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Highlights: 17 

 Machine learning models were used to estimate missing characterization 18 

factors (CF). 19 

 This allows complementing impact assessment of micropollutants release from 20 

WWTP. 21 

 This impact resulted of a high-emitted mass or a high toxicological potential. 22 
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 It will help to select substances to work on for environmental restoration. 23 

 It could be easily adapted to any other compartment or geographical context. 24 

 25 

 26 

 27 

Abstract:  28 

During wastewater treatment, incomplete elimination of micropollutants occurs.. 29 

Recently, the potential impacts of the release of some micropollutants at the scale of 30 

France have been studied.. These impacts calculations were incomplete due to a 31 

lack of characterization factors. In the present study, we used already developed 32 

machine learning models to complement them. The conclusions were not modified 33 

for the impact on aquatic environment, but were mitigated for the human health 34 

impacts: the higher toxicological potential impact could be driven by a high-emitted 35 

mass, and a high number of compounds could take a significant part of the overall 36 

impact. 37 

 38 

 39 

 40 

Graphical Abstract:  41 
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 42 

Keywords: characterization factors; (eco)-toxicity; continental freshwater; human 43 

health; Life Cycle Assessment; machine learning. 44 

 45 

1. Introduction 46 

For several years, the presence of organic micropollutants such as pharmaceuticals, 47 

pesticides, or Polycyclic Aromatic Hydrocarbons (PAH) in the effluents of wastewater 48 

treatment plants (WWTP) is ubiquitous and has raised increasing concerns. More 49 

than thousands of active substances are identified in wastewater and their treatment 50 

within the plants remains incomplete (Addamo et al., 2005; Aemig et al., 2021). In 51 

parallel, with increasingly accurate and efficient analytical technologies, more and 52 

more compounds are detected at low concentrations (ng.L-1 to μg.L-1) in rivers, 53 

groundwater, surface water, and drinking water (Bayer et al., 2014). Incomplete 54 

removal and release of micropollutants into the aquatic environment represents a 55 

potential danger to human health and to the aquatic environment of continental 56 
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freshwater. The identification and quantification of the potential impact of toxic 57 

substances induce the development of new sustainable process technologies of 58 

targeted substances and represent a great challenge for the safety of aquatic 59 

ecosystems (Rosenbaum et al., 2008; Zhu et al., 2015). 60 

Recently, Aemig et al. (2021) identified 261 organic micropollutants in the effluents of 61 

French WWTP. The toxicological and ecotoxicological impacts of 94 and 88 62 

micropollutants, respectively, were quantified by multiplying the emitted mass of the 63 

compound in the total volume of effluents from French WWTPs by their 64 

characterization factors (Lindim et al., 2019). Characterization factors (CF) are used 65 

in the Life Cycle Assessment (LCA) framework to represent the fate, the exposure, 66 

the toxicity, and the ecotoxicity of compounds, addressing human toxicity and 67 

freshwater ecotoxicity (Hauschild and Huijbregts, 2015). Results showed that a 68 

molecule can be highly toxic for the aquatic environment without necessarily being 69 

toxic for human health, and vice versa. Moreover, a high concentration does not 70 

necessarily lead to a high impact, and in the same way, a molecule with a low 71 

concentration can lead to a significant impact. As stated by Oldenkamp et al. (2018), 72 

the CF seemed to be the most important variable to explain the potential impact of a 73 

substance because the differences in terms of CF were more important than in terms 74 

of mass. The authors also pointed out that there was a significant lack of toxicological 75 

and ecotoxicological CF for many substances to draw conclusions. Up to now, if a CF 76 

is missing for any substance, the potential impact of these substances could not be 77 

estimated (i.e. is set equal to zero) leading to an underestimation of the potential 78 

overall impacts. 79 

Recently, machine learning algorithms have been used to predict hazardous 80 

concentration 50% (HC50) based on 14 physicochemical characteristics (Hou et al., 81 
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2020a) or on 691 more various variables (Hou et al., 2020b). Nevertheless, their 82 

input variables need some experiments and could be difficult to collect. This problem 83 

was tackled by Song et al. (2021) who predicted Lethal Concentration 50 (LC50) 84 

based on 2000 easy-to-obtain molecular descriptors. The TEST software (U.S. EPA, 85 

2020) also performs predictions of LC50, among other environmental parameters, 86 

based on molecular descriptors. But their output variables are not directly the CFs 87 

that are closer to the endpoints (DALY and PDF) than the HC50 or the LC50 (i.e. the 88 

acute aquatic toxicity experimental threshold).More recently, Servien et al. (2021) 89 

developed a modeling method based on machine learning approaches and 40 easy-90 

to-obtain molecular descriptors. This approach allowed the prediction of toxicological 91 

and ecotoxicological CF in continental freshwater with an acceptable margin of error. 92 

Applying these models to estimate the missing CF could bring the assessment of the 93 

overall potential impacts closer to reality. 94 

The objective of this study was thus to predict missing toxicological and 95 

ecotoxicological factors using the machine learning models developed by Servien et 96 

al. (2021). This allowed a completed assessment of the overall potential impacts (on 97 

human health and on aquatic environment) of 153 organic micropollutants in 98 

continental freshwater at the scale of France. 99 

 100 

2. Materials and Methods 101 

2.1 Molecules 102 

Aemig et al. (2021) identified 261 organic micropollutants (released by WWTP) 103 

representing a potential danger to human health and aquatic environment in 104 

continental freshwater. These molecules came from (i) the Waste Framework 105 

Directive (WFD, Directive 2008/105/CE), (ii) the RSDE national action for survey and 106 
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reduction of hazardous substances in water (INERIS, 2016), and (iii) the AMPERES 107 

French project in which micropollutants (registered in the WFD and pharmaceuticals) 108 

were analyzed in influents and effluents of 15 WWTP (Martin Ruel et al., 2012). 109 

Among these 261 organic micropollutants, the emitted mass of 153 was estimated 110 

with 90% of the measured data above the limit of quantification. The impacts of these 111 

153 compounds, whose names are gathered in Table S1, are assessed in this work. 112 

 113 

2.2 Characterization factors 114 

Among the 153 micropollutants, Aemig et al. (2021) identified 88 compounds with 115 

characterization factors for aquatic environment (CFET) and 94 compounds with 116 

characterization factors for human health (CFHT) for emissions in continental 117 

freshwater. These impacts were complemented (for two molecules without CFET and 118 

one without CFHT) and updated using the USEtox® (Rosenbaum et al., 2008) 119 

database, version 2.12 with a default landscape (to remain consistent with Servien et 120 

al. (2021)). USEtox® is an international consensual for characterizing human and 121 

ecotoxicological impacts of chemicals (UNEP-SETAC, 2019). It was developed by life 122 

cycle initiative under the United Nations Environmental Programme (UNEP) and the 123 

Society for Environmental Toxicology and Chemistry (SETAC) (Henderson et al. 124 

2011) to produce a transparent and consensus characterization model. This model 125 

gathers in one single characterization factor the chemical fate, the exposure, and the 126 

effect for each of the several thousands of organic and inorganic compounds. If the 127 

structure of the USEtox® multimedia model is always the same, to determine the CF 128 

of a molecule, numerous physicochemical parameters (such as solubility, 129 

hydrophobicity, degradability) and detailed toxicological and ecotoxicological data 130 

must be provided. For example, EC50 values (i.e. the effective concentration at 131 
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which 50% of a population died) for at least three species from three different trophic 132 

levels are required for the ecotoxocological effect factor. 133 

 To perform the calculation of the impacts of the 153 compounds, we computed 63 134 

missing ecotoxicological characterization factors and 58 missing toxicological 135 

characterization factors, using the machine learning models developed by Servien et 136 

al. (2021). These models predict ecotoxicological or toxicological characterization 137 

factors using 40 selected easy-to-obtain molecular descriptors, provided in Table S2. 138 

For more details on the choice of these descriptors, the interested reader is referred 139 

to Servien et al. (2014). These models are based on a comparison between global 140 

and cluster-then-predict approaches with partial least squares, support vector 141 

machines, and random forest. These models were compared to USEtox® database, 142 

exhibited small differences, and were therefore considered to be comparable. The 143 

best approaches were then selected for each cluster and each characterization 144 

factor. To apply the cluster-then-predict approaches, the cluster of each new 145 

compound needs to be estimated using a supervised clustering approach based on 146 

the clusters already obtained in Servien et al. (2021). So, the cluster of each 147 

compound was estimated using the well-known k-nearest neighbor approach through 148 

the knn function of the R package class (Ripley, 1996). Then, the models selected in 149 

Servien et al. (2021) were applied without any modification, assuming they had been 150 

previously tested on a large diversity of molecules covering the diversity of the 151 

compounds assessed in the present study. These previous tests have shown the 152 

reliability of the models to predict CFs that are missing in USEtox®.  153 

 154 

2.3 Calculation of molecular descriptors 155 
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CHEM-3D of ChemOffice Ultra 12.0 (2017) molecular modeling software was used to 156 

build three-dimensional chemical structures (3D-structures) in order to calculate the 157 

quantum-chemical molecular descriptors (see Table S2). The Excel function of 158 

ChemOffice was then used to calculate the molecular weights and the Connolly 159 

surface areas. Finally, the constitutional (except the molecular weight) and the 160 

topological descriptors were calculated with Dragon 7.0 (2017). 161 

 162 

2.4 Quantification of the potential impacts  163 

The annual volume of water effluent released into the environment by WWTP was 164 

estimated to be 5.109 m3, in France (Aemig et al., 2021). This volume was 165 

determined by multiplying the daily flow arriving at the WWTP during 365 days, 166 

assuming that it was equal to the effluent. The emitted mass of micropollutants was 167 

estimated by multiplying each concentration of the 153 micropollutants by the volume 168 

of effluent. The mass was expressed in kilograms or tons of micropollutants 169 

discharged by the WWTP effluents in one year at the national scale. The 170 

concentrations and masses are those of the Supplemental Material of Aemig et al. 171 

(2021) and are gathered in Tables S1 and S3. Total impacts on human health and 172 

aquatic environment in continental freshwater were quantified by summing the 173 

impacts of all the compounds, as it is usually done in LCA (Heijungs and Suh, 2002). 174 

Human impact is expressed in DALY (Disability-Adjusted Life Years) representing the 175 

number of negatively impacted human years, and the ecotoxicological impact is 176 

expressed in PDF (Potentially Disappeared Fraction of species) representing the 177 

potential fraction of disappeared species. 178 

 179 

3. Results and discussion 180 
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3.1 Global analysis 181 

The addition of new molecules (+59 for human toxicity and +65 for ecotoxicity) more 182 

than doubled the total emitted mass (from 71.1 and 64.5 tons to 147.1 tons) of 183 

micropollutants released into freshwater in one year. We can notice in Table S1 that 184 

valsartan (137862-53-4), dichloromethane (75-09-2), irbesartan (138402-11-6), 185 

ranitidine (66357-35-5), hydrochlorothiazide (58-93-5), and AMPA (1066-51-9) 186 

represent 51% of the total mass released, and less than 4% of the micropollutants 187 

identified. 188 

Regarding the CFs, the different values are reported in the boxplots of Figure 1. As 189 

usual, the CFs are log-transformed with the addition of 1e-10 for the CFHT to avoid a 190 

computational problem with log10(0). 1e-10 has been chosen to be below the 191 

minimum of the USEtox database (5e-9). 192 

 193 

 194 
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 195 

 196 

Figure 1. Comparison of the log10(CFHT+1e-10) and log10(CFET) for the compounds 197 

taken into account in Aemig et al. (2021) and the added compounds for which the 198 

CFs are calculated using the models in Servien et al. (2021). 199 

 200 

Figure 1 suggests that the added compounds have globally a higher CF than those of 201 

Aemig et al. (2021), but that the more extreme compounds, with the highest CF 202 

values, were already included in their study. 203 
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In more details, for the CFHT (resp. CFET), the log10 median of the value of the 204 

compounds of Aemig et al. (2021) is 1.1 log10 (resp. 0.5 log10) smaller than that of the 205 

added compounds. For the CFHT, the minimum, the first and third quartiles, the mean, 206 

and the median values of the compounds of Aemig et al. (2021) are all more than 0.7 207 

log10 smaller than those of the added compounds. The differences are somewhat 208 

similar for the CFET. But, for both CF, the maxima were higher in the compounds of 209 

the study of Aemig et al. (2021). All these descriptive values are given in Table S4. 210 

 211 

3.2  Impact on the aquatic environment 212 

Aemig et al. (2021) showed that 99% of the total impact was induced by only 2% of 213 

the total emitted mass and 10 molecules. Thus, as a comparison with the addition of 214 

65 molecules: 215 

• 99% of the impact is now induced by 38 molecules and 26% of the total mass, 216 

• the 10 molecules with the highest impact represent 95% of the impact and 13% 217 

of the total mass (Table 1), 218 

• among the 10 most impactful, four were different from the previous study 219 

• the total impact has increased by only 10%. 220 

 221 

Table 1. List of the 10 molecules with the highest aquatic environment impact. The 222 

underlined molecules were not taken into account in Aemig et al. (2021). 223 

CAS Number Name 

Impact 

(%) 

Emitted 

mass 

(%) 

Emitted 

mass 

(kg) 

CFET 

(PDF·m³·d) PDF 

52315-07-8 Cypermethrin 77,16 0,47 7,0E+02 2,5E+07 1,8E+10 

50-28-2 17-beta-estradiol 4,76 0,01 9,6E+00 1,1E+08 1,1E+09 



12 
 

154-21-2 Lincomycin 3,97 0,31 4,5E+02 2,0E+06 9,0E+08 

42399-41-7 Diltiazem 2,54 0,02 3,5E+01 1,6E+07 5,8E+08 

26787-78-0 Amoxicillin 2,33 0,07 1,0E+02 5,3E+06 5,3E+08 

3194-55-6 

1,2,5,6,9,10-

Hexabromocyclododecane 1,21 0,20 3,0E+02 9,3E+05 2,7E+08 

74070-46-5 Aclonifene 0,95 0,44 6,5E+02 3,3E+05 2,2E+08 

58-93-5 Hydrochlorothiazide 0,88 4,64 6,8E+03 2,9E+04 2,0E+08 

188425-85-6 Boscalid 0,86 0,22 3,2E+02 6,1E+05 1,9E+08 

66357-35-5 Ranitidine 0,57 6,80 1,0E+04 1,3E+04 1,3E+08 

Total   95.22 13.17 - - - 

 224 

According to Aemig et al. (2021), cypermethrin accounted for 82% of the total impact. 225 

In this work, the addition of the 65 compounds slightly decreased this percentage to 226 

77%. If cypermethrin is not taken into account in the calculation of the total impact, 227 

the first nine most impactful compounds represent 80% of the total impact and 13% 228 

of the total emitted mass, highlighting that the total impact is due to only a small 229 

number of molecules and a small amount of the total mass. The four molecules 230 

added in the top ten are pharmaceuticals: one antibiotic (lincomycin from the 231 

lincosamide class), one calcium channel blocker (diltiazem), one diuretic usually used 232 

in combination with irbesartan for the treatment of hypertensive disease 233 

(hydrochlorothiazide), and one acid-reflux treatment (ranitidine). For the two latters, 234 

the released mass is quite high, representing near 12% of the total mass, but their 235 

low CF led to a net contribution to the impact of less than 1%. As the most impactful 236 

compounds (with impacts greater than 1%) represent only a very small percentage of 237 

the total mass, the impact is mainly due to their high ecotoxicological value, given by 238 

the CFET. According to Figure 1, it can be expected that the addition of a set of 239 
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compounds with higher CFET would increase a lot the global impacts. However, these 240 

impacts are mainly due to extreme values of CFET that are not present in our new set 241 

of compounds, as shown in Figure 2. We could also see that some added 242 

compounds have a high mass but a too low CFET to have a significant effect on the 243 

overall impact.   244 

 245 

 246 

 247 

Figure 2 –CFET of the 153 studied compounds as a function of the emitted mass 248 

(both in log scale). Compounds of Aemig et al. (2021) are in blue, the new ones are 249 
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in red. The numbers represent the 10 most impactful compounds, in decreasing order 250 

(i.e. the same order as Table 1). 251 

The detailed results for all the 153 compounds can be found in Table S1. 252 

 253 

 254 

3.2 Impact on Human health 255 

As for the aquatic environment, a very important part of the total impact (94%) was 256 

induced by a very small percentage of the total emitted mass (4%) and a very few 257 

numbers of molecules (only eight) (Aemig et al., 2021). Thus, as a comparison, with 258 

the addition of the 59 new molecules: 259 

• 94% of the impact is now induced by 20 molecules and 33% of the total mass, 260 

• the eight molecules with the highest impact represent 82% of the impact and 27% 261 

of the total mass (Table 2), 262 

•  263 

• the total impact has  increased of 25%. 264 

 265 

Table 2. List of the 10 molecules with the highest human health impact. The 266 

underlined molecules were not taken into account in Aemig et al. (2021). 267 

CAS Number Name 

Impact 

(%) 

Emitted 

mass 

(%) 

Emitted 

mass 

(kg) 

CFHT 

(DALY/kg) DALY 

53-86-1 Indomethacin 25,77 0,64 9,4E+02 7,5E-03 7,06 

205-99-2 Benzo(b)fluoranthene 18,34 0,04 6,2E+01 8,1E-02 5,02 

115-32-2 Dicofol 16,33 0,17 2,4E+02 1,8E-02 4,47 

207-08-9 Benzo(k)fluoranthene 6,67 0,04 5,3E+01 3,5E-02 1,83 
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137862-53-4 Valsartan 6,23 17,71 2,6E+04 6,5E-05 1,71 

193-39-5 Indeno(1,2,3-cd)pyrene 3,94 0,04 5,5E+01 1,9E-02 1,08 

138402-11-6 Irbesartan 2,75 8,05 1,2E+04 6,3E-05 0,75 

15307-86-5 Diclofenac 2,33 1,01 1,5E+03 4,3E-04 0,64 

465-73-6 Isodrin 1,88 0,04 5,5E+01 9,4E-03 0,52 

25637-99-4 

1,3,5,7,9,11-

Hexabromocyclododecane 1,69 0,20 3,0E+02 1,6E-03 0,46 

Total  85.94 27.94    

 268 

The main conclusion of the study of Aemig et al. (2021) (only a small number of 269 

molecules and a small percentage of the mass led to nearly all the impact)  has now 270 

to be seriously mitigated for the CFHT. Depending on the compound, a high impact 271 

(i.e. higher than 1%) could be driven by a high mass, a high CFHT, or a combination 272 

of both (Figure 3).  273 

 274 
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 275 

Figure 3 - CFHT of the 153 compounds as a function of the emitted mass (both in log 276 

scale). Compounds of Aemig et al. (2021) are in red, the new ones are in blue. The 277 

numbers represent the 10 most impactful compounds, in decreasing order (i.e. the 278 

same order as Table 2). The transparent points at the bottom are the compounds 279 

with a CFHT equal to zero. 280 

 281 

Second, the number of molecules needed to reach 94% of the total impact has been 282 

multiplied by more than two (8 to 20) highlighting a more equal distribution of the 283 

impacts among the compounds. In the ten most impactful molecules, four have been 284 
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added by the present study. Among these four compounds, two are anti-hypertensive 285 

drugs, valsartan, and irbesartan, which contributed to the impact (Table 2) thanks to 286 

their very high masses released in the environment that could be linked to their high 287 

uses and low removal in WWTP (Boix et al., 2016). Two other molecules, the isodrin 288 

organochlorine insecticide (present in the WFD registered list with environmental 289 

quality standards and no more used in France) and the hexabromocyclododecane 290 

(HBCDD) flame retardant (included in the persistent mobile toxic (PBT) substances 291 

list of very high concern requiring authorization before use in EU and progressively 292 

banned since 2011(ECHA, 2008)) contributed to the impact because of their high 293 

toxicity, similarly to the first two PAHs (benzo(b)fluoranthene and 294 

benzo(k)fluoranthene) (Table 2). 295 

By conclusion,  evaluating the human health impacts based only on the available 296 

CFHT could provide very uncompleted impacts (Table S3). 297 

 298 

4 Conclusion 299 

In a previous study, 261 organic micropollutants were selected to study their potential 300 

impacts on human health and aquatic environment in continental freshwater at the 301 

scale of France. However, the lack of data did not allow quantifying the impacts for 302 

more than 1/3 of these substances (88 for aquatic environment and 94 for human 303 

health). In this work, and using a new modeling approach, we were able to estimate 304 

the impact of 153 organic micropollutants, i.e. for all with an estimated mass released 305 

in the environment. These results could be used to select substances on which a 306 

special effort should be made on the tertiary treatments to implement in WWTP. Also, 307 

it has been shown that, depending on the substances, a high potential impact could 308 

be due to a high emitted mass and/or a high characterization factor, especially for 309 
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human health. Using the machine learning models, any characterization factors can 310 

be easily estimated from the 40 easy-to-obtain molecular descriptors. Therefore, to 311 

estimate the impacts of 100% of the substances, the lack of data on the mass 312 

emitted in the environment is now the only remaining limitation. It has to be 313 

underlined that this whole methodology can be adapted to any other compartment 314 

and any other geographical context, with predictive models still to develop. 315 

 316 
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