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Monoclinic (wolframite-type) monotungstate crystals are 
promising for rare-earth-doping. We report polarized 
room- and low-temperature spectroscopy, and efficient 
high-power laser operation of such a Yb3+:MgWO4 crystal 
featuring high stimulated-emission cross-section 
(σSE = 6.2×10-20 cm2 at 1056.7 nm for light polarization 
E || Nm), large Stark splitting of the ground-state (765 cm-

1), large gain bandwidth (26.1 nm for E || Ng) and strong 
Raman response (most intense mode at 916 cm-1). A 
diode-pumped Yb3+:MgWO4 laser generated 18.2 W at 
~1056 nm with a slope efficiency of ~89% and a linearly 
polarized laser output. © 2019 Optical Society of America 

http://dx.doi.org/10.1364/OL.99.099999 

Recently, monoclinic wolframite-type ((Fe,Mn)WO4, sp. gr. P2/c) 
magnesium tungstate crystals, MgWO4, have emerged as promising 
host materials for doping with rare-earth ions (RE3+) [1-3]. They 
belong to the crystal family of monoclinic transition metal 
monotungstates M2+WO4 (where M = Mg, Zn, Mn, Fe, Ni, etc.) [4]. So 
far, MgWO4 (a = 4.6889 Å, b = 5.6753 Å, c = 4.9289 Å, β = 90.726° [5]) 
crystals were mostly studied for scintillators and for doping with 
transition-metal ions, e.g., Cr3+ [5,6]. MgWO4 exhibits good thermo-
mechanical properties (high thermal conductivity <κ> of 
8.7 W/(mK) [7] and low anisotropy of thermal expansion: 
αa = 11.22, αb = 8.09 and αc = 8.77 [10-6 K-1] [3]). These properties are 

superior compared to another well-known crystal family of 
monoclinic double tungstates, KLn(WO4)2 [8], for which 
<κ> ≈ 3.5 W/mK and the thermal expansion tensor shows a 
significant anisotropy [9]. Besides, RE3+-doped MgWO4 shows 
attractive spectroscopic properties (broad and intense emission 
bands for polarized light, large Stark splitting, high luminescence 
quantum yield and Raman activity) [1-3]. These advantages 
originate from the low-symmetry structure and the substantial 
difference in ionic radii of the RE3+ dopants and the host-forming 
Mg2+ cations [10]. 

Regarding laser operation of RE3+-doped MgWO4 crystals, 
previous studies focused mostly on the spectral range of ~2 μm 
using thulium (Tm3+) [2, 10-12] and holmium (Ho3+) [3] ion doping. 
A diode-pumped continuous-wave (CW) Tm3+:MgWO4 laser 
generated 3.09 W at 2022-2034 nm with a slope efficiency η of 50% 
[11]. A graphene mode-locked (ML) Tm3+:MgWO4 laser delivered 
86 fs pulses at 2017 nm featuring a bandwidth of 53 nm at a 
repetition rate of 76 MHz [12]. 

For laser emission at ~1 μm, ytterbium (Yb3+) ion doping holds a 
huge potential. This is because Yb3+ has a simple energy-level 
scheme eliminating the unwanted energy-transfer processes and 
leading to high Stokes pump efficiency and weak heat loading [13]. 
The larger Stark splitting of the ground-state (2F7/2) (as compared to 
Nd3+) is a prerequisite for broader emission at ~1 μm. So far, the 
growth and preliminary spectroscopy of Yb3+:MgWO4 crystal were 
reported [1,14]. A semiconductor saturable absorber mirror  
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Fig. 1.  (a) Orientation of the optical indicatrix axes (Np, Nm and Ng) in 
monoclinic Yb:MgWO4 crystal: a, b and c – crystallographic axes, C2 – 2-
fold symmetry axis; (b) crystal structure in projection to the a-c plane. 

(SESAM) ML Yb3+:MgWO4 laser delivered 125 fs pulses at 1065 
nm  at a repetition rate of 117 MHz [15]. 

In this work, we report a detailed room- and low-temperature 
polarization-resolved spectroscopy of Yb3+:MgWO4 paving the way 
towards its highly-efficient and high-power diode-pumped laser 
operation. We consider this work as a first step towards high-power 
mode-locked bulk and thin-disk lasers based on Yb3+:MgWO4. 

The 1.25 at.% Yb3+:MgWO4 crystal was grown by the Top-Seeded 
Solution Growth (TSSG) method using Na2WO4 as a solvent [1,3]. Its 
structure (monoclinic, sp. gr. C42h – P2/c) [16] was confirmed by 
using X-ray powder diffraction. In MgWO4, the Yb3+ ions are 
replacing the Mg2+ ones in a single type of sites (Wyckoff position: 
2f, site symmetry: C2, VI-fold oxygen coordination in distorted 
[Mg|YbO6] polyhedra), Fig. 1(b). Charge compensation is provided 
by Na+ cations entering from the melt [3]. The corresponding ionic 
radii are RYb = 0.868 Å, RMg = 0.72 Å and RNa = 1.02 Å. The 
concentration of Yb3+ ions in the crystal NYb was 1.82×1020 cm-3 (as 
determined by Inductively Coupled Plasma Atomic Emission 
Spectroscopy). Note that the increase of Yb3+ doping level is mainly 
limited by the heterovalent doping mechanism; this would also lead 
to the deteriorated thermal properties of the crystal. 

Monoclinic Yb3+:MgWO4 is optically biaxial (point group 2/m). At 
the wavelength of ~1 μm, the principal refractive indices are 
np = 1.97, nm = 2.03 and ng = 2.13±0.02 according to the np < nm < ng 
convention. One of the optical indicatrix axes (Nm) coincides with 
the C2 symmetry axis (the b-axis) and other two (Np and Ng) are 
lying in the orthogonal mirror plane (the a-c plane), Fig. 1. The angle 
Np^c = 37.1°, measured within the obtuse angle β. 

Room-temperature (RT, 293 K) absorption, σabs, cross-sections 
corresponding to the 2F7/2 → 2F5/2 transition are shown in Fig. 2(a) 
for the principal light polarizations E || Np, Nm and Ng. The maximum 
σabs is 6.16×10-20 cm2 at 974.0 nm (the zero-phonon line, ZPL, at RT) 
and the corresponding full width at half maximum (FWHM) of the 
absorption peak is 5.6 nm (for E || Ng). The stimulated-emission (SE) 
cross-sections, σSE, were calculated using a combination of the 
Füchtbauer-Ladenburg (F-L) equation [17] based on the measured 
luminescence spectra, and the reciprocity method (RM) [18] based 
on the determined Stark splitting). The maximum σSE reaches 
6.2×10-20 cm2 at 1056.7 nm for E || Nm. Yb3+:MgWO4 exhibits a strong 
anisotropy of the SE cross-sections at this wavelength: σSE(m) : 
σSE(g) = 3.7 and σSE(m) : σSE(p) = 5.5, which is a prerequisite for a 
linearly polarized laser emission. From the luminescence spectra 
(measured with λexc = 972 nm), the emission bandwidth is 18.7 nm 
(E || Nm) and >50 nm (structured spectrum, E || Ng). Yb3+:MgWO4 
exhibits a single-exponential luminescence decay with a lifetime τlum 
of 366 μs, as measured for a powdered sample to avoid radiation 
trapping. The 2F5/2 → 2F7/2 transition of Yb3+ represents a quasi-
three-level laser scheme with reabsorption. 

 

Fig. 2.  RT (a) absorption, σabs, and (b) stimulated-emission, σSE, cross-
section spectra of Yb3+ in monoclinic MgWO4 for E || Np, Nm and Ng. 

Thus, gain cross-sections, σgain = βσSE – (1 – β)σabs, where 
β = N2(2F5/2)/NYb is the inversion ratio, and N2 is the upper laser level 
population, are calculated to predict the spectral properties of laser 
emission, see Fig. 3 for E || Nm and E || Ng. For E || Nm, a local peak in 
the gain spectra is observed at ~1057 nm and the gain bandwidth 
Δλg is 15.1 nm (FWHM, for β = 0.1). For E || Ng, a similar behavior is 
observed while the gain spectra are broader, Δλg = 26.1 nm. 

 

Fig. 3.  RT gain cross-sections, σgain = βσSE – (1 – β)σabs, where 
β = N2(2F5/2)/NYb is the inversion ratio, for Yb3+ ions in monoclinic 
MgWO4 crystal. The light polarizations are (a) E || Nm and (b) E || Ng. 

The polarized Raman spectra of an Nm-cut Yb3+:MgWO4 crystal 
are shown in Fig. 4 for the m(ij)m, where i, j = p, g, configurations 
(using Porto’s notation). The excitation wavelength is λexc = 514 nm. 
The most intense vibration is observed at 915.7 cm-1 (the FWHM of 
the Raman band is 15.0 cm-1) and assigned to symmetric stretching 
W–O vibrations ν1(A1g) in the WO6 octahedra [2]. Yb3+:MgWO4 is 
promising for self-Raman frequency conversion. 

 

Fig. 4.  Polarized Raman spectra for Yb3+:MgWO4 for the m(xy)m 
configurations (Porto’s notation), numbers indicate the Raman 
frequencies in cm-1. 

To resolve the Stark splitting of Yb3+ multiplets, the absorption 
and luminescence spectra were measured in the temperature range 
of 6–300 K, Fig. 5. For Yb3+ ions in C2 symmetry sites, there is a total 
of 2J + 1 Stark sub-levels for each 2S+1LJ multiplet, numbered as 0..3 
for 2F7/2 and 0'..2' for 2F5/2. The interpretation of the Stark transitions 
was carried out accounting for the Raman spectra.  



 

Fig. 5.  Low temperature spectroscopy of Yb:MgWO4: (a) absorption 
spectra for E || Nm; (b) luminescence spectra for E || Ng, λexc = 972 nm. 
The “+” marks indicate Stark transitions. 

The energy-level scheme of Yb3+ ions in MgWO4 is shown in 
Fig. 6(a). The ZPL (the transition between the lowest sub-levels of 
both multiplets) has an energy EZPL = 10275 cm-1. The partition 
functions for the lower and upper multiplets are Z1 = 1.352 and Z2 = 
1.469, respectively (Z1/Z2 = 0.920). The total Stark splitting of the 
ground-state, ΔE(2F7/2) = 765 cm-1, exceeds that in other known 
tungstate crystals [8,19], Fig. 6(b). For the RE3+ ions, the barycenter 
of any 2S+1LJ 4fn multiplet shows a linear variation vs. the barycenter 
of any other isolated multiplet, which is expressed as a barycenter 
plot [20], see Fig. 6(c). The barycenter energies <E(2F5/2)> and 
<E(2F7/2)> for Yb3+:MgWO4 agree well with this plot. 

In Table 1, we compare the emission properties of Yb3+:MgWO4 
with other well-known tungstate laser crystals, namely, monoclinic 
(sp. gr. C2/c) Yb3+:KLu(WO4)2 [8] and tetragonal disordered (sp. gr. 
I41/a) Yb3+:NaY(WO4)2 [21]. Yb3+:MgWO4 has higher SE cross-
sections, while its gain bandwidths are comparable to those of 
monoclinic double tungstates. 

Table 1. Spectroscopic Properties* of Yb3+ in Tungstate 
Crystals 

Crystal Site λem, 

nm 

Δλg, 

nm 

σSE,  

10-20cm2 

τlum, 

μs 

Ref. 

NaY(WO4)2 S4 1018(π) 

1024(σ) 

33.9(π) 

25.9(σ) 

1.38(π) 

0.86(σ) 

309 [21] 

KLu(WO4)2 C2 1026.7(m) 

1041.2(p) 

20.2(m) 

28.0(p) 

2.6(m) 

1.3(p) 

275 [8] 

MgWO4 C2 1056.7(m) 

1056.6(g) 

15.1(m) 

26.1(g) 

6.25(m) 

1.68(g) 

366 * 

*λem – emission wavelength, Δλg – gain bandwidth (β = 0.1), σSE – SE 
cross-section, τlum – reabsorption-free luminescence lifetime. 

For laser experiments, a rectangular sample was cut from the 
1.25 at.% Yb3+:MgWO4 crystal for light propagation along the Np 
optical indicatrix axis (Np-cut). It had a thickness of 3.1 mm and an 
aperture of 4×4 mm2. This crystal orientation was selected because 
it gives access to the high-gain light polarization (E || Nm). The 
uncoated crystal was mounted in a Cu-holder using Indium foil for 
better thermal thermal contact from all lateral sides. The holder was 
cooled to ~14 °C by circulating water. The crystal was inserted in a 
compact plano-plano (microchip-type) laser cavity, Fig. 7, formed 
by a flat pump mirror (PM) coated for high transmission (HT) at 
0.88-0.99 μm and for high reflection (HR) at 1.02-1.23 μm, and a set 
of flat output couplers (OCs) with a transmission TOC of 0.5%...10% 
at the laser wavelength. Both the PM and the OC were placed close 
to the crystal with minimum air gaps, so that the geometrical cavity 
length was ~3.1 mm. The microchip laser concept benefits from a 
robust and compact design and good cavity stability. 

 

Fig. 6.  Stark splitting of Yb3+ multiplets in MgWO4: (a) Energy-level 
scheme, numbers indicate the energy in cm-1, Z1(2) are the partition 
functions; (b) Stark splitting of Yb3+ in tungstate crystals: MgWO4, 
KLu(WO4)2 [8], NaGd(WO4)2 [19] (C2 and S4 – Yb3+ site symmetries); (c) 
barycenter plot [20] for Yb3+ ions showing the result for MgWO4. 

 

Fig. 7.  (a) Scheme of the compact diode-pumped Yb3+:MgWO4 laser: LD 
– laser diode, PM – pump mirror, OC – output coupler; (b) typical profile 
of the laser beam in the far-field (the beam ellipticity originates from the 
astigmatic thermal lens), Pabs ≈ 10 W. 

The Np-cut Yb3+:MgWO4 crystal generated a maximum output 
power of 18.2 W at ~1056 nm with a slope efficiency η of ~89% (vs. 
the absorbed pump power Pabs), Fig. 8(a). The laser threshold was 
at Pabs = 0.54 W and the optical-to-optical efficiency ηopt amounted to 
33.7% (vs. the pump power incident on the crystal). All these values 
are specified for TOC = 10%. The laser output was linearly polarized 
(E || Nm) and the polarization was intrinsically selected by the gain 
anisotropy, Fig. 2(b). For all studied OCs, the emission wavelength 
was ~1.06 μm, Fig. 3(a), in agreement with the gain spectra. A slight 
blue-shift of the laser wavelength with increasing output coupling 
was detected, Fig. 8(b), and ascribed to the quasi-three-level nature 
of the Yb3+ laser scheme exhibiting reabsorption at the laser 
wavelength. The laser operation in the plano-plano cavity was 
supported by a positive (focusing) thermal lens. For TOC < 10%, 
power scaling was limited by a thermal roll-over probably because 
of too high intracavity laser intensity. The determined laser slope 
efficiency gives an estimation of the roundtrip passive loss L of 
0.35% (loss coefficient: δloss = 0.0056 cm-1). No crystal fracture was 
observed up to at least Pabs = 22.5 W (limited by the available pump). 

In Table 2, we compare the output characteristics of compact 
diode-pumped lasers based on Yb3+-doped oxide crystals and 
reported recently. The superior laser results achieved with 
Yb3+:MgWO4 compared to previous studies with other tungstate 
crystals, Yb3+:NaY(WO4)2 and Yb3+:KLu(WO4)2, are attributed to its 
better thermo-mechanical properties. crystals, Yb3+:NaY(WO4)2 and 
Yb3+:KLu(WO4)2, are attributed to its better thermo-mechanical 
properties. 



 

Fig. 8.  Diode-pumped compact Yb3+:MgWO4 laser: (a) input-output 
dependences, η – slope efficiency; (b) typical laser emission spectra. The 
crystal orientation is Np-cut, the laser polarization is E || Nm. 

Table 2. Output Characteristics* of Compact Diode-Pumped 
Ytterbium Lasers Based on Oxide Crystals Reported So Far 

Crystal Yb, 

at.% 

Pout, 

W 

λL,  

nm 

Pth,  

W 

η, 

% 

Ref. 

Yb:LuVO4 1.5 8.3 1031 2.6 80 [22] 

Yb:CaGdAlO4 8 7.79 ~1061 2.0 84 [13] 

Yb:LuAlO3 2 9.6 1041 ~1.5 74 [23] 

Yb:NaY(WO4)2 4.8 5.2 1045 1.20 50 [24] 

Yb:KLu(WO4)2 5.2 11.0 ~1045 0.61 80 [25] 

Yb:MgWO4 1.25 18.2 ~1056 0.54 89 ** 

Yb:Ca4GdO(BO3)3 10 18.2 1032 ~1 70 [26] 

Yb:YAl3(BO3)4 5.6 10.6 1042 0.79 72 [27] 

Yb:Lu3Ga5O12 7.1 8.97 1040 1.22 75 [28] 

*Pout – output power, λL – laser wavelength; Pth – threshold pump 
power, η – slope efficiency (vs. absorbed pump power); **This work. 

To conclude, monoclinic Yb3+:MgWO4 is a promising crystal for 
compact, highly-efficient and high-power lasers at ~1 μm thanks to 
a combination of attractive thermal and spectroscopic properties. 
We report on the first laser operation of Yb3+:MgWO4 in a 
microchip-type laser cavity yielding >18 W of linearly polarized 
output at ~1.06 μm with a slope efficiency (88.8%) almost 
approaching the Stokes limit, ηSt = λP/λL = 91.7%. This is attributed 
to weak non-radiative relaxation, low optical losses and good mode-
matching provided by the positive thermal lens for the selected 
crystal orientation and the results achieved in this work represent a 
record for Yb3+-doped tungstate laser crystals. 
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