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ABSTRACT

We propose a deep learning solution to the problem of ob-
ject detection in 3D CT images, i.e. the localization and clas-
sification of multiple structures. Supervised learning meth-
ods require large annotated datasets that are usually difficult
to acquire. We thus develop a Cycle Generative Adversarial
Network (CycleGAN) + You Only Look Once (YOLO) com-
bined method for CT data augmentation using MRI source
images to train a YOLO detector. This results in a fast and
accurate detection with a mean average distance of 7.95±6.2
mm, which is significantly better than detection without data
augmentation. We show that the approach compares favor-
ably to state-of-the-art detection methods for medical images.

Index Terms— multi-organ detection, image synthesis,
data augmentation, medical imaging

1. INTRODUCTION

Object detection consists in localizing structures in images us-
ing bounding boxes and classifying them. Many approaches
have been proposed relying on statistical [1, 2, 3] or deep
learning [4, 5, 6] techniques. In spite of the success of ex-
isting methods, only a few works have employed deep learn-
ing for multi-organ detection in medical images [7, 8]. Ob-
ject detection is a prerequisite in many radiological proce-
dures such as patient screening and diagnosis which implies
localizing anatomical structures or lesions. Most of object
detection models in medical images are designed for single-
object detection [9, 10]. Our method aims at detecting mul-
tiple organs in 3D CT images. Detection should furthermore
be time efficient when processing large datasets. We choose
the YOLO detector [5] as a basis in our work. It has been
shown to offer a good precision vs speed trade-off for natural
images compared to other deep detectors. Supervised deep
learning requires large training datasets which are not always
available for medical images. This is because such images
are expensive to obtain, compared to natural images. Fur-
thermore, manual annotation of medical images, especially in
3D, is very time consuming. We propose to expand a baseline
training dataset via data augmentation. Most data augmenta-
tion approaches apply transformations to images such as rota-

tions and translations [11]. Transformed data are then added
to the training set. As opposed to this technique, we use a
CycleGAN [12] as an unsupervised method that synthesizes
images from annotated source images of a different modality.
We show that the CycleGAN+YOLO combination yields an
efficient approach to augment and detect multiple structures.

2. RELATED WORKS

2.1. Object detection

Supervised object detection aims at classifying object in-
stances from predefined annotations and localizing them in
images. Deep learning-based detection methods can be cate-
gorized into two approaches: two-stage and one-stage. Mod-
els in the former approach are trained separately for two tasks:
detection of regions of interest and classification/localization
of objects. Region-Based Convolutional Neural Network
(R-CNN) methods [13, 4] are among the best-preforming
ones. They use modules for feature extraction, classifica-
tion/regression and region proposal, the latter being a sepa-
rate convolutional network in [4]. In the one-stage detection
approach, a single network is trained for both classification
and localization, no region proposals are created. You Only
Look Once (YOLO) [5] and Single Shot multi-box Detector
(SSD) [6] are both popular detection methods in this category.
YOLO is a fast real-time object detector with an optimized
network architecture. SSD introduces multi-reference and
multi-resolution techniques for higher precision.

In medical image analysis, best-performing statistical de-
tection approaches are based on regression forests [2] which
are applied in a cascaded, global-to-local fashion in [1, 3] aug-
mented by a shape prior in the latter work for improved pre-
cision. Deep methods however are quickly gaining ground.
YOLO has been used for detection on retinal images [14],
and SSD for liver lesion detection in CT [9]. Among recent
works investigating deep multi-organ detection we mention
[7] where two convolutional networks, one for classification
and another for bounding-box regression, were trained and
tested separately for few dozen structur es in 2D slices of
3D CT images, and [8] which employs a convolutional net-
work, trained and tested on chest CT structures simultane-



ously, which is augmented with spatial pyramid pooling to
analyze 2D slices of different sizes.

2.2. Cross-modality Image Synthesis

A rich body of work that uses Generative Adversarial Net-
works (GAN) for synthesizing images in one modality from
those in another has been proposed [11]. CycleGAN was pro-
posed in [12] and became one of commonly used approaches
in synthetic medical image applications. Importantly, it can
be used in the case of unpaired data, which is particularly use-
ful in our application, since it is usually not possible to have
images of different modalities for the same patient under the
same conditions. In other words, instances are not mutually
mapped between source and target domains, and therefore no
registration is required. CycleGAN was employed in [15] to
generate brain CT images from MRI images, and in [16] to
generate lung MRI images from CT images in lung tumor
segmentation. Our work is inspired by [17] which aims to
segment a single organ (the liver) without having ground-truth
annotations for the target modality. A CycleGAN is used to
generate target modality images from labeled source images.
Source labels are then transferred to the target. As already
stated, our work aims at multi-organ detection.

3. METHOD

As shown in Figure 1, our workflow has 2 stages: cross-
modality synthesis with CycleGAN [12] and multiple-organ
detection with the YOLO algorithm [5]. YOLO was selected
as the detector due to its speed and precision, as mentioned
in the previous section. This approach starts by splitting an
image into S × S cells. Each grid cell predicts three com-
ponents: (1) coordinates (x, y, w, h) of B bounding boxes,
(2) a confidence score P (object), and (3) a class probabil-
ity for C categories conditioned on the presence of an ob-
ject in the bounding box. In our work, we use the third ver-
sion of YOLO (YOLOv3) [18]. Its architecture is composed
of 53 convolutional layers (Darknet-53). It makes predic-
tions at three different scales. For a more stable prediction,
scale-dependent box priors are used. These are learned from
the training dataset. YOLOv3 also adds cross-layer connec-
tions between each two prediction layers except for the out-
put layer. In our experiments we train and apply YOLO on
2D full-resolution axial cross-sections of 3D images due to
GPU memory restrictions and the complexity of the network
model. A low resolution 3D approach would incur significant
loss of precision for small structures. We train YOLO with
450 epochs and a decreasing learning rate.

CycleGAN [12] is an unsupervised deep learning method
which allows bidirectional translation between the source X
and the target domain Y . It uses two generator networks
G1, G2 such as G1 : X → Y and G2 : Y → X , each as-
sociated with a discriminator network, D1 and D2 following

an adversarial training. G and D networks compete against
each other. D works as a binary classifier attempting to dis-
tinguish between the synthetic and the real target image, while
G seeks to deceive the discriminator by improving the qual-
ity of the synthetic output image. The input of the generator
network G is a source domain image x ∈ X and its output is
a synthetic image, ŷ = G(x). The inputs of a discriminator
D are the synthetic output ŷ and an unpaired random image
from the target domain y ∈ Y . As for the architectures, the
generator has an encoder, a transformer (a Residual Network
in practice) and a decoder. The discriminator model is imple-
mented as a PatchGAN model [12] which aims at classifying
images as real or synthetic. The CycleGAN was trained us-
ing 200 epochs. We fixed the learning rate on 0.0002 for the
first 100 epochs, then we linearly decay it until reaching zero
over the rest. Synthetic images that are generated using Cy-
cleGAN are then used, along with the annotations of source
images, to augment the training datasets for YOLO detectors.

Fig. 1. The proposed framework : CycleGAN (image synthe-
sis) + YOLO (multi-organ detection).

4. EXPERIMENTAL RESULTS

4.1. Datasets and pre-processing

The data used in this study come from the Visceral Anatomy
Benchmarks [19] and involves 2 datasets: (1) a Gold dataset,
the annotations of which were created using manual segmen-
tation, and (2) a Silver dataset, the labels of which were ob-
tained by merging the segmentations produced by the algo-
rithms of benchmark participants. Both datasets consist of
unpaired 3D contrast-enhanced thoracic-abdominal CT and
abdominal MRI images providing 20 and 15 structure anno-
tations respectively. Mean image dimensions are 512×512×
438 voxels for CT and 312 × 72 × 384 voxels for MRI. The
Gold dataset provides 20 patients per modality. We chose 30
patients per modality in the Silver dataset. To reduce the com-
putational cost, all our experiments are carried out in 2D axial
slices of original 3D images. We use the provided segmen-
tation annotations to define 2D bounding-box annotations to
train YOLO detectors. For the experiments on cross-modality
image synthesis, we crop CT images in both datasets around
the abdomen and resize them to 320 × 320 pixels. This is
because the thorax is absent in MRI images.



4.2. Performance metrics

We perform quantitative evaluations for two tasks: multiple-
organ detection and cross-modality image synthesis. We use
mean Average Precision (mAP) to select the best detector
model over a validation set in a k-fold cross-validation pro-
cedure. This metric is conventionally computed as the area
under the precision-recall curve. The best detector is then
used to create the 2D bounding-box predictions on the test
set, from which 3D bounding-boxes are constructed simply
by taking maximum coordinates. We measure the 3D detec-
tion precision with respect to ground truth as the average dis-
tance over the 6 faces of the reconstructed 3D detection and
the annotation bounding boxes.

For experiments on image synthesis, as in [20], we evalu-
ate reconstruction fidelity as an indicator of synthesis quality
via the Structural SIMilarity (SSIM) metric.

Fig. 2. Qualitative results of cross-modality generation (from
MRI to CT image). The real MRI image (left), the generated
CT image (center) and the reconstructed MRI image (right).

4.3. Cross-modality image synthesis

An example of CycleGAN MRI to CT image translation is
presented in Figure 2. It shows the consistency of translated
structures with CT enhancement patterns, e.g. bright vertebra,
kindeys brighter than muscles etc. To perform a quantitative
evaluation of CycleGAN performance, we compute the SSIM
between a source image x and its reconstruction G1(G2(x)).
For the MRI to CT translation, we have a mean SSIM of 0.97
(averaged over all patients). This evaluation was performed
on Gold dataset images with a model trained on those of the
Silver dataset.

4.4. Multi-organ detection

Multiple-organ detection was evaluated on the Visceral Gold
dataset using 10-fold cross-validation under two scenarios,
without and with data augmentation. For the latter scenario, a
CycleGAN trained on the Silver dataset was used to translate
MRI images in the Gold dataset into CT which were used to
augment the training data in each of the 10 folds. Test data
are identical in both scenarios. For each fold, the model that
yielded the best detection performance (measured by mAP)
is selected. As previously stated, detection precision is mea-
sured in 3D on reconstructed bounding boxes. Results av-
eraged over all images are shown in Table 1. We observe

that distances corresponding to large organs such as the spleen
(6.8 mm) and the right kidney (5.6 mm) are satisfying, as op-
posed to organs difficult to detect such as the pancreas (14.3
mm) and the right psoas major muscle (16.6 mm). The Cycle-
GAN+YOLO scenario yields better results for most organs.
The mean average distance in this case is 7.95 mm as com-
pared to YOLO alone 8.66 mm. This improvement is statis-
tically significant (p = 0.046 on a paired one-sided t-test).
Table 1 also indicates that the standard deviation is high for
several organs (e.g. the right kidney 12.9 mm). A careful ex-
amination of predictions confirms that this is due to outliers
in the detection. Figure 3 shows an example of multi-organ
YOLO detection for an axial CT image. It shows in particular
that the bounding boxes are well centered on the organs, even
for smaller ones.

(a) ground-truth (b) prediction

Fig. 3. 2D multi-organ detection on an axial CT image.

Table 1. YOLO (mean dist. 8.66 mm) vs CycleGAN+YOLO
(mean dist. 7.95 mm) comparison on per organ mean distance.

Pancreas Gallbladder Bladder Verteba L1 Kidney R

YOLO 14.3± 10.4 6.9± 10.9 4.0± 1.2 6.2± 3.5 5.6± 12.9
CycleGAN + Y. 10.6± 5.2 7.4± 11.2 4.5± 1.6 5.8± 3.3 5.9± 12.4

Kidney L Adrenal R Adrenal L Psoas R Psoas L

YOLO 4.7± 5.8 6.6± 6.5 8.1± 8.4 16.6± 13.4 12.7± 7.1
CycleGAN + Y. 4.3± 4.8 6.3± 5.9 7.8± 8.7 11.8± 6.9 12.8± 5.7

Abdominal R Abdominal L Aorta Liver Spleen

YOLO 13.6± 12.1 11.9± 7.3 4.0± 3.0 7.4± 4.4 6.8± 7.0
CycleGAN + Y. 11.9± 6.7 12.2± 7.7 3.9± 2.6 6.9± 3.4 6.5± 6.2

Regarding the running time of YOLO, we process an en-
tire CT volume in 8 s. All our models are trained and tested
on NVIDIA Tesla V100 GPUs with 32 GB of main memory.

Table 2 compares our performances with those of state-
of-the-art methods [1, 2, 3] applied to abdominal organs in
contrast-enhanced CT images. This comparison is indicative
as it was not possible to evaluate our method on the same
datasets. Table 2 shows that YOLO and CycleGAN+YOLO
yield best performances for the majority of studied organs in
comparison with other methods.



Table 2. Comparison with state-of-the-art methods based on
mean distances per organ.

Method Liver Kidney R Kidney L Spleen Gallbladder

Cuingnet [1] 12.2± 4 6.4± 4 6.8± 6 9.0± 5 11.8± 8
Criminsi [2] 14.0± 5 13.2± 6 12.3± 7 14.2± 6 15.5± 8
Gauriau [3] 10.7± 4 5.6± 3 5.5± 4 7.9± 4 9.5± 4

YOLO 7.4± 4.4 5.6± 12.9 4.7± 5.8 6.8± 7.0 6.9± 10.9
CycleGAN + Y.6.9± 3.45.9± 12.44.3± 4.86.5± 6.2 7.4± 11.2

5. CONCLUSION AND FUTURE WORK

In this study, we proposed a CycleGAN+YOLO combination
for data augmentation to train a multi-organ detector for CT
images. Our work counters the scarcity of labeled medical
data which hinders the supervised learning of deep networks
by using a CycleGAN to generate synthetic images to aug-
ment training data. We showed that this approach achieves
accurate detection with mean average distance of 7.95 ± 6.2
mm which constitutes a significant improvement over YOLO
detection alone. Further improvement of our results implies
the development of a strategy that rejects detection outliers.
This can be done by encoding anatomical constraints of prox-
imity or adjacency as new terms in the loss function of the
detector, to be optimized simultaneously with regression and
class-probability terms.
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