
HAL Id: hal-03346165
https://hal.science/hal-03346165v1

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Devil Is in the Details: An Efficient Convolutional
Neural Network for Transport Mode Detection

Hugues Moreau, Andrea Vassilev, Liming Chen

To cite this version:
Hugues Moreau, Andrea Vassilev, Liming Chen. The Devil Is in the Details: An Efficient Convolu-
tional Neural Network for Transport Mode Detection. IEEE Transactions on Intelligent Transporta-
tion Systems, In press, �10.1109/tits.2021.3110949�. �hal-03346165�

https://hal.science/hal-03346165v1
https://hal.archives-ouvertes.fr

1

c©2021 IEEE. Personal use of this material is permit-
ted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Published version is available:
https://doi.org/10.1109/TITS.2021.3110949

2

The Devil Is in the Details: An Efficient
Convolutional Neural Network for Transport

Mode Detection
Hugues Moreau, Andrea Vassilev, and Liming Chen, Senior IEEE member

Abstract—Transport mode detection is a classification problem aiming to design an algorithm that can infer the transport mode of a
user given multimodal signals (GPS and/or inertial sensors). It has many applications, such as carbon footprint tracking, mobility
behaviour analysis, or real-time door-to-door smart planning. Most current approaches rely on a classification step using Machine
Learning techniques, and, like in many other classification problems, deep learning approaches usually achieve better results than
traditional machine learning ones using handcrafted features. Deep models, however, have a notable downside: they are usually heavy,
both in terms of memory space and processing cost. We show that a small, optimized model can perform as well as a current deep
model. During our experiments on the GeoLife and SHL 2018 datasets, we obtain models with tens of thousands of parameters, that is,
10 to 1,000 times less parameters and operations than networks from the state of the art, which still reach a comparable performance.
We also show, using the aforementioned datasets, that the current preprocessing used to deal with signals of different lengths is
suboptimal, and we provide better replacements. Finally, we introduce a way to use signals with different lengths with the lighter
Convolutional neural networks, without using the heavier Recurrent Neural Networks.

Index Terms—Transport mode detection, GPS, CNN, Deep learning

F

1 INTRODUCTION

T RANSPORT mode detection is a family of classifica-
tion problems in which an algorithm has to predict

the transport mode of a given user, using several signals,
whether it is GPS or inertial sensors (or both). The exact
list of possible transport modes may vary depending on
the application, but most applications include at least the
most common ones: Walk, Bike, or Car, for instance. The
applications are numerous: real-time trajectory planner (one
that avoids traffic jams to drivers, for instance); automatic
carbon footprint estimator; or mobility behaviour analysis.
The signals are collected from an embedded device (either
the sensors of a mobile phone, or a dedicated device), and
processed by a Transport Mode Detection Algorithm, in
order to determine the transport mode of the owner of the
device. This algorithm has multiple steps that often include
cleaning, preprocessing, and classification in itself. The latter
operation is the most diverse from one algorithm to the
other. All algorithms use Machine Learning i.e., methods
that use a certain amount of labeled data to learn how to pre-
dict the output transport mode, before making predictions
on unseen samples. But the approaches can be classified into
two families: the ’traditional’ Machine Learning approach,
relying on handcrafted features (as in [1], [2], [3], [4], [5],
[6]), and the Deep Learning one, in which the classification
is learnt using neural networks (see [7], [8], [9], [10]). The
traditional Machine Learning method involves using hand-

• H. Moreau and A. Vassilev are with the Universite Grenoble Alpes,
CEA, Leti, F-38000 Grenoble, France ; E-mail: {hugues.moreau, an-
drea.vassilev}@cea.fr

• L. Chen is with the Computer science and mathematics department at cole
Centrale de Lyon, France. E-mail: liming.chen@ec-lyon.fr

Manuscript received Sept, 2020; revised June, 2021.

crafted features which are assumed to be relevant enough
to solve the problem, while the Deep Learning approach
replaces these handcrafted features by features that are au-
tomatically learnt by a deep neural network. This approach
generally yields better performance than the traditional one,
but at a cost: the memory and computation requirements
are dramatically increased, thus limiting the development of
embedded systems. Yet, embedded applications are a great
field of application for neural networks [11].

To understand the kind of constraints embedded appli-
cations bring, let us take an example with a practical use
case. Let us consider a carbon footprint automatic estimator
on a smartphone. The end user would download an appli-
cation, and record the beginning and end of their trips. The
application automatically estimates the transport mode of
the user to compute an estimation of the greenhouse gas
the trip emitted. Compared to a client-server application,
an embedded classifier allows to guarantee privacy to the
users, and can function despite uncertain wireless data cov-
erage. However, if this embedded classifier is not resource-
efficient, the application will end up draining the battery
of the end users, who might choose not to use it. Hence,
resource efficiency is key for embedded applications.

When dealing with embedded devices, most neural net-
works are trained offline (on a computer) on prerecorded
data, and sent to embedded devices for inference. This
method relies on the fact that the training is the most
computationally-intensive step. However, running only the
inference on embedded devices does not solve all prob-
lems: a bigger model translates into longer inference times
(which sometimes prevent from using the device in real-
time applications), and increased energy consumption, i.e.
reduced battery autonomy. If some works manage to em-

c© 2021 IEEE

3

bed neural networks intelligently, (see [12], for instance),
having a heavy network with many parameters is always
a hurdle to efficient embedding. From this point of view,
traditional Machine Learning methods, with their reduced
requirements, are better suited to be used with embedded
systems.

We will show that it is possible to get the best of both
worlds. By using Convolutional Neural Networks instead
of the heavier Recurrent Neural Networks we create a deep
model that has a small number of parameters and a good
classification performance, on two realistic datasets. Also,
we show how to expand to CNNs one of the principal
quality of RNNs: the ability to use segments of any lengths.

Our contributions are the following:

• We reduce the size of a network by a factor of 4 by
changing its pooling layer

• We demonstrate how to use global pooling methods
to allow a convolutional neural network to use seg-
ments of different lengths

• We show that the current padding method used
to get to segments with equal lengths, the zero-
padding, impairs significantly the learning process,
and we introduce padding by wrapping, which im-
proves the performance

The rest of the paper is organized as follows: section
2 states the problem and reviews related works. Section 3
describes the two improvements we propose, before section
4 explains how each of these choices are justified experimen-
tally.

2 PROBLEM STATEMENT AND RELATED WORK

We first introduce some preliminary definitions (2.1) before
the statement of the transport mode detection problem (2.2).
Then we review the related work (2.3).

2.1 Preliminary definitions

We will focus on Transport Mode Detection, a problem
aiming to guess the transport mode from incoming temporal
data. The database consists of a series of trajectories (each
trajectory being a series of measurements points, such as
(lat, long) for GPS signals, or Accx, Accy, Accz (for ac-
celerometer data). Each trajectory has to be divided into
trips: series of points that are likely recorded in one go
(we chose GPS points such that two consecutive points are
distant by less than 20 minutes, as in [6]). Each trip is made
of one or several triplegs: series of points sharing a single
transport mode. This setting corresponds to a more simple
version of the problem, where we know triplegs to have
only one mode. In real-life applications, we could consider
applying segmentation algorithms like in [1], [6], [13].

The triplegs might still have different lengths, but a
model sometimes requires all inputs to have the same shape.
When this is the case, we cut triplegs into fixed-shape
segments. When we use a model that can deal with arbitrary-
sized inputs, segments are equal to triplegs. Thus, a model
only classifies segments.

2.2 Transport mode detection as a classification prob-
lem
Our goal is to use some labeled data in order to learn to
assign a transport mode to unknown data. Using Machine
Learning vocabulary, this is a classification problem: we use
a certain amount of labelled samples to train a classifier that
will predict the transport mode used during the recording
of an unseen segment:

class(segmenti) ∈ {walk, bike, bus,
car& taxi, train, subway}

Some additional preprocessing (like computing speed
and acceleration) is applied so that the data can be fed to a
machine learning model. In order to train and test properly
the model, the dataset will be split into train, validation and
test sets. A fraction of the data with the associated labels will
be used to train the machine learning model to predict the
class of an unseen segment. This is the train set. We usually
have a wide choice when selecting preprocessing functions.
In addition, machine learning models generally involve
several hyperparameters, e.g., number of filters, or number
of layers, that need to be chosen. These hyperparameters are
optimized and chosen in evaluating the variants of the ma-
chine learning models on previously unseen segments, the
validation set. Once we have chosen every possible parameter
using the validation set, we use the last part of the dataset
(test set) to evaluate the generalisation skill of the learned
model against the state of the art. The following algorithm
shows how we use the three datasets:
Require: Three datasets Xtrain, Xval, Xtest, for training,

validation, and testing; a list of hyperparameters sets Lh
to evaluate.
best score← 0
best hyperparameters← ∅
for h in Lh do

Create a deep learning model with hyperparameters h
Train the model on Xtrain

Evaluate the model on Xval, measure the F1-score
scoreval
if best score < scoreval then
best score← scoreval
best hyperparameters← h

end if
end for
Create a deep learning model with hyperparameters
best hyperparameters
Train the model on Xtrain

Evaluate the model on Xtest, measure the F1-score
scoretest
return scoretest for comparison with the state-of-the-art

2.3 Related work
Current research on the subject features two different ap-
proaches: traditional machine-learning approaches using
handcrafted features and deep learning-based approaches.
However, both approaches share a common structure as
follows:

• data cleaning: When dealing with signals that are are
known for being noisy (such as GPS signals [14]),

4

most research works use Kalman filters [3], Savitzky-
Golay filters [15], or outlier detection thanks to clus-
tering techniques [3] to clean the data. Some ap-
proaches also remove the trajectory from the dataset
if its speed or acceleration is above a realistic thresh-
old given the class of the trajectory (for instance, the
maximum speed and acceleration for the ’bus’ class
are set to 120 km/h and 2 m/s2 respectively in [15])

• point-level feature computation. When dealing with
GPS data, researchers often convert the (lat, long) into
more significant values. Those features are computed
at each timestamp. Speed and acceleration are used
universally. Other point-level features include dis-
tance [6] [2], jerk (the time derivative of acceleration
[3]), or delta-bearing (the angle difference at each
time step) [3].

• segmentation in single-mode segments. This step is
often skipped, most research works prefer using
the ground truths to be sure to work on segments
containing one transport mode. Those who segment
using the data typically rely on walk detection (a
small walk is usually necessary between two modes,
[6]) or the PELT algorithm [13], [16].

• For classical Machine-learning approaches, trajectory-
level feature computation takes place to get back to a
fixed-size feature vector, usable by machine learning
models. This treatment often involves computing the
mean, standard deviation, minimum, and maximum
of each point-level feature [2], [3], [17]. Other used
operations are the computation of percentiles [3],
[17], frequency energy bands [5], or autocorrelation
coefficients [17]. Some trajectory-level features do not
rely on a specific point-level feature, such as the stop
rate and direction change rate [6], or the closeness to
train and bus stations (obtained from other sources,
such as Open Street Map [18], or Baidou Map [1]).

• classification. For classical Machine-learning ap-
proaches, the state of the art is Random Forests [3],
[19] and SVM [20], [21]. Other classifiers include
NaiveBayes [5], MultiLayer Perceptrons [5], [19],
KNN [17], HMM [22], or even rules [23] and fuzzy
rules [24].

The ’traditional’ Machine Learning approaches use
handcrafted features (e.g. average speed, maximum accel-
eration), before using a Machine Learning algorithm (SVM,
Random Forest, etc.). These approaches are the most simple
(computation-wise), but they are also less performing than
pure deep learning approaches.

Within deep learning-based approaches, there is a great
diversity of neural networks: Multi Layer Perceptron [1],
[10], Convolutional Neural Networks [13], [15], [25], [26],
[27], or LSTMs [7], [8] (a specific kind of Recurrent Neural
Networks). Some ([1], [10], [25]) use autoencoders to extract
features from trajectories but, curiously, only one [13] makes
use of the unlabeled data in the dataset. This fact is rather
surprising, given that unlabeled GPS data is relatively cheap
to obtain, contrary to labeled data.

The neural networks that seem to be the best (we will see
in section 4.6 that comparisons are not straightforward) are
the LSTMs, followed by CNNs. However, Recurrent Neural

Networks, (including LSTM) rely on matrix multiplications
to compute the features for the next layer. This operation is
costly in terms of memory, as the weight matrices usually
have many parameters. To give an example, the LSTM from
[7] uses 8 million weights, and 3.2 billion floating-point
operations for a single inference, which represents heavy
requirements. Contrary to Recurrent Neural Networks, Con-
volutional Neural Networks rely on convolution operations,
which can be extremely cheap, while still retaining good
performance levels.

3 PROPOSED IMPROVEMENTS

We present the two main improvements we use to be able
to obtain smaller networks with better performance: the
choice of an effective pooling layer for convolutional neural
networks (section3.1), and the padding of shorter segments
(section 3.2).

3.1 Pooling operation
Our convolution layers work with 2-dimensional feature
maps (with a channel axis and a time axis), while the fully-
connected layers use 1-dimensional feature vectors. In order
to get to a 1-dimensional vector, the most common is to
use a flatten operation, a block that simply reshapes the
feature map into a vector. However, this operation has a
major downside: if the input feature map has T temporal
steps and C channels, the next fully-connected will accept
features with T ∗C scalars. As the shape of a fully connected
layer cannot change during the training (nor can the number
of channels of the previous convolutional layer), the number
of time steps T must remain fixed during the training. This
means a convolutional network that uses a flatten cannot
deal with arbitrary-shaped inputs. By replacing the flatten
step with a global pooling operation [28], we obtain a vector
which is as long as the input tensor had feature maps, no
matter how many time points the input had (see fig. 1). This
allows to reduce the number of parameters of the network
(as the vector is shorter, the next fully-connected layer is
much smaller), and to use segments that have arbitrary
lengths.

Several variants of global pooling are possible. If Xt,c

is the two-dimensional matrix at the end of the last convo-
lution layer (t being the index along the ’time’ dimension,
while c is the index along the ’channel’ dimension), there
are several ways to use global pooling. One could use an
average over time (Yc = 1

T

∑T−1
t=0 Xt,c) or a maximum

(Yc = maxt∈0..T−1 (Xt,c)), but a more general option
would be to use the generalized mean [29]:

Yc = (1
T

∑T−1
t=0 (Xt,c)

αc)1/αc .
This expression uses one parameter αc > 0 for each

channel c, which are learnt by gradient descent like any of
the other weights. When αc = 1, the expression is equal to
the arithmetic average. When αc → +∞, the generalized
mean converges towards the maximum of the (Xt,c)t∈[1..T].
In order to avoid numerical instability, a small term1 was
added to the input tensor X . In practice, the values of αc
are initialized following N (5, 1) because we do not want αc
to be negative before the learning even begins (if αc < 0,

1. the lowest value we could use was 5.10−5, which seems quite high

5

Fig. 1: Output sizes of different operations replacing the
flatten step. We notice the size of the output of the flatten
step depends on both the size of its input along the time

dimension (T) and along the channel dimension (C)

the expression is equivalent to using a generalization of the
harmonic mean, which is close to 0 when one of the features
Xc,t is close to zero, which makes the associated channel
useless). The value of all the αc seem to converge between 0
and 5 during the training process.

3.2 Padding
Padding is the action of filling a short segment with well-
chosen values so that the segment reaches a desired shape.
This action can be required in two occasions:

• When the model requires a fixed-size input, we cut
the triplegs that are too long, which inevitably gener-
ates segments that are shorter than the limit. We pad
those segments so that they have the same lengths as
the others.

• When the model can deal with segments of arbi-
trary shape, one problem arises: to accelerate the
training, the common practice is to parallelize the
computation and to submit to prediction a set of 64
or 128 samples (a batch). This requires to put all
segments into a single tensor, which is impossible
when the segments have different lengths. One could
simulate the batch computation by sending each seg-
ment one after the other and computing the weight
update once after a certain number of segments are
processed, but doing so would increase greatly the
training times. This is why we pad all the short
segments so that they reach the length of the longest
segment in the batch.

There are several ways to pad short segments. One could
pad using zero-values (like in [13], [15]), but this disturbs
the learning process (see section 4.5). Instead, we pad using
the data from the input segment itself (see fig. 2). We tried
padding with a reflection of the segment (adding a reversed
copy of the segment after the original), or simply repeating
the segment until the maximum length is reached.

We show in section 4.5 that padding with zero-values
(like in [13], [15]) is detrimental to the learning process. This
is why we chose to pad by wrapping the segment around
or by using a symmetric of the segment.

4 EXPERIMENTS

We begin by giving details about the databases we used
(sections 4.1, 4.2). For each dataset, we present the database

Fig. 2: The different kinds of padding.
Zero-padding simply adds zeros until the maximum length

is reached, Reflection reverses a copy of the segment and
adds it at the end, while wrapping simply duplicates the

segment until the maximum length is reached

in itself, along with the preprocessing steps, and the base-
line architectures we chose to use. In sections 4.4 and 4.5,
we will alter these architectures by changing the pooling
and padding (respectively), in order to justify the choices
presented back in section 3, before we providing the results
of our approach against the state of the art (section 4.6).

4.1 The GeoLife database

The GeoLife database [20], [30], [31] was collected between
2007 and 2012. The GPS signals of 180 participants liv-
ing in five different cities of China were recorded during
their commutes, in order to study their behaviours when
travelling. Unfortunately, the need for labeled data did not
appear immediately, and only one tenth of the trajectories
of the database is labeled (in the subsequent, we will only
refer to the labeled data, unless otherwise specified). The
dataset is an ensemble of trajectories, each trajectory being
a series of (latitude, longitude, timestamp) points. Each
labeled trajectory has one or more transport modes, and
each change between modes has an associated timestamp,
so that each point can be attributed a label. The transport
modes (classes) in the dataset are: walk, bike, car, taxi, bus,
train, subway. An overview of the dataset is available in
table 1. We follow the recommendations of the GeoLife
user guide [20], merging together the classes ’taxi’ and ’car’.
One important thing to note is that the data points are not
sampled at the same rate: some trajectories have a sampling
rate of 1 or 2 Hz, while some others can go down to 0.02 Hz.

As we explained in section 2.2, we split the triplegs into
three sets, training, validation, and testing. For the GeoLife
dataset, 64% of the triplegs go in the train set, 16% in the
validation set, and 20% in the test set. With this dataset,
we chose the hyperparameters using Random Search [33].
We fix a possible range of hyperparameters using usual
values found in the literature, and train several models,
each model using a series of hyperparameters at random.
We then selected the hyperparameter which improved the
performance on average, by looking at the median and
quartiles of the validation F1 (results not shown). We also
use the validation set for early stopping in each of the

6

dataset GeoLife [20] SHL 2018 [32]
number of users 69 1

total duration 5,000 h 216 h
total trajectories length 116,000 km 1,600 km

average interval
between two data points 7s 0.01s

median interval
between two data points 2s 0.01s

Total number
of data point

in the database
2.5× 106 9.6× 107

sensors used GPS Accelerometer

classes
Walk, Bike, Bus,

Car & Taxi, Subway,
Train

Still, Walk, Bike,
Run, Bus, Car,
Subway, Train

TABLE 1: An overview of the labeled data in the GeoLife
and SHL 2018 datasets

training process, during the random search or to produce
the results in the present work.

4.1.1 Preprocessing
We begin by computing the speed and acceleration of each
point. This way, our data is not dependent on the precise
location of the trajectory. We remove the data points which
acceleration or speed are deemed unrealistic given the an-
notated transport mode (we reused the values from [15]).
We considered adding the bearing [15], but it turned out
using this feature did not increase the performance of our
model. As the sampling rate is very irregular, we interpolate
linearly our data points (T = 2s), so that a difference between
two consecutive points always has the same meaning.

We do not apply any cleaning or filtering, for we found
these to be unnecessary.

4.1.2 Data Preparation and Splitting
Etemad [3] showed that the way the segments are split be-
tween the different sets (training, validation, test) can have
a huge influence on performance: when a tripleg is split into
several segments and the segments of a single trajectory can
go in both the training and the test set, the trained model
will be likely to have seen parts of all trajectories in the
dataset, which will cause it to overfit.

In his experiments, Etemad found the F1 score can be
vary by 20 percentage points between a training scenario
in which the users are correctly split (71 %), compared to
a scenario in which the fragments of a given trajectory can
go in different sets (91 %). This result is not surprising, as
mobility trajectories have a high degree of regularity [34],
[35], [36]. Ideally, we should train a prediction model using
the trajectories from a set of users and test the generalization
skills of the trained model on those of unseen users. This
means that we need first to assign the trajectories of each
user to one set among training, validation or test (as in [3],
[10], [13], [15]). This corresponds to the most realistic setting,
where an algorithm predicts the transport mode of unseen
users.

But in practice, with the GeoLife dataset, this method
leads to extremely imbalanced sets, as users have different

walk bike car & taxi bus subway train

total 4517 1731 1459 2129 632 200

train 2890 1108 934 1362 405 128

validation 723 277 233 341 101 32

test 904 346 292 426 126 40

(a)

still walk run bike car bus subway train

total 2302 2190 686 2101 2475 2083 2520 1953

train 1899 1630 506 1716 2141 1663 1973 1472

validation 403 560 180 385 334 420 547 481

(b)

TABLE 2: The number of triplegs in each subset the
GeoLife (a) and SHL 2018 (b) datasets. Note that the

GeoLife dataset is more balanced than the SHL dataset

habits when it comes to transportation. In some cases (de-
pending on the seed used to initialize the splitting process),
splitting the dataset by users can even produce validation
or test sets that completely lack one class. To show this, we
realized 200 separations with different seeds initializing the
random process, and looked at the effect it would have on
the final distribution (results not shown). If the median is
centered around the correct distribution, the quartiles show
a high variance. In the validation and test set, the third
quartile is at least twice higher than the first quartile. This
distribution variance is a problem for comparison, because
the performance of imbalanced models will strongly depend
on the distribution, even when using measures like the F1
score.

This is why we only split the sets by tripleg: we first
separate triplegs between train (64% of the trajectories),
validation (16%), and test (20%), before segmenting the
triplegs into segments. This method is less realistic than
splitting the sets by users, but it allows to produce sets with
similar distributions consistently. The following pseudo-
code explains how we split by triplegs:
Require: A list Lusers of users, each user being a list of trips

Create a list Ltrips of trips by merging all users
Randomly split the list Ltrips into three lists
{Ltraintrips , L

val
trips, L

test
trips}

for s in {train, val, test} do
Xs ← ∅
for each trip t in Lstrips do

Split the trip t into triplegs and,
Add the triplegs to the set:
Xs ← Xs

⋃
tsplit

end for
end for
return the three tripleg sets Xtrain, Xval, Xtest

4.1.3 Baseline architecture
The GeoLife CNN uses the (speed, acc) features to classify
a segment. Its architecture is inspired by ResNet [38] and
is given in fig. 3. As explained in the section 2, the use of
convolutions allow to obtain a particularly efficient architec-
ture compared to the recurrent models, especially in terms
of memory footprint (see table 6).

To train our neural network, we use a weighted version
of the cross-entropy loss: the loss of every segment is given

7

Fig. 3: The baseline architectures of both networks

Parameter value (GeoLife) value (SHL)

learning rate 10−2 10−3

regularization parameter 3.10−3 10−3

batch size 128 64

non-linearity ReLU ReLU

optimizer Adadelta [37] Adam

max number of epochs 2000 50

patience 100 /

TABLE 3: The chosen hyperparameters for the training of
both models

a weight that is inversely proportional to the number of
elements in this segment’s class on the training set (which
is proportional to the proportion on the whole dataset, see
section 4.1.2). The goal of this procedure is to compensate
for the class imbalance in the dataset. We also apply early
stopping: we stop the training process when the loss on the
validation set did not increase for more than a fixed number
of epochs (chosen to be 100, see table 3), and we keep
the model which minimized the validation loss for testing.
Usually, this minimum loss is reached between epoch 100
and 600.

4.2 The SHL 2018 database

The SHL 2018 dataset consists in a series of 16,310 con-
secutive annotated recordings of embedded sensors. Each

recording is 60-seconds long, and contains data from 7 sen-
sors, and 20 channels: three axes (x, y, z) for the accelerom-
eter, magnetometer, gravity, linear acceleration (acceleration
minus gravity), and gyrometer; one orientation quaternion
(x, y, z, w), and a recording of the barometric pressure. Each
signal was recorded at 100Hz, so that one sample to classify
is a set of 20 vectors of size 60 × 100 = 6000 points. There
are 8 classes available: Still, Walk, Run, Bike, Car, Bus, Train,
Subway.

The aim here is to check the general nature of our
method using a different dataset, in particular the finding
that a well-chosen padding and global average pooling help
improve the performance and reduce the memory footprint
of the networks.

4.2.1 Preprocessing
The SHL dataset is particular, because the triplegs of the
dataset all have the same length. Padding is unnecessary
when all segments are the same lengths. Hence, we choose
to work with a degraded dataset: for each segment, we
randomly keep between 10 and 100% of the data (uniform
probability), and we pad the rest by wrapping the segments
(this choice is justified experimentally in section 3.2). When
we evaluate a result, we generate a new set (thereby choos-
ing a new proportion for padding for each segment) each
time we train a new network (5 times in total). This is why
the standard deviations in tables 4 and 5 are so high: they
account for network performance and dataset variation.

As we do not aim to overcome the state of the art with
this set, we focus on the single bet sensor: the accelerom-

8

eter [32], [39]. We compute the norm of the accelerometer
Accnorm =

√
Acc2x +Acc2y +Acc2z as our input signal, this

will be our only preprocessing (apart from the degradation
of the dataset mentioned earlier). As the accelerometer sig-
nal is not particularly noisy, we do not apply any cleaning.
We do not even remove the trajectories with unlikely values,
because the creators of the dataset already double-checked
their annotations with videos they recorded.

In order to split the training set from the validation set,
we make sure that we split the data not to have fragments
of a single trip go into both the train and the val set [40].
The segments are sorted chronologically, and we take the
first 20% of the segments for the validation set and the
last 80% for the training set (doing so ensure both sets are
approximately balanced, as the end of the dataset is severely
imbalanced). We use the validation set for comparisons, but,
contrary to the algorithm in section 2.2 showed, but we do
not use the test set for this dataset.

4.2.2 Baseline architecture

Our baseline architecture, along with its parameters, come
from [39]. The CNN uses a segment with input size 6, 000×1
(as all our segments were padded back to get 6,000 points),
to return a prediction among the 8 classes (Still, Walk, Run,
Bike, Car, Bus, Train, Subway). Figure 3 shows the archi-
tecture, while table 3 shows the selected hyperparameters.
Contrary to the GeoLife model, we only train the SHL model
for 50 epochs, after which we evaluate it and return the
validation score (similarly to [39]).

4.3 Experimental setup

In order to measure the performance of our models, we use
the F1-score. This measure derives from the accuracy, except
that it penalizes heavily the models which have imbalanced
predictions. In the case of Transport Mode Detection, this is
almost always the case. To make sure of this, one can look
at the distributions in the SHL and GeoLife datasets (tables
2a and 2b, respectively).

To evaluate the complexity of each models, we display
their number of parameter, along with the number of opera-
tions for a single inference (forward pass). As an illustration,
we did include training and evaluation times, even though
these results depend heavily of the device. For instance,
GPUs are more optimized for heavily parallel operations,
such as convolutions. The number of parameters and oper-
ations, however, is independent of the implementation, and
provides an objective measure for comparison. We trained
the models on a server with a Nvidia tesla V100 GPU (32
Gb of memory), cuda version was 10.2, and a 40-core Intel
Xeon Gold 6230 CPU @ 2.10GHz with 190 Gb of RAM. The
evaluation times were measured on a CPU, a 4-core Intel
i7-7820 @ 2.90 GHz with 32 Gb of RAM. However, those
running times are not absolute measures: some devices are
better optimized for different types of operations. The only
objective measurements are the number of parameters and
operations, which do not depend on the device

For each result (F1-score, training times), we repeat the
training and devaluation process 5 times, changing the seed
each time. We display the average ± standard deviation.

4.4 Pooling operation
We compared three alternatives to the Flatten, namely Max-
imum, Mean, and Generalized Mean. As table 4 shows,
on the GeoLife dataset, only the flatten step is worse than
the rest, in terms of performance, computational require-
ments, and training and testing time. On the SHL dataset,
the global max-pooling is significantly better than both
the flatten step and the global average. Surprisingly, the
Average pooling has a worse performance than the flatten
step. The max-pooling, however, is better performance-wise
and complexity-wise. Finally, it should be noted that, for
both datasets, the general mean is not significantly higher
than the rest, even though this operation encompasses the
simple average and maximum poolings. We did not help the
network by providing it with a more general expression.

As for the running times, table 4 shows us that the use
of alternatives to the flatten step make the training times
longer. The convergence is slower with these architectures,
which cancels the speed gain of these architectures. As
most applications rely on training the model offline (on
a computer), the training time of a model is not a major
concern. More interesting is the inference time: we can see
that the global pooling operations are up to X% faster than
the flatten step they replace.

4.5 Padding
Using the baselines architectures (fig. 3), we compared the
three kinds of padding shown in fig. 2:

• Zero-padding, where zeros are added to the shorter
segments until they reach the correct length, as in
[13], [15].

• Wrapping, where segments are padded using their
own data

• Reflection, which consists in padding the segments
using a time-reversed version of the segment itself.

As table 5 shows, padding with zeros is particularly
detrimental to the performance of our model. However, one
can wonder which padding is better between wrapping and
reflection. Wrapping creates discontinuities in the data, but
this is the only artifact it introduces: otherwise, wrapping
only uses data from the segment itself. On the other hand,
reflection removes some of the meaning of the data (i.e, and
acceleration becomes a breaking), but it does not introduce
any discontinuity.

The GeoLife model has a particularity: during the ran-
dom search, we contemplated adding a cleaning step using
median or Savitzky-Golay filters, and it turns out these
filters did not improve the performance (results not shown).
This means the GeoLife network is naturally robust to
noise in the data, which is why it is not affected by the
discontinuities brought by wrapping the segments around.
We hypothesize the same reasoning applies for the SHL net-
work. In this case, the direction of time matters much mode
than the discontinuities we brought by using wrapping.

One could wonder why zero-padding is worse than the
rest. Two mutually exclusive hypotheses could be formu-
lated to explain this phenomenon:

• A long series of zeros is interpreted as being mean-
ingful by the model, and disturbs its predictions.

9

Pooling Validation
F1-score

number of
parameters

operations
(FLOPs) training time (min) epochs to

convergence inference time (ms)

G
eo

Li
fe

Flatten
(segments of 1,024 points) 77.0± 1.6% 7.6× 104 9.4× 104 7.8± 0.7 113± 17 1.92± 0.13

Generalized Mean 80.9± 1.0% 1.1× 104 3.3× 104 43.9± 7.3 538± 114 1.94± 0.04

Average 80.2± 1.3% 1.1× 104 3.3× 104 78.7± 34.6 1161± 571 1.81± 0.04

Maximum 80.3± 1.6% 1.1× 104 3.3× 104 16.8± 2.7 262± 66 1.85± 0.06

SH
L

Flatten
(segments of 6,000 points) 65.2± 3.2% 6.1× 106 4.2× 107 1.20± 0.00 50 4.74± 0.02

Generalized Mean 67.5± 1.7% 1.7× 104 3.0× 107 1.15± 0.09 50 3.60± 0.43

Average 59.8± 2.6% 1.7× 104 3.0× 107 0.97± 0.00 50 2.60± 0.02

Maximum 68.7± 1.1% 1.7× 104 3.0× 107 1.03± 0.06 50 2.68± 0.04

TABLE 4: The effectiveness of each kind of pooling, in terms of performance, computational resources, and training and
inference time. For each result, we display the average and the standard deviation, over 5 runs

Padding GeoLife SHL

Zero 77.7± 1.5% 64.2± 3.5%

Reflection 80.2± 1.6% 63.9± 1.9%

Wrapping 80.3± 1.6% 68.7± 1.1%

TABLE 5: The validation F1-score of each type of padding.
Zero-padding is particularly detrimental to the model

performance

• The model notices the long series of zeros in the
learning process, and, upon seeing they are uncor-
related with the segment’s classes, somehow learns
to ignore the end of a segment during the training
process, which cause it to miss relevant information

To know which one is true, we compute the accuracy
for segments with different lengths (using the fact that
the shorter the segment, the more zeros it will be padded
with). If the former hypothesis was true, we would see the
performance to be correlated negatively with the number of
zeros. The performance would be correlated positively with
the length of a segment, resulting in a decreasing curve in
fig. 4.

Here, the behaviour depends on the dataset: the GeoLife
curve is quite irregular, which means that the model learnt
to ignore zeros at the end of segments. For the SHL model
however, the performance is clearly negatively correlated
with segment length: the model does not know that zeros
are meaningless, and tries to interpret them, leading to
higher errors when zeros are more present.

4.6 Comparison with the state of the art
We show the improvements one can achieve on the GeoLife
dataset (we do not compare the SHL model against the state
of the art because it relies on using a degraded dataset).
When evaluating a model, a close attention must be paid
to all the classes every publication worked with: in all our
previous experiments, we strictly followed the recommen-
dations of the GeoLife user guide [20], which advises to
merge together the classes ’taxi’ and ’car’, for the number of
segments in the former is deemed too small.

To know how a change in the categories employed
would affect the results, one could look at the confusion
matrix (fig. 5). For instance, if two modes are frequently
confused with each other, merging them would cause the
model’s F1 to increase. This applies to the merger of {car
& taxi} with bus and, to a lesser extent, to the merger of
the classes train with subway. A similar reasoning could be
made about the removing of the two rail modes (leaving
only four modes, {walk, bike, car, bus}, as [7] do): not only
are these modes no longer confused with each other, but
they are not even confused with car. As one could expect,
the number of classes employed correlates negatively to a
model’s performance.

Noticeably, [10] choose not to merge any classes, while
[26] add another difficulty: not only they do not merge
transport modes, but they also try to predict whether the
trajectory was ”fast” or ”slow” (above a threshold depend-
ing on the transport mode eg 25 m/s for the car). A trajectory
is correctly classified only if both the transport mode (7
classes) and the speed category (2 classes per transport
mode) are correct. This separation makes sense in their
setting, because the representation they use for a trajectory
(binary heatmaps) prevents the speed information from be-
ing directly transmitted to the deep learning model. Finally,
it should be noted that [13] does work with unsegmented
trajectories, which makes the challenge harder.

The number of classes vastly impact a model’s per-
formance and the problem is harder with more classes.
Nevertheless, to enable comparison with the state of the
art despite the class difference, we retrain five models on
each class combination, and evaluate them on the test set (in
this section, the validation set is only used to find the loss
minimum for early stopping). However, the model we chose
to train still keeps the hyperparameters and the architecture
we found using the 6-class problem (see section 4.1.3). The
results are in table 6. We can see that our approach creates
a network which is both small and effective, for our model
manages to compete with the state of the art, while reducing
the number of parameters by a factor 4 to 1,000, and the
number of Floating-point operations (FLOPs) by a factor 10
to 100,000.

10

Fig. 4: The validation accuracy versus the size of each segment (the shorter the segment, the more zeros it will be padded
with). Adding zeros is not particularly detrimental to the classification performance, which means the network learnt to

ignore the zeros, missing potentially relevant information. Intervals bins obtained using equidistant separations between 0
and the 90-th percentile

Fig. 5: The confusion matrix of the GeoLife model, on the
test set. We can see merging together the ”car & taxi” and
”bus” classes will improve the performance considerably.

For the 4-class problem, even if the measures differ,
the performance of our approach seems lower than the
reported performance of the corresponding publication, but
the required resources are also much lower. Besides, the
corresponding work ([7]) does not say whether segments
from the same trajectory can go in same or different sets.
For the 5-class problem, our approach is better or equal to
existing Convolutional neural networks performance-wise.
If the residual CNN is worse than the LSTM implemented
in [8], this publication does not precise how the train,
validation, and test set were split. On the 6-class problem,
our residual CNN is better than the Random Forest pre-
sented in [3]. However, even if the author does not leave
enough to precisely estimate the memory and computation
requirements of their approach, it is likely that our CNN
has worse requirements, despite these requirements being
quite low for a typical CNN. On the 7-class problem, the
residual CNN is better than the autoencoder from [10], both
performance and constraint-wise. We do not look at the 14-

class problem because, with our encoding (we compute the
speed explicitely), it is equivalent to the 7-class problem.

Memory and computation costs
Two measures matter when it comes to comparing the effi-
ciency of different neural networks: the number of parame-
ters (which indicates how much memory will be needed to
store the network), and the number of operations required
for a single inference2 (forward pass). Looking at the time
needed for an inference (as in [8]) is a good measure to
evaluate if a network can be used in a client-server archi-
tecture, but it is device-dependant. Contrary to computing
times, the number of parameters and operations can be
computed from the architecture of a network, and allow for
clear comparison (table 6).

We computed the number of operations using the code
from [41]. When the input shape may vary (as in [7], [8] or
the present work), we used the median length of a segment
in the dataset: 200 points on the original dataset (for [7],
[8]), 500 points on the interpolated one (with our proposed
model). Note: for [7], we chose the network with a hidden
layer of 100 elements instead of 300, even if it is slightly
worse (94.5 % AUC instead of 94.6 %). As we aim to find
a good balance between performance (F1 score, AUC, or
accuracy) and efficiency, we estimated selecting a network
with three times more weights for a .1 percentage point gain
was unfair.

5 CONCLUSION

Using experiments on two realistic datasets, we showed that
using adequate pooling operations could drastically reduce
the number of parameters of a network without impairing
its performance, which allowed us to obtain networks with
the same level as the state of the art, but with 10 to
1,000 times less parameters. Also, we showed the global

2. As neural networks are typically trained offline before being used
for predictions, we did not look at training costs in this part

11

model metric reported
score classes are trajectories

properly split ?

are trajectories
already

segmented ?

Number of
parameters

Number of
operations

(FLOPs)

LSTM + embedding [7] AUC 94.5 % 4 NM yes 1.1× 106

(100× p)
4.2× 108

(10, 000× o)

Proposed F1 87.1± 1.1% 4 yes yes 1.1× 104

(p)
3.3× 104

(o)

AE + CNN [13] F1 76.4 % 5 NA no 4.1× 104

(4× p)
6.4× 106

(100× o)

CNN ensemble (7 models) [15] F1 84.0 % 5 yes yes 7× 2.6× 106

(1, 000× p)
7× 1.7× 107

(1, 000× o)

LSTM + Wavelet features [8] F1 91.9 % 5 NM yes 8.1× 106

(1, 000× p)
7.3× 109

(100, 000× o)

Proposed F1 83.9± 1.1% 5 yes yes 1.1× 104

(p)
3.3× 104

(o)

Random Forests [3] F1 71 % 6 yes yes 50 trees /

Proposed F1 81.8± 0.9% 6 yes yes 1.1× 104

(p)
3.3× 104

(o)

AE + Logistic Regression [10] accuracy 67.9 % 7 yes yes 2.7× 105

(10× p)
5.2× 105

(10× o)

Proposed F1 74.1± 0.7% 7 yes yes 1.1× 104

(p)
3.3× 104

(o)

CNN (DenseNet + Attention) [26] F1 72.0 % 14 NM yes 1.3× 105

(10× p)
7.2× 107

(1, 000× o)

TABLE 6: Final results, on the GeoLife test set. We display a performance metric (as provided by the cited works), the
estimated size (the number of weights) of each model, and the estimated number of operations required for one

classification forward pass. With each of these values, we also display the ratio with the number of parameters (p) or
operations (o) of our model. NM: not mentioned. NA: not applicable (trajectories are not segmented into triplegs and can

have several transport modes)

pooling operation allows to get rid of one of the limits
of Convolutional Neural Networks: the limitation of input
size. This limit required to use an operation (the padding
operation) which impaired the learning process when used
as implemented in the literature. By padding with data
from the segment instead of zeros, we could increase the
performance.

We consider three directions for future work: we could
decide to work with full, unsegmented, trajectories, in
order to do both the segmentation and the classification
at once. Alternatively we could try to solve the open-
set problem. Currently, our network tries to classify every
segment it sees, even if these segments does not belong
in any class from the training set. This means segments
from unknown classes (whether they belong to classes we
removed from the GeoLife dataset, e.g., boat, motorbike,
plane, or to completely novel transport modes which might
appear in the future). We could consider adding an extra
class, named ’unknown’ or ’other’ so that our model does
not try to assign a defined class to novel segments. A last
direction for improvement is to use the promising attention-
based architectures (e.g., transformer). These models have
achieved impressive results on natural language processing
and even computer vision, at the cost of a massive increase
in complexity. Finding a way to make them usable with a
reasonable amount of parameters or operations might be
the next hurdle for Transport Mode Detection.

REFERENCES

[1] X. Zhu, J. Li, Z. Liu, S. Wang, and F. Yang, “Learning Trans-
portation Annotated Mobility Profiles from GPS Data for Context-
Aware Mobile Services,” in 2016 IEEE International Conference on
Services Computing (SCC), Jun. 2016, pp. 475–482.

[2] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding
transportation modes based on GPS data for web applications,”
ACM Transactions on the Web, vol. 4, no. 1, pp. 1–36, Jan.
2010. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=1658373.1658374

[3] M. Etemad, “Transportation Modes Classification Using Feature
Engineering,” arXiv:1807.10876 [cs, stat], Jul. 2018. [Online].
Available: http://arxiv.org/abs/1807.10876

[4] S. Dodge, R. Weibel, and E. Forootan, “Revealing the physics of
movement: Comparing the similarity of movement characteristics
of different types of moving objects,” Computers, Environment
and Urban Systems, vol. 33, no. 6, pp. 419–434, Nov. 2009.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0198971509000556

[5] H. Menp, A. Lobov, and J. L. Martinez Lastra, “Travel mode
estimation for multi-modal journey planner,” Transportation
Research Part C: Emerging Technologies, vol. 82, pp. 273–289,
Sep. 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0968090X17301808

[6] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation
mode from raw gps data for geographic applications on the
web,” in Proceeding of the 17th international conference on World
Wide Web - WWW ’08. Beijing, China: ACM Press, 2008,
p. 247. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=1367497.1367532

[7] H. Liu and I. Lee, “End-to-end trajectory transportation mode
classification using Bi-LSTM recurrent neural network,” in 2017
12th International Conference on Intelligent Systems and Knowledge
Engineering (ISKE), Nov. 2017, pp. 1–5.

12

[8] J. J. Q. Yu, “Travel Mode Identification With GPS Trajectories
Using Wavelet Transform and Deep Learning,” IEEE Transactions
on Intelligent Transportation Systems, pp. 1–11, 2019.

[9] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger,
“Densely Connected Convolutional Networks,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
Honolulu, HI: IEEE, Jul. 2017, pp. 2261–2269. [Online]. Available:
http://ieeexplore.ieee.org/document/8099726/

[10] Y. Endo, H. Toda, K. Nishida, and J. Ikedo, “Classifying spatial
trajectories using representation learning,” International Journal
of Data Science and Analytics, vol. 2, no. 3-4, pp. 107–117,
Dec. 2016. [Online]. Available: http://link.springer.com/10.1007/
s41060-016-0014-1

[11] D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, and R. Li, “LSTM Learning
With Bayesian and Gaussian Processing for Anomaly Detection in
Industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 8, pp. 5244–5253, Aug. 2020.

[12] S. Zhang, Y. Li, X. Liu, S. Guo, W. Wang, J. Wang, B. Ding,
and D. Wu, “Towards Real-time Cooperative Deep Inference
over the Cloud and Edge End Devices,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 4, no. 2, pp. 69:1–69:24, Jun. 2020. [Online]. Available:
https://doi.org/10.1145/3397315

[13] S. Dabiri, “Semi-Supervised Deep Learning Approach for Trans-
portation Mode Identification Using GPS Trajectory Data,” Ph.D.
dissertation, Virginia Polytechnic Institute and State University,
Virginia Polytechnic Institute and State University, 2018.

[14] “GPS.gov: GPS Accuracy.” [Online]. Available: https://www.gps.
gov/systems/gps/performance/accuracy/

[15] S. Dabiri and K. Heaslip, “Inferring transportation modes
from GPS trajectories using a convolutional neural network,”
Transportation Research Part C: Emerging Technologies, vol. 86, pp.
360–371, Jan. 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0968090X17303509

[16] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal Detection of
Changepoints With a Linear Computational Cost,” Journal of the
American Statistical Association, vol. 107, no. 500, pp. 1590–1598,
Dec. 2012. [Online]. Available: https://doi.org/10.1080/01621459.
2012.737745

[17] Z. Xiao, Y. Wang, K. Fu, and F. Wu, “Identifying Different
Transportation Modes from Trajectory Data Using Tree-Based
Ensemble Classifiers,” ISPRS International Journal of Geo-
Information, vol. 6, no. 2, p. 57, Feb. 2017. [Online]. Available:
http://www.mdpi.com/2220-9964/6/2/57

[18] J. Rodrguez-Echeverra, S. Gautama, and D. Ochoa, “A methodol-
ogy for train trip identification in mobility campaigns based on
smart-phones,” in 2017 IEEE First Summer School on Smart Cities
(S3C), Aug. 2017, pp. 141–144.

[19] M. Rezaie, “Knowledge inference from smartphone GPS data,”
Master’s thesis, Concordia University, Apr. 2018. [Online].
Available: https://spectrum.library.concordia.ca/983733/

[20] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li,
“GeoLife User Guide,” Jan. 2019. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/User20Guide-1.2.pdf

[21] F. Asgari and S. Clemencon, “Transport Mode Detection when
Fine-grained and Coarse-grained Data Meet,” in 2018 3rd IEEE
International Conference on Intelligent Transportation Engineering
(ICITE), Sep. 2018, pp. 301–307.

[22] P. Nitsche, P. Widhalm, S. Breuss, N. Brndle, and P. Maurer,
“Supporting large-scale travel surveys with smartphones A
practical approach,” Transportation Research Part C: Emerging Tech-
nologies, vol. 43, pp. 212–221, Jun. 2014. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0968090X13002325

[23] Y. Shen, H. Dong, L. Jia, Y. Qin, F. Su, M. Wu, K. Liu, P. Li, and
Z. Tian, “A Method of Traffic Travel Status Segmentation Based on
Position Trajectories,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, Sep. 2015, pp. 2877–2882.

[24] A. Sauerlnder-Biebl, E. Brockfeld, D. Suske, and E. Melde,
“Evaluation of a transport mode detection using fuzzy
rules,” Transportation Research Procedia, vol. 25, pp. 591–602,
Jan. 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2352146517307512

[25] H. Wang, G. Liu, J. Duan, and L. Zhang, “Detecting Transporta-
tion Modes Using Deep Neural Network,” IEICE Transactions on
Information and Systems, vol. E100.D, no. 5, pp. 1132–1135, May
2017.

[26] R. Zhang, P. Xie, C. Wang, G. Liu, and S. Wan, “Classifying
transportation mode and speed from trajectory data via deep
multi-Scale learning,” Computer Networks, vol. 162, p. 106861,
Oct. 2019. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128618314397

[27] A. Vassilev, “Reconnaissance des modes de transport par appren-
tissage profond partir de signaux GPS,” Lille, France, 2019.

[28] X. Wang, L. Gao, P. Wang, X. Sun, and X. Liu, “Two-Stream 3-D
convNet Fusion for Action Recognition in Videos With Arbitrary
Size and Length,” IEEE Transactions on Multimedia, vol. 20, no. 3,
pp. 634–644, Mar. 2018.

[29] G. Tolias, R. Sicre, and H. Jgou, “Particular object retrieval
with integral max-pooling of CNN activations,” arXiv:1511.05879
[cs], Nov. 2015, arXiv: 1511.05879. [Online]. Available: http:
//arxiv.org/abs/1511.05879

[30] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining
interesting locations and travel sequences from GPS trajectories,”
in Proceedings of the 18th international conference on World
wide web - WWW ’09. Madrid, Spain: ACM Press, 2009,
p. 791. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=1526709.1526816

[31] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on GPS data,” in Proceedings of the 10th
international conference on Ubiquitous computing - UbiComp ’08.
Seoul, Korea: ACM Press, 2008, p. 312. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1409635.1409677

[32] L. Wang, H. Gjoreskia, K. Murao, T. Okita, and D. Roggen,
“Summary of the Sussex-Huawei Locomotion-Transportation
Recognition Challenge,” in Proceedings of the 2018 ACM
International Joint Conference and 2018 International Symposium
on Pervasive and Ubiquitous Computing and Wearable Computers
- UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp.
1521–1530. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=3267305.3267519

[33] J. Bergstra and Y. Bengio, “Random Search for Hyper-
Parameter Optimization,” Journal of Machine Learning Research,
vol. 13, no. Feb, pp. 281–305, 2012. [Online]. Available:
http://www.jmlr.org/papers/v13/bergstra12a.html

[34] M. C. Gonzlez, C. A. Hidalgo, and A.-L. Barabsi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no.
7196, pp. 779–782, Jun. 2008. [Online]. Available: https:
//www.nature.com/articles/nature06958

[35] C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi, “Limits
of Predictability in Human Mobility,” Science, vol. 327,
no. 5968, pp. 1018–1021, Feb. 2010. [Online]. Available:
https://science.sciencemag.org/content/327/5968/1018

[36] Y. Huang, Z. Xiao, D. Wang, H. Jiang, and D. Wu, “Exploring Indi-
vidual Travel Patterns Across Private Car Trajectory Data,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 12, pp.
5036–5050, Dec. 2020.

[37] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,”
arXiv:1212.5701 [cs], Dec. 2012, arXiv: 1212.5701. [Online].
Available: http://arxiv.org/abs/1212.5701

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778. [Online]. Avail-
able: http://openaccess.thecvf.com/content cvpr 2016/html/
He Deep Residual Learning CVPR 2016 paper.html

[39] C. Ito, X. Cao, M. Shuzo, and E. Maeda, “Application of
CNN for Human Activity Recognition with FFT Spectrogram of
Acceleration and Gyro Sensors,” in Proceedings of the 2018 ACM
International Joint Conference and 2018 International Symposium
on Pervasive and Ubiquitous Computing and Wearable Computers
- UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp.
1503–1510. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=3267305.3267517

[40] P. Widhalm, M. Leodolter, and N. Brndle, “Top in the Lab,
Flop in the Field?: Evaluation of a Sensor-based Travel Activity
Classifier with the SHL Dataset,” in Proceedings of the 2018 ACM
International Joint Conference and 2018 International Symposium on
Pervasive and Ubiquitous Computing and Wearable Computers, ser.
UbiComp ’18. New York, NY, USA: ACM, 2018, pp. 1479–1487.
[Online]. Available: http://doi.acm.org/10.1145/3267305.3267514

[41] V. Sovrasov, “sovrasov/flops-counter.pytorch,” Jan. 2020, original-
date: 2018-08-17T09:54:59Z. [Online]. Available: https://github.
com/sovrasov/flops-counter.pytorch

