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Highlights: 17 

 Machine learning models were used to estimate missing characterization 18 

factors (CF). 19 

 This allows complementing impact assessment of micropollutants release from 20 

WWTP. 21 

mailto:remi.servien@inrae.fr


 The human health impact was doubled by adding the compounds with predicted 22 

CF. 23 

 This impact resulted of a high-emitted mass or a high toxicological potential. 24 

 The impact on aquatic environment was nearly unchanged. 25 

 26 

 27 

Abstract:  28 

The emission of micropollutants by human activities represents a potential threat to 29 

human and ecosystems health. During wastewater treatment, incomplete elimination 30 

of these substances occurs. Indeed, effluents released to the environment still contain 31 

a non-negligible part of these micropollutants. Recently, the potential impacts on 32 

human health and aquatic environment of the release of some organic and inorganic 33 

micropollutants at the scale of France have been studied. The high impacts were 34 

mainly due to the (eco)-toxicological potential of a few numbers of compounds, not to 35 

their mass emitted in the environment. Furthermore, the impact was estimated for less 36 

than 1/3 of the initial list of organic substances due to a lack of concentration and 37 

toxicological data in the literature. In the present study, we used already developed 38 

machine learning models to complement these impact calculations. The conclusions 39 

were not modified for the impact on aquatic environment, but were different for the 40 

human health impacts: the higher toxicological potential impact could be driven by a 41 

high-emitted mass, and a high number of compounds could take a significant part of 42 

the overall impact. 43 

 44 

 45 



Graphical Abstract:  46 

 47 

Keywords: characterization factors, toxicity, ecotoxicity, continental freshwater, 48 

human health, Life Cycle Assessment, molecular descriptors. 49 

 50 

1. Introduction 51 

For several years, the presence of organic micropollutants such as pharmaceuticals, 52 

pesticides, or Polycyclic Aromatic Hydrocarbons (PAH) in the effluents of wastewater 53 

treatment plants (WWTP) is ubiquitous and has raised increasing concerns. More than 54 

thousands of active substances are identified in wastewater and their treatment within 55 

the plants remains incomplete (Addamo et al., 2005; Aemig et al., 2021). In parallel, 56 

with increasingly accurate and efficient analytical technologies, more and more 57 

compounds are detected at low concentrations (ng.L-1 to μg.L-1) in rivers, groundwater, 58 

surface water, and drinking water (Bayer et al., 2014). Incomplete removal and release 59 

of micropollutants into the aquatic environment represents a potential danger to human 60 



health and to the aquatic environment of continental freshwater. The identification and 61 

quantification of the potential impact of toxic substances induce the development of 62 

new sustainable process technologies of targeted substances and represent a great 63 

challenge for the safety of aquatic ecosystems (Rosenbaum et al., 2008; Zhu et al., 64 

2015). 65 

Recently, Aemig et al. (2021) identified 261 organic micropollutants in the effluents of 66 

French WWTP. The toxicological and ecotoxicological impacts of 94 and 88 67 

micropollutants, respectively, were quantified by multiplying the emitted mass of the 68 

compound in the total volume of effluents from French WWTPs by their 69 

characterization factors (Lindim et al., 2019). Characterization factors (CF) are used in 70 

the Life Cycle Assessment (LCA) framework to represent the fate, the exposure, the 71 

toxicity, and the ecotoxicity of compounds, addressing human toxicity and freshwater 72 

ecotoxicity (Hauschild and Huijbregts, 2015). Results showed that a molecule can be 73 

highly toxic for the aquatic environment without necessarily being toxic for human 74 

health, and vice versa. Moreover, a high concentration does not necessarily lead to a 75 

high impact, and in the same way, a molecule with a low concentration can lead to a 76 

significant impact. As stated by Oldenkamp et al. (2018), the CF seemed to be the 77 

most important variable to explain the potential impact of a substance because the 78 

differences in terms of CF were more important than in terms of mass. The authors 79 

also pointed out that there was a significant lack of toxicological and ecotoxicological 80 

CF for many substances to draw conclusions. Up to now, if a CF is missing for any 81 

substance, the potential impact of these substances could not be estimated (i.e. is set 82 

equal to zero) leading to an underestimation of the potential overall impacts. 83 

Recently, Servien et al. (2021) developed a modeling method based on machine 84 

learning approaches and 40 easy-to-obtain molecular descriptors. This approach 85 



allowed the prediction of toxicological and ecotoxicological CF in continental 86 

freshwater with an acceptable margin of error. Applying these models to estimate the 87 

missing CF could bring the assessment of the overall potential impacts closer to reality. 88 

The objective of this study was thus to predict missing toxicological and 89 

ecotoxicological factors using the machine learning models developed by Servien et 90 

al. (2021). This allowed a completed assessment of the overall potential impacts (on 91 

human health and on aquatic environment) of 153 organic micropollutants in 92 

continental freshwater at the scale of France. 93 

 94 

2. Materials and Methods 95 

2.1 Molecules 96 

Aemig et al. (2021) identified 261 organic micropollutants (released by WWTP) 97 

representing a potential danger to human health and aquatic environment in 98 

continental freshwater. These molecules came from (i) the Waste Framework Directive 99 

(WFD, Directive 2008/105/CE), (ii) the RSDE national action for survey and reduction 100 

of hazardous substances in water (INERIS, 2016), and (iii) the AMPERES French 101 

project in which micropollutants (registered in the WFD and pharmaceuticals) were 102 

analyzed in influents and effluents of 15 WWTP (Martin Ruel et al., 2012). Among these 103 

261 organic micropollutants, the emitted mass of 153 was estimated with 90% of the 104 

measured data above the limit of quantification. The impacts of these 153 compounds, 105 

whose names are gathered in Table S1, are assessed in this work. 106 

 107 

2.2 Characterization factors 108 

Among the 153 micropollutants, Aemig et al. (2021) identified 88 compounds with 109 

characterization factors for aquatic environment (CFET) and 94 compounds with 110 



characterization factors for human health (CFHT) for emissions in continental 111 

freshwater in the USEtox® (Rosenbaum et al., 2008) database, version 2.12. USEtox® 112 

is an international consensual for characterizing human and ecotoxicological impacts 113 

of chemicals (UNEP-SETAC, 2019). To perform the calculation of the impacts of the 114 

153 compounds, we computed 65 missing ecotoxicological characterization factors 115 

and 59 missing toxicological characterization factors, using the machine learning 116 

models developed by Servien et al. (2021). These models predict ecotoxicological or 117 

toxicological characterization factors using 40 selected easy-to-obtain molecular 118 

descriptors, provided in Table S2. For more details on the choice of these descriptors, 119 

the interested reader is referred to Servien et al. (2014). These models are based on 120 

a comparison between global and cluster-then-predict approaches with partial least 121 

squares, support vector machines, and random forest. The best approaches were then 122 

selected for each cluster and each characterization factor. To apply the cluster-then-123 

predict approaches, the cluster of each new compound needs to be estimated using a 124 

supervised clustering approach based on the clusters already obtained in Servien et 125 

al. (2021). So, the cluster of each compound was estimated using the well-known k-126 

nearest neighbor approach through the knn function of the R package class (Ripley, 127 

1996). Then, the models selected in Servien et al. (2021) were applied without any 128 

modification, assuming they had been previously tested on a large diversity of 129 

molecules covering the diversity of the compounds assessed in the present study.  130 

 131 

2.3 Calculation of molecular descriptors 132 

CHEM-3D of ChemOffice Ultra 12.0 (2017) molecular modeling software was used to 133 

build three-dimensional chemical structures (3D-structures) in order to calculate the 134 

quantum-chemical molecular descriptors (see Table S2). The Excel function of 135 



ChemOffice was then used to calculate the molecular weights and the Connolly surface 136 

areas. Finally, the constitutional (except the molecular weight) and the topological 137 

descriptors were calculated with Dragon 7.0 (2017). 138 

 139 

2.4 Quantification of the potential impacts  140 

The annual volume of water effluent released into the environment by WWTP was 141 

estimated to be 5.109 m3, in France (Aemig et al., 2021). This volume was determined 142 

by multiplying the daily flow arriving at the WWTP during 365 days, assuming that it 143 

was equal to the effluent. The emitted mass of micropollutants was estimated by 144 

multiplying each concentration of the 153 micropollutants by the volume of effluent. 145 

The mass was expressed in kilograms or tons of micropollutants discharged by the 146 

WWTP effluents in one year at the national scale. The concentrations and masses are 147 

those of the Supplemental Material of Aemig et al. (2021) and are gathered in Tables 148 

S1 and S3. Total impacts on human health and aquatic environment in continental 149 

freshwater were quantified by summing the impacts of all the compounds, as it is 150 

usually done in LCA (Heijungs and Suh, 2002). Human impact is expressed in DALY 151 

(Disability-Adjusted Life Years) representing the number of negatively impacted human 152 

years, and the ecotoxicological impact is expressed in PDF (Potentially Disappeared 153 

Fraction of species) representing the potential fraction of disappeared species. 154 

 155 

3. Results and discussion 156 

3.1 Global analysis 157 

The addition of new molecules (+59 for human toxicity and +65 for ecotoxicity) more 158 

than doubled the total emitted mass (from 71.1 and 64.5 tons to 147.1 tons) of 159 

micropollutants released into freshwater in one year. We can notice in Table S1 that 160 



valsartan (137862-53-4), dichloromethane (75-09-2), irbesartan (138402-11-6), 161 

ranitidine (66357-35-5), hydrochlorothiazide (58-93-5), and AMPA (1066-51-9) 162 

represent 51% of the total mass released, and less than 4% of the micropollutants 163 

identified. 164 

Regarding the CFs, the different values are reported in the boxplots of Figure 1. As 165 

usual, the CFs are log-transformed with the addition of 1e-10 for the CFHT to avoid a 166 

computational problem with log10(0). 1e-10 has been chosen to be below the minimum 167 

of the USEtox database (5e-9). 168 

 169 



 170 

Figure 1. Comparison of the log10(CFHT+1e-10) and log10(CFET) for the compounds 171 

taken into account in Aemig et al. (2021) and the added compounds for which the CFs 172 

are calculated using the models in Servien et al. (2021). 173 

 174 

Figure 1 suggests that the added compounds have globally a higher CF than those of 175 

Aemig et al. (2021), but that the more extreme compounds, with the highest CF values, 176 

were already included in their study. 177 

In more details, for the CFHT (resp. CFET), the log10 median of the value of the study of 178 

Aemig et al. (2021) is 1.2 log10 (resp. 0.3 log10) smaller than that of the added 179 

compounds. For the CFHT, the minimum, the first and third quartiles, the mean, and the 180 

median values of Aemig et al. (2021) are all more than 1 log10 smaller than those of 181 

the added compounds. The differences are smaller for the CFET, around 0.5log10. But, 182 

for both CF, the maxima were higher in the Aemig et al. (2021) study. All these 183 

descriptive values are given in Table S4. 184 

 185 

3.2  Impact on the aquatic environment 186 

Aemig et al. (2021) showed that 99% of the total impact was induced by only 2% of the 187 

total emitted mass and 10 molecules. Thus, as a comparison with the addition of 65 188 

molecules: 189 

• 99% of the impact is now induced by 24 molecules and 21% of the total mass, 190 

• the 10 molecules with the highest impact represent nearly 98% of the impact and 191 

6% of the total mass (Table 1), 192 

• among the 10 most impactful, three were different from the previous study 193 

• the total impact has increased by only 4%. 194 



 195 

Table 1. List of the 10 molecules with the highest aquatic environment impact. The 196 

underlined molecules were not taken into account in Aemig et al. (2021). 197 

CAS Number Name 

Impact 

(%) 

Emitted 

mass 

(%) 

Emitted 

mass 

(kg) 

CFET 

(PDF/kg) PDF 

52315-07-8 Cypermethrin 79.21 0.47 696.3 7.17E+07 4.99E+10 

37680-73-2 PCB 101 11.15 0.03 47.1 1.49E+08 7.03E+09 

50-28-2 17-β-estradiol 2.28 0.01 9.6 1.50E+08 1.44E+09 

154-21-2 Lincomycin 1.43 0.31 450.0 2.00E+06 9.01E+08 

26787-78-0 Amoxicillin 1.09 0.07 100.0 6.87E+06 6.87E+08 

42399-41-7 Diltiazem 0.91 0.02 35.0 1.64E+07 5.75E+08 

74070-46-5 Aclonifen 0.52 0.44 653.5 5.00E+05 3.27E+08 

3194-55-6 

1,2,5,6,9,10-

hexabromocyclododecan 0.44 0.20 296.2 9.27E+05 2.75E+08 

58-93-5 Hydrochlorothiazide 0.32 4.64 6822.0 2.91E+04 1.99E+08 

188425-85-6 Boscalid 0.31 0.22 320.8 6.06E+05 1.95E+08 

Total   97.65 6.41 - - - 

 198 

According to Aemig et al. (2021), cypermethrin accounted for 82% of the total impact. 199 

In this work, the addition of the 65 compounds slightly decreased this percentage to 200 

79%. If cypermethrin is not taken into account in the calculation of the total impact, the 201 

first nine most impactful compounds represent 90% of the total impact and 6% of the 202 

total emitted mass, highlighting that the total impact is due to only a small number of 203 

molecules and a small amount of the total mass. The three molecules added in the top 204 



ten are pharmaceuticals: one antibiotic (lincomycin from the lincosamide class), one 205 

calcium channel blocker (diltiazem), and one diuretic usually used in combination with 206 

irbesartan for the treatment of hypertensive disease (hydrochlorothiazide). For the 207 

latter, the released mass is quite high, representing near 5% of the total mass, but its 208 

low CF led to a net contribution to the impact of only 0.3%. As the most impactful 209 

compounds represent only a very small percentage of the total mass, the impact is 210 

mainly due to their high ecotoxicological value, given by the CFET. According to Figure 211 

1, it can be expected that the addition of a set of compounds with higher CFET would 212 

increase a lot the global impacts. However, these impacts are mainly due to extreme 213 

values of CFET that are not present in our new set of compounds, as shown in Figure 214 

2. We could also see that some added compounds have a high mass but a too low 215 

CFET to have a significant effect on the overall impact.   216 



 217 

Figure 2 –CFET of the 153 studied compounds as a function of the emitted mass (both 218 

in log scale). Compounds of Aemig et al. (2021) are in black, the new ones are in 219 

green. The numbers represent the 10 most impactful compounds, in decreasing order 220 

(i.e. the same order as Table 1). 221 

The detailed results for all the 153 compounds can be found in Table S1. 222 

 223 

 224 

3.2 Impact on Human health 225 



As for the aquatic environment, a very important part of the total impact (94%) was 226 

induced by a very small percentage of the total emitted mass (4%) and a very few 227 

numbers of molecules (only eight) (Aemig et al., 2021). Thus, as a comparison, with 228 

the addition of the 59 new molecules: 229 

• 94% of the impact is now induced by 26 molecules and 41% of the total mass, 230 

• the eight molecules with the highest impact represent 70% of the impact and 27% of 231 

the total mass (Table 2), 232 

• on the 20 molecules that are identified as the most impactful, 13 molecules were not 233 

incorporated in the previous study. This now represents 92% of the impact and 32% of 234 

the total mass, 235 

• the total impact has nearly doubled. 236 

 237 

Table 2. List of the 10 molecules with the highest human health impact. The underlined 238 

molecules were not taken into account in Aemig et al. (2021). 239 

CAS Number Name 

Impact 

(%) 

Emitted 

mass 

(%) 

Emitted 

mass 

(kg) 

CFHT 

(DALY/kg) DALY 

137862-53-4 Valsartan 14.959 17.7 26067.4 6.54E-05 1.71E+00 

205-99-2 Benzo(b)fluoranthene 14.621 0.04 61.9 2.69E-02 1.67E+00 

207-08-9 Benzo(k)fluoranthene 8.182 0.04 52.7 1.77E-02 9.33E-01 

53-86-1 Indomethacin 7.581 0.64 940.2 9.19E-04 8.64E-01 

115-32-2 Dicofol 6.847 0.17 243.8 3.20E-03 7.81E-01 

138402-11-6 Irbesartan 6.600 8.05 11848.7 6.35E-05 7.52E-01 

193-39-5 Indeno(1,2,3-cd)pyrene 6.283 0.04 55.5 1.29E-02 7.16E-01 

465-73-6 Isodrin 4.526 0.04 54.9 9.41E-03 5.16E-01 



25637-99-4 

1,3,5,7,9,11-

Hexabromocyclododecane 4.059 0.20 296.2 1.56E-03 4.63E-01 

32534-81-9 Pentabromodiphenylethers 3.094 0.01 12.5 2.82E-02 3.53E-01 

Total  76.75 26.9 - - - 

 240 

The main conclusion of the study of Aemig et al. (2021) (only a small number of 241 

molecules and a small percentage of the mass led to nearly all the impact) does not 242 

stand anymore for the CFHT. First, the high impact of the most impacting compound 243 

(valsartan) is due to its very high emitted mass, nearly 18% of the total mass. 244 

Depending on the compound, a high impact could be driven by a high mass, a high 245 

CFHT, or a combination of both (Figure 3).  246 



 247 

Figure 3 - CFHT of the 153 compounds as a function of the emitted mass (both in log 248 

scale). Compounds of Aemig et al. (2021) are in black, the new ones are in green. The 249 

numbers represent the 10 most impactful compounds, in decreasing order (i.e. the 250 

same order as Table 2). 251 

 252 

Second, the number of molecules needed to reach 94% of the total impact has been 253 

multiplied by more than three (8 to 26) highlighting a more equal distribution of the 254 

impacts among the compounds. In the ten most impactful molecules, six have been 255 

added by the present study. Among these six compounds, two are anti-hypertensive 256 



drugs, valsartan, and irbesartan, which contributed to the impact (Table 2) thanks to 257 

their high masses released in the environment that could be linked to their high uses 258 

and low removal in WWTP (Boix et al., 2016). Two other molecules, the isodrin 259 

organochlorine insecticide (present in the WFD registered list with environmental 260 

quality standards and no more used in France) and the hexabromocyclododecane 261 

(HBCDD) flame retardant (included in the persistent mobile toxic (PBT) substances list 262 

of very high concern requiring authorization before use in EU and progressively 263 

banned since 2011(ECHA, 2008)) contributed to the impact because of their high 264 

toxicity, similarly to the first two PAHs (benzo(b)fluoranthene and 265 

benzo(k)fluoranthene) (Table 2). 266 

Then, contrarily to the aquatic impacts, the total impact on human health has nearly 267 

doubled compared to the results of Aemig et al. (2021), leading to the conclusion that 268 

evaluating the human health impacts based only on the available CFHT could provide 269 

very underestimated impacts (Table S3). 270 

 271 

4 Conclusion 272 

In a previous study, 261 organic micropollutants were selected to study their potential 273 

impacts on human health and aquatic environment in continental freshwater at the 274 

scale of France. However, the lack of data did not allow quantifying the impacts for 275 

more than 1/3 of these substances (88 for aquatic environment and 94 for human 276 

health). In this work, and using a new modeling approach, we were able to estimate 277 

the impact of 153 organic micropollutants, i.e. for all with an estimated mass released 278 

in the environment. These results could be used to select substances on which a 279 

special effort should be made on the tertiary treatments to implement in WWTP. Also, 280 

it has been shown that, depending on the substances, a high potential impact could be 281 



due to a high emitted mass and/or a high characterization factor, especially for human 282 

health. Using the machine learning models, any characterization factors can be easily 283 

estimated from the 40 easy-to-obtain molecular descriptors. Therefore, to estimate the 284 

impacts of 100% of the substances, the lack of data on the mass emitted in the 285 

environment is now the only remaining limitation. It has to be underlined that this whole 286 

methodology can be adapted to any other compartment and any other geographical 287 

context, with predictive models still to develop. 288 

 289 
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