have (Ψg)(t) = B∗S(ε− t)∗g and the map t ∈ [0, ε] 7−→ B∗S(ε− t)∗g
is continuous. It follows that

B∗f = B∗S(ε)∗g = (Ψg)(0) = 0.

6) Next, we observe that there exist τ ∈ (T0, T ) and ε ∈ (0, τ − T0) such that771

Nτ = Nτ−ε. (87)772

Indeed, from (80) and (79), the sequence of integers (dimNT−(T−T0)/k)k≥2 is non-increasing
and thus stationary: there exists k0 ≥ 2 such that

dimNT−(T−T0)/k = dimNT−(T−T0)/k0 , ∀k ≥ k0.

Denoting by δ = (T − T0)/k0 ∈ (0, T − T0) and using (79), we then have

Nτ = NT−δ, ∀τ ∈ [T − δ, T ).

The desired claim easily follows.773

7) Consequently, for τ ∈ (T0, T ) and ε ∈ (0, τ − T0) �xed such that (87) holds, the restriction
of A∗ to Nτ is a linear operator from the �nite dimensional space Nτ into itself (recall
(81)). Besides, Nτ 6= {0} since it contains NT by (79) and we have (78). Therefore, this
restriction has at least one eigenvalue (recall that H is a complex Hilbert space), i.e. there
exist λ ∈ C and a nonzero φ ∈ Nτ such that

A∗φ = λφ.

Since Nτ ⊂ kerB∗, we also have φ ∈ kerB∗ and this is a contradiction with the Fattorini-774

Hautus test (51).775

This concludes the proof of Theorem 7.7.776

Remark B.1. Let us stress that the end of our proof di�ers from the one in [CN21a, Section
2.2]. Indeed, in this reference, the conclusion of the proof relied on the fact that the semigroup
is nilpotent, that is

∃T > 0, S(T )∗z1 = 0, ∀z1 ∈ H.

This readily implies that the operator A∗ has no eigenvalues and this is how the authors conclude777

that NT = {0}. On the other hand, in our proof above, we only made use of the Fattorini-778

Hautus test (51) (which is trivially checked if the operator A∗ has no eigenvalues). Besides, this779

is optimal, in the sense that this test is always a necessary condition for the system (A,B) to be780

null controllable in some time.781

Finally, let us add that for the example of the hyperbolic system (Λ,−, Q,G) the correspond-782

ing adjoint semigroup is not always nilpotent. Notably, the strictly lower triangular structure of783

G−− was used at the end of [CN21a, Section 2.2] to prove such a property.784
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