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Abstract
This paper aims at analysing the behaviour of particle localisation error in 3D Lagrangian Particle Tracking
(LPT) techniques, with a particular emphasis on general properties, independent of a specific algorithm.
Based on the hypothesis that in LPT algorithms, errors on the image formation models are solely due to
random noise, we show/prove the existence of a best achievable root mean square error (RMSE) on particle
localisation, that, for a setup at a given seeding density, depends only on the noise level. We provide
a procedure to estimate this lower bound, and show that it can only be reached if there are no missed
detections; further on, we establish a link between localisation error and fraction of missed particles. We
illustrate the consistency of this model on the results of the recent First Challenge on LPT (see ISPIV21
papers by Leclaire et al. and Sciacchitano et al.)

1 Introduction
Lagrangian Particle Tracking (LPT) is gradually becoming the new standard for high seeding density 3D
velocity measurements, both for time-resolved series (see e.g. Schanz et al. (2016)) and double-frame data
(then also referred to as 3D PTV, see e.g. Fuchs et al. (2016), Yang et al. (2019), Lasinger et al. (2019),
Cornic et al. (2020)). Whereas 3D PIV, relying on cross-correlation, induces important spatial averaging,
and thus smoothing of corresponding turbulent scales, residual error on LPT vectors is much smaller, of
the order of a fraction of the particle image size. To cope with high seeding densities, where algorithmic
performance is usually observed to drop, 3D PTV algorithms are often faced with a dilemma in the choice
of the operating point, between retrieving as many vectors as possible – at the risk of getting ghost vectors
a.k.a. false positive (FP), and emphasising reliability i.e. obtaining as few FP as possible – at the cost
of a large number of missed true vectors a.k.a. false negative (FN). Recent literature shows that no clear
consensus yet exists, the two possible choices being made depending on the algorithms.

Our purpose is twofold. The first one is to show that there is a best achievable root mean square error
(RMSE) on particle localisation, depending, for a given flow and camera setup, essentially on the image
noise and the seeding density. We provide a way to estimate it. The second one is to show that the choice
consisting in reducing as much as possible the number of ghosts, leading potentially to less true vectors
retrieved, might have some unexpected consequences on the particles localisation error, and consequently
on the RMSE on the velocity vectors. More precisely, we find that a low velocity RMSE is achievable
only provided that very few vectors are missed; a coupling which, to the best of our knowledge, has not
yet been documented in the literature. While we demonstrate this result in the framework of the recently
introduced DF-TPTV algorithm (Cornic et al., 2020), performance metrics obtained match with results of
the most advanced methods at the 1st Challenge on LPT (Sciacchitano et al., 2020), (Leclaire et al., 2021)
thus confirming its global scope.

The paper is organised as follows. Section 2 briefly describes the synthetic data generation, intended to
reflect as much as possible the one of the 1st Challenge on LPT (Leclaire et al., 2020). Section 3 briefly
states the common principles of tomographic LPT algorithms and introduces the Best Achievable Root
mean square error on particle localisation (BAR). It highlights the requirement of a suitable preconditioning
technique to perform gradient-based optimisation to refine all particle position and intensity. Section 4
presents the RMSE on particle localisation model depending for a given setup and seeding density on only
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Figure 1: (a): cameras setup. (b): crop 256×256 of a synthetic image (ppp=0.12).

two parameters and deals with the consistency of the model predictions with the results of the 1st Challenge
on LPT.

2 Synthetic data generation
The ground truth of 1st LPT challenge data is strictly dedicated to the evaluation of the LPT challenge
and forthcoming submissions to the benchmark site (Leclaire et al., 2021). It is not available for other
purposes, including this work. The starting point of this work being to get a better understanding of the
LPT challenge results, we built a dedicated synthetic two-pulse dataset that mimics as much as possible the
images available to the participants. We have used the particles trajectories of the publicly available dataset
of the 1st Challenge on Data Assimilation https://w3.onera.fr/first lpt and da challenge/.

The physical situation of this case is a wall-bounded turbulent cylinder wake flow (resolved by LES),
with a momentum thickness Reynolds number of the boundary layer of around 4,500. We used the same
optical setup - four virtual cameras are set along an arc of circle as shown figure 1(a) - and image settings
as for the LPT case of the challenge, as disclosed during the presentation of the challenge results during the
3rd CFD for PIV workshop (Leclaire et al., 2020). In particular in terms of particles’ polydispersity with
uniform intensity distribution in [500,1700], diffraction limited particle image, photon noise (20 counts
mean and 8 counts standard deviation), and shot noise. We named this dataset HMDB standing for home
made data base.

3 Determination of best achievable root mean square error on particle lo-
calisation

Most state-of-the-art LPT algorithm based on tomographic principles share the same organisation principle
as sketched figure 2. An image-based detection task is performed that yields a rough localisation that is
refined through an optimisation process. Recorded images are subtracted with predicted images to form the
residue images the process loops on. This loop may include in addition a prediction from previous time
steps.

3.1 Particle accurate localisation
Many different tomo LPT algorithms, Schanz et al. (2016), Yang et al. (2019) and Cornic et al. (2020)
resort to minimising the discrepancy between recorded images and predicted images given by a particle
imaging model depicted in figure 3(a). This is also the case for IPR Wieneke (2013). This boils down to
minimising a criterion which is a function of 3D coordinates Xp and intensities Ep of each particle p. We
note: X,E = {Xp,Ep; p = 1 · · ·P} the set of all the particle 3D coordinates and intensities, P is the number

https://w3.onera.fr/first_lpt_and_da_challenge/ 


Figure 2: schematic of tomo LPT algorithms. A rough detection followed by an optimisation step looping
on residue images.
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Figure 3: (a): imaging model. (b): true location and estimated location due to the noise.

of particles. The criterion writes:

C (X,E) = ∑
c

∑
x

∥∥∥∥∥Ic(x)−∑
p

Ephc(x−Fc(Xp))

∥∥∥∥∥
2

, (1)

where Fc is the projection function for camera c, hc denotes the point spread function and x is a pixel
coordinate. We assume that Fc and hc have been calibrated with enough accuracy so that they can be
considered as perfectly known.

3.2 Best achievable root mean square error on particles localisation
On synthetic experiments, the recorded images Ic are computed from X?

p and E?
p, the true location and

intensity of particle p corrupted with additive noise n:

Ic(x) = ∑
p

E?
phc(x−Fc(X?

p))+n(x) (2)

Let X̂, Ê denote the minimizer of C . Due to the noise, the value of the criterion at true locations and
intensities, C (X?,E?) is not zero and furthermore (X?,E?) is not a minimizer of C . Due to noise, X̂ drifts
away from X? leading to discrepancies between X̂ and X?. For low noise level, the perturbation ∆X(n) is a
linear function of the noise realisation n (Fessler, 1996). A similar result holds for Ê .

The Best Achievable Root mean square error on particle localisation (BAR) is the expected value of the
norm ‖∆X(n)‖ for the distribution N of n. It writes:

BAR = EN

[
‖∆X(n)‖√

P

]
. (3)



Here it is important to note that the BAR is defined as a “true” RMSE. It writes :

√
1
P ∑

P
p=1

∥∥∥X̂p−X?
p

∥∥∥2

and differs from a mean positional error: 1
P ∑

P
p=1

√∥∥∥X̂p−X?
p

∥∥∥2
, whose value is lower. Estimating the

BAR would require to generate many images with different noise realisations ni according to the law of N
and then average the obtained ||∆X(ni)||. As typical residual image noise (i.e. once possible light reflections
have been removed by background subtraction) is uncorrelated in space, and as our synthetic experiments
involve thousands of particles already at low seeding density, estimating the BAR can be achieved on the
basis of a single snapshot, which will lead enough particle position realisations to enable convergence of the
expected value:

EN

[
‖∆X(n)‖√

P

]
≈ ‖∆X(n = nIc)‖√

P
, (4)

where n = nIc stands for the noise realisation of the recorded image.

3.3 optimisation
Computing ∆X boils down to finding the minimizer of C close to (X?,E?). A straightforward way to do so
is to use an optimisation algorithm suitable for non linear high dimension problems – here four times the
number of particles because we also must account for the particles intensity – starting from the first guess
(X?,E?). With tens of thousand of particles, computing the Hessian matrix of C or its inverse is impractical
and Newton’s methods are definitely out of reach. Even quasi-Newton method like BFGS algorithm with
a computational complexity of O(16P2) turns out to be impractical and one has to turn to L-BFGS with
complexity O(4P) or improved gradient descent like eg. conjugate gradient (CG). But straightforward
application of latter techniques fail in practice due ill conditioned criterion C .

3.4 Preconditioning
C suffers from a conditioning problem that originates in the fact that positional gradients are several order
of magnitude greater than intensity gradients. When using L-BFGS or CG, it results in intensity values that
virtually do not change through the iterations and impede the accuracy of localisation. This can be illustrated
on a toy example with only one particle and no noise. The first guess has a localisation error on the 3 axes
of [0.74, -0.45,1] voxel (vx), whose size is equal to the backprojection of a pixel ie. a voxel to pixel ratio v/p
equal to 1, and an intensity error of 10%. Initial residue images (Ic− Iguess) are shown figure 4(a). Negative
values, appearing dark blue, show how much shifted the guessed particle is.

It may be seen figure 4(b) that BFGS which determines the descent direction by preconditioning the
gradient with curvature information is not prone to the conditioning problem and correctly estimates the
intensity. This is not the case for L-BFGS: the intensity stay still through the iterations and leads to a
localisation error 2.5 times higher as shown figure 4(b).

A good conditioning is when the criterion has more or less the same curvature in all the directions, ie.
when its Hessian is close to the identity matrix (up to a scale factor). Let’s note Θ the vector of particles
positions and intensities. Preconditioning amounts to applying a change of variable Θ′ = MΘ such that the
condition number of C̃ (Θ′) = C (M−1Θ′) is better than that of C (Θ). It can easily be shown that: ∇2C̃ (Θ′) =
M−t∇2C (M−1Θ′)M−1. Using the Cholesky decomposition: ∇2C (M−1Θ′) = LLt and setting M = Lt yields:
∇2C̃ (Θ′) = I (Nocedal and Wright, 2006). Green curve in figure 4(a) shows that using this preconditioning
for Θ equal to the first guess, the optimisation through L-BFGS reaches the same performances as BFGS
with a good estimation of intensity. But this approach is impractical with tens of thousands of particles since
we cannot neither compute/store ∇2C (Θ) nor its Cholesky decomposition. We have implemented a solution
that considers an approximate block diagonal Hessian, this amounts to apply the same change of variable
M, as in the single particle case, to the P particles. In practice, we compute a “mean particle Hessian” M by
averaging the Hessian over a hundred of randomly chosen particles in the first guess.

3.5 BAR for the home made data base
Figure 5(a) presents the BAR (black solid line) as a function of the ppp (particle per pixel, tightly related to
seeding density) for the dataset described section 2. We have verified that the BAR value does not depend
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Figure 4: Toy example. (a): initial residue images. It may be seem how much shifted the guessed particle is.
(b): localisation (up) and intensity (bottom) error as a functions of optimisation iterations. The voxel (vx)
size is equal to the backprojection of a pixel. Blue: BFGS, orange: L-BFGS without preconditioning, green:
L-BFGS with preconditioning.

on the noise realisation. It is also of practical interest to know if the BAR can be reached initialising the
optimisation process from an other first guess than X?,E? mimicking the rough localisation step sketched on
figure 2. The solid curves present the final RMSE resulting from an optimisation using the above described
preconditioning technique from various first guess with initial RMSE, named ε, respectively equal to 0.5,
0.75 and 1 voxel. In this experiment, the various initial RMSE are obtained by initialising the particles on
the closest node of a voxel grid as shown in the schematic figure 5(b). The greater the grid step, the greater
ε. The initial intensities are set by solving in a least squares sense the tomographic system (Cornic et al.,
2015) with the particles being on the nodes of the grid.

The dashed coloured curves show the final RMSE without using preconditioning. It may be seen that
the greater the ppp and ε, the farther the result is from the BAR. Conversely, using pre-conditioning with the
same first guesses (see solid coloured curves), it may be seen that the final RMSE virtually does not depend
on the first guess. Whatever a reasonable rough initialisation, the BAR can virtually be reached for all ppp
provided the preconditioning technique is used.

4 Model for predicting an algorithm’s RMSE on particle position based on
its detection performances

DF-TPTV (Cornic et al., 2020) is a recently introduced two frame LPT algorithm relying on tomographic
and sparsity principles. It may be seen in the left hand side figure 6(a) that its performances in terms of
RMSE get farther from the BAR as the ppp grows. This algorithm was originally designed to yield as few
ghosts as possible. Indeed, the Precision figure 6(b) which measures the fraction of true particles among
detected ones is almost 1 up to ppp equal 0.08. It indicates that ghosts are not involved in the RMSE
soaring. The choice of having few ghosts has for this algorithm the consequence of missing particles as
shown by the dropping Recall (fraction of retrieved particles) as the ppp grows. This suggests that RMSE
and Recall might be anti-correlated. A qualitative explanation could be as sketched figure 7(a) and 7(b).
When the ppp is low, the particles do not significantly overlap. A missed particle (ie. not detected) do not
perturb the optimisation of the detected one (red) whose image through the point spread function can be
matched in a least square sense with the recorded one (green) as shown figure 7(a). This is no longer the
case when the ppp gets higher and particles overlap. The missed particle interferes with the optimisation
that results in a compromise solution as displayed on figure 7(b). Accurate location is no longer possible
through optimisation. When the particles overlap a missed particle results from the optimisation point of
view in a much stronger “noise” than background noise.
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Figure 5: (a): black: BAR as a function of the ppp for the home made dataset (uniform intensity distribution
in [500,1700], 20 counts mean and 8 counts standard deviation photon noise); coloured curves: RMSE
resulting from various first guess (see text) and optimisation technique. (b): The particles are displaced on
the grid node for initialisation.

4.1 Modelling the False Negative effect on RMSE
False Negative (FN) are the missed particles whose percentage is given by 1− Recall. An interesting
question to deal with is whether the RMSE of DF-TPTV - and more generally of any LPT algorithm relying
on tomographic principles - can be approximated by simply optimising C from a first guess with the same
amount of adequately selected FN. Figure 8(a) shows that optimising with the same amount of randomly
selected FN from a first guess with ε = 1 results, except for low ppp, in overestimating the RMSE.

It is not surprising because, at least for algorithm relying on tomographic principles, there are particles
that are more liable than others to be missed. One then might think that a random selection is not appropriate.
Indeed, with missed particles being chosen among the least bright, one can see that we get a quite good match
between model prediction and DF-TPTV results as shown figure 8(b).

This result is remarkable because it establishes a link between the root mean square error on particle
localisation and the percentage of missed particles.

4.2 RMSE on particle localisation model
Section 3.5 has shown that without missed particles, ε the RMSE of the first guess, if reasonable, has almost
no influence on the final RMSE. But this no longer holds in presence of missed particles. For ppp ranging
from 0.005 to 0.12, figure 9 shows the RMSE as a function of FN percentage, missed particles being chosen
among the least bright. To get this bunch of curves, we optimised criterion C from initial first guesses with
a given rate of FN among the least bright and various initial RMSE. The box plot spans ε = 0 to ε = 1 voxel.
The coloured solid curves are for ε = 0.5. Given a certain amount of FN, the foot of the box plot is the best
one can do in terms of RMSE. It may be seen that for the lowest ppp in blue, with no significant overlap, FN
rate and ε have virtually no influence on the RMSE. It is consistent with the quantitative explanation given
section 4. The greater the ppp, the greater the influence of the FN rate and ε. The later being visible on the
extent of the box plot. The BAR can be retrieved from the foot of the box plot for a FN percentage equal
zero.

4.3 Consistency with 1st LPT challenge results
This RMSE on particle localisation error model is very simple. It involves, for a given ppp, only 2 param-
eters. Originally built to study the performances of DF-TPTV, the question of its scope naturally arises.
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Figure 6: (a): DF-TPTV RMSE and BAR as a function of the ppp. (b): DF-TPTV Precision and Recall as a
function of the ppp.

(a) (b)

Figure 7: Green particles are the recorded one, the detected (red) particle’s location has to be optimised. (a):
The particles do not overlap. (b): overlapping particles, the optimisation results in a compromise solution.

To answer this question we asked the participants’ and organisers’ permission to compare the results of the
1st LPT challenge (Sciacchitano et al., 2020) with the model predictions. It should be stressed that even if
they share the same principles, the algorithms of each team are different and we do not know exactly how
they work. It should also be highlighted, as already mentioned, that the LPT challenge’s ground truth is not
available for the BAR and RMSE model. Five teams competed in the two pulse LPT challenge, namely:
DLR, LAVISION, IRAE, ETHZ and ONERA. The RMSE prediction given their detection performances is
reported for all the teams except ETHZ, for which the model is not directly applicable. DLR and LAVI-
SION teams submitted results for all the proposed ppp (ie. up to 0.16) while IRAE and ONERA stopped
at ppp=0.08. Figures 10(a), 10(b), 10(c), 10(d) show for the four teams, their RMSE, evaluated with the
ground truth of the 1st LPT challenge, the BAR and the model prediction as a box plot given their detection
performances yielded using the HMDB. Please note that the y-scale are not the same and depend on the
team’s performance.

The model predicts quite well the DLR’s performance that is very close to the BAR, betraying detections
without missed particles. The model’s predictions are not too far from LAVISION results, and suggest, if we
trust the model, that given their detection performances, slightly better RMSE performance is achievable. In
the same manner, IRAE’s performance is also captured reasonably well by the model that suggests achieved
RMSE could also be slightly better. As far as ONERA is concerned, we used an iterative version of DF-
TPTV to compete in the challenge, named I-DF-TPTV v0. The model predicts far better RMSE performance
than the achieved one, given the detection performances, suggesting there was something wrong with the
optimisation step of our algorithm, that did not make use of preconditioning. Furthermore, the understanding
of the key role of FN lead to significant changes in the algorithm structure, now v1. Figure 11 compares
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Figure 8: DF-TPTV performance in terms of RMSE (blue) (a): RMSE predicted by optimisation with the
same amount of randomly selected FN. (b): RMSE predicted by optimisation with the same amount of FN
being chosen among the least bright.

v0 and v1 performances. Note that v0 is evaluated on the challenge data while v1 is evaluated on the home
made data base. But in the latter, evaluation and model prediction does not use the same set of particles. It
may be seen that v1 performance is now consistent with the model prediction, and much closer to the BAR
than it used to be for v0.

5 Conclusions
We have highlighted that for a given synthetic setup there is a Best Achievable Root mean square error on
particle localisation (BAR) that depends on image noise and ppp. We have shown that the BAR can virtually
be reached starting from a reasonable rough first guess provided there are no missing particles (FN) and that
a suitable optimisation algorithm using an appropriate preconditioning technique is used. We have brought
up that missing particles, in view of the optimisation involved in the accurate localisation steps, results –
at ppp larger than 0.025 – in a much stronger noise than background image noise. For a given ppp, we
proposed a model that relies on only 2 parameters: the rate of missed particles among the least bright and
the first guess RMSE on particle localisation. One might have noticed that ghosts do not take part in the
model. Contrary to FN they are not easy to simulate since intensity balance is also required. But we have
indications that the model holds even with a large amount of ghosts associated with FN. Of course, this
model is too simple to be perfect, but it matches quite well with 1st LPT challenge results, at least for 3
teams. Although we have demonstrated this model in a two frame context we think that to a large extend
it might apply to multi pulses process. Finally, it is well known that synthetic images are a pale reflection
of experiments images, but the model suggests that if an accurate localisation is of critical importance, one
should set a ppp such that the used LPT algorithm misses as few particles as possible.
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Figure 10: BAR, RMSE on particle localisation and model prediction (bar plot) in voxel units. BAR and
model prediction are computed using HMDB. RMSE are from the 1st challenge results (a): DLR (b): LAV-
ISION. (c): INRAE (d): ONERA. Note the y-scale are not the same.

Figure 11: BAR, I-DF-TPTV v0 and v1 RMSE as a function of the ppp. Model’s prediction for I-DF-TPTV
v1.
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