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Abstract—. The “extrapolated range” of 

electrons is a very practical physical 

parameter widely used in many applications. 

The commonly used analytical expressions are 

given classically for energies down to ~1 keV. 

Low energy Monte Carlo simulations have 

been performed to extract this parameter in 

various materials down to several tens of eV. 

These simulations have been used to 

parameter both, transmission probability and 

projected range analytical expressions. These 

empirical equations have been extended to 11 

monoatomic elements (C, Be, Al, Si, Ti, Ni, Cu, 

Ge, Ag, Fe and W) and for energies ranging 

from ~10 eV up to some tens of MeV. 

1 Introduction 
The penetration distance of electrons in solid 

materials can be evaluated by the use of the 

extrapolated range, which can be derivated 

from the transmission probability [1,2]. The 

knowledge of this parameter is very useful to 

several fields related to electron beams, such 

as electron spectroscopy [3], which is based 

on high-resolution measurements of the 

characteristics of emitted electrons. These 

secondary electrons escape only from depths 

of a few nanometers, corresponding to 

energies down to a few tens of eVs. Thus, the 

range of low energy electrons is required for 

these surface analysis methods. The related 

secondary electron emission (SEE) process is 

also of capital importance in the performance 

of various devices [4,5], whose materials may 

be selected to increase or decrease the 

quantity of emitted electrons. For instance, in 

the field of space technologies, the 

multipactor phenomenon that may occur in 

Radio-Frequency (RF) components of satellites 

is driven by the SEE mechanism [6,7]. As a 

result, low SEE materials are required in order 

to prevent the triggering of this effect. In this 

context, the electron extrapolated range is a 

fundamental parameter commonly used in 

SEE yield models [8,9]. Accurate extrapolated 

range analytical expressions valid down to few 

eV for various materials is thus of great 

interest to improve the reliability of these SEE 

yield models. It could also be very helpful for 

analtyticaly based ionizing dose calculations.In 

addition, the extrapolated range formulas are 

often used as input parameters in higher 

simulation codes that models the interaction 

of plasma with surface or multipactor effect 

[10,11] 

Several empirical formulas for the range of 

electrons are already available in the literature 

[12–22], most of them having been 

extrapolated from experimental data. 

However, for electron energies below 1 keV, 

experimental difficulties appear and make the 

evaluation of the extrapolated range 

relationship quite difficult. As a result, the low 

energy thresholds of the analytical 

expressions found in the literature [12–21] 

extend at best down to ~1 keV. But several 

applications, such as secondary electron 

emission [22] or surface analysis techniques, 

for instance electron spectroscopy [23], 

require models that are valid down to a few 

eVs.  
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In this scope, we propose here to use a Monte 

Carlo electron transport code to determine 

numerically the extrapolated ranges and 

transmission probabilities of electrons down 

to few tens of eVs. The MicroElec [24–26] 

module of GEANT4 [27] has been used for 11 

materials, as a reference to extend the validity 

domain of the range/energy formula proposed 

by Weber [13–15]. For these materials, this 

formula now ranges from few tens of eV up to 

several tens of MeV. Moreover, as the 

extrapolated range for electrons of a given 

energy is dependent on the transmission 

probability of these electrons through a 

certain thickness, an analytical expression of 

this probability is also proposed in this work. 

2 Definitions of the Range and 

extrapolated range 

   

Figure 1: Definition of the true range and the projected 
range of electrons. 

i. The trajectories of incident electrons are simulated. 

ii. The final depths reached by incident electrons when 
coming at rest are extracted from the simulation 
and sampled as a depth distribution. 

iii. The transmission rate and range are deduced from 
the distribution of depths. 
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Figure 2: Definition of the true range and projected range 
from an electron’s trajectory 

When electrons penetrate in a material, they 

lose energy by inelastic interactions with 

electrons of the target atoms, and are slowed 

down by doing successive interactions. 

Electrons can also be highly scattered by the 

target atoms’ nuclei. As a result, each particle 

has an individual trajectory, as seen on Figure 

1 (i) and Figure 2.  

The true range 𝑆 of a given trajectory is the 

total distance traveled until the electron 

comes at rest, i.e. the sum of all step lengths 

𝑆𝑖 traveled by the particle between each 

interaction, as illustrated on Figure 2. This 

parameter can be sampled for a large number 

of electrons to get the average true range 𝑆̅, 

which is an indication of the total distance 

traveled by the electrons in average. Within 

the Continuous-Slowing-Down Approximation 

(CSDA), 𝑆̅ can be evaluated thanks to the 

following integral: 

        
E

dQ

dx
dQ

ES
0

1
        (1) 

This is the integral of the reciprocal of the 

stopping power (dQ/dx) over energy from a 

final to an initial value: It corresponds to the 

parameter 𝑆̅ from the definition of Figure 2. 

The CSDA range is the total distance that is 

effectively travelled by electrons. However, 𝑆̅ 

does not give information on the final position 

of the particles or in which direction they have 

traveled. But, the depth reached by the 

electrons depends, in addition to the slowing 

down induced by inelastic scattering, to the 

deviations generated by the inelastic and 

elastic interactions. In this regard, 𝑆̅ can be 

interpreted as a penetration depth that can 

only be reached by a theoretical electron with 

a strictly linear trajectory. As this is never the 

case for electrons, which are deflected by 

elastic interactions, this parameter is an 

unreachable limit for the actual range R. 

Moreover, 𝑆̅ is not accessible experimentally 

as the electrons do not behave in a 

deterministic way but follow statistical laws 

for each step. 

In consequence, for many applications, the 

paths of the particles are expressed as a 

projection on the incident direction of the 

impinging particle, generally in the depth of 

the material. Thus, a more convenient method 

is to sample the final positions of electrons 

along this direction. This can be done 

following the method on Figure 2 to get the 

projected range 𝑅 for a given trajectory. For 

instance, sampling the distribution of the final 

depths 𝑅 reached by a large number of 

electron trajectories, as done on Figure 1 (ii), 

allows us to compute its average 𝑅̅, which 

corresponds to the average of the depths 

reached by the electrons in a semi-infinite 

material.  

In this paper, the penetration depth of an 

electron is defined as the final depth reached 

by the electron when it comes at rest. The 

transmission rate through a thickness 𝑑 is thus 

defined as the proportion of electrons with a 

final position deeper than 𝑑.  

For electrons, that are highly scattered, two 

other parameters can be found in the 

literature to describe their trajectories. The 

extrapolated range and the practical range are 

commonly evaluated. 
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The extrapolated range (R0) is commonly 

defined following the method shown on 

Figure 1 (iii), taken as the point of intersection 

between the tangent at the steepest section 

of the transmission probability curve (P=0.5) 

and the depth axis (X-axis) [20,21]. In the 

following, the range value given by this point 

will be called 𝑅0. Similarly, the practical range 

can be obtained from the depth-dose profile 

in place of the transmission curve. Both 

parameters are evaluated in slightly different 

ways, but have often been used 

interchangeably [28] as they remain similar. 

They differ in their definition from a simple 

average over the penetration depths from 

each individual trajectory, but are more 

representative of the penetration distance of 

individual electrons. Hence they are 

commonly used to define the shielding 

thickness necessary to protect an equipment 

from radiation.  

In this work, we have chosen to use the 

extrapolated range defined from the 

transmission rate. At high energy (E>keV), the 

ranges of electrons are demonstrated to be 

independent on the nature of the target 

material, they are proportional to the density 

𝜌  (g/cm3). For this reason, the range values 

are commonly expressed in g/cm² and 

normalised to the density as 𝑅0(𝐸) ∗ 𝜌 (2). 

Many empirical range-energy expressions 

have been proposed by several authors [12–

21], describing the electron extrapolated 

ranges in various materials, aluminum being 

the most extensively studied material. Most of 

these relationships are in the form of a power 

law: 

𝑅0(𝐸) = 𝑘 ∗ 𝐸
𝑛    (3) 

Katz and Penfold [12] have made a very 

thorough compilation of experimental results 

for aluminum, and have proposed an 

empirical formula for the extrapolated range 

of electrons between 10 keV and 3 MeV. In 

this formula, widely used in the past, the n 

factor in equation (3) is a function of the 

energy of the electrons: 

 𝑛 =  1.265 –  0.0954 ln (𝐸)   (4) 

With 𝑅0(𝐸) in mg/cm², 𝑘 =  412. Sometimes 

𝑛 also depends on the material [18]. Weber 

[13] proposed a different expression, valid for 

aluminum in the energy region [3 keV, 3 MeV]. 

Kobetich and Katz [14] extended this model to 

the 0.3 keV- 20 MeV range by adjusting the 

constants: 

𝑅0(𝐸) = 𝐴𝐸 [1 −
𝐵

(1+𝐶𝐸)
]            (5) 

where 𝑅0(E) is the extrapolated range, E the 

kinetic energy of the electrons, 

 𝐴 = 5.37 ∙ 10−4 𝑔/𝑐𝑚²/𝑘𝑒𝑉, 𝐵 = 0.9815, 

 𝐶 = 3.123 ∙ 10−3 𝑘𝑒𝑉−1.   (6) 

The same authors [15] proposed further 

improvements for this formula, by introducing 

a dependence on the atomic number Z of the 

material for the three parameters: 

𝐴 = (1.06 ∙ 𝑍−0.38 + 0.18)

∙ 10−3 𝑔 𝑐𝑚2⁄ . 𝑘𝑒𝑉 

𝐵 = 0.22 ∙ 𝑍−0.055 + 0.78 

𝐶 = (1.1 ∙ 𝑍0.29 + 0.21) ∙ 10−3 𝑔 𝑐𝑚2⁄ . 𝑘𝑒𝑉 

(7) 

Most of the other models found in the 

literature suppose that the extrapolated range 

tends to zero by following a power law [16-

21]. However, contrary to the Weber 

expression, they are not relevant on the whole 

energy range. The Weber expression has also 

the advantage of being able to either express 

the extrapolated range x as a function of the 

energy E or inversely E as a function of x.  

This work proposes to improve the model of 

ref. [15] (equations (5) and (7)), and extend its 

low energy from a few keV to 10 eV. 

3 Monte Carlo transportation 

code for low energy 

electrons 
In this work, the MicroElec module of the 

Monte-Carlo simulation toolkit GEANT4 has 
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been used [26]. Many physical models are 

available in GEANT4 and can be sorted 

between continuous or discrete processes. 

Continuous processes can use continuous 

energy loss and multiple-scattering models for 

the slowing down and deviation of electrons, 

as opposed to discrete processes, which 

compute a specific energy loss and angular 

deviation of the electron for each single step. 

As a result, continuous processes are much 

faster in terms of computing time, especially 

at higher energies (>1 keV), but the increased 

accuracy of discrete processes is appreciable 

for low energy electrons (< 1keV) and data 

sampling on nanometric distances. 

The MicroElec module, which we have 

developed, only uses discrete processes. It is 

intended for the transportation of low energy 

electrons down to a few eVs in 11 materials 

and has been validated for this purpose with 

experimental SEE Yield data. In the [eV - keV] 

energy range, electrons traveling in a solid 

interact with the atoms of the material and 

can be elastically scattered by the nuclei or 

inelastically scattered by the electrons. In this 

case, the main source of energy loss for the 

incident electrons are inelastic interactions 

with weakly bound and plasmon electrons. 

The dielectric formalism, with Mermin’s 

dielectric function, is used in MicroElec for 

individual and collective interactions with 

electrons of the conduction band, or valence 

band for insulators. The ionisation of core 

shells is also treated with this approach [29]. 

The implementation of the dielectric 

formalism has been validated with reference 

stopping power data [26]. Finally, the cross 

sections for the coulombian elastic interaction 

are computed with the ELSEPA code using the 

partial-wave method [30].  

In the newly released version of MicroElec 

(GEANT4 10.7), the transportation of low 

energy electrons can be simulated in 11 

materials, including 2 compound materials. 

However, the scope of this work is to extend 

the work of Kobetich & Katz [15], and thus 

derive analytical expressions for the 

extrapolated range and transmission 

probabilities that keep a relationship with the 

atomic number Z. Consequently, this paper 

only shows the simulation results for 

monoatomic materials, namely C, Al, Si, Ti, Ni, 

Cu, Ge, Ag and W. Simulations results are also 

shown for Be and Fe, these materials have 

been validated with experimental SEY data 

[31] but are yet to be released in GEANT4. 

10000 events are simulated for a computation 

time of about 1 min for energies below 5keV. 

Since the secondary electron cascade is not 

simulated, the computation is much faster. All 

simulations have been performed in the case 

of a normal incidence beam on a flat semi-

infinite surface. 

The simulation results of MicroElec for these 

11 materials have been used to define and 

parameterize an energy/range analytical 

formula and a transmission probability 

formula depending on the former expression. 

Both are relevant down to ~10 eV. 

4 Monte-Carlo simulations 
4.1 Transmission rate 

First, the transmission rates should be 

computed as they will be needed to deduce 

the extrapolated range following the method 

described in section 2. The implantation 

depths for incident electrons between 25 eV 

and 5 keV have been sampled from MicroElec 

simulations and used to calculate the 

transmission probability as a function of the 

incident electron energy. They are shown in 

Figure 3 for beryllium, aluminium, iron and 

silver, which have respective densities of 1.85, 

2.7, 7.87 and 10.5 g/cm². 

At low energies, the penetration depths are 

comparable for all four materials, around 1-2 

nanometers. However, as the energy 

increases, the penetration depths, expressed 

in nm on Figure 3, increase more quickly for 

low density materials. This effect is visible in 

Figure 3 as the transmission curves become 

less widespread when the material density 

increases. Indeed, for 2 keV electrons the 
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penetration depth can reach hundreds of 

nanometers in aluminum and beryllium, but 

only 40 nm in iron and silver. At very low 

energies, the penetration depth becomes 

about the order of the interatomic distances 

and the notion of a transmission rate becomes 

debatable. This discussion is detailed in 

section 6. The figures for the transmission 

rates of all 11 materials obtained from 

MicroElec can be found in Annex 2. 

Moreover, the intervals between the 

transmission rate curves of all four materials 

become very small for electron energies 

below 100 eV. This implies that the 

extrapolated ranges extracted from these 

transmission curves should decrease more 

slowly below 100 eV, as will be studied in the 

next section.  

4.2 Extrapolated RANGE 

In Figure 4 the extrapolated ranges (𝑅0) 

computed with MicroElec, which uses discrete 

processes, are compared with extrapolated 

range computations made with the 

continuous processes of GEANT4’s standard 

physics list (Opt4) for aluminum and silicon. 

This physics list is designed for precise 

transportation of electrons on a wide range of 

energies. For energies under 10 keV, the 

PENELOPE continuous energy loss ionization 

model is used with a multiple scattering model 

for elastic interactions. Monte-Carlo simulated 

data from Colladant et al. [32], Akkerman et 

al. [28] and experimental data from Kanter & 

Sternglass [33] are also displayed, but the 

available experimental data for the 

extrapolated range of low energy electrons 

below 1 keV is very scarce. Finally, the range 

given by equations (5) and (7) (Weber 

 

Figure 3: Electron transmission rate for Be, Al, Fe and Ag materials. The energy of electrons range from 25 eV up to 5 
keV. 

 

 

 

Electron energy 
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Formula), and the CSDA range (𝑆̅) obtained 

with eq. (1) from MicroElec’s stopping powers 

(in green, labeled CSDA) for both materials are 

displayed on both figures.  

The extrapolated range curves show a typical 

behavior below a few hundreds of eVs. They 

are no more proportional to the incident 

energy, and the range/energy function 

stabilizes as the range reaches a plateau 

region whose height depends on the material. 

This effect is more visible on the MicroElec 

curve and can also be seen on the CSDA 

curves computed from the MicroElec stopping 

powers, which become parallel to each other 

at lower energies. The level of this plateau 

region changes from a material to another as 

a function of the relative values of the 

inelastic and elastic mean free paths.  

One can notice that, for both materials, the 

CSDA ranges (𝑆̅) obtained from eq. 1 with 

MicroElec’s stopping powers converge to 

about 2 times the extrapolated range (𝑅0) 

obtained from MicroElec simulations. 

However, the CSDA gives values which are 

much higher than the simulated data sets 

below a few keV. This can be explained by the 

fact that the CSDA is a maximum range which 

neglects the deflection induced by the elastic 

and inelastic interactions, and would only be 

attained by a hypothetical electron with a 

strictly linear trajectory. As this is never the 

case for electrons, this parameter is an 

unreachable limit for the actual range R0. 

 

 

Indeed, below 100 eV, the elastic scattering 

becomes prevalent over the inelastic 

scattering for electrons. This can be shown 

qualitatively by calculating the probability 𝑃𝐸𝑙 

that the interaction made by the electron is an 

elastic interaction. It is obtained from the total 

cross sections (TXS) as: 

𝑃𝐸𝑙 = 
𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑇𝑋𝑆

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑇𝑋𝑆 + 𝐼𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑇𝑋𝑆
       (12) 

 

As can be seen on  

Figure 5, 𝑃𝐸𝑙 increases strongly below 50 eV, 

where energy losses become rarer, and 

approaches 1 below 20 eV. This behavior can 

also be seen for other Monte-Carlo codes, as 

mentioned by Pierron et al. [34].  

Figure 4:Extrapolated ranges of low energy electrons in 
Al and Si 
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Figure 5:Elastic scattering ratio for 6 materials 

Quantitatively, the elastic MFP becomes an 

order of magnitude lower than the inelastic 

MFP, with values of a few nanometers, as 

shown in Figure 6. Due to the divergence of 

the inelastic mean free path, the CSDA range 

also displays a flattening effect below 100eV.  

 

Figure 6: Mean free paths of electrons in MicroElec for Si 
and Al 

But, as mentioned in section 2, this range is a 

maximum depth that will not be reached by 

most electrons. Indeed, at these energies the 

angular distribution of the elastic scattering 

becomes quasi-isotropic (Figure 1). 

Consequently, the transportation of low 

energy electrons below 50 eV becomes a case 

of random diffusion: they are highly scattered 

without any energy loss until an inelastic 

interaction occurs, then leading the particle to 

come at rest. Hence, the electron can travel a 

longer total path before being stopped, while 

remaining close to the surface. 

However, we can see that the CSDA range, 

which does not take into account the elastic 

diffusion, becomes parallel with the 

extrapolated range at lower energies. This 

shows that the elastic interaction does not 

change the dynamic of the range. It only 

reduces the values of the projected range by 

diffusing the trajectories of the particles, and 

the intensity of this reduction becomes larger 

as the energy and elastic MFP decrease. 

Hence, the flattening dynamic could rather be 

caused by the divergence of the inelastic MFP. 

The plateauing effect at very low energies 

does not seem to be reproduced by the 

GEANT4 continuous processes (Std Phys 

Opt4). Indeed, this physics package uses 

multiple scattering instead of discrete elastic 

models, which can also generate more 

differences. Above 1keV however, the 

GEANT4 continuous processes give similar 

values to MicroElec. 

This behaviour can be linked with the 

transmission probabilities in Figure 7, in the 

example of silicon. The intervals between the 

transmission curves computed with MicroElec 

become narrower as the energy decreases, as 

seen for the other materials in Figure 3. 

However, the transmission curves obtained 

with the standard physics keep a spread of 

about the same order at lower and higher 

energies on the lin-log plot. This implies a 

linear (on a log-log plot) decrease of the 

extrapolated range for the whole energy 

range of 25 eV-10 keV seen in Figure 4. The 

comparison is given here as an indication of 

the differences which can occur at very low 

energies, when using different interaction 

models with different approaches (continuous 

vs discrete) and different mean free paths. We 

have already conducted a more extensive 

comparison between the different physics 

models of GEANT4, which can be found in ref. 

[35]. 
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Figure 7: Comparison of the transmission rates in Si from 
MicroElec and the standard continuous processes 

5 Analytical expressions 
5.1 Extrapolated range expression 

Above some keV, expression (3) reproduces 

faithfully the Monte-Carlo simulations and 

experimental data. However, the commonly 

used power law expressions are no longer 

applicable below 1 keV. As shown in Figure 3, 

equation (3) does not reproduce the dynamic 

of the extrapolated range below 1 keV, with a 

linear (log/log scale) evolution in place of the 

flattening phenomenon observed in the 

simulations. Thanks to the Monte Carlo 

simulations shown in the previous section 4, 

this expression has been modified in order to 

be relevant down to 10 eV. In our new 

expression, the model of ref. [15] is 

maintained for electron energies over 

14.5 keV, as it is able to correctly model the 

dynamic of the range over this energy. This 

energy correspond to the points where our 

new expression best fit the formula of ref. 

[15]. Below this threshold, a power law 

function replaces the expression of the 

extrapolated range 𝑟(𝐸): 

𝑅0(𝐸)

= {

𝐷(𝐸 + 𝐸𝑟)
𝐹 ∶ 10𝑒𝑉 < 𝐸 ≤ 14.5𝑘𝑒𝑉

𝐴𝐸 [1 −
𝐵

(1 + 𝐶𝐸)
] : 𝐸 ≥ 14.5𝑘𝑒𝑉

        

(14) 

With the following parameters: 

𝑅0,𝐴𝑙 = 3 ∙ 10
−7 𝑔 𝑐𝑚2⁄  is the extrapolated 

range of 50 eV electrons in aluminum 

obtained from the MicroElec simulations, 

𝐸0 = 14.5 𝑘𝑒𝑉 

𝐴 = (1.06 ∙ 𝑍−0.38 + 0.18)

∙ 10−3 𝑔 𝑐𝑚2⁄ . 𝑘𝑒𝑉 

𝐵 = 0.22 ∙ 𝑍−0.055 + 0.78 

𝐶 = (1.1 ∙ 𝑍0.29 + 0.21) ∙ 10−3 𝑔 𝑐𝑚2⁄ . 𝑘𝑒𝑉 

𝐸𝑟 =
𝐸0

(
𝐴𝐸0 [1 −

𝐵
(1 + 𝐶𝐸0)

]

𝐺 ∙ 𝑅0,𝐴𝑙
− 1)

1
𝐹

 

𝐷 =
𝐴𝐸0 [1 −

𝐵
(1 + 𝐶𝐸0)

]

(𝐸0 + 𝐸𝑟)
𝐹

 

 

Figure 8: Comparison between the range models of eq. 5 
and 13 

As shown in Figure 8, above ~10 keV, the 

proposed new expression converges to the 
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classical formula provided by Weber [11]. 

Below this limit, the different extrapolated 

range expressions diverge. The new 

formulation reproduces the plateau region 

appearing in MC simulations while the former 

formula cannot mimic this behavior. This 

formula is compared with the Monte-Carlo 

simulations for all simulated materials in 

Figure 9(a) and 9(b).  

 

 

Figure 9: Comparison of the extrapolated ranges given by 
eq. 13 and MicroElec for all 11 materials (Be, Al, Ti, Ni, 
Ge and W in fig (a) and C, Si, Fe, Cu and Ag in fig (b)) 

Although the range below 50 eV is over 

estimated and the agreement with the 

simulations is decreased for low Z (Be, C) and 

high Z (W) materials, overall a satisfying 

agreement with the simulations is observed. 

Indeed, below 100eV, the average difference 

between the model and the simulation is 

between 3% and 12% for all materials, except 

for Be with 18%. 

As can be seen on the comparison with the 

Weber formula in Figure 8, the new model 

shown in this work converges to the model of 

ref. [15] at 14.5keV and improves the range 

dynamic at lower energies. 

The parameters of the model 𝐹 and 𝐺 are 

specific for each material and are determined 

with the following calibration process. The 

values of F and G are provided in the annex. 

Aluminum, which is by far the more 

documented material, will serve as reference 

in the rest of the work. 𝐺(𝑍) sets the height of 

the plateau region of the range curve for the 

material Z, relatively to the extrapolated range 

of 50 eV electrons in aluminum. It is defined 

as  

𝐺(𝑍) =
R0,Z(50 𝑒𝑉)

𝑅0,𝐴𝑙
 

(15) 

With 𝑅0,𝑍(50𝑒𝑉) the extrapolated range of 

50 eV electrons in the material Z. The values 

for 𝑅0,𝑍 can be extracted from the Monte 

Carlo simulations. They are more 

representative of the actual differences 

between the ranges of the materials and give 

a better estimation of G. The ranges shown in 

Figure 9 use the G values from the 

simulations.  

But, G can also be extracted from the ranges 

available in the literature. Though for energies 

this low, most available data are CSDA ranges 

which are not representative of the random 

walk of electrons. However, this data is 

available for many materials, like in the case 

of the stopping powers of Shinotsuka [36] that 

can be used to get the CSDA range and G 

parameter for 41 materials. Moreover, the 

dynamic of the CSDA range is similar to the 

one of the extrapolated range, as shown in 

Figure 4, due to the divergence of the inelastic 

(a) 

(b) 
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mean free paths which strongly increase 

below a few tens of eVs.  

The 𝐹(𝑍) factor defines the slope of the 

extrapolated range 𝑑𝑅0(𝐸)/𝑑𝐸 between 1 

and 10 keV, so that the curve reproduces the 

dynamic of the reference ranges.  

The values for F and G in both cases are shown 

in Table 1 of the annex. In the case of the 

CSDA values, one must use 𝑅0,𝐴𝑙 = 9 ∙

10−7 𝑔 𝑐𝑚2⁄ . 

Figure 10 shows the correlation between the 

values of G(Z) and F(Z) for each material with 

the atomic number of the material 𝑍. The 

strong correlation on fig. 9a shows that the 

height of the plateau region for a material is 

strongly dependent on the atomic properties 

of the material. Indeed, the range of low 

energy electrons below 100 eV tends to be 

higher in high Z materials, as shown on Figure 

8. However, it is not trivial to provide a 

definite explanation for this correlation. At 

low energies, many properties depending on 

the Z or the material may influence the height 

of the plateau region, such as the number of 

conduction electrons per atom. This number is 

lower in Cu and Ag than for neighboring 

metals which could explain why their G values 

are slightly lower than expected. We can also 

observe that both Si and Ge have lower 

plateau heights than other materials with a 

close Z. We could then suppose that this 

discrepancy is due to the fact that these 

materials have an energy gap, which plays an 

important role in the energy loss process. 

Thus it is difficult to conclude on the origins of 

this dependence on Z and the observed 

discrepancies for some materials, and a more 

extensive study would be required. 

Fig. 10b shows a more limited correlation 

between the slope of the range curve (F) and 

the atomic number, as F varies in a narrower 

range than G. This correlation is rather given 

as a starting point to extrapolate the 

parameter F and extend the model to other 

materials than the 11 shown here, which can 

also be done for G using the correlation 

relationship between Z and G.  

 

 

Figure 10: Correlation of the height of the range plateau 
(a) and the slope of the range curve (b) with the atomic 

number 

5.2 Transmission rate expression 

Analytical expressions have also been 

proposed for the transmission rate of 

electrons through a given thickness. But they 

are generally valid only for energies down to a 

few keV. As in the case of the extrapolated 

range, the probabilities calculated with 

MicroElec in section 4 can be used to calibrate 

(a) 

(b) 
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a new expression that is valid down to a few 

eV and suitable for SEY modelling. In this 

work, the model from Kobetick & Katz [15] has 

been extended to lower energies (~10 eV). 

Their formula of the transmission probability 

𝜂(𝐸, ℎ) for electrons of energy 𝐸 [keV] 

through a thickness ℎ [g/cm²], is initially given 

as a function of the extrapolated range 

𝑅0(𝐸) [g/cm²]. In this case, the extrapolated 

range is obtained with the analytical 

expression shown in equation (3): 

𝜂(𝐸, ℎ) = 𝑒
−(

𝑞ℎ
𝑅0(𝐸)

)
𝑝

, 

𝑞 = 0.0059 𝑍0.98 + 1.1, 

𝑅0(𝐸) = 𝐴𝐸 [1 −
𝐵

(1 + 𝐶𝐸)
] , 

𝑝 = 1.8 (log10 𝑍)
−1 + 0.31 

This probability follows an exponential 

downward curve, whose parameters have 

been adjusted to get a satisfying agreement 

with our Monte Carlo simulations down to 

~10 eV for the 11 materials. The new formula 

for the transmission probability uses the 

improved expression of the extrapolated 

range shown in section 5.1 below 14.5 keV. It 

is given for an energy E in MeV as: 

𝜂(𝐸, ℎ) = 𝑒
−(

𝑞ℎ

𝑅0(𝐸)
)
𝑝

 

𝑅0(𝐸) = 𝐷(𝐸 + 𝐸𝑟)
𝐹 , 

{
  
 

  
 𝐸 ≥ 2 keV ∶ 𝑝 = 1.6 + 1.772 𝑒(−0.04𝑍)

2 3⁄

𝑞 = −0.0022 Z + 1.6

𝐸 < 2 keV ∶ 𝑝 =
(1.772 𝑒(−0.04𝑍)

2 3⁄
− 0.12)

2 keV
𝐸 + 1.1

𝑞 = −0.0022 Z + 1.44

 

The dependency in E in the expression of q 

has been added to take into account the 

flattening of the extrapolated range at lower 

energies. Indeed, with a simple numerical 

value, a compromise has to be made between 

the agreement with lower or higher energy 

curves. This dependency in E allows the model 

to better reproduce the varying spread of the 

transmission curves over a greater range of 

energies.

(16) 

(17) 
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Figure 11: Transmission rate model (grey) compared with MicroElec (colors) 

Figure 11 shows the comparison of the 

analytical model with the full Monte Carlo 

simulations in carbon, titanium, germanium 

and tungsten. The comparison between the 

analytical model and MicroElec for all 11 

materials can be found in Annex 2. As in the 

case of the extrapolated range, a satisfying 

agreement is seen between the model and the 

simulations, although the agreement is 

degraded for very low and high Z materials (in 

the case of Be and W), and very low energies 

below 20 eV.  

6 Discussion: Limits at very low 

energies 
At very low energies and for low projected 

path lengths, the notion of an average range 

and a transmission probability becomes 

debatable. Indeed, at higher energies, many 

inelastic interactions can be made by the 

electrons in a unit path length dx. As shown 

on Figure 1, the ranges of electrons follow a 

Gaussian distribution with a well-defined 

average range and a limited spread. A single 

value of the range can thus be extrapolated 

and be used as a representative parameter for 

an individual electron. When the electron 

energies become very low, their projected 

path lengths reach the interatomic distances, 

they are highly scattered by the elastic 

interactions and they are only able to make a 

couple of inelastic interactions before coming 

at rest. Subsequently, the number of 

interactions made per unit path length dx is 

very small and the projected path length 
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distribution has a significant spread. Crucially, 

the depths reached by very low energy 

electrons become close to the interatomic 

distances (a few angstroms), which is another 

limitation for the number of interactions. The 

notion of a continuous function for the 

transmission probability through a few atomic 

layers may also become debatable. Finally, the 

Monte-Carlo code itself reaches its limits for 

very low depths and energies. Indeed, the 

material cannot be treated as a bulk material 

anymore and the use of the dielectric function 

theory as in the case of a bulk material is 

questionable. 

To sum up, while the ranges and transmission 

rates evaluated at high energy are 

representative of the average path for an 

individual electron through a unit path length 

dx, the same extrapolation cannot be made at 

low energies where these quantities become 

statistical. Instead of an average electron, 

these parameters are applicable to a flux of a 

large number of electrons, where the global 

range and transmission rate of the flux should 

follow the models detailed in this work. An 

analogy can be made with the case of photons 

going through a certain thickness. A photon is 

fully absorbed by the material at the first 

interaction it makes, as in the case of very low 

energy electrons. Consequently, the 

transmission probability derived for photons is 

not representative of the path of each 

individual photon but of the flux of photons as 

a whole. 

7 Conclusion 
Monte-Carlo simulations of the penetration 

depths of electrons have been performed for 

11 materials and used to compute the 

transmission rates and extrapolated ranges of 

electrons. An analytic formula for each of 

these two quantities is proposed, depending 

on the atomic number and two parameters 

that are specific for each material. The 

simulation results have been used to calibrate 

these expressions. While the analytical 

expression of the range does not strictly 

reproduce the simulation results at very low 

energies (< 50eV), it should be kept in mind 

that the range at these energies depends 

heavily on the mean free paths used. And, at 

very low energy, typically below the plasmon 

energy, the MFP calculation is subject to quite 

important uncertainties. The dielectric 

function theory, applied in our case reaches its 

limit which can be a significant limitation of 

the approach in the range of the very low 

energy limit. The computation also depends 

heavily on the elastic cross sections, which can 

have important uncertainities for very low 

energy electrons. As a result, some 

discrepancies can be observed depending on 

the mean free paths used by the different 

Monte Carlo codes, as in the case of Figure 4. 

Moreover, below ~10-20 eV, the 

transportation of electrons in matter is a 

random walk motion, and in this case, the 

definition of a representative mean range may 

become questionable. As a conclusion, and 

taking into account all these elements, the 

domain of validity of the analytical 

expressions proposed in this work for 11 

monatomic materials (C, Be, Al, Si, Ti, Ni, Cu, 

Ge, Ag, Fe and W) can be considered to span 

from about 10-20 eV to 14.5 keV with a 

satisfying agreement with our Monte-Carlo 

code in this energy region.  

A correlation for the material-dependent 

parameters F and G can be established with 

the atomic number Z. In the case of the 

plateau height G, a fairly strong correlation 

has been found, indicating that the behavior 

of very low energy electrons (below 100eV) is 

strongly dependent on the atomic properties 

of the material. These correlation laws can be 

used to extend the model to new materials. 

For the range-energy relationship a fairly good 

reproducibility should be obtained for new 

materials, even if non-metallic materials such 

as Si or Ge may have a slightly lower plateau 

height than expected. For the transmission 

probability model, the accuracy can be 

decreased for lower Z and higher Z materials 
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but a satisfying agreement can be expected in 

the intermediate region. 

Finally, the analytical expressions can be of 

interest in other applications, such as higher 

level simulation codes which require the 

knowledge of the penetration depths of 

electrons in matter as input parameters. The 

analytical expressions of this work can thus be 

integrated in these simulation codes by their 

users, instead of interfacing their application 

with a Monte-Carlo simulation tool. In result, 

the analytical expressions would save 

computation time and make the code less 

complicated. 

Another possible application would be to 

combine the expressions shown in this work 

to derive more analytical expressions for the 

ionizing dose deposited by low energy 

electrons. This approach will be presented in 

future work. 
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ANNEX 1 : F and G parameters 

of the extrapolated range 

expression 
Table 1: G F parameters from the M-C 
simulations (bold red) and from CSDA 

ranges [36] 

Z G F 

3 0.06 1.776 

4 0.51 1.8 

6 0.74 1.8 

11 0.09 1.719 

12 0.4 1.714 

13 1 1.73 

14 0.92 1.83 

19 0.2156 1.656 

21 1.386 1.69 

22 1.91 1.8 

23 2.6026 1.657 

24 2.9722 1.64 

26 3.46 1.75 

27 4.774 1.654 

28 3.58 1.8 

29 3.72 1.8 

32 2.71 1.6 

39 1.8018 1.624 

41 5.1128 1.599 

42 5.9444 1.594 

44 6.1138 1.593 

45 5.5748 1.599 

46 5.0974 1.6 

47 4.78 1.75 

49 3.2648 1.601 

50 4.1118 1.6 

55 0.4928 1.599 

74 8.2 1.45 

 

Annex 2: Figures for the transmission rate analytical model of all 

materials 
In this section the transmission probabilities given by the analytical for all materials are shown. The 

model curves (dotted lines) are compared with the transmission rate given by MicroElec (solid lines). 
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