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LACK OF COMPLETE STABILIZABILITY OF SOME COUPLED

ODE-PARABOLIC SYSTEMS

DEBAYAN MAITY∗, DEBANJANA MITRA, AND MYTHILY RAMASWAMY

Abstract. In this article, we consider several coupled ode-parabolic systems. These systems
are known to be not null controllable at any time by localized interior controls. We show that,
these systems are not exponentially stabilizable with arbitrary decay rate. And, consequently
we recover the known results that they are not null controllable any time.

This article is dedicated to Marius Tucsnak, a friend and a great mathematician, on the
occasion of his 60th birthday.

1. Introduction

The purpose of this work is to discuss exponential stabilizability property of some coupled ode-
parabolic linear systems such as linearized compressible Navier-Stokes, linear viscoelastic flows
etc. For the convenience of the reader, let us first describe some basic concepts of controllability
and stabilizability in an abstract framework.

Let H and U be two Hilbert spaces. Let us consider the linear control system

z′(t) = Az(t) +Bu(t), t > 0, z(0) = z0 ∈ H, (1.1)

where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup
T on H, and B ∈ L(U ,H) is a bounded control operator. It is well known that, given initial
data z0 ∈ H and a control u ∈ L2

loc(0,∞;U), the system (1.1) admits a unique solution y ∈
C([0,∞);H) ∩H1

loc(0,∞;D(A∗)′), where D(A∗)′ is the dual of D(A) with respect to the pivot
space H.

Let us now introduce several notations of stabilizability.

Definition 1.1 (Open loop stabilizable). The system (1.1) or the pair (A,B) is said to be open
loop stabilizable if for any initial data z0 ∈ H there exists a control u ∈ L2(0,∞;U) such that
z ∈ L2(0,∞;H).

Definition 1.2 (Exponentially stabilizable). The system (1.1) or the pair (A,B) is said to be
exponentially stabilizable if for any initial data z0 ∈ H there exists a control u ∈ L2(0,∞;U)
such that

‖z(t)‖H 6 Ce
−νt ‖z0‖H , t > 0,

for some constant C > 0 and ν > 0.

Definition 1.3 (Feedback stabilizable). The system (1.1) or the pair (A,B) is said to be
feedback stabilizable if there exists an operator K ∈ L(H;U) such that the operator A+BK with
the domain D(A + BK) = D(A) generates an exponentially stable semigroup TK on H, i.e.,
there exist constants M > 1 and ν > 0, such that∥∥TKt ∥∥L(H)

6Me−νt, t > 0.
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In particular, feedback stabilizability is a special case of exponential stabilizability. Obviously
feedback stabilizability or exponential stabilizability implies open loop stabilizability. The con-
verse is also true, see for instance [3, Part V, Theorem 3.1]. For these reasons, these notions
will be used in an exchangeable manner.

Definition 1.4 (Complete stabilizability). The system (1.1) or the pair (A,B) is said to be
feedback stabilizable with a decay rate ω > 0 if the pair (A+ωI,B) is feedback stabilizable. The
system (1.1) or the pair (A,B) is said to be completely stabilizable if it is feedback stabilizable
with any decay rate ω > 0.

Finally, we introduce the notion of null controllability.

Definition 1.5 (Null controllability). The system (1.1) or the pair (A,B) is said to be null
controllable in H at time τ > 0 if for any z0 ∈ H, there exists a control u ∈ L2(0, T ;U), such
that z(τ) = 0.

If the system (1.1) is null controllable at time τ > 0 then it is completely stabilizable. The
converse is not true in general. However, if A generates a group of operators, then they are
equivalent ([17, Part IV, Theorem 3.4]).

In this article, we discuss complete stabilizability or their lack of, for some coupled ode-
parabolic linear system. More precisely, we will consider the following linear systems

(1) Compressible Navier-Stokes system linearized around zero velocity (cf. [7, 9])
(2) One dimensional blood flow models linearized around constant steady state (cf. [11])
(3) Linear viscoelastic Jeffreys system (cf. [10])

These systems are known to be not null controllable at any time by localized interior controls
or by boundary controls. We refer to the articles [7, 9, 10, 8, 1] for detailed discussions regarding
lack of null controllability of such systems. In this article, we prove more stronger result. More
precisely,

Theorem. The systems mentioned above are not exponentially stabilizable with arbitrary decay
rate. In other words, they are not completely stabilizable.

As a consequence of the above result, we recover the fact that, these systems are not null
controllable at any time. The proof of these results is based on duality arguments. Recently, a
dual characterization of exponential stabilizability has been proved in [15, Theorem 1]. More
precisely,

Theorem 1.6. [15, Theorem 1] The system (1.1) or the pair (A,B) is exponentially stabilizable
if and only if there exist β ∈ (0, 1), τ > 0, C > 0 such that

‖T∗τz0‖H 6 C ‖B
∗T∗t z0‖L2(0,τ ;U) + β ‖z0‖H . (1.2)

Note that, if β = 0, the observability inequality (1.2) coincides with the so-called final state
observability of the pair (A∗, B∗), which is equivalent to null controllability of (A,B) (see
for instance [16, Section 11.2]). Thus the observability inequality equivalent to exponential
stabilizability is weaker than the one which is equivalent to null controllability. In order to
prove our results, we shall construct special solutions known as Gaussian beam solutions, such
that corresponding observability inequalities do not hold. There are some results available
in the literature where it has been shown that similar coupled ode-parabolic systems are not
exponentially stabilizable with any decay rate, see for instance [7, Corollary 7.12], [4, Theorem
2.7]. However, the proofs are based on explicit computation of the eigenvalues and eigenfunctions
of the linear operator, and thus restricted to certain boundary conditions and dimension. The
method we present here is quite robust, and it does not depend on explicit computation of the
eigenvalues and eigenfunctions of the linear operator. Thus this method can be applied to many
such similar models. In this article we only consider few of the examples mentioned earlier.

The remaining part of this work is organized as follows. In Section 2, we study lack of
complete stabilizability of compressible Navier-Stokes linearized around constant state in any
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space dimension. In Section 3, we discuss similar results for two other coupled ODE-parabolic
system in one dimension. Section 4 is devoted towards proving lack of complete stabilization
for viscoelastic flows. Finally, in Section 5, we discuss some open questions.

2. Compressible Navier-Stokes linearized around zero velocity

Let Ω be smooth bounded domain in Rn, n > 1. We consider the compressible Navier-Stokes
system linearised around (ρ̄, 0), ρ̄ > 0 (see [9, Eq. 1.10]). More precisely, we consider the
following linear control system

∂tρ+ ρ̄divu = 1O1f1 (t, x) ∈ (0,∞)× Ω,

∂tu−
µ

ρ̄
∆u− α+ µ

ρ̄
∇(div u) + aγρ̄γ−2∇ρ = 1O2f2 (t, x) ∈ (0,∞)× Ω,

u = 0 (t, x) ∈ (0,∞)× ∂Ω,

ρ(0) = ρ0, u(0) = u0 x ∈ Ω,

(2.1)

where µ > 0 and α+ 2µ > 0. In the above system ρ(t, ·) : Ω→ R and u(t, ·) : Ω→ Rn represent
the fluid density and velocity respectively. Let us set

L2
m(Ω) =

{
f ∈ L2(Ω) |

∫
Ω
f dx = 0

}
, H =

[
L2(Ω)

]1+n
, Hm = L2

m(Ω)×
[
L2(Ω)

]n
.

We consider the operator A : D(A)→ H defined by

D(A) =

{
(ρ, u) ∈ L2(Ω)×H1

0 (Ω)n | µ
ρ̄

∆u+
α+ µ

ρ̄
∇(div u)− aγρ̄γ−2∇ρ ∈ L2(Ω)n

}
,

A
[
ρ
u

]
=

[ −ρ̄divu
µ

ρ̄
∆u+

α+ µ

ρ̄
∇(div u)− aγρ̄γ−2∇ρ

]
. (2.2)

We introduce the input space U = H and the control operator B ∈ L(U ;H) defined by

B
[
f1

f2

]
=

[
1O1f1

1O2f2

]
. (2.3)

With the above notations, the system (2.1) can be written as

d

dt

[
ρ
u

]
= A

[
ρ
u

]
+ B

[
f1

f2

]
,

[
ρ
u

]
(0) =

[
ρ0

u0

]
. (2.4)

The fact that the system we consider is well-posed follows from the following result:

Lemma 2.1. The operator (A,D(A)) is the infinitesimal generator of a strongly continuous
semigroup T on H. Moreover, Hm is invariant under T, and the operator A can be restricted to
Hm. The part of A in Hm is the restriction of A to the domain D(A) ∩Hm.

Proof. This lemma can be proved by applying Lumer-Phillips theorem. In dimension one, the
details of the proof can be found in [7, Lemma 2.1]. For higher dimension, the same argument

can be used by noting that the second order operator −µ
ρ̄

∆u − α+ µ

ρ̄
∇(div u) is a uniformly

elliptic operator. �

Next, we determine the adjoint of the operator A.

Proposition 2.2. The adjoint of (A,D(A)) in H is defined by

D(A∗) =

{
(σ, v) ∈ L2(Ω)×H1

0 (Ω)n | µ
ρ̄

∆v +
α+ µ

ρ̄
∇(div v) + ρ̄∇σ ∈ L2(Ω)n

}
,

A∗
[
σ
v

]
=

[
aγρ̄γ−2divv

µ

ρ̄
∆v +

α+ µ

ρ̄
∇(div v) + ρ̄∇σ

]
. (2.5)
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We now state our main results of this section. Our goal is to show that the system (2.1)
is not exponentially stabilizable with arbitrary decay rate. More precisely, we shall prove the
following result

Theorem 2.3. Let

O1 ⊂ Ω, O2 ⊆ Ω, ω0 :=
aγρ̄γ

2µ+ α
. (2.6)

The system (2.1) is not exponentially stabilizable in H with an exponential decay rate ω > ω0,
by interior controls f1 ∈ L2(0,∞;L2(O1)) and f2 ∈ L2(0,∞;L2(O2))n. In other words, for
ω > ω0, the pair (A+ ωI,B) is not exponentially stabilizable on H.

Let us now give special attention to the case where the control is not active in the first com-
ponent, i.e., f1 ≡ 0. In this case, it turns out that, Hm is the appropriate space for stabilization
than H. For instance, let us consider the system (2.1) with f1 ≡ 0. Integrating (2.1)1 we have∫

Ω
ρ(t, x)dx =

∫
Ω
ρ0(x) dx for all t > 0.

And, therefore ∫
Ω
|ρ(t, x)|2 dx >

1

|Ω|

∣∣∣∣∫
Ω
ρ0(x) dx

∣∣∣∣2 (t > 0).

Thus, if

∫
Ω
ρ0(x) dx 6= 0, the system can not be stabilized with the control f2 only. With this

observation in mind, when f1 ≡ 0, Theorem 2.3 can be reformulated as

Theorem 2.4. Assume f1 ≡ 0, and O2 ⊆ Ω. The system (2.1) is not exponentially stabilizable
in Hm with an exponential decay rate ω > ω0, by interior controls f2 ∈ L2(0,∞;L2(O2))n.

Remark 2.5. From [7, Lemma 2.5], we observe that in one-dimension, ω0 in Theorem 2.3
coincides with the accumulation point of the spectrum of the operator A.

Let us now mention some related works from the literature. Controllability of the system
(2.1) in dimension one and two has been studied in [7, 9]. In these articles, it was shown that the
system is not null controllable at any time by localized interior controls. Regarding exponential
stabilizability, in [2, 6], it was proved that the system (2.1) in dimension one is exponentially
stabilizable with a decay ω < ω0, where ω0 is the same as (2.6), either by boundary control
or by localized interior control on the velocity component only. Still in dimension one, in [7,
Corollary 7.12], it was established that the system is not exponentially stabilizable with decay
rate ω > ω0. Recently, in [5] via backstepping method, it was shown that the decay rate ω0

is achievable by boundary control, provided initial data belongs to suitable regular space and
the system is considered with Neumann type boundary conditions. In fact, in [5, Proposition
3.3], the authors pointed out that, with Dirichlet boundary condition at one end and Dirichlet
boundary control on the other end, decay of ‖ρ(t)‖L2 is not possible with the feedback control
constructed in that paper. In Theorem 2.3 and Theorem 2.4, we show that, albeit for interior
control, there is no feedback control that stabilizes the system (2.1) with a decay ω > ω0.

The proof of the above results relies on a suitable observability inequality of the adjoint
system, which is equivalent to the exponential stabilizability. More precisely, let ω > 0, and we
consider the following adjoint system

∂tσ − ωσ − aγρ̄γ−2divv = 0 (t, x) ∈ (0, τ)× Ω,

∂tv − ωv −
µ

ρ̄
∆v − µ+ α

ρ̄
∇(divv)− ρ̄∇σ = 0 (t, x) ∈ (0, τ)× Ω,

v = 0 (t, x) ∈ (0, τ)× ∂Ω,

σ(0) = σ0, v(0) = v0 x ∈ Ω.

(2.7)

According to [15, Theorem 1], the exponential stabilizability of the pair (A+ωI,B) is equiv-
alent to the following observability inequality:
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Proposition 2.6. Let ω > 0.

(1) The system (2.1) is exponentially stabilizable with a decay rate ω, by interior controls
f1 ∈ L2(0,∞;L2(O1)) and f2 ∈ L2(0,∞;L2(O2))n, if and only if, there exist β ∈ (0, 1),
τ > 0 and C > 0 such that, for any (σ0, v0) ∈ H, the solution of (2.7) satisfies the
following observability estimate

‖σ(τ, ·)‖L2(Ω) + ‖v(τ, ·)‖L2(Ω)n 6 C
(
‖σ‖L2(0,τ ;L2(O1)) + ‖v‖L2(0,τ ;L2(O2))n

)
+ β

(
‖σ0‖L2(Ω) + ‖v0‖L2(Ω)n

)
. (2.8)

(2) Assume further that f1 ≡ 0. The system (2.1) is exponentially stabilizable with a decay
rate ω, by interior controls f2 ∈ L2(0,∞;L2(O2))n, if and only if, there exist β ∈ (0, 1),
τ > 0 and C > 0 such that, for any (σ0, v0) ∈ Hm, the solution of (2.7) satisfies the
following observability estimate

‖σ(τ, ·)‖L2(Ω) + ‖v(τ, ·)‖L2(Ω)n 6 C ‖v‖L2(0,τ ;L2(O2))n + β
(
‖σ0‖L2(Ω) + ‖v0‖L2(Ω)n

)
. (2.9)

To prove Theorem 2.3, we shall construct special initial data (σ0, v0) belonging to H (or Hm),
so that the corresponding solution to system (2.7) violates the observability inequality (2.8) (or
(2.9)) for ω > ω0. To this aim, we first construct highly localised solutions known as “Gaussian
beam solutions” to the adjoint of (2.1) in (0, T )×Rn. More precisely, let ω > 0, and we consider
the following system :

∂tσ − ωσ − aγρ̄γ−2divv = 0 (t, x) ∈ (0, τ)× Rn,

∂tv − ωv −
µ

ρ̄
∆v − µ+ α

ρ̄
∇(divv)− ρ̄∇σ = 0 (t, x) ∈ (0, τ)× Rn,

σ(0) = σ0 := div w0, v(0) = v0 x ∈ Rn.

(2.10)

We shall construct a special solution to the above system. Note that in (2.10), the initial data
σ0 is taken the form σ0 := div w0 to ensure that the initial conditions in (2.7) belongs to Hm.
This is needed to prove Theorem 2.4. In dimension 1 and 2, similar solutions were constructed
in [9]. We follow a similar approach here. We set

σ̂(t, ξ) := Fxσ(t, x), v̂(t, ξ) := Fxv(t, x), (2.11)

σ̂0(ξ) := Fxσ0(x), ŵ0(ξ) := Fxw0(x), v̂0(ξ) := Fxv0(x), (2.12)

where Fx(f) denotes the Fourier transformation of f with respect to the spatial variable x.
Applying Fourier transform to (2.10), we obtain

d

dt

[
σ̂
v̂

]
= (Â(ξ) + ωIn)

[
σ̂
v̂

]
,

[
σ̂
v̂

]
(0) =

[
σ̂0

v̂0

]
=

[
iξ · ŵ0

v̂0

]
t ∈ (0, τ), (2.13)

where

Â(ξ) =

[
0 iaγρ̄γ−2ξ

iρ̄ξᵀ −µ
ρ̄
|ξ|2In −

µ+ α

ρ̄
ξ ⊗ ξ

]
, for all ξ ∈ Rn, (2.14)

where In is the n× n identity matrix and ξ ⊗ ξ is the n× n matrix with (ξ ⊗ ξ)ij = ξiξj for all
i = 1, · · · , n and j = 1, · · · , n.

We first study eigenvalues and eigenvectors of Â(ξ). We have the following result:

Lemma 2.7. The following holds

(1) The characteristic polynomial of Â(ξ) is(
λ+

µ

ρ̄
|ξ|2
)n−1(

λ2 +
α+ 2µ

ρ̄
|ξ|2λ+ aγρ̄γ−1|ξ|2

)
= 0. (2.15)
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(2) The eigenvalues of Â(ξ) are

λ1(ξ) = · · · = λn−1(ξ) = −µ
ρ̄
|ξ|2, λn(ξ) = −(2µ+ α)|ξ|2

2ρ̄

(
1 +

√
1− 4aγρ̄γ+1

(2µ+ α)2|ξ|2

)
,

δ(ξ) = −(2µ+ α)|ξ|2

2ρ̄

(
1−

√
1− 4aγρ̄γ+1

(2µ+ α)2|ξ|2

)
.

(3) There exists ξ0 > 0, such that for all |ξ| > ξ0, all the eigenvalues are real. They satisfy

lim
|ξ|→∞

λk(ξ)

|ξ|2
= −µ

ρ̄
, k = 1, 2, . . . , n− 1 lim

|ξ|→∞

λn(ξ)

|ξ|2
= −2µ+ α

ρ̄
,

lim
|ξ|→∞

δ(ξ) = − aγρ̄γ

2µ+ α
:= −ω0.

(4) For |ξ| > ξ0, we have

−2
aγρ̄γ

2µ+ α
< δ(ξ) < − aγρ̄γ

2µ+ α
, i.e.− 2ω0 < δ(ξ) < −ω0,

and

δ(ξ2) > δ(ξ1) for |ξ2| > |ξ1| > ξ0,

and ∣∣∣∆k
ξδ(ξ)

∣∣∣ 6 C, (k ∈ N), (2.16)

for some positive constant C independent of ξ.

(5) The eigenfunction of Â(ξ) corresponding to δ(ξ) is

(
1,

δ(ξ)ξ

iaγρ̄γ−2|ξ|2

)>
.

Proof. The proof follows easily from the expression of δ(ξ). �

We now construct Gaussian beam solutions for the system (2.10).

Theorem 2.8. Let β ∈ (0, 1), τ > 0, and ω > ω0. Let ξ̄ = ( 1
c0
, 0, · · · , 0) ∈ Rn with c0 > 1, and

x0 ∈ Rn. Let ψ be a smooth function compactly supported in the unit ball and of unit L2(Rn)
norm. For any ε > 0, we define

ψε(ξ) = ε
n
4 ψ

(√
ε

(
ξ − ξ̄

ε

))
e−ix0·ξ,

and

ŵ0(ξ) = εψε(ξ)e1, σ̂0(ξ) = iξ · ŵ0(ξ), v̂0(ξ) =
δ(ξ)ξ

iaγρ̄γ−2|ξ|2
σ̂0(ξ), (2.17)

where e1 = (1, 0, . . . , 0)>. Then (σ, v) defined by

σ(t, x) = F−1
ξ

(
σ̂0(ξ)e(δ(ξ)+ω)t

)
, v(t, x) = F−1

ξ

(
v̂0(ξ)e(δ(ξ)+ω)t

)
, (2.18)

satisfies the system (2.10), with

w0(x) = F−1
ξ (ŵ0(ξ)) , σ0(x) = div w0 = F−1

ξ (σ̂0(ξ)) , v0(x) = F−1
ξ (v̂0(ξ)) . (2.19)

Moreover, there exists ε0 > 0 such that, for all 0 < ε < ε0, we have

(i) There exists a positive constant C depending on ε0, but independent of ε such that

‖w0‖L2(Rn)n =
ε

(2π)n
, ‖σ0‖L2(Rn) 6

1

(2π)n
, (2.20)

β1/m

c2
0(2π)n

e
(m−1)(ω−ω0)τ

m 6 ‖σ(τ, ·)‖L2(Rn) 6
1

(2π)n
e(ω−ω0)τ , m ∈ N, (2.21)

‖v(t, ·)‖Hs(Rn)n 6 Cε
(1−s), s ∈ [0, 1), t ∈ [0, τ ]. (2.22)
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(ii) For any η > 0, there exists a constant C, depending on ω, τ, η and ε0, but independent
of ε such that

‖σ(t, ·)‖L2(|x−x0|>η) 6 Cε
k−n/4, k ∈ N, t ∈ [0, τ ], (2.23)

‖w0‖H1(|x−x0|>η))n 6 Cε
k−1−n/4, k ∈ N, (2.24)

‖v‖H1(0,τ ;H2(|x−x0|>η))n 6 Cε
k−1−n/4, k ∈ N, (2.25)

Proof. Let us recall

σ(t, x) =
1

(2π)n

∫
Rn
σ̂0(ξ)eix·ξe(δ(ξ)+ω)t dξ. (2.26)

By Parseval’s relation, for all t ∈ [0, τ ] we have

‖σ(t, ·)‖2L2(Rn) =
1

(2π)2n

∫
Rn
|σ̂0(ξ)|2e2(Reδ(ξ)+ω)t dξ

=
ε2+n

2

(2π)2n

∫
Rn
ξ2

1

∣∣∣∣ψ(√ε(ξ − ξ̄

ε

))∣∣∣∣2 e2(Reδ(ξ)+ω)t dξ

=
1

(2π)2n

∫
|ζ|61
|ζ1

√
ε+ ξ̄1|2|ψ(ζ)|2exp

(
2Reδ

(
ζ√
ε

+
ξ̄

ε

)
t

)
e2ωt dζ.

From the above relation, by choosing ε sufficiently small, we get (2.20). Next, we define

κ = (ω − ω0)− lnβ

τ
.

Note that, by the hypothesis of the theorem we have κ > 0. Let m ∈ N. We choose ε sufficiently

small so that for any |ζ| 6 1,
∣∣∣ ζ√ε + ξ̄

ε

∣∣∣ > ξ0, and then from Lemma 2.7 we have

Reδ

(
ζ√
ε

+
ξ̄

ε

)
= δ

(
ζ√
ε

+
ξ̄

ε

)
∈
(
−ω0 −

κ

m
,−ω0

)
,

1

c4
0

6 |ζ1

√
ε+ ξ̄1|2 6 1 for |ζ| 6 1.

With the above choice of ε and using the above estimates, it is easy to see that

1

c2
0(2π)n

e(ω−ω0−κ/m)τ 6 ‖σ(τ, ·)‖L2(Rn) 6
1

(2π)n
e(ω−ω0)τ .

Using the definition of κ the above expression can be simplified as

β1/m

c2
0(2π)n

e
(m−1)(ω−ω0)τ

m 6 ‖σ(τ, ·)‖L2(Rn) 6
1

(2π)n
e(ω−ω0)τ .

This completes the proof of (2.21). Recalling the expression of σ from (2.26), we have

σ(t, x) =
ε1+n

4

(2π)n

∫
Rn
iξ1ψ

(√
ε

(
ξ − ξ̄

ε

))
ei(x−x0)·ξe(δ(ξ)+ω)t dξ

=
ε−n/4

(2π)n

∫
|ζ|61

i(ζ1

√
ε+ ξ̄1)ψ(ζ)e

i(x−x0)·( ζ√
ε
+ ξ̄
ε

)
e
δ( ζ√

ε
+ ξ̄
ε

)t
eωt dζ.

Note that

∆k
ζe
i(x−x0)·( ζ√

ε
+ ξ̄
ε

)
= (−1)k

(
|x− x0|2

ε

)k
e
i(x−x0)·( ζ√

ε
+ ξ̄
ε

)
k ∈ N.

Thus for |x− x0| > η > 0 we have

σ(t, x) = − iεk−n/4

(2π)n|x− x0|2k

∫
|ζ|61

∆ζ

(
e
i(x−x0)·( ζ√

ε
+ ξ̄
ε
)
)

(ζ1

√
ε+ ξ̄1)ψ(ζ)e

δ( ζ√
ε
+ ξ̄
ε

)t
eωt dζ

= − iεk−n/4

(2π)n|x− x0|2k

∫
|ζ|61

e
i(x−x0)·( ζ√

ε
+ ξ̄
ε

)
∆ζ

(
(ζ1

√
ε+ ξ̄1)ψ(ζ)e

δ( ζ√
ε
+ ξ̄
ε

)t
)
eωt dζ. (2.27)
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Using Lemma 2.7, we infer that, there exists ε0 > 0 such that, for ε < ε0∣∣∣∣∆ζ

(
(ζ1

√
ε+ ξ̄1)ψ(ζ)e

δ( ζ√
ε
+ ξ̄
ε
)t
)∣∣∣∣ 6 C,

for some constant C independent of ε. Thus for 0 < ε < ε0 and for |x− x0| > η > 0 we get

|σ(t, x)| 6 Ceωt εk−n/4

(2π)n|x− x0|2k
. (2.28)

This proves (2.23). (2.24) can be proved in a similar manner. To prove estimate (2.22), we note
that, for t ∈ [0, τ ] and s ∈ [0, 1)

‖v(t, ·)‖2Hs(Rn) =
1

(2π)2n

∫
Rn

(1 + |ξ|2)s

|ξ|2
|σ̂0(ξ)|2

∣∣∣∣ δ(ξ)

aγρ̄γ−2i

∣∣∣∣2 e2(Reδ(ξ)+ω)t dξ

6 Ceωt
ε2+n

2

(2π)2n

∫
Rn

(1 + |ξ|2)s

|ξ|2
ξ2

1

∣∣∣∣ψ(√ε(ξ − ξ̄

ε

))∣∣∣∣2 dξ

= Ceωt
ε2(1−s)

(2π)2n

∫
|ζ|61

(|ζ
√
ε+ ξ̄|2 + ε2)s

|ζ
√
ε+ ξ̄|2

|ζ1

√
ε+ ξ̄1|2|ψ(ζ)|2 dζ

6 Ceωt
ε2(1−s)

(2π)2n
.

From the above estimate we deduce (2.22). To prove (2.25), we may proceed as in the proof of
(2.23) above. �

We are now in a position to prove Theorem 2.3 and Theorem 2.4.

Proof of Theorem 2.3. The proof is by contradiction. Let ω > ω0. We assume that the system
(2.1) is exponentially stabilizable in H with an exponential decay rate ω > ω0. Then according
to Proposition 2.6, there exist β ∈ (0, 1) and τ > 0, such that the observability inequality (2.8)
holds for any (σ0, v0) ∈ H. In particular, there exist β ∈ (0, 1), τ > 0 and C > 0 such that, for
any (σ0, v0) ∈ H, the solution of (2.7) satisfies the following observability estimate

‖σ(τ, ·)‖L2(Ω) − β ‖σ0‖L2(Ω) + ‖v(τ, ·)‖L2(Ω)n 6 C
(
‖σ‖L2(0,τ ;L2(O1)) + ‖v‖L2(0,τ ;L2(O2))n

)
+ β ‖v0‖L2(Ω)n . (2.29)

Let us fix such β and τ, and we take k ∈ N be such that k > 1 + n
4 . We are going to construct

(σ0, v0) such that the corresponding solution of (2.7) does not satisfy the above observability
estimate. We choose x0 and η > 0 such that

B(x0; η) ⊂ Ω and B(x0; η) ∩ O1 = ∅.

We also fix m ∈ N,m > 1 and c0 > 1 in Theorem 2.8 such that

c4
0β

1−1/m < 1. (2.30)

With the above choice of parameters, let (σ], v]) be constructed as in Theorem 2.8. We define

h(t, x) := v](t, x) t ∈ [0, τ ], x ∈ ∂Ω.
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By Theorem 2.8, there exists ε0 > 0 such that, for all ε < ε0, we have∥∥∥w]0∥∥∥
[H1(Ω)\B(x0,η)]n

6 Cεk−1−n/4 (2.31)

σ]0 = div w]0 in Ω,
∥∥∥σ]0∥∥∥

L2(Ω)
6

1

(2π)n
, (2.32)∥∥∥σ](τ, ·)∥∥∥

L2(Ω)
>

β1/m

c3
0(2π)n

e
(m−1)(ω−ω0)τ

m >
β1/m

c3
0(2π)n

, (2.33)∥∥∥v]0∥∥∥
L2(Ω)n

6 Cε,
∥∥∥v](τ, ·)∥∥∥

L2(Ω)n
6 Cε, (2.34)∥∥∥σ]∥∥∥

L2(0,τ ;L2(O1))
6 Cεk−n/4,

∥∥∥v]∥∥∥
L2(0,τ ;L2(O2))n

6 Cε, (2.35)

‖h‖H1(0,τ ;H3/2(∂Ω)) 6 Cε
k−1−n/4, (2.36)

for some constant C independent of ε. Let ζ be a smooth function in Ω such that 0 6 ζ 6 1,
ζ = 0 in B(x0, η) and ζ = 1 on ∂Ω. Next, we consider the following system:

∂tσ
† − ωσ† − aγρ̄γ−2divv† = 0 in (0, τ)× Ω,

∂tv
† − ωv† − µ

ρ̄
∆v† − µ+ α

ρ̄
∇(divv†)− ρ̄∇σ† = 0 in (0, τ)× Ω,

v† = h on (0, τ)× ∂Ω,

σ†(0) = div(ζw]0), v†(0) = 0 in Ω.

(2.37)

The above system admits a unique solution (σ†, v†) ∈ C([0, τ ];H). Moreover, using (2.31) and
(2.36), for ε < ε0, we have∥∥∥(σ†, v†)

∥∥∥
C([0,τ ];H)

6 C

(
‖h‖H1(0,τ ;H3/2(∂Ω)) +

∥∥∥div(ζw]0)
∥∥∥
L2(Ω)

)
6 Cεk−1−n/4, (2.38)

for some constant C independent of ε. We set

σ(t, x) = σ](t, x)− σ†(t, x), v(t, x) = v](t, x)− v†(t, x) t ∈ [0, τ ], x ∈ Ω.

Then (σ, v) satisfies the system (2.7) with the initial data

σ0(x) = σ]0(x)− σ†(0, x) = div(w]0(x)− ζw]0(x)), v0(x) = v]0(x). (2.39)

Combining (2.38) together with (2.33) - (2.36) and using (2.30), it is easy to verify that, for ε
sufficiently small

L.H.S of (2.29) > ‖σ(τ, ·)‖L2(Ω) − β ‖σ0‖L2(Ω) >
1

(2π)n

(
β1/m

c4
0

− β

)
> 0,

whereas

R.H.S of (2.29) 6 Cε.

This is a contradiction to (2.29). Therefore, the system (2.1) is not exponentially stabilizable
in H with an exponential decay rate ω > ω0. �

Proof of Theorem 2.4. The proof of Theorem 2.4 is similar to the proof of Theorem 2.3 given
above. The main difference is that we now have to construct initial data (σ0, v0) ∈ Hm instead
of H. However, this follows from (2.39). In fact, integrating σ0 over Ω and using the fact that
ζ = 1 on ∂Ω we have ∫

Ω
σ0(x) dx =

∫
∂Ω

(w]0(x)− ζw]0(x)) · ν dγ = 0.

Thus the initial data (σ0, v0) constructed in (2.39) belongs to Hm. The rest of the proof is
similar to that of Theorem 2.3. �
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3. Other one-dimensional ODE-parabolic coupled models

In this section, we consider two other linear compressible type models in one space dimension.
The first one is compressible Navier-Stokes-Fourier system linearized around constant trajecto-
ries. This is a linear system coupled with two parabolic equations and an ODE. The second one
is a linearized blood flow model. This system is similar to (2.1) in one space dimension with
some lower order terms in the parabolic component.

3.1. Linearized Navier-Stokes-Fourier system. We consider the following linear control
problem

∂tρ+ ρ̄∂xu = 1O1f1 (t, x) ∈ (0,∞)× (0, L),

∂tu−
α+ 2µ

ρ̄
∂xxu+

Rθ̄

ρ̄
∂xρ+R∂xϑ = 1O2f2 (t, x) ∈ (0,∞)× (0, L),

∂tϑ−
κ

ρ̄cv
∂xxϑ+

Rθ̄

cv
∂xu = 1O3f3 (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ϑ(t, 0) = ϑ(t, L) = 0 t ∈ (0,∞),

ρ(0, x) = ρ0(x), u(0, x) = u0(x), ϑ(0, x) = ϑ0(x) x ∈ (0, L),

(3.1)

where (α+ 2µ), ρ̄, R, θ̄, κ and cv are positive constants, and f1, f2, f3 are interior controls. Null
controllability of the above system was studied in [9]. More precisely, if O1 ⊂ (0, L) and
O2,O3 ⊆ (0, L) the system (3.1) is not null controllable in L2(0, L)3 at any time τ > 0 (see for
instance [9, Theorem 1.1]). Here we prove the following result

Theorem 3.1. Let

O1 ⊂ (0, L), O2,O3 ⊆ (0, L), ω0 :=
Rρ̄θ̄

2µ+ α
. (3.2)

The system (3.1) is not exponentially stabilizable in L2(0, L)3 with an exponential decay rate ω >
ω0, by interior controls f1 ∈ L2(0,∞;L2(O1)), f2 ∈ L2(0,∞;L2(O2)) and f3 ∈ L2(0,∞;L2(O3)).

This result can be proved in a similar manner as we proved Theorem 2.3. At first, we obtain
suitable observability inequality which is equivalent to the exponential stabilizability. Next, we
construct suitable Gaussian beam solutions to show that observability inequality does not hold.
In fact, the Gaussian beam solution of the adjoint of system (3.1) was already constructed in
[9, Section 2.2].The proof is left to the reader.

3.2. Linear blood flow type model. Let us consider the following linear control system
∂ta+ ∂xq = 1O1f1 (t, x) ∈ (0,∞)× (0, L),

∂tq − µ0∂xxq + µ1∂xq + µ2q + α1∂xa+ α2a = 1O2f2 (t, x) ∈ (0,∞)× (0, L),

q(t, 0) = q(t, L) = 0 t ∈ (0,∞),

a(0, x) = a0(x), q(0, x) = q0(x) x ∈ (0, L),

(3.3)

where µ0, µ1, µ2, α1, α2 are constants and α1, µ0 > 0. This system can be obtained by linearising
system (1.3) of [11], which models one dimensional blood flow in a vessel with viscoelastic walls,
around a constant steady state. Note that, the system (2.1) in dimension one is a special case
of the above system.

The system (3.3) is also not null controllable at any time τ > 0 by the interior controls f1

and f2 (see for instance [1, Theorem 1.4]). We have the following result regarding the lack of
stabilizability

Theorem 3.2. Let
O1 ⊂ (0, L), O2 ⊆ (0, L), ω0 :=

α1

µ0
. (3.4)

The system (3.3) is not exponentially stabilizable in L2(0, L)2 with an exponential decay rate
ω > ω0, by interior controls f1 ∈ L2(0,∞;L2(O1)) and f2 ∈ L2(0,∞;L2(O2)).
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The proof this theorem can also be obtained by following same philosophy as the proof of
Theorem 2.3. The construction of Gaussian beam solutions of the adjoint of system (3.3) is
similar to Theorem 2.8 above and [9, Theorem 2.9]. Thus the details are left to the reader.

4. Linear viscoelastic Jeffreys system

In this section, we consider linear viscoelastic flows in a smooth bounded domain Ω ⊂ Rn,
n = 2, 3. More precisely, we consider linear single mode Jeffreys system (see for instance [10,
Eq. 1.3]): 

ρ̄∂tu− µ0∆u+∇p− div S = 1Of (t, x) ∈ (0,∞)× Ω,

div u = 0 (t, x) ∈ (0,∞)× Ω,

∂tS + µ1S− 2µ2Du = 0 (t, x) ∈ (0,∞)× Ω,

u = 0 (t, x) ∈ (0,∞)× ∂Ω,

u(0) = u0, S(0) = S0 x ∈ Ω,

(4.1)

where

Du =
1

2
(∇u+∇u>),

and µ0, µ1 and µ2 are positive constants. In the above system u(t, ·) : Ω→ Rn, p(t, ·) : Ω→ R
and S(t, ·) : Ω→ Rn×n represent the fluid velocity, pressure and stress tensor respectively. Let
us consider the spaces

L2
σ(Ω) =

{
u ∈ (L2(Ω))n | div u = 0 in Ω, u.ν = 0 in ∂Ω

}
and H1

σ,0(Ω) = L2
σ(Ω) ∩H1

0 (Ω)n,

where ν is the outward unit normal to ∂Ω. Let P be the Leray projector from L2(Ω)n onto
L2
σ(Ω). Let us denote by A0 = P∆, the Stokes operator in L2

σ(Ω) with D(A0) = H2(Ω)n ∩
H1
σ,0(Ω). Let us set

H = L2
σ(Ω)× L2(Ω)n×n,

and consider the operator A : D(A)→ H defined by

D(A) =
{

(u,S) ∈ H1
σ,0(Ω)× L2(Ω)n×n | ∃p ∈ L2(Ω) such that − µ0∆u+∇p− div S ∈ L2(Ω)n

}
,

A
[
u
v

]
=

[1
ρ̄(µ0∆u−∇p+ div S)

−µ1S + 2µ2Du

]
(4.2)

We have the following result

Lemma 4.1. The operator (A,D(A)) is the infinitesimal generator of a strongly continuous
semigroup on H.

Proof. This lemma can also be proved by using Lumer-Phillips theorem. �

Our main of result of this section is

Theorem 4.2. Let
O ⊆ Ω, ω0 :=

µ2

µ0
+ µ1. (4.3)

The system (4.1) is not exponentially stabilizable in H with an exponential decay rate ω > ω0,
by interior control f ∈ L2(0,∞;L2(O))n.

In order to prove the above result, we assume that S is of the form S(t, ·) = 2Dv(t, ·), for
some v(t, ·) ∈ H1

σ,0(Ω), t > 0. Then (u, v) satisfies the following system

ρ̄∂tu− µ0∆u+∇p−∆v = 1Of (t, x) ∈ (0,∞)× Ω,

∂tv + µ1v − µ2u = 0 (t, x) ∈ (0,∞)× Ω,

div u = 0 = div v (t, x) ∈ (0,∞)× Ω,

u = 0 = v (t, x) ∈ (0,∞)× ∂Ω,

u(0) = u0, v(0) = v0 x ∈ Ω.

(4.4)
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Let us take H0 = L2
σ(Ω)×H1

σ,0(Ω). We define an unbounded operator (A0,D(A0)) on H0:

D(A0) =
{

(u, v) ∈ H1
σ,0(Ω)×H1

σ,0(Ω) | µ0u+ v ∈ D(A0)
}
,

A0

[
u
v

]
=

[1
ρ̄A0(µ0u+ v)

µ2u− µ1v

]
. (4.5)

Lemma 4.3. The operator (A0,D(A0)) is the infinitesimal generator of a strongly continuous
semigroup on H0.

We also determine the adjoint operator of A0:

Proposition 4.4. The adjoint of (A0,D(A0)) in H0 is defined by

D(A∗0) =
{

(w, z) ∈ H1
σ,0(Ω)×H1

σ,0(Ω) | µ0w − µ2z ∈ D(A0)
}
,

A∗0
[
w
z

]
=

[
A0(µ0w − µ2z)
−w − µ1z

]
. (4.6)

In view of Poincaré and Korn’s inequalities, to prove Theorem 4.2, it is enough to prove the
following result

Theorem 4.5. Assume the hypothesis of Theorem 4.2. The system (4.4) is not exponentially
stabilizable in H with an exponential decay rate ω > ω0, by interior control f ∈ L2(0,∞;L2(O))n.

The controllability of linear viscoelastic flows has been studied only in few articles. For
example, the lack of null controllability of the one-dimensional model has been proved in [14],
whereas the lack of null controllability of the higher dimensional model has been proved in
[10]. As far as we know, the stabilizability of the system (4.1) or (4.4) has not been studied
rigorously. In this context, we mention the work [12] where the exponential stabilizability with
a decay ω < ω0, of linear viscoelastic flows with a rigid structure was proved.

The rest of this section is devoted towards the proof of Theorem 4.5. The proof is similar to
the proof of Theorem 2.3 given in Section 2. First, we derive observability inequality equivalent
to the exponential stabilizability of the system (4.4). Let ω > 0. We consider the adjoint system

ρ̄∂tw − ρ̄ωw − µ0∆w +∇q + µ2∆z = 0 (t, x) ∈ (0, τ)× Ω,

∂tz − ωz + µ1z + w = 0 (t, x) ∈ (0, τ)× Ω,

divw = 0 = div z (t, x) ∈ (0, τ)× Ω,

w = 0 = z (t, x) ∈ (0, τ)× ∂Ω,

w(0) = w0, z(0) = z0 x ∈ Ω.

(4.7)

We have following equivalence result

Proposition 4.6. Let ω > 0. The system (4.4) is exponentially stabilizable with a decay rate
ω, by interior controls f ∈ L2(0,∞;L2(O))n, if and only if, there exist β ∈ (0, 1), τ > 0 and
C > 0 such that, for any (w0, z0) ∈ H0, the solution of (4.7) satisfies the following observability
estimate

‖w(τ, ·)‖L2(Ω)n + ‖z(τ, ·)‖H1(Ω)n 6 C ‖w‖L2(0,τ ;L2(O))n + β
(
‖w0‖L2(Ω) + ‖z0‖H1(Ω)n

)
. (4.8)

As before we shall construct special solutions violating the observability inequality (4.8). The
construction here is slightly different due to divergence free conditions, and different order cou-
pling between ODE and parabolic equations. We just provide the Gaussian beam construction.
The rest of the proof of Theorem 4.5 is similar to the proof of Theorem 2.3, and thus left to the
reader. Consider the following system in (0, τ)× Rn

ρ̄∂tw − ωρ̄w − µ0∆w + µ2∆z = 0 (t, x) ∈ (0, τ)× Rn,
∂tz − ωz + µ1z + w = 0 (t, x) ∈ (0, τ)× Rn,
divw = 0 = div z (t, x) ∈ (0, τ)× Rn,
w(0) = w0 := curl a0, z(0) = z0 := curl b0 x ∈ Rn.

(4.9)
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In the above, we use the same notation of “curl” in both two and three dimensions. If n = 2,
the functions a0 and b0 are scalars and curl a0 = ∇⊥a0. If n = 3, they are vectors in R3

and curl a0 = ∇ × a0. The initial datas are chosen as “curl” some function so that they are
automatically divergence free. Applying Fourier transform to (4.9), we obtain

d

dt

[
ŵ
ẑ

]
= (Â0(ξ) + ωIn)

[
ŵ
ẑ

]
,

[
ŵ
ẑ

]
(0) =

[
ŵ0

ẑ0

]
=

[
iξ × â0

iξ × b̂0

]
t ∈ (0, τ),

where

Â0(ξ) =

[
−µ0

ρ̄
|ξ|2In

µ2

ρ̄
|ξ|2In

−In −µ1In

]
.

If n = 2, the term ξ × â0 to be understood as ξ⊥â0. We have the following lemma

Lemma 4.7. The following holds

(1) The eigenvalues of Â0(ξ) are

λ1(ξ) = · · · = λn(ξ) = λ(ξ) =
−(µ1ρ̄+ µ0|ξ|2)−

√
(µ1ρ̄+ µ0|ξ|2)2 − 4ρ̄(µ1µ0 + µ2)|ξ|2

2ρ̄

δ1(ξ) = · · · = δn(ξ) = δ(ξ) =
−(µ1ρ̄+ µ0|ξ|2) +

√
(µ1ρ̄+ µ0|ξ|2)2 − 4ρ̄(µ1µ0 + µ2)|ξ|2

2ρ̄
.

(2) There exists ξ0 > 0, such that for all |ξ| > ξ0, all the eigenvalues are real. They satisfy

lim
|ξ|→∞

λk(ξ)

|ξ|2
= −µ0

ρ̄
, lim
|ξ|→∞

δk(ξ) = −
(
µ1 +

µ2

µ0

)
:= −ω0, k = 1, 2, . . . , n.

(3) For |ξ| > ξ0, we have

−2ω0 < δ(ξ) < −ω0, δ(ξ2) > δ(ξ1) for |ξ2| > |ξ1| > ξ0,

and ∣∣∣∆k
ξδ(ξ)

∣∣∣ 6 C, (k ∈ N),

for some positive constant C independent of ξ.

(4) The eigenfunction of Â0(ξ) corresponding to δ(ξ) is (−(µ1 + δ(ξ))1n,1n)> , where 1n =
(1, · · · , 1)>.

Regarding the construction of the Gaussian beam solutions for (4.9), we have the following
result:

Theorem 4.8. Let β ∈ (0, 1), τ > 0, and ω > ω0. Let ξ̄ = ( 1
c0
, 0, · · · , 0) ∈ Rn with c0 > 1, and

x0 ∈ Rn. For any ε > 0, let ψε be defined as in Theorem 2.8, and we define

n = 2, â0 = −ε2(µ1 + δ(ξ))ψε, b̂0 = ε2ψε, ŵ0 = iξ⊥â0, ẑ0 = iξ⊥b̂0,

n = 3, â0 = −ε2(µ1 + δ(ξ))ψεe3, b̂0 = ε2ψεe3, ŵ0 = iξ × â0, ẑ0 = iξ × b̂0,
where e3 = (0, 0, 1)>. Then (w, z) defined by

w(t, x) = F−1
ξ

(
ŵ0(ξ)e(δ(ξ)+ω)t

)
, z(t, x) = F−1

ξ

(
ẑ0(ξ)e(δ(ξ)+ω)t

)
,

satisfies the system (4.9), with

a0(x) = F−1
ξ (â0(ξ)) , b0(x) = F−1

ξ

(
b̂0(ξ)

)
,

w0(x) = curl a0 = F−1
ξ (ŵ0(ξ)) , z0(x) = curl b0 = F−1

ξ (ẑ0(ξ)) .

Moreover, there exists ε0 > 0 such that, for all 0 < ε < ε0, we have
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(i) There exists a positive constant C depending on ε0, but independent of ε such that

‖a0‖Hs(Rn) 6
Cε2−s

(2π)n
, s ∈ [0, 1], ‖b0‖H1(Rn) 6

Cε

(2π)n

β1/m

c4
0(2π)n

e
(m−1)(ω−ω0)τ

m 6 ‖z(τ, ·)‖H1(Rn) 6
1

(2π)n
e(ω−ω0)τ , m ∈ N,

‖w(t, ·)‖L2(Rn)n 6
Cε

(2π)n
, t ∈ [0, τ ].

(ii) For any η > 0, there exists a constant C, depending on ω, τ, η and ε0, but independent
of ε such that

‖z(t, ·)‖H1(|x−x0|>η) 6 Cε
k−n/4, k ∈ N, t ∈ [0, τ ],

‖b0‖H2(|x−x0|>η))n 6 Cε
k−1−n/4, k ∈ N,

‖(w, z)‖H1(0,τ ;H2(|x−x0|>η))n 6 Cε
k−1−n/4, k ∈ N.

Proof. The proof is similar to that of Theorem 2.8. �

Now we can proceed as the proof of Theorem 2.3 in Section 2 above to prove Theorem 4.5.

5. Conclusion and open problems

The main results in this article concern the lack of exponential stabilizability of some cou-
pled ODE-parabolic systems. We show these systems are not exponentially stabilizable with
arbitrary decay rate by localized interior controls. As a consequence, we recover the previously
known results that these systems are not null at any time. In view of our results, several open
questions seem natural.

Optimality of the decay rate: In all of the examples above, we are able to identify the decay
rate ω0 such that the system are not exponentially stabilizable with decay rate ω > ω0. Thus
the most natural question is whether these decay rates are optimal or not. In particular, it
would be interesting to know whether these systems are exponentially stabilizable with a decay
ω < ω0. As mentioned earlier, linearized compressible Navier-Stokes system i.e., system (2.1) in
dimension one, is exponentially stabilizable in Hm with a decay rate ω < ω0, ω0 defined in (2.6),
by a localized parabolic control only (see for instance [6, Proposition 3.4]). In [12, Theorem
1.1], it was proved that linear viscoelastic fluid-structure model is exponentially stabilizable
with a decay ω < ω0, with ω0 defined as in (4.3). In view of all these results, we think, all
the systems considered here are exponentially stablizable with decay ω < ω0. More precisely,
we conjecture that, the decay rate ω0 for the systems (2.1), (3.1), (3.3) and (4.4) is optimal, in
the sense that, the corresponding systems are exponentially stabilizable with decay ω < ω0. In
[6, 12], the exponential stabilizability was proved by checking Hautus criteria for exponential
stabilizability, which requires the knowledge of the spectrum of the operator. However, in view
of Theorem 1.6, perhaps Carleman type estimates may be helpful to prove the optimality of the
decay rate.

Coupled ODE-parabolic system with variable coefficients: In this article, we have only considered
constant coefficient operators. Recently, lack of null controllability of coupled ODE-parabolic
system with coefficients depending on both space and time, was proved in [1]. Thus it would
be interesting to see whether similar result can be proved for variable coefficient operator.
The Fourier transform technique used here to construct Gaussian beam solutions would not
be possible. However, the ideas used in [13] and [1] to construct Gaussian beam solutions for
variable coefficient operators may be useful.
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