
HAL Id: hal-03346221
https://hal.science/hal-03346221

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Model of Aircraft Design: from Performance
Requirements towards Architectures Optimization

Carlos Garcia-Rubio, Kittinan Thanissaranon, Jean-Charles Chaudemar,
Nathalie Bartoli, Thierry Lefebvre

To cite this version:
Carlos Garcia-Rubio, Kittinan Thanissaranon, Jean-Charles Chaudemar, Nathalie Bartoli, Thierry
Lefebvre. Global Model of Aircraft Design: from Performance Requirements towards Architectures
Optimization. Aerobest, Jul 2021, Lisbonne, Portugal. pp.343-362. �hal-03346221�

https://hal.science/hal-03346221
https://hal.archives-ouvertes.fr

AeroBest 2021
Lisboa, 21-23 July 2021

GLOBAL MODEL OF AIRCRAFT DESIGN: FROM
PERFORMANCE REQUIREMENTS TOWARDS

ARCHITECTURES OPTIMIZATION

Carlos GARCIA-RUBIO1∗, Kittinan THANISSARANON1∗, Jean-Charles
CHAUDEMAR2, Nathalie BARTOLI3 and Thierry LEFEBVRE3

1: ISAE-SUPAERO, Université de Toulouse
Toulouse, France

{Carlos.Garcia-Rubio,Kittinan.Thanissaranon}@student.isae-supaero.fr

2: ISAE-SUPAERO, Université de Toulouse
Toulouse, France

jean-charles.chaudemar@isae-supaero.fr

3: ONERA/DTIS, Université de Toulouse
Toulouse, France

{Nathalie.Bartoli,Thierry.Lefebvre}@onera.fr

Abstract. Systems engineering is a transdisciplinary approach that seeks the successful
realisation of a system. In order to reach that, it is necessary to satisfy a series of needs
and stakeholders, which have to be defined as a group of requirements to be fulfilled. Design
approaches such as MDAO, MBSE, and MBSA have been created to help better designing
aircraft in different aspects. However, there has never been an aircraft design method
which combines all the mentioned design approaches and that, nowadays, has an increasing
interest in the industry. Therefore, the paper aim is to produce aircraft design tools and
methodology which link all the three design approaches together by using a surveillance
UAV as a study case. As a part of the MDAO-MBSE global project, a MDAO model has
been developed using a web application (WhatsOpt) and a MDAO platform (OpenMDAO)
on Python, while the tool considered to develop the MBSE model is Eclipse Papyrus, a
powerful tool that allows to use XML for export their models. Some promising results
show the coupling between MDAO and MBSE based on XML file exchange.

Keywords: MBSE, MDAO, SysML, XML

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

1 INTRODUCTION

Aircraft design is a complex process that involves several fields of study. Currently,
there are different aircraft design approaches which help engineers designing aircraft more
effectively. Approaches which are widely and separately used are MDAO (Multidisci-
plinary Design Analysis and Optimization process), MBSE (Model-Based Systems En-
gineering), and MBSA (Model-Based Safety Assessment). MDAO focuses on optimizing
and obtaining design parameters to achieve certain design objectives. MBSE focuses on
the traceability of design requirements and the consistency of information throughout all
engineering processes. Finally, MBSA focuses on the safety analysis of a system.

Up to today, there has not been work which combines all the three design approaches
together to effectively design an aircraft. Given that, the goal of this study is to identify
and obtain a framework which includes MDAO, MBSE, and MBSA to optimally design an
aircraft while meeting all the safety objectives by using a surveillance UAV as a studying
subject. Given that, this project was initially divided into two parts: MDAO-MBSE part
and MBSA-MBSE part. This reports focuses on the MDAO-MBSE part. Firstly, a brief
explanation of MDAO and MBSE is provided along with the study-subject UAV and the
developed MDAO model from the work earlier. Then, the investigation method used for
developing MBSE models is given. The investigation method includes requirements im-
plementation on MBSE, MDAO implementation on Eclipse Papyrus, and MDAO-MBSE
connection. After that, the result and analysis obtained from the investigation method
are explained. Finally, the conclusion of the project along with the perspectives for future
work are provided.

2 MDAO AND MBSE MODELS AND CONTEXT

2.1 MDAO and XDSM

Since designing an aircraft involves several disciplines such as aerodynamics, structure,
propulsion, and performance, any design changes in one discipline certainly will affect
other disciplines. MDAO allows the possibility to obtain the optimized value of the desired
parameters in order to minimize some quantities of interest such as fuel consumption
or weight with respect to some constraints. MDAO models are usually displayed in a
graphical representation known as eXtended Design Structure Matrix (XDSM). Figure 1
shows an example of an XDSM of a system that has four disciplines.

While green rectangle represents each discipline, grey parallelogram represents response
variables which are being transferred and calculated among the disciplines. White paral-
lelogram represents design variables which are initially introduced to the system. Finally,
the round rectangular shape represents driver which distributes variables and performs
the optimization calculation.

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

Figure 1: MDAO Mock-up model [1].

Within this project, there are two tools that were used to obtain the MDAO model of
a UAV. The first tool is OpenMDAO [2]. It is an opensource platform on Python that is
capable of performing an optimization calculation. The second tool is WhatsOpt [3]. It is
a web-based tool that allows users to graphically construct an XDSM [4] representation,
which can be exported directly from a web browser to the computer as Python files. The
exported files are to be further coded on Python along with the previously mentioned
OpenMDAO platform.

2.2 MBSE

The more complex a system is, the more difficult to trace down the design requirements
and also to ensure that the information is consistent among each design process. The
MBSE approach replaces the previous document-based approach.

Initially, MBSE used to propose methods close to software engineering to visualize the
design of a system using UML (Unified Modeling Language). Then, due to the absence of
specific MBSE concepts, SysML (System Modeling Language), an extension of the UML,
was developed [5]. SysML provides nine different kinds of diagrams displaying different
perspectives of a system. Within the scope of this project, Requirements diagram and
Block Definition Diagram (BDD) were mainly used.

Apart from allowing the visualization of relationship among each requirement, Re-
quirements diagram also enables the traceability of requirements to other elements in the
system (i.e., BDD) [6]. The main elements in the diagram includes Requirement and Re-
quirements relationship. Requirement is basically a block that has two string attributes:
“id” and “text” to tag and accommodate a requirement respectively. Requirements re-
lationships show the relationships between each requirement for example: “Derive” and
“Refine”. While “Derive” emphasizes that a requirement is further expanded, “Refine”
means a requirement is further clarified.

BDD provides the capability to visualize the structural architecture of a system. The
important elements that were used within the scope of this project are Block, Port and
ItemFlow. A Block contains Property which is practically its attribute. Port can be
used on each Block to specify the Property being exchanged among the Blocks. Lastly,
ItemFlow specifies the path of the Property exchange between Ports.

Within this project, Eclipse Papyrus with SysML 1.6 was used to house the MBSE

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

models. It is an opensource tool that supports UML/SysML modeling with the capability
to have a semantic variation to customize diagrams and Object Constraint Language
(OCL) to implement a consistency validation process.

Study case

To develop a framework that includes the MDAO, MBSE, and MBSA model, a study
subject was needed. Inspired by Delair’s DT26 [7], missions and certain parameters of
the study subject were referred to.

2.3 Context and key issues

Initially, the MDAO model was first developed. Starting with a simple UAV design
developed by ONERA [1] as seen in Fig. 1, there are 4 main disciplines: Mission, Voilure,
Puissances, and Masses. With the given model, the Voilure discipline was redesigned and
renamed to be called Aero. Then the Fuselage and the Empennage disciplines were also
added as seen in Fig. 2.

Figure 2: Final MDAO model from last year research.

Each discipline has inputs, outputs, and equations that calculate different design pa-
rameters. Section below briefly explains each discipline. Note that the detailed explana-
tion was thoroughly explained in previous reports [8], [9].

Mission

The Mission discipline calculates the vit max from the defined vit eco and vit vent.
Then it uses the simple velocity equation to calculate the duree crois.

Fuselage

The Fuselage discipline calculates the area fus by assuming that the shape of the fuse-
lage is a cylinder. Then with the assumption of skin friction drag as a majority of drag,
Cx fus is calculated by combining drag from the laminar and turbulent area. Finally,
masse fuselage is calculated from the mass approximation equation [10].

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

Aero

The Aero discipline calculates the wing parameter such as chord, surface, and Cz using
the OpenAeroStruct library and constraint inputs like vit eco and wing span.

Empennage

The Empennage discipline calculates S HT and S VT from the tail volume equation [11]
with the tail volume constant [11]. Also, masse empenn is calculated from the mass
approximation equation [10].

Puissances

The Puissances discipline calculates the puissance crois eco and puissance crois max
from Cx fus, area fus, Cx, Cz and surface with the basic drag coefficient and velocity
equation.

Masses

The Masses discipline calculates the mass of motor and turbine according to the power
needed. It also calculates the empennage mass from the calculated surface area using the
historical data. Finally, it combines mass of every component and obtains mtow.

Turn

The Turn discipline calculates the bank angle and the turn radius from the aircraft
parameters such as vit eco, mtow, and surface using the steady turn assumption. The
importance of this discipline is that the operating range is constrained by regulations and
requirements.

2.4 Aims and objectives

Recall the aim of this project to successfully connect the MDAO and MBSE models
together. This means the realization of a design framework which optimizes system pa-
rameters (MDAO) while ensuring the consistency and fulfilling all requirements (MBSE).

Since the MDAO part was well established, the steps to be further achieved are to
obtain the MBSE part and to identify the connection between MDAO and MBSE. Given
that the following objectives were planned.

1. To identify all related UAV’s stakeholders and requirements

2. To document all the requirements onto MBSE

3. To establish a connection between MBSE and MDAO

4. To establish information transferring method between MDAO and MBSE

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

3 INVESTIGATION METHOD

The principal objective of this project is to be able to link the requirements of the
surveillance UAV defined in the early stages of any system design (and refined in MBSE)
with the design model and its optimization in MDAO as it has been explained. In order
to achieve this connection, three steps should be performed: 1) definition of the system
requirements and its refining in MBSE, 2) preparation for implementing the MDAO model
in Eclipse Papyrus (MBSE) and, 3) the connection between models using XML language.

3.1 Requirements implementation in MBSE

The requirements definition is a process done previously to the architecture design. It
gathers all the needs from the stakeholders and transforms them into specific, measurable,
achievable and traceable requirements which must be fulfilled by the system after its
development.

The first step is, thus, the identification of the different stakeholders involved on the
design and use of the UAV and its interest and priority in the system development as it
can be seen in Table 1. This will allow to define all the needs and technical requirements
of the system which are displayed in [12].

Table 1: Stakeholders list.

ID Stakeholder Interest Flexibility/Priority
STH.01 Shareholders Profit/Funding Mandatory / Medium
STH.02 Manufacturer Design/Performance/Cost/Delay Mandatory / High
STH.03 Operator Quality/Performance/Design Mandatory / High
STH.04 Customer Quality/Delay/Services Mandatory / High
STH.05 G.F Regulation/Employment Not applicable / Low
STH.05.1 D.G.A Legislation/Safety Mandatory / High
STH.06 Local community Employment/environmental issues Optional / Medium
STH.07 Environmental association Pollution/Regulation Optional / Medium

Profile definition and Requirement diagram in SysML

Once all the requirements are defined, the next step is to introduce them in the MBSE
model. In order to do so, Eclipse Papyrus allows to gathered all of them in the Require-
ment diagram available in the SysML package. This diagram represents the requirements
in blocks which contains a descriptive text of them and an identifying id. However, Pa-
pyrus and SysML give the possibility of refining this diagram in two different ways.

The first one is creating a stereotyping profile in Papyrus. The creation method of
the profile is explained in [12] and it is displayed in Fig. 3. It allows to introduce more
information in the requirement block, such as the type (performance, operational context,
functional, design or safety requirement), the source (if the requirement was found in any
special documentation), the stakeholder’s involved and a verified attribute.

The second way is to connect the requirements using the diagram in SysML. Require-
ment diagram has some features that help to establish links between the requirements,
which are generally used to clarify their hierarchy, as it can be seen in Fig. 4. For this
project, three different types of link are used: refine, used when the client requirement
add information more concrete than the one contained in the supplier requirement; derive,

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

which conveys that the requirement at the client end is derived from the requirement at
the supplier end (e.g. when the client requirement imposes a constraint in a subsystem
derived from a system specified in the supplier); and copy, when the text in the client is
a read-only copy of the text in the supplier.

Figure 3: Requirements profile.

Finally, all the requirements have been organised in different packages that represent
their type, so it is easier to access the diagram. Moreover, for the MDAO connection,
the requirements that will be fulfill by the MDAO process are more related, obviously, to
the design and performance package, which is decomposed in three other packages (Mis-
sion, landing and take-off performance). SysML also generates automatically requirement
tables with all the refined information.

Figure 4: Requirements diagram with refine and derive connections.

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

Requirement connection with MDAO

Defining a connection between the requirements and the MDAO model is the main
reason for starting this research process and, thereby, it is the last objective to accomplish.
The great interest in this connection is due to the reduction in the time effort of the design
process as, nowadays, there is no optimized process to link the requirements that may
be take into account or be satisfied in the analysis and optimization design. Thus, these
parts are performed independently and a connection will lead to a more efficient process.

Although this connection can only been established once the MDAO model has been
implemented in Papyrus, it is important to highlight in this section that the Requirement
diagram has a type of link called satisfied, which refers to a block defined in the BDD
(Block Definition Diagram) from SysML, that is identified as the party responsible for
fulfilling the requirement. As it will be explained later, the MDAO model will be repro-
duced in the MBSE using this BDD diagram. By doing it, the disciplines from MDAO
are defined as blocks, which can be linked with those requirements they will be in charge
of by using the satisfied connection. In this way, it is possible to fulfill all the design and
performance requirements identified prior to the design process. An example can be seen
in Fig. 5, where the discipline Mission satisfies the cruise speed limit that have been taken
into account in the MDAO model.

Figure 5: Satisfy connection between block and requirement.

3.2 MDAO implementation on Eclipse Papyrus

The MDAO representation on MBSE was thought to be necessary because it would
allow the developed MDAO to exist right inside MBSE model. This allows the previ-
ously developed requirements diagram to be directly connected to the (representation
of) MDAO model. To represent the MDAO model on Papyrus (MBSE platform), BDD
was used. As Block is a representation of Discipline, Property (Attribute) within each
Block represents variables. Furthermore, Port and ItemFlow were used to represent the
variables exchange among disciplines. However, the basic BDD of SysML alone is not
capable of wholly representing the MDAO model. Given that, a profile was created to
further extend the BDD.

Profile definition

Initially, the meta-class Class is extended by a stereotype called Discipline as seen in
the top left of Fig. 6. This is to have each discipline in the MDAO model to exist in the
BDD.

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

Secondly, the meta-class Property of a Block is extended by a stereotype called “Disci-
plineVariable” as seen in the middle of Fig. 6. The DisciplineVariable stereotype has two
attributes to better represent the MDAO variables. The two attributes are “Description”
and “Unit”. While “Description” was thought to be used for referencing purpose, “Unit”
will directly represent each variable’s unit. With this extension, each variable can be
represented with a Block’s Property.

Thirdly, the meta-class Port is extended by a stereotype called “Artefact”. This exten-
sion of Port has two attributes: “direction” and “VariableTransfered”. The “direction”
attribute has a specially defined Enumeration Type called “Direction” to specify whether
the Port receives (input) or sends (output) DisciplineVariable. The VariableTransfered
specifies which DisciplineVariable going through a Port. Note that the “Association” rela-
tion was used to specify that the VariableTransfered attribute refers to the DisciplineVari-
able stereotype. With this extension, the variables exchange in the MDAO model can be
represented.

Figure 6: Profile diagram.

Lastly, the meta-class DirectedRelationship and InformationFlow were extended by a
stereotype called VariablesFlow. Basically, this was done so that the ItemFlow entity in
the BDD can have more than one variable and to accommodate some constraints as it is
mentioned in the following section.

OCL constraint language

As it is defined in the OMG documentation [13], Object Constraint Language (OCL)
is a formal language used to describe expressions on UML models and, thus, it can be ex-
tended to SysML models (as in Papyrus SysML packages stereotypes UML meta-classes).
The OCL constraints can be applied to any kind of meta-class, Stereotype, operation,
guard, message, action or attribute, which will be the Context of the constraint de-
fined [14], [15].

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

OCL can be used for several purposes, but for this project the common use is for
specifying invariants for the Stereotypes created in the profile and for specifying target
(sets) for messages. Whenever a specific OCL constraint is defined, it imposes a boolean
condition stated by the invariant contained in it and affects only the Context. Papyrus
incorporates a tool for performing the OCL validation and if any condition is not satisfied,
this validation will give an error.

The main idea is to use OCL as a validation method to implement the MDAO models
to Papyrus. As it is explained later, the BDD diagram used to duplicate the MDAO model
in MBSE can use the profile previously defined and, consequently, any OCL constraint
contained in it. Therefore, any MDAO model can be implemented in Papyrus and use
this profile and, moreover, any modification on an existing one will not affect the OCL
validation (as long as all the invariants are still satisfied). This provides a versatile profile
capable of being adapted to any model and with a validation process already incorporated.

The OCL constraints added to the profile are used to validate the BDD diagram con-
sistency with the MDAO model and, additionally, they provide a guide for building this
diagram that will be of help to establish the connection between MBSE and MDAO when
using XML. Six OCL constraints were added to the model, the three first ones have
Artefact as Context and the last three, VariablesFlow :

• PortType: verifies that the port is typed with the classifier (the Discipline block)
of the variables contained in it.

• PortVariableName (represented in Fig. 7 and PortVariableType: check that the
variables contained in a port of a Discipline are also contained in the Discipline
with the same name and type.

• FlowInput : used to verify that the set of variables in a VariableFlow sent between
ports is exactly the same as the set of variables in the Input port.

• FlowOutput : check that the set of variables in a VariableFlow is included in the
set of variables of the Output port. The reason for not declaring same sets as done
with the Input port is that all the variables sent from a Discipline, which may share
variables with more than one Discipline, are contained in the same Output port.

• InputOutput : similar to the previous one, but between the Input and the Output
port connected with a VariableFlow.

Figure 7: OCL constraint (PortVariableName).

All these constraints will be taken into account for building the BDD diagram and
the XML file that will be explained in the last part of the investigation methods. Never-
theless, more constraints can be added to improve the profile and the validation process,

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

or even constraints coming from the requirements for the computation of the value of
some discipline variables (e.g. a limit value that cannot be exceeded for a special kind
of variable). It is necessary to remark that Papyrus gave some problems when trying to
define the OCL constraints in the SysML diagrams. Consequently, for the last example,
the constraint should be apply on the discipline variable stereotype from the profile and
referring to its default value, such as follows:

i f s e l f . base Property . de fau l tVa lue . ocl IsTypeOf (UML: : L i t e r a lRea l) then
s e l f . base Property . de fau l tVa lue . oclAsType (UML: : L i t e r a lRea l) . value <20.0
e l s e
t rue
end i f

Listing 1: OCL constraint for discipline variable value

The constraint in List 1 is applied to every discipline variable whose default value has
been defined as a LiteralReal and checks that the value given is lower than 20. This is a
general example, but there are several ways to delimit the number of variables to which
the constraint is applied.

Finally, although it is not really necessary for the model, it would be useful to add
an OCL constraint in the requirement stereotype from the requirement profile in order
to verify that all the design and performance requirements are satisfied by at least one
Discipline block from the BDD. However, in this project some problems with this process
in Papyrus made impossible to perform the validation.

Block Definition Diagram

Once the profile with the OCL constraints is completely defined, it is possible to build
the Block Definition Diagram (BDD), which is going to be the representation of the MDAO
model in Papyrus (MBSE model). However, so far in this section, this implementation
is done independently, which means that the BDD is totally built in Papyrus tool, just
using a specific MDAO model as reference in order to add all the Discipline blocks, its
discipline variables and all the ports and connections between Disciplines.

First of all, it is necessary to import the profile defined so that all the stereotypes can
be applied. Once imported, the following elements have to be stereotyped: the block
(with Discipline stereotype), its properties or attributes (with DisciplineVariable), its
ports (with Artefact) and the itemflows (with VariablesFlow), which represents the flow
of variables between ports.

Figure 8 displays in red circles all these stereotypes in the Discipline block called
Mission from our MDAO model. This discipline used the variables vit eco and vit max
from the Driver (thus, there is a port called Input mission-driver) to compute the duration
of the cruise flight (duree crois). Then, it send the variable computed in it, duree crois,
and vit max through the port output mission and these variables flow through the Flow
miss-mass to other disciplines. Finally, it can be seen also that the stereotype Artefact
from the output mission port contains these variables in the attribute VariablesTransfered.

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

Figure 8: Example of Block in BDD with all the stereotypes for MDAO model.

By repeating the stereotype process as it has been done in Fig. 8, it is possible to
implement an entire MDAO model in MBSE. Despite the fact that this could be already
understood as a connection between the models, the process is not optimized. As it has
been said, the models are built independently (the BDD or the MDAO are both built
from scratch) and any improvement, where more elements have to be introduced, lead to
a different change in each model. This is the reason for searching a real connection that
allows to create the BDD and the OpenMDAO at the same time, reducing the time effort
and improving the validation process.

3.3 MDAO-MBSE connection

This connection will be useful as an iterative process for going from one model to the
other. In other words, when a change has to be introduced in one model (for example, a
new discipline block in the BDD is needed to satisfy a new requirement or new variables are
added in a MDAO discipline to optimize the computation value of an objective function),
the other connected model added the new elements at the same time.

In order to achieve this connection, it was found that when building a Papyrus project,
this tool creates an XML file containing all the information of all the elements from the
model with their applied stereotypes. This file is not a read-only file, but it can be
overwritten and the changes will appear in the model and diagrams as well. Therefore,
the model can be changed or even created in this XML file. Furthermore, Python has
two libraries which allow to parse XML files and modify them by adding new elements,
changing the existing ones or eliminating them. As OpenMDAO is coded in Python, XML
offers an interesting opportunity to establish the desired link.

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

XML

Extensible Markup Language (XML) is a markup language that defines a set of rules
for encoding documents in a format that is both human-readable and machine-readable.
A further documentation can be found in [16], but, basically, XML documents are a string
of characters, composed of elements and subelements. Each element or subelement begins
with ¡ and ends with ¿ and is defined by a tag and its attribute. The tag can be seen as
the name given for the element and the attribute consists of a set of name–value pairs
that can be used to characterised the tag.

An example is given below in List 2 and represents the discipline variable vit max
from Fig. 8. This is a subelement of the element that defines the block Mission. Its tag
is ownedAttribute, which means that it is an attribute owned by a package element (in
this case the block Mission) and the attribute is the rest of the line contained between ¡
and ¿. In the attribute there are three name-value pairs: the first one specifies that this
subelement type is a Property of the block; the second one is an id; and the third one is
the name given to this owned attribute and displayed in the model. The second line is
a subelement of the this ownedAttribute. It represents the value of the variable, which is
going to be 15.8 m/s. Finally, the last line is the stereotype DisciplineVariable.

<ownedAttribute xmi:type=”uml:Property ” xmi : id=”TJL xcP” name=”vit max”>

<de fau l tVa lue xmi:type=” uml :L i t e ra lRea l ” xmi : id=” 5x4g ” value=” 15.8 ”/>

</ownedAttribute>

<Pro f i l e OCL :D i s c i p l i n eVar i ab l e xmi : id=” zWCbD8” base Property=”TJL xcP”/>

Listing 2: XML sample for vit max variable

Just by observing in a same way as in List 2, the different elements in an XML file
from an already built BDD, it is possible to identify all the discipline blocks, the discipline
variables, the ports and the itemflows. It is easy to conclude that, knowing all the tags
and attributes for each element of the diagram, it is only necessary to learn how to access
or create those elements from an XML file using Python and, thereby, in the OpenMDAO
model.

Luckily, Python has two libraries that parse XML files and allow to access the elements
and subelements and, moreover, to create them. These libraries are called minidom and
ElementTree.

Both libraries have similar features and functions to modify XML files. An interesting
basic guide that explains them can be found in [17] and [18]. However, it seems that
minidom is better to access existing elements and ElementTree eases the creation of new
ones. This remark is really important because depending on which model should copy a
new element added to the other model, one library or the other will be used.

When a new element is introduced in the BDD diagram from the MBSE model, the
OpenMDAO model will have to add it as well. For this case, the element is automatically
added to the XML file from the diagram. Hence, the OpenMDAO will just have to read it
from the XML, so minidom is more comfortable to access the element and its attributes.
For example, if a new discipline variable is added to a Discipline block, the OpenMDAO
model will use its name and its default value attributes to specify the independent variable
inside the discipline, its value and the connection, if necessary, with the variable in other
disciplines.

For the other case where a new element or elements are introduced in the MDAO and,
straightaway, to the BDD, they will be added manually in the Python code with the

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

OpenMDAO model. For that purpose, ElementTree helps better to create the elements
or subelements. It is essential to know which type of element is being upload to the XML
file since the tag and attributes are defined in a different way. Looking at the XML sample
described in List 2, it could have been created after the variable vit max was defined in
the OpenMDAO with a value of 15.8. Once the XML file is updated in Python, it can be
imported in Papyrus and the variable will appear in the BDD diagram with the stereotype
and the Default value as it can be seen in Fig. 9:

Figure 9: vit max introduced to BDD using XML.

Both process with all their steps are explained in detail in [12]. Still, some of the
functions from the libraries used need to be highlighted:

• parse: present in both libraries, this function is mandatory to be able to parse and
modify the XML file.

• getElementsByTagName() and getAttribute(): only from minidom, the first function
finds and creates a list of all the elements or subelements of the file that have the
same tag name as the one defined in the brackets. The second function is used after
the first one to access the value of the attribute name specified in brackets from one
of the elements in the list previously built.

• SubElement(parent, tag, attrib=): from ElementTree, this function creates an ele-
ment instance, and appends it to an existing element (parent). tag is the subelement
name and attrib is an optional dictionary, containing element attributes with their
values. An example of how to create the XML lines in List 2 with this function is
shown in List 3. In this list, firstly, it can be seen that the variable vit max gets the
value 27.8 in the MDAO model. Then three subelements are created: the first one
specifies the ownedAttribute of the parent element, the Discipline block Mission;
the second one is the applied stereotype DisciplineVariable from our Profile OCL
and is appended to App which is the first element of the XML and represents all
the namespaces of the model; the third one is the default value (27.8) whose parent
is, obviously, the first subelement created.

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

• write(”Output.xml”, xml declaration=True, encoding=
”UTF-8”, method=”xml”): from ElementTree, writes the element tree to a XML
output file with a UTF-8 output encoding. This XML file is the one with all the
desirable modifications that will be imported to the Papyrus diagram.

top 1 [’p . vit max ’]= 27 .8
vitmax=s t r (top 1 [’p . vit max ’]) ;
vitm=ET. SubElement (miss , ’ ownedAttribute ’ , a t t r i b={ ’ xmi : id ’ : v i t e i d , ’name ’ : ” vit max”

, ’ xmi : type ’ : ”uml : Property ” }) ;
ET. SubElement (App , ’ Prof i le OCL : D i s c i p l i n eVa r i ab l e ’ , a t t r i b={ ’ base Property ’ : v i t e i d , ’

xmi : id ’ : v i t e i d 2 }) ;
ET. SubElement (vitm , ’ de fau l tVa lue ’ , a t t r i b={ ’ xmi : id ’ : v i t e v a l u e i d , ’ xmi : type ’ : ”uml :

L i t e r a lRea l ” , ’ va lue ’ : vitmax }) ;

Listing 3: Example code for creating the XML code of List 2 in Python

Taking into account all this information, it is possible to conclude that a link between
model can be established. As it was explained before, it could be done by three different
ways:

• Building firstly the MDAO model and, at the same time, building the XML in
Python manually with ElementTree so that it will be imported to the MBSE model
for the validation of the model itself and the requirements.

• Other way could be creating first a BDD diagram to see which block satisfies each
requirement, so that the XML is automatically built and, next, accessing all the
elements from that file with minidom for building the MDAO model to perform the
analysis and optimization.

• Additionally, when both models have already been implemented, it is easier to
change anything in one model and incorporate it to the other one without affecting
the validation process.

In order to see the steps of these link processes, take a look at [12]. A final remark has
to be done to explain the general structure of the XML file that Papyrus uses and is able
to read and import. The principal element of this file is the group of namespaces used.
In XML it is mandatory to have this namespaces registered every time the ElementTree
library is used with the function register namespace() as it is done in List 4. Furthermore,
to be able to write correctly the namespaces in the output file, every namespace has to
be referred with the second name given in the function register namespace.

ET. r eg i s t e r namespace (’ xmi ’ , ” http ://www. omg . org / spec /XMI/20131001”) ;
ET. r eg i s t e r namespace (’ Blocks ’ , ” http ://www. e c l i p s e . org /papyrus/ sysml /1 .6/SysML/Blocks ”) ;
ET. r eg i s t e r namespace (’ Prof i le OCL ’ , ” http ://www. i s a e . f r / c e r t i f i c a t i o n /1”) ;
ET. r eg i s t e r namespace (’ uml ’ , ” http ://www. e c l i p s e . org /uml2 /5 . 0 . 0 /UML”) ;

Listing 4: Python code for registering the namespaces

Therefore, the code in List 3 will not work correctly. It was displayed like that form to
keep the same format of the previous XML in List 2. However, all the namespaces have
to be changed. E.g. the ’xmi:id’ will be changed to the name given in register namespace,
’http://www.omg.org/spec/XMI/20131001id’, and the third line will be written like this:

vitm=ET. SubElement (miss , ’ ownedAttribute ’ , a t t r i b={ ’ {http ://www. omg . org / spec /XMI
/20131001} id ’ : v i t e i d , ’name ’ : ” vit max” , ’ {http ://www. omg . org / spec /XMI/20131001}
type ’ : ”uml : Property ” }) ;

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

Appended to the namespaces element (called App in Python), there are several subele-
ments. The first one and most important, is the uml package, where all the elements of
the diagram have to be appended to, and after this element, all the stereotypes applied.
Hence, when stereotyping in Python, the parent of the stereotype tag is not the variable
to which the stereotype is applied, but the first element App.

4 RESULT AND ANALYSIS

As it was explained in the final part of the previous section, there are several ways
to connect the models and perform a validation. During the project, although all ways
were tested to see their viability, the main methodology used was to create a XML file in
Python from an existing MDAO model due to the fact that several models were already
available from last year research study. Hence, this process can be described as follows:

Figure 10: BDD result after importing the XML file created in MDAO.

1. In order to be able to import a correct XML file to Papyrus, the first step is to create
an empty BDD in this tool and apply the Profile OCL to use all their stereotypes.
The XML file from this empty BDD will contain the first element with all the
namespaces needed and the structure of the XML will be ready to be used in the
MDAO model. It is important to highlight that to register the namespaces of the
stereotyped profiles it is necessary to use them in one element of the empty BDD.
Thus, it is necessary to create an empty block and stereotype it with Discipline.

2. The MDAO model used was the one from the mock-up in Fig. 10. In order to see
results not too long this model is perfect. All the Python code was written in a
Jupiter Notebook containing the model. The procedure was, after parsing the XML
file created before from the empty BDD, writing the different elements in the XML
file at the same time the OpenMDAO defined them. Thus, firstly, all the Discipline
blocks were created, including the Driver with all the independent variables. Then,
after modelling each discipline in MDAO, all the ports, variables and connections
of them were added to XML.

3. Now the XML is already finished and, consequently, the BDD is built. It only
remains to import the XML file in Papyrus and the model in MBSE is practically

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

done. After importing the file, the model explorer will show that all the elements
from MDAO have been added. However, the diagram console will not display them.
This is not a problem because the elements exist in the model and the validation
process of the OCL can be performed already. Just by dragging each element in the
same order as in the XDSM of the MDAO model, it is possible to replicate it and
the final result is shown in Fig. 10.

4. Afterwards, the OCL validation is performed to see the consistency of the model
and to test any constraint that can be added to the profile to maybe fulfill the re-
quirements in some variables or safety requirements. The validation in the BDD is
really simple as by right clicking the diagram, there is a feature of OCL containing
the validation bottom (see Fig. 11a). If any error is found in the model, it will be
displayed in the model validation console as in Fig. 11b, along with the name of
the OCL constraint violated and the variables that violate it. In Fig. 11b, it can be
seen that two OCL were not satisfied correctly: the first one refers to PortVariable-
Type and means that there is a variable in the port input mission-driver from the
discipline Mission that has not the correct type; the second one refers to FlowInput
and states that the itemFlow Flow miss-voil is sending a set of variables to an input
port that does not contain that specific set.

5. Once the model has been validated, a final connection with the requirements can
be done as in Fig. 5 to connect the Discipline blocks with the requirements. This is
the last and most important step as it provides a connection between MDAO model
and requirements.

(a) OCL validation feature in BDD. (b) Model validation console with OCL violated.

Figure 11: OCL validation

Comparing the BDD result in Fig. 10 with the initial MDAO model Fig. 1, it is possible
to see the a lot of similarities between the models. The procedure leads to a good imple-
mentation of the MDAO in the BDD and the validation gave the good results expected.

It is necessary to highlight that for each discipline in the BDD, there is only one output
port with all the variables that are sending from that discipline, regardless of the destiny
of the variables.

Whereas it is not the same situation for the input ports, which only contain the vari-
ables sent through the VariableFlow, meaning that the origin of the variables has to be
considered and, for each set of variables coming from a different discipline, one input port
will be added. The reason is that, for the way the OCL language was defined for the Vari-
ableFlow, it checks that the set of variables in it and in the input port (FlowInput) has
to be the same and, hence, no variables coming from other disciplines can be introduced.

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

This could be changed by modifying the OCL and use the function includesAll as it
was done with the output ports, so only one input port will be needed. But for the better
understanding of the model and because of the convenience building the XML in Python,
it was decided to build the model in this way. The validation process is no affected anyway.

Finally, once the method was finished, it was time to check in that all the design and
performance requirements were satisfied by, at least, one discipline block looking at how
the MDAO model was built and connecting them as in step 5). Then, it was perceived
that some requirements were still not connected (for example one referring to a turn
maneuver). That is why in Fig. 2, the discipline Turn was added. This step was not
finished during the time of the research, but an idea of how to create the discipline can
be concluded by looking at how it was explained the implementation of the XML in the
MDAO using the minidom library.

5 CONCLUSION AND PERSPECTIVES

This link has been a first attempt to connect MDAO and MBSE and further investi-
gation is needed to improve the efficiency of the connection, especially in terms of time
effort (still, it is complicated and long to build the XML file in Python and there is no
much time saved comparing with building the models independently). However, it is a
good start and the validation process seems to work as expected.

More than one MDAO model was tested using this link and good results were obtained.
In terms of effectiveness, if no model has been built, it is more pragmatic starting with
the MDAO model in spite of the fact that the XML file has to be written manually. The
main reason is that, if the BDD is built first, there is not much time saved reading the
XML file with Python and the MDAO can be developed independently without using
much more effort. However, if at the same time you are building the MDAO and the
XML, the BDD will be automatically developed. Furthermore, [12] gives a guide to write
the code for the XML and this process can be automated.

Even if the step 5) in the results section 4 provides a first link with requirements, the
number and type of OCL constraints added to the model for a better connection to the
MDAO model and the requirements is up to the user of this procedure. The profiles are
available to be modified and add them, and a great variety of possibilities is offered. One
example was given in List 1 to limit the value of a set of variables.

To conclude this paper some perspectives can be mentioned in order to keep developing
these models and their connection:

1. Improve MDAO workflow especially on Mission accuracy (Take-off, Landing and
Climb) and finalize Turn discpline.

2. Build other SysML diagrams for the MBSE model (Use case diagram and physi-
cal BDD were already developed, but there are other diagrams that may help to
understand the model).

3. Investigate in the possibility of adding the OCL constraints directly in the BDD so
that their context would be a specific discipline variable.

4. Make an OCL constraint work in the Requirements diagram so that the validation
process takes into account that all requirements are satisfied by one or more dis-
cipline blocks. During the project the requirements profile was giving unexpected

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

error when trying to add any kind of OCL constraint. The idea is to introduce the
constraint given below:

s e l f . s a t i s f i e dBy−>notEmpty ()

5. As it was explained in [8] and [9], finding a link with MBSA model is a really
interesting research for many companies these days.

ACKNOWLEDGEMENTS

This work was supported by the Defense Innovation Agency (AID) of the French Min-
istry of Defense (research project CONCORDE N° 2019 65 0090004707501). This work
is part of the activities of ONERA - ISAE - ENAC joint research group.

REFERENCES

[1] P. Choy and B. Danet. AVOCETTES UAV conceptual design tool. Technical report,
ONERA, 2020.

[2] J. S. Gray, J. T. Hwang, J. R. Martins, K. T. Moore, and B. A. Naylor. Openmdao:
An open-source framework for multidisciplinary design, analysis, and optimization.
Structural and Multidisciplinary Optimization, 59(4):1075–1104, 2019.

[3] R. Lafage, S. Defoort, and T. Lefebvre. Whatsopt: a web application for multidisci-
plinary design analysis and optimization. In AIAA Aviation 2019 Forum, page 2990,
2019.

[4] A. B. Lambe and J. R. Martins. Extensions to the design structure matrix for the de-
scription of multidisciplinary design, analysis, and optimization processes. Structural
and Multidisciplinary Optimization, 46(2):273–284, 2012.

[5] M. Hause et al. The sysml modelling language. In Fifteenth European Systems
Engineering Conference, volume 9, pages 1–12, 2006.

[6] L. Delligatti. SysML distilled: A brief guide to the systems modeling language.
Addison-Wesley, 2013.

[7] https://delair.aero/delair-commercial-drones/dt26x-surveillance/, 2020.

[8] K. Thanissaranon. Global model of aircraft design: from performance requirements
towards architectures optimization. 2020.

[9] C. G. Rubio. Global model of aircraft design: from performance requirements towards
architectures optimization. 2020.

[10] A. Essari. Estimation of component design weights in conceptual design phase for
tactical UAVs. PhD thesis, Univerzitet u Beogradu-Mašinski fakultet, 2015.

[11] D. Raymer. Aircraft design: a conceptual approach. American Institute of Aeronau-
tics and Astronautics, Inc., 2012.

https://delair.aero/delair-commercial-drones/dt26x-surveillance/

C. Garcia-Rubio, K. Thanissaranon, J.-C. Chaudemar, N. Bartoli and T. Lefebvre

[12] C. G. Rubio and K. Thanissaranon. Supplementary document for global model of
aircraft design: From performance requirements towards architectures optimization.
2021.

[13] Object constraint language. https://www.omg.org/spec/OCL/2.4/PDF, 2014.

[14] Acceleo/ocl operations reference. https://wiki.eclipse.org/Acceleo/OCL_

Operations_Reference, 2019.

[15] L. Audibert. UML 2: De l’apprentissage à la pratique, volume 298. Ellipses, 2009.

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, et al. Extensible
markup language (xml) 1.0, 2000.

[17] The elementtree xml api. https://docs.python.org/3/library/xml.etree.

elementtree.html, 2021.

[18] S. Robinson. Reading and writing xml files in python. https://www.omg.org/spec/
OCL/2.4/PDF, 2021.

https://www.omg.org/spec/OCL/2.4/PDF
https://wiki.eclipse.org/Acceleo/OCL_Operations_Reference
https://wiki.eclipse.org/Acceleo/OCL_Operations_Reference
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF

	Introduction
	MDAO and MBSE models and context
	MDAO and XDSM
	MBSE
	Context and key issues
	Aims and objectives

	Investigation method
	Requirements implementation in MBSE
	MDAO implementation on Eclipse Papyrus
	MDAO-MBSE connection

	Result and Analysis
	Conclusion and perspectives

