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Abstract—We propose a deep learning solution to the problem
of object detection in 3D medical images, i.e. the localization and
classification of multiple structures. Supervised learning methods
require large annotated datasets that are usually difficult to
acquire. We thus develop a Cycle Generative Adversarial Net-
work (CycleGAN) and You Only Look Once (YOLO) combined
method for data augmentation from one modality to another
via CycleGAN and organ detection from generated images via
YOLO. This results in a fast and accurate detection with a mean
average distance of 7.95 mm for CT modality and 16.18 mm
for MRI modality, which is significantly better than detection
without data augmentation. We show that the approach compares
favorably to state-of-the-art detection methods for medical images
on CT data.

Index Terms—multi-organ detection, image synthesis, data
augmentation, medical imaging

I. INTRODUCTION

Object detection consists in localizing structures in images
using bounding boxes and classifying them. Many approaches
have been proposed relying on statistical [1]-[3] or deep
learning [4]-[6] techniques. In spite of the success of existing
methods, only a few works have employed deep learning for
multi-organ detection in medical images [7], [8]. Object de-
tection is a prerequisite in many radiological procedures such
as patient screening and diagnosis which implies localizing
anatomical structures or lesions. Most of object detection mod-
els in medical images are designed for single-object detection
[91, [10].

Our method aims at detecting multiple organs in 3D medical
images. Detection should furthermore be time efficient when
processing large datasets. We choose the YOLO detector [5]
as a basis in our work. It has been shown to offer a good
precision vs speed trade-off for natural images compared to
other deep detectors. Supervised deep learning requires large
training datasets which are not always available for medical
images. This is because such images are expensive to obtain,
compared to natural images. Furthermore, manual annotation
of medical images, especially in 3D, is very time consum-
ing. We propose to expand a baseline training dataset via
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data augmentation. Most data augmentation approaches apply
transformations to images such as rotations and translations
[11]. Transformed data are then added to the training set. As
opposed to this traditional technique, we use a CycleGAN
[12] as an unsupervised method that synthesizes images from
annotated source images of a different modality. We show
that the CycleGAN+YOLO combination yields an efficient
approach to augment and detect multiple structures.

II. RELATED WORKS
A. Object detection

Supervised object detection aims at classifying object in-
stances from predefined annotations and localizing them in
images. Deep learning-based detection methods can be cate-
gorized into two approaches: two-stage and one-stage.

Models in the former approach are trained separately for
two tasks: detection of regions of interest and classifica-
tion/localization of objects. Region-Based Convolutional Neu-
ral Network (R-CNN) methods [4], [13], [14] are among the
best-preforming ones. They use modules for feature extraction,
classification/regression and region proposal, the latter being
a separate convolutional network in [4].

In the one-stage detection approach, a single network is
trained simultaneously for classification and localization, no
region proposals are created. You Only Look Once (YOLO)
[5] and Single Shot multi-box Detector (SSD) [6] are both
popular detection methods in this category. YOLO is a fast
real-time object detector with an optimized network archi-
tecture. SSD introduces multi-reference and multi-resolution
techniques for added precision.

In medical image analysis, best-performing traditional de-
tection approaches are based on regression forests [2] which
are applied in a cascaded, global-to-local fashion in [1], [3]
augmented by a shape prior in the latter work for improved
precision. Deep methods however are quickly gaining ground.
YOLO has been used for detection on retinal images [15],
and SSD for liver lesion detection in CT [9]. Among recent
works investigating deep multi-organ detection we mention
[7] where two convolutional networks, one for classification
and another for bounding-box regression, were trained and
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Fig. 1. The proposed framework : CycleGAN (image synthesis) + YOLO (multi-organ detection).

tested separately for few dozen structures in 2D slices of 3D
CT images, and [8] which employs a convolutional network,
trained and tested on chest CT structures simultaneously,
which is augmented with spatial pyramid pooling to analyze
2D slices of different sizes.

B. Cross-modality Image Synthesis

A rich body of work that uses Generative Adversarial
Networks (GAN) for synthesizing images in one modality
from those in another has been proposed [11]. CycleGAN
was proposed by [12] and became one of the commonly
used approaches in synthetic medical image applications.
Importantly, it can be used in the case of unpaired data, which
is particularly useful in our application, since it is usually not
possible to have images of different modalities for the same
patient under the same conditions. In other words, instances
are not mutually mapped between source and target domains,
and therefore no registration is required.

CycleGAN was employed in [16] to generate brain CT
images from MRI images, and in [17] to generate lung MRI
images from CT images in order to segment lung tumors. Our
work is inspired by [18] where the goal is to segment a single
organ (the liver) without having ground-truth annotations for
the target modality. A CycleGAN is used to generate target
modality images from labeled source images. Source labels
are then transferred to the target. As already stated, our work
aims at multi-organ detection.

III. METHOD

As shown in Fig. 1, our workflow has 2 stages: cross-
modality synthesis with CycleGAN [12] and multiple-organ
detection with the YOLO algorithm [5].

YOLO was selected as the detector due to its speed and
precision, as mentioned in the previous section. This approach
starts by splitting an image into S x .S cells. Each grid cell
predicts three components: (1) coordinates (x,y,w,h) of B

bounding boxes, (2) a confidence score P(object), and (3) a
class probability for C' categories conditioned on the presence
of an object in the bounding box. In our work, we use the third
version of YOLO (YOLOv3) [19]. Its architecture is composed
of 53 convolutional layers (Darknet-53). It makes predictions
at three different scales. For a more stable prediction, scale-
dependent box priors are used. These are learned from the
training dataset. YOLOV3 also adds cross-layer connections
between each two prediction layers except for the output layer.
In the experimental work, we chose to apply YOLO on 2D
full-resolution axial cross-sections of 3D images due to GPU
memory restrictions and the complexity of the network model.
A low resolution 3D approach would incur significant loss of
precision for small structures. We train YOLO with 450 epochs
and a decreasing learning rate.

CycleGAN [12] is an unsupervised deep learning method
which allows bidirectional translation between the source X
and the target domain Y. It uses two generator networks
G1,Gysuch as G1 : X — Y and G5 : Y — X, each asso-
ciated with a discriminator network, D; and D, following an
adversarial training. G and D networks compete against each
other. D works as a binary classifier attempting to distinguish
between the synthetic and the real target image, while G seeks
to deceive the discriminator by improving the quality of the
synthetic output image. The input of the generator network G
is a source domain image x € X and its output is a synthetic
image, § = G(x). The inputs of a discriminator D are the
synthetic output y and an unpaired random image from the
target domain y € Y. As for the architectures, the generator
has an encoder, a transformer (a Residual Network in practice)
and a decoder. The discriminator model is implemented as a
PatchGAN model [12] which aims at classifying images as real
or synthetic. The CycleGAN was trained using 200 epochs. We
fixed the learning rate on 0.0002 for the first 100 epochs, then
we linearly decay it until reaching zero over the rest.

Synthetic images that are generated using CycleGAN are



then used, along with the annotations of source images, to
augment the training datasets for YOLO detectors.

IV. EXPERIMENTAL RESULTS
A. Datasets and pre-processing

The data used in this study comes from the Visceral
Anatomy Benchmarks [20] and involves 2 datasets: (1) a Gold
dataset, the annotations of which were created using manual
segmentation, and (2) a Silver dataset, the labels of which
were obtained by merging the segmentations produced by the
algorithms of benchmark participants.

Both datasets consist of unpaired 3D contrast-enhanced
thoracic-abdominal CT and abdominal MRI images providing
15 and 12 structure annotations respectively. Mean image di-
mensions are 512x 512 x 438 voxels for CT and 312x 72 x 384
voxels for MRI. The Gold dataset provides 20 patients per
modality. We chose 30 patients per modality in the Silver
dataset. To reduce the computational cost, all our experiments
are carried out in 2D axial slices of original 3D images. We use
the provided segmentation annotations to define 2D bounding-
box annotations to train YOLO detectors.

For the experiments on cross-modality image synthesis, we
crop CT images in both datasets around the abdomen because
the thorax is absent in MRI images. We resize the images
to 320 x 320 pixels for CT modality and 256 x 256 for
MRI modality. These resolutions were chosen so that the
dimensions of synthetic images are proportional to those of
source images.

B. Performance metrics

We perform quantitative evaluations for two tasks: multiple-
organ detection and cross-modality image synthesis. We use
mean Average Precision (mAP) to select the best detector
model over a validation set in a k-fold cross-validation proce-
dure. This metric is conventionally computed as the area under
the precision-recall curve. The best detector is then used to
create the 2D bounding-box predictions on the test set, from
which 3D bounding-boxes are constructed simply by taking
maximum coordinates. We measure the 3D detection precision
with respect to ground truth as the average distance over the
6 faces of the reconstructed 3D detection and the annotation
bounding boxes.

For experiments on image synthesis, as in [21], we evaluate
reconstruction fidelity as an indicator of synthesis quality via
the Structural SIMilarity (SSIM) metric.

C. Cross-modality image synthesis

We perform image translations using CycleGAN across both
modalities, i.e. from MRI to CT and from CT to MRI. An
example of MRI to CT translation is presented in Fig. 2.
It shows the consistency of translated structures with CT
enhancement patterns, e.g. bright vertebra, kidneys brighter
than muscles etc. To perform a quantitative evaluation of
CycleGAN performance, we compute the SSIM between a
source image x and its reconstruction G1(Gaz(x)). For the
MRI to CT translation (Fig. 2), we have a mean SSIM of

Fig. 2. Qualitative results of cross-modality generation (from MRI to CT
image). The real MRI image (left), the generated CT image (center) and the
reconstructed MRI image (right).

Fig. 3. Qualitative results of cross-modality generation (from CT to MRI
image). The real CT image (left), the generated MRI image (center) and the
reconstructed CT image (right).

0.97 (averaged over all patients). Conversely, for the CT to
MRI translation (Fig. 3), we have a mean of SSIM of 0.91.
This evaluation was performed on Gold dataset images with
a model trained on those of the Silver dataset.

D. Multi-organ detection

1) Qualitative evaluation: Fig. 4 and Fig. 5 show an
example of multi-organ detection using YOLO respectively
for an axial CT image and an axial MRI image. Fig. 4 is
organized in 2 views; Ground truth and prediction. It shows
the similarity of the predicted bounding box to the truth on the
ground. Fig. 5 illustrates two 2D prediction MRI images. It
shows that the bounding boxes are centered on the organs, even
for smaller ones. Furthermore, the detector is able to detect
an anomaly such as given in the right view of Fig. 5.b where
it was able to detect that the patient has only one kidney.

2) Quantitative evaluation: Multiple-organ detection was
evaluated on the Visceral Gold dataset using 10-fold cross-
validation under two scenarios, without and with data aug-
mentation. For the latter scenario, a CycleGAN trained on
the Silver dataset was used to translate CT images in the
Gold dataset into MRI images which were used to augment
the training data in each of the 10 folds. The same scenario
was used to augment CT image data from MRI. Test data
are identical in both scenarios. For each fold, the model that
yielded the best detection performance (measured by mAP) is
selected.
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Fig. 4. 2D multi-organ detection on an axial CT image.
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Fig. 5. 2D multi-organ detections an axial MRI images.

As previously stated, detection precision is measured in 3D
on reconstructed bounding boxes, results are averaged over all
images. Quantitative evaluation results using average distance
are given in Table I and Table II. We observe that distances
corresponding to large organs in both modalities such as the
spleen (6.8 mm for CT and 11.7 mm for MRI) and the right
kidney (5.6 mm for CT and 11.4 mm MRI) are satisfying,
as opposed to organs that are difficult to detect such as the
pancreas (14.3 mm for CT) and the muscle body of left rectus
abdominis (55.9 mm for MRI).

The CycleGAN+YOLO scenario yields significantly better
results for most organs in both modalities. For CT modality,
the mean average distance is 7.95 mm as compared to YOLO
alone 8.66 mm. This improvement is statistically significant
(p = 0.046 on a paired one-sided t-test). For MRI modality,
the mean average distance is 16.18 mm as compared to YOLO
alone 22.62 mm. This improvement is statistically significant

(p = 0.050 on a paired one-sided t-test).

Tables I-1I also indicate that the standard deviation is high
for several organs (e.g. the average distance of the right kidney
12.9 mm for CT and 15.7 mm for MRI modality). A careful
examination of predictions confirms that this is due to outliers
in the detection.

Regarding the running time of YOLO, we process an entire
CT volume in 8 s, and an entire MRI volume in 3 s. All our
models are trained and tested on NVIDIA Tesla V100 GPUs
with 32 Gb of memory.

Table III compares our performances with state-of-the-art
methods [1]-[3] applied to abdominal organs in contrast-
enhanced CT images. This comparison is indicative as it was
not possible to evaluate our method on the same datasets.
Table IIT shows that YOLO and CycleGAN+YOLO yield best
performances for the majority of studied organs in comparison
with other methods.



TABLE I
YOLO (MEAN DIST. 8.66 MM) VS CYCLEGAN+YOLO (MEAN DIST. 7.95
MM) COMPARISON ON PER ORGAN MEAN DIST. FOR CT MODALITY.

Pancreas Gallbladder Bladder
YOLO 14.34+104 6.9+109 4.0+£1.2
CycleGAN + YOLO  10.6 £5.2 74+11.2 45416
Verterba L1 ~ Kidney R Kidney L
YOLO 6.2+ 3.5 56+12.9 4.7+£5.8
CycleGAN + YOLO 5.8 +3.3 59+124 4.3+4.8
Adrenal R Adrenal L Psoas R
YOLO 6.6 6.5 81484 16.6+13.4
CycleGAN + YOLO 6.3+5.9 7.8 +8.7 11.8£6.9

Psoas L  Abdominal R Abdominal L

YOLO 12.7+71 13.6+121 11.9+7.3
CycleGAN + YOLO 12.8+£5.7 11.94+6.7 122+7.7
Aorta Liver Spleen
YOLO 40+30 74+44 68x7.0
CycleGAN + YOLO 39+£26 69£34 65£6.2
TABLE 11

YOLO (MEAN DIST. 22.62 MM) VS CYCLEGAN+YOLO (MEAN DIST.
16.18 MM) COMPARISON ON PER ORGAN MEAN DIST. FOR MRI

MODALITY.
Pancreas Gallbladder Bladder
YOLO 179+83 17.7+£104 151417.7
CycleGAN + YOLO 149456 139459 11.3+12.0
Verterba L1 Kidney R Kidney L
YOLO 13.5+5.0 1144157 884119
CycleGAN + YOLO 9.7+3.1 10.0+£15.6 10.1+13.4
Psoas R Psoas L Abdominal L
YOLO 12.0+5.2 13.8+7.1 55.9£5.0
CycleGAN + YOLO 12.94+56 12.5+6.3 35.8+34.3
Aorta Liver Spleen
YOLO 81.14+£0.0 122+75 11.7+17.7
CycleGAN + YOLO 37.6+20.6 14.04+£10.5 10.946.9

V. CONCLUSION AND FUTURE WORK

In this study, we proposed a CycleGAN+YOLO combi-
nation for data augmentation to train a multi-organ detector
for multi-modality images. Our work tackles the scarcity of
labeled medical data which hinders the supervised learning
of deep networks by using a CycleGAN to generate synthetic
images to augment training data. We showed that this approach
achieves accurate detection with mean average distance of
7.954+6.2 mm for CT modality, and mean average distance of
16.18 £ 11.6 mm for MRI modality. Further improvement of

TABLE III
COMPARISON OF CT IMAGES DETECTION WITH STATE-OF-THE-ART
METHODS BASED ON MEAN DISTANCES PER ORGAN.

Method Liver Kidney R Kidney L  Spleen  Gallbladder
Cuingnet [1] 122+4 644+4 68+6 9.0£5 11.8+8
Criminsi [2] 14.0£5 13.2+6 123+£7 142+6 155+8

Gauriau [3] 10.7+4 56+3 55+4 79+4 95+4

YOLO 74+4 56+12 47+£5 687 6.9+10

CycleGAN +Y. 6.9+3 59+12 43+4 65+6 74+11

our results implies the development of a strategy that rejects
detection outliers. This can be done by encoding anatomical
constraints of proximity or adjacency as new terms in the loss
function of the detector, to be optimized simultaneously with
regression and class-probability terms.
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