
HAL Id: hal-03345923
https://hal.science/hal-03345923

Preprint submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dynamical neural network for solving stochastic
two-player zero-sum games

Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. A dynamical neural network for solving stochastic two-player zero-sum
games. 2021. �hal-03345923�

https://hal.science/hal-03345923
https://hal.archives-ouvertes.fr


A dynamical neural network for solving stochastic two-player zero-sum
games

Dawen Wua,∗, Abdel Lissera

aCentralesupelec, Université Paris-Saclay

Abstract

This paper presents a dynamical neural network approach to solve stochastic two-players zero-sum game

problems. The original problem is first transformed into an equivalent convex second-order cone programming

problem. We develop a dynamical neural network model to solve the problem, where the model’s equilibrium

point corresponds to the optimal solution of the game problem. Further, we use a Lyapunov function to

show that the equilibrium point of the neural network is globally asymptotically stable. Numerical results

are given to show the performance of our approach.
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1. Introduction

In 1928, von Neumann (1928) studies the equilibrium concept in game theory and showed that there always

exists a saddle point equilibrium for a finite action two-player zero-sum games. Nash et al. (1950) generalizes

this result to n-player games, and shows that there always exists a Nash equilibrium for a finite action

general games with a finite number of players. Charnes (1953) studies a new type of two-player zero-sum5

game where the mixed strategies of each player are constrained by linear inequalities. He shows that a saddle

point equilibrium of such games can be obtained by solving a primal-dual pair of linear programs. Recently,

Singh and Lisser (2019) study a stochastic version of two-player zero-sum game, namely chance constrained

two-player zero-sum games. They show that a mixed strategy saddle point exists if the random vectors

defining stochastic linear constraints follow elliptically symmetric distributions. As regards the solution of10

the problem, the saddle point of the two-player zero-sum game can be solved by linear programming. A

two-player general sum game can be formulated as a linear complementarity problem (LCP), and Lemke

and Howson (1964) gives method to solve it. For n-player general sum cases, Daskalakis et al. (2009) show

that the problem of computing nash equilibriums is PPAD-Hard . van der Laan et al. (1987); Govindan and

Wilson (2003); Blum et al. (2006) provide algorithms to solve such problems.15

Hopfield and Tank (1985) bridge neural networks and optimization problems. Since then, many neural

network models are proposed to solve varied optimization problems, e.g., linear programming by Wang (1993);
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Xia (1996b), quadratic programming by Xia (1996a); Nazemi (2014), nonlinear programming problems by

Kennedy and Chua (1988); Forti et al. (2004); Nazemi and Tahmasbi (2013), minimax problem by Gao

et al. (2004); Nazemi (2011), nonlinear complementarity problems by Liao et al. (2001); Dang et al. (2004);20

Nazemi and Sabeghi (2020); Feizi et al. (2021). The neural network model can be reformulated as a first

order ordinary differential equation(ODE).

With regards to the solution of an ODE system with a given initial value, Runge-Kutta and backward

differentiation approches are commonly used, see Curtiss and Hirschfelder (1952); Gottlieb and Shu (1998).

Python and Julia provide tools implementing such algorithms, see Virtanen et al. (2020); Rackauckas and25

Nie (2017). Futhermore, with the rapid development of machine learning, Chen et al. (2019); Raissi et al.

(2019) study deep neural network to handle ODE systems.

The remaining of the paper is organized as follows. Section 2 shows the stochastic zero-sum game together

with its second-order cone programming problem (SOCP, for short) reformulation. Section 3 gives the KKT

conditions related to the SOCP problem, and the neural network reformulation. Numerical experiments are30

given in Section 4.

The following notations are used in the remainder of the paper.

• x and y denote the strategies of player1 and player2 respectively. m and n denote the sizes of the action

set of the player1 and the player2, respectively.

• J1, J2 denote the probabilistic constraints sets for player1 and player2, respectively. J1, J2 denote the35

sets sizes.

• A,µ1, µ2,Σ1,Σ2, b, d denotes the data for a stochastic two-players zero-sum game. A denotes the payoff

matrix. µ1, µ2,Σ1,Σ2 are the means and the variances of the probability distributions, respectively.

ϕ1
k

(
t2
)

and ϕ2
l

(
t2
)

are the characteristic functions of the probability distributions, respectively.

• α1 and α2 are the setting of the confidence level of the players 1 and 2, respectively.40

• The Ψ−1
ξ2l

(
α2
l

)
,Ψ−1

ξ1k

(
α1
k

)
are quantile functions of 1-dimensional distribution functions induced by char-

acteristic functions ϕ1
k

(
t2
)

and ϕ2
l

(
t2
)
, respectively.

• s = (y, v, δ, λ) are the decision variables of the optimization problem. u is the dual variable of the

optimization problem. r = (s, u) = (y, v, δ, λ, u) are the variables of the neural network.

• nr, ns, nu are the number of variables r, s, u, respectively. Moreover, nu also denotes the number of45

constraints of the optimization problem.

• f(s) = f(y, v, δ, λ) and g(s) = g(y, v, δ, λ) are the objective function and the constraints of the opti-

mization problem. f(s), g(s),∇f(s),∇g(s),∇2g(s) are abbreviated as f, g,∇f,∇g,∇2g.

• Φ(r) = dr
dt denotes the dynamical neural network.
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2. Problem formulation50

In this section, we present the stochastic two-player zero sum game with a chance constraint. A two

player zero-sum game involves two persons called player 1 and player 2. These games are described by a

matrix A with m rows and n columns. Matrix A represents the payoffs of player 1 and matrix -A represents

the payoffs of player 2. Let I = {1, 2, . . . ,m} be the action set of player 1 and J = {1, 2, . . . , n} be the action

sets of player 2. We call pure strategies the actions in sets I and J for the players 1 and 2, respectively. We

call mixed strategies of a given player, a probability distribution defined over his action set. Let X = {x ∈

Rm|
∑
i xi = 1, xi ≥ 0,∀i ∈ I} and Y = {y ∈ Rm|

∑
j yj = 1, yj ≥ 0,∀j ∈ J} the sets of mixed strategies of

player 1 and player 2, respectively. The payoffs of player 1 and player 2 are defined by xTAy and xT (−A)y

respectively, for a given strategy pair (x, y) ∈ X × Y . von Neumann (1928) showed that there exists a

saddle point equilibrium in mixed strategies in zero-sum games. Dantzig (1951) showed that the saddle point

equilibrium is a solution of primal-dual pair of linear programs. Charnes (1953) studied a linear constrained

two-player zero-sum game problem. For a given a strategy y of player 2, the objective of player 1 is to choose

a strategy x which solves the linear programming problem (1). Similarly, the aim of player 2 is to choose a

strategy y that solves problem (2) for given a strategy x of player 1.

max
x

xTAy

s.t.

Bx ≤ b

1Tx = 1

x ≥ 0,

(1)

min
y
xTAy

s.t.

Dy ≥ d

1T y = 1

y ≥ 0,

(2)

where B ∈ RJ1×m, D ∈ RJ2,n, b ∈ RJ1 , d ∈ RJ2 . A strategy pair (x, y) is said to be a saddle point

equilibrium for the above constrained zero-sum game if x is an optimal solution of (1) for a given y, and y is

an optimal solution of (2) for the given x.

Singh and Lisser (2019) consider the problem where each row vector Bk and Dl of B and D , respec-

tively, follows an elliptical distribution i.e. Bwk ∼ Ellipm
(
µ1
k,Σ

1
k, ϕ

1
k

)
and Dw

l ∼ Ellipn
(
µ2
l ,Σ

2
l , ϕ

2
l

)
. The55

Ψ−1
ξ2l

(
α2
l

)
,Ψ−1

ξ1k

(
α1
k

)
are the quantile functions of 1-dimensional distribution functions induced by character-

istic functions ϕ1
k

(
t2
)

and ϕ2
l

(
t2
)
, respectively. The chance constrained optimization problem can be written
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as

max
x

xTAy

s.t.

P {Bwk x ≤ bk} ≥ α1
k, ∀k ∈ J1

1Tx = 1

x ≥ 0,

(3)

min
y
xTAy

s.t.

P {Dw
l y ≥ dl} ≥ α2

l , ∀l ∈ J2

1T y = 1

y ≥ 0.

(4)

We use the SOCP reformulation from Henrion (2007) to rewrite the probabilistic constraints in (3) and

(4) as follows

xTµ1
k + Ψ−1

ξ1k
(α1
k)‖(Σ1

k)
1
2x‖ ≤ bk, ∀k ∈ J1, (5)

−yTµ2
l + Ψ−1

ξ2l
(α2
l )‖(Σ2

l )
1
2 y‖ ≤ −dl, ∀l ∈ J2. (6)

We denote the stochastic two-players zero-sum game by G(α) and the feasible strategy sets of the two

players by S1

(
α1
)

and S2

(
α2
)
,

S1

(
α1
)

=
{
x ∈ Rm | 1Tx = 1, x ≥ 0, xTµ1

k + Ψ−1
ξ1k

(α1
k)‖(Σ1

k)
1
2x‖ ≤ bk, ∀k ∈ J1

}
, (7)

S2

(
α2
)

=
{
y ∈ Rn | 1T y = 1, y ≥ 0,−yTµ2

l + Ψ−1
ξ2l

(α2
l )‖(Σ2

l )
1
2 y‖ ≤ −dl, ∀l ∈ J2

}
. (8)

Assumption 1.

1. The set S1(α1) is strictly feasible, i.e., there exists an x ∈ Rm which is a feasible point of S1(α1) and60

the inequality constraints of S1(α1) are strictly satisfied by x.

2. The set S2(α2) is strictly feasible, i.e., there exists an x ∈ Rn which is a feasible point of S2(α2) and

the inequality constraints of S2(α2) are strictly satisfied by y.

(x∗, y∗) is called a saddle point equilibrium of G(α), if the following inequality holds:

xTAy∗ ≤ x∗TAy∗ ≤ x∗TAy,∀x ∈ S1

(
α1
)
, y ∈ S2

(
α2
)
. (9)
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The following theorem shows the saddle point existence of the stochastic two-player zero-sum game

problem.65

Theorem 1 (Singh and Lisser (2019), Theorem 3.5). Consider a constrained zero-sum matrix game where

the matrices Bw and Dw defining the constraints of both the players, respectively, are random. Let the row

vectors Bwk ∼ Ellipm
(
µ1
k,Σ

1
k, ϕ

1
k

)
, k ∈ J1, and Dw

l ∼ Ellipn
(
µ2
l ,Σ

2
l , ϕ

2
l

)
, l ∈ J2. For all k and l, Σ1

k � 0 and

Σ2
l � 0. Then, there exists a saddle point equilibrium for the game G(α) for all α ∈ (0.5, 1]J1 × (0.5, 1]J2 .

We refer the reader to Singh and Lisser (2019) for more details about the proof of this theorem and the70

related results.

Proposition 1. The chance constrained optimization problems (3) and (4) can be reformulated as the fol-

lowing SOCP problems (P) and (D).

miny,v1,(δ1k)
k∈J1

,λ1 v1 +
∑
k∈J1

λ1
kbk

s.t.

(i)Ay −
∑
k∈J1

λ1
kµ

1
k −

∑
k∈J1

(
Σ1
k

) 1
2 δ1

k ≤ v11m

(ii)− yTµ2
l + Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥ ≤ −dl, ∀l ∈ J2

(iii)
∥∥δ1
k

∥∥ ≤ λ1
kΨ−1

ξ1k

(
α1
k

)
, ∀k ∈ J1

(iv)1T y = 1

(v)y ≥ 0

(vi)λ1
k ≥ 0, ∀k ∈ J1



(P)

maxx,v2,(δ2l )
l∈J2

,λ2 v2 +
∑
l∈J2

λ2
l dl

s.t.

(i)ATx−
∑
l∈J2

λ2
l µ

2
l −

∑
l∈J2

(
Σ2
l

) 1
2 δ2

l ≥ v21n

(ii)xTµ1
k + Ψ−1

ξ1k

(
α1
k

) ∥∥∥(Σ1
k

) 1
2 x
∥∥∥ ≤ bk, ∀k ∈ J1

(iii)
∥∥δ2
l

∥∥ ≤ λ2
lΨ
−1
ξ2l

(
α2
l

)
, ∀l ∈ J2

(iv)1Tx = 1

(v)x ≥ 0

(vi)λ2
l ≥ 0, ∀l ∈ J2



(D)

Proof. We show the process that generate (P) from (3).
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The chance constrained optimization problem (3) with the second-order cone reformulation (5) is

max
x

xTAy

s.t.

(i)xTµ1
k + Ψ−1

ξ1k
(α1
k)‖(Σ1

k)
1
2x‖ ≤ bk, ∀k ∈ J1

(iii)1Tx = 1

(v)x ≥ 0.

(10)

Given a strategy y of player 2, the problem can be written as the following SOCP problem, where (t1k)k∈J1

are auxiliary variables,

max
x,(t1k)k∈J1

xTAy

s.t.

(i)− xTµ1
k −Ψ−1

ξ1k
(α1
k)‖tk‖+ bk ≥ 0, ∀k ∈ J1

(ii)t1k − (Σ1
k)

1
2x = 0, ∀k ∈ J1

(iii)1Tx = 1

(iv)x ≥ 0

(11)

The saddle point of the lagrangian of (11) is

min
v1,(δk)1k∈J1

,λ1≥0
max

x,(t1k)k∈J1

[
xTAy + v11Tx+

∑
k∈J1

(
δ1
k

)T (
t1k − (Σ1

k)
1
2x
)

+
∑
k∈J1

λ1
k

(
−xTµ1

k −Ψ−1
ξ1k

(
α1
k

)
‖tk‖+ bk

)]
(12)

For the fixed v1, (δk)1
k∈J1

, λ1, we have

max
x,(t1k)k∈J1

[
xTAy + v11Tx+

∑
k∈J1

(
δ1
k

)T (
t1k − (Σ1

k)
1
2x
)

+
∑
k∈J1

λ1
k

(
−xTµ1

k −Ψ−1
ξ1k

(
α1
k

)
‖tk‖+ bk

)]

= max
x

[
xT

(
Ay −

∑
k∈J1

λ1
kµ

1
k −

∑
k∈J1

(
Σ1
k

) 1
2 δ1

k − v11

)]
+ max

(t1k)k∈J1

[∑
k∈J1

((
δ1
k

)T
t1k − λ1

kΨ−1
ξ1k

(
α1
k

)
‖t1k‖

)]
+ v1 +

∑
k∈J1

λ1
kbk

(13)

The first and second max problem are unbound unless the following conditions hold,

Ay −
∑
k∈J1

λ1
kµ

1
k −

∑
k∈J1

(
Σ1
k

) 1
2 δ1

k ≤ v11 (14)

‖δ1
k‖ ≤ λ1

kΨ−1
ξ1k

(
α1
k

)
, ∀k ∈ J1 (15)
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The lagrangian dual of the inner maximum problem is given by the following SOCP,

min
v1,(δ1k),λ1

v1 +
∑
k∈J1

λ1
kbk

s.t.

(i)Ay −
∑
k∈J1

λ1
kµ

1
k −

∑
k∈J1

(
Σ1
k

) 1
2 δ1

k ≤ v1
1m

(ii)
∥∥δ1
k

∥∥ ≤ λ1
kΨ−1

ξ1k

(
α1
k

)
,∀k ∈ J1

(iii)λ1
k ≥ 0,∀k ∈ J1

(16)

With the second-order cone constraint (6) for y, we finally get the first SOCP (P).

miny,v1,(δ1k)
k∈J1

,λ1 v1 +
∑
k∈J1

λ1
kbk

s.t.

(i)Ay −
∑
k∈J1

λ1
kµ

1
k −

∑
k∈J1

(
Σ1
k

) 1
2 δ1

k ≤ v11m

(ii)− yTµ2
l + Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥ ≤ −dl, ∀l ∈ J2

(iii)
∥∥δ1
k

∥∥ ≤ λ1
kΨ−1

ξ1k

(
α1
k

)
, ∀k ∈ J1

(iv)1T y = 1

(v)y ≥ 0

(vi)λ1
k ≥ 0, ∀k ∈ J1



(P)

The dual problem (D) can be generated similarly.

The following theorem shows the existence of the saddle point for the chance constrained zero-sum game75

G(α).

Theorem 2 (Singh and Lisser (2019), Theorem 3.7). Consider a constrained zero-sum game where the

matrices Bw and Dw defining the constraints of player 1 and player 2, respectively, are random. Let the row

vector Bw ∼ Ellip m

(
µ1
k,Σ

1
k, ϕ

1
k

)
, k ∈ J1, where Σ1

k � 0, and the row vector Dw
l ∼ Ellipn

(
µ2
l ,Σ

2
l , ϕ

2
l

)
, l ∈ J2

where Σ2
l � 0. Let Assumption 1 holds. Then, for a given α ∈ (0.5, 1]p × (0.5, 1]q, (x∗, y∗) is a saddle point80

equilibrium of the game G(α) if and only if there exist
(
v1∗,

(
δ1∗
k

)
k∈J1

, λ1∗
)

and
(
v2∗,

(
δ2∗
l

)
l∈J2

, λ2∗
)

such

that
(
y∗, v1∗,

(
δ1∗
k

)
k∈J1

, λ1∗
)

and
(
x∗, v2∗,

(
δ2∗
l

)
l∈J2

, λ2∗
)

are optimal solutions of primal-dual pair of SOCPs

(P) and (D), respectively.

We refer the reader to Singh and Lisser (2019) for more details about the proof of this theorem and the

related results.85
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3. Methodology

In this section, we study a neural network approach to solve the second-order cone programming problem

given in section 2. We provide the necessary and sufficient KKT conditions of problem (P). We use a neural

network to solve the KKT conditions that the equilibrium point of the neural network is the satisfied KKT

point. Then, we study the stability of the equilibrium point by analyzing a Lyapunov function.90

We transform the equality constraint 1T y = 1 in (P) into inequality 1T y − 1 ≤ 0, 1 − 1T y ≤ 0. For

sake of simplicity, we consider only the primal problem. Denote s = (y, v, δ, λ) = (y, v1, (δ1
k)k∈J1 , λ

1), where

δ = (δ1
k)k∈J1

= [δ1
1
T
, . . . , δ1

J1

T
]T and λ = λ1 = [λ1

1, . . . , λ
1
J1

]T . Such that, the optimization problem (P) can

be simplified as

min
s
f(s)

s.t.

g(s) ≤ 0,

(17)

where the objective function f : Rns → R, and the constraints g : Rns → Rnu.

3.1. KKT conditions

Since the SOCP constraints of g(s) are not differentiable, we introduce the following perturbation ε =

10−6, i.e.,
√
‖s‖2 + ε2. Thanks to this smoothness technique, the KKT conditions of the SOCP are necessary

and sufficient optimality conditions.95

The KKT conditions of the SOCP problem (P) are

∇f(s) +∇g(s)Tu = 0

g(s) ≤ 0, uT ≥ 0, uT g(s) = 0
(18)

where the ∇f, u, g,∇g are as follows

∇f(s) =


∂f
∂y

∂f
∂v

∂f
∂δ

∂f
∂λ

 =


0

1

0

b

 (19)

u =



u1

u2

u3

u41

u42

u5

u6


(20)

8



g(s) =



g1

g2

g3

g41

g42

g5

g6


=



Ay − v1−
∑
k∈J1

(
Σ1
k

) 1
2 δk −

∑
k∈J1

λkµ
1
k

(−yTµ2
l + Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥+ dl)l∈J2

(‖δk‖ − λkΨ−1
ξ1k

(
α1
k

)
)k∈J1

1T y − 1

−1T y + 1

−y

−λ


(21)

∇g(s) =



∂g1
∂y

∂g1
∂v

∂g1
∂δ

∂g1
∂λ

∂g2
∂y

∂g2
∂v

∂g2
∂δ

∂g2
∂λ

∂g3
∂y

∂g3
∂v

∂g3
∂δ

∂g3
∂λ

∂g41
∂y

∂g41
∂v

∂g41
∂δ

∂g41
∂λ

∂g42
∂y

∂g42
∂v

∂g42
∂δ

∂g42
∂λ

∂g5
∂y

∂g5
∂v

∂g5
∂δ

∂g5
∂λ

∂g6
∂y

∂g6
∂v

∂g6
∂δ

∂g6
∂λ


=



A −1 (−(Σ1
k)

1
2 )k∈J1 (−µ1

k)k∈J1

(−(µ2
l )
T + Ψ−1

ξ2l
(α2
l )

Σ2
l

1
2

T

Σ2
l

1
2 y

‖Σ2
l

1
2 y‖

)l∈J2
0 0 0

0 0 ( δk
‖δk‖ )k∈J1 (−Ψ−1

ξ1k

(
α1
k

)
)k∈J1

1T 0 0 0

−1T 0 0 0

−I 0 0 0

0 0 0 −I


(22)

The stationarity, primal feasibility, dual feasibility, and complementary slackness can be written as follows


0

1

0

b

+



A −1 (−(Σ1
k)

1
2 )k∈J1

(−µ1
k)k∈J1

(−(µ2
l )
T + Ψ−1

ξ2l

Σ2
l

1
2

T

Σ2
l

1
2 y

‖Σ2
l

1
2 y‖

)l∈J2 0 0 0

0 0 ( δk
‖δk‖ )k∈J1

(−Ψ−1
ξ1k

(
α1
k

)
)k∈J1

1T 0 0 0

−1T 0 0 0

−I 0 0 0

0 0 0 −I



T 

u1

u2

u3

u41

u42

u5

u6


= 0 (23)



Ay − v1−
∑
k∈J1

(
Σ1
k

) 1
2 δk −

∑
k∈J1

λkµ
1
k

(−yTµ2
l + Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥+ dl)l∈J2

(‖δk‖ − λkΨ−1
ξ1k

(
α1
k

)
)k∈J1

1T y − 1

−1T y + 1

−y

−λ


≤ 0 (24)
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

u1

u2

u3

u41

u42

u5

u6


≥ 0 (25)



u1

u2

u3

u41

u42

u5

u6



T 

Ay − v1−
∑
k∈J1

(
Σ1
k

) 1
2 δk −

∑
k∈J1

λkµ
1
k

(−yTµ2
l + Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥+ dl)l∈J2

(‖δk‖ − λkΨ−1
ξ1k

(
α1
k

)
)k∈J1

1T y − 1

−1T y + 1

−y

−λ


= 0 (26)

The four decision variables of problem (P), namely y, v, δ, λ, have n, 1, J1 ∗n, J1 components, respectively.

The function g is composed of g1, g2, g3, g41, g42, g5, and g6, withm,J2, J1, 1, 1, n, J1 components, respectively.

The gradient ∇f is a (J1 + 1) ∗ (n + 1)−vector. The jacobian ∇g is (2 + m + n + 2 ∗ J1 + J2) × (J1 + 1) ∗

(n+ 1)−matrix.100

3.2. Neural network model

We now propose a neural network model with a given initial value. Let r = (y, v, δ, λ, u)T be the variables

of the neural network.

dr

dt
=



dy
dt

dv
dt

dδ
dt

dλ
dt

du
dt


=



−
(
∇fy +∇gTy (u+ g)+

)
−
(
∇fv +∇gTv (u+ g)+

)
−
(
∇fδ +∇gTδ (u+ g)+

)
−
(
∇fλ +∇gTλ1(u+ g)+

)
(u+ g)+ − u


(27)

r (t0) = r0 (28)

The complexity for solving the neural network (27) is highly dependent on the number variable. The

number of the decision variables y, v, δ, λ is ns = (J1 + 1) ∗ (n+ 1), and the number of the dual variables µ105

is nu = 2 +m+ n+ 2 ∗ J1 + J2, leading to a total number of variables nr = 3 +m+ 2N + (3 + n) ∗ J1 + J2

for the neural network.
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Theorem 3. The point r∗ = (y∗, v∗, δ∗, λ∗, u∗)T is the equilibrium point of the neural network (27) if and

only if it is also the KKT point of the SOCP problem.

Proof. Let r∗ = (y∗, v∗, δ∗, λ∗, u∗)T be the equilibrium of the neural network (27). It follows that dr∗

dt = 0,

−
(
∇f∗y +∇gTy

∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗v +∇gTv

∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗δ +∇gTδ

∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗λ +∇gTλ

∗
(u∗ + g∗)+

)
= 0

(u∗ + g∗)+ − u∗ = 0

(29)

Substituting the first four lines by the last line u∗ = (u∗ + g∗)+, we have

−
(
∇f∗y +∇gTy

∗
u∗
)

= 0

−
(
∇f∗v +∇gTv

∗
u∗
)

= 0

−
(
∇fδ +∇gTδ

∗
u∗
)

= 0

−
(
∇f∗λ +∇gTλ

∗
u∗
)

= 0,

(30)

where the KKT conditions stationarity holds. Moreover, u∗ = (u∗ + g∗)+ result in

g∗ ≤ 0, u∗ ≥ 0, u∗ Tg∗ = 0, (31)

where the primal feasibility, the dual feasibility and the complementary slackness hold.110

Conversely, let r∗ = (y∗, v∗, δ∗, λ∗, u∗) be the kkt point of the problem (P), then we have

∇f∗y +∇gTy
∗
u∗ = 0

∇f∗v +∇gTv
∗
u∗ = 0

∇fδ∗ +∇gTδ
∗
u∗ = 0

∇f∗λ +∇gTλ
∗
u∗ = 0,

(32)

g∗ ≤ 0, u∗ ≥ 0, u∗ Tg∗ = 0. (33)

Conditions (33) lead to u∗ = (u∗ + g∗)+. By substituting this into (32), we obtain

−
(
∇f∗y +∇gTy

∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗v +∇gTv

∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗δ +∇gTδ

∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗λ +∇gTλ

∗
(u∗ + g∗)+

)
= 0

(u∗ + g∗)+ − u∗ = 0

(34)
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which is the equilibrium point of the neural network.

3.3. Stability analysis

In this subsection, we study the uniqueness and the stability of the equilibrium point.

Lemma 4. The equilibrium point of the proposed neural network (27) is unique.115

Proof. Since the problem (P) has the unique optimal solution (y∗, v∗, δ∗, λ∗), the necessary and sufficient

KKT conditions (18) have the corresponding unique solution. From Theorem 3, we see that the equilibrium

point of the proposed neural network is a necessary and sufficient condition for being a KKT point (18).

Thus the equilibrium point of the neural network is unique.

Lemma 5. For an initial value problem (27) and (28), there exists a unique continuous solution r(t).120

Proof. Since g,∇f and ∇g are locally Lipschitz continuous, and the operations +, ·, (·)+ would not change

the locally Lipschitz property, such that ∇f +∇gT (u+g)+ and (u+g)+−u are locally Lipschitz continuous.

According to the Cauchy-Lipschitz theorem, the neural network (27) with an initial point r(t0) = r0 has a

unique solution r(t), t ∈ [t0, T ), for some T > t0. Additionally, if r(t) is globally bound, the interval [t0, T ]

expand to [t0,+∞).125

Lemma 6. The Jacobian matrix ∇Φ(r),∀r ∈ Rnr is a negative semidefinite matrix.

Proof. We separate the situations into three cases, depending on the different status of (u+ g)+ ∈ Rnu+ , and

show under all three situations ∇Φ(r) is negative semidefinite matrix.

For the case where (u+ g)+ has zero and non-zero components, such that 0 < p < nu

(u+ g)+ = (u1 + g1, . . . , up + gp,︸ ︷︷ ︸
p

0, . . . , 0︸ ︷︷ ︸
nu−p

), (35)

the jacobian matrix ∇Φ(r),∀r ∈ Rnr is

∇Φ(r) =

 − (∇2f +
∑p
k=1

(
(uk + gk)∇2gpk

)
+∇gpT∇gp

)
−∇gpT

∇gp S

 , (36)

where

S =

 0p×p 0p×(nu−p)

0(nu−p)×p −I(nu−p)×(nu−p)

 . (37)

∇g and ∇2gk denote the Jacobian matrix of function g and the Hessian matrix of function gk. ∇gp and ∇2gpk130

are the same as ∇g and ∇2gk for first p row but the remaining nu− p row are all zero.
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Matrix ∇gpT∇gp is positive semidefinite. Since the functions f and g are assumed to be convex and twice

differentiable, the Hessian matrices ∇2f and ∇2gk, k = 1, 2, . . . , p, are positive semidefinite matrices. Fur-

thermore, the positive semidefiniteness of ∇2gk implies that ∇2gpk is positive semidefinite matrix. Moreover,

it is clear that matrix S is negative semidefinite matrix. Putting those all together, the Jacobian matrix ∇Φ135

is a negative semidefinite matrix.

For the case where (u+ g)+ has all non-zero components, such that p = nu

(u+ g)+ = (u1 + g1, . . . , unu + gnu), (38)

the jacobian matrix ∇Φ(r) is

∇Φ(r) =

 − (∇2f +
∑m
k=1

(
(uk + gk)∇2gk

)
+∇gT∇g

)
−∇gT

∇g 0nu×nu

 , (39)

Similar to the previous case, it is to see that ∇Φ(r) is a (ns+ nu)× (ns+ nu) negative semidefinite matrix.

For the case where (u+ g)+ has all zero components, such that p = 0

(u+ g)+ = (0, . . . , 0), (40)

the jacobian matrix ∇Φ(r) is

∇Φ(r) =

 −∇2f 0ns×nu

0nu×ns −Inu×nu

 . (41)

In this case also, it is easy to see that ∇Φ(r) is a negative semidefinite matrix. This completes the proof.

Definition 1. A mapping F : Rn → Rn is said to be monotonic if:

(x− y)T (F (x)− F (y)) ≥ 0, ∀x, y ∈ Rn (42)

Lemma 7 (Ortega and Rheinboldt (2000)). A differentiable mapping F : Rn → Rn is monotonic, if and

only if the jacobian matrix ∇F (x),∀x ∈ Rn is positive semidefinite.140

Theorem 8. The equilibrium point r∗ = (y∗, v∗, δ∗, λ∗, u∗) of the proposed neural network (27) is globally

asymptotically stable.

Proof. Consider the following Lyapunov function

E(r) = ‖Φ(r)‖2 +
1

2
‖r − r∗‖2 . (43)
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E(r) is a positive definite function because E(r∗) = 0 and E(r) > 0, ∀r 6= r∗.

dΦ

dt
=
∂Φ

∂r

dr

dt
= ∇Φ(r)Φ(r) (44)

Ė(r(t)) =

(
dΦ

dt

)T
Φ + ΦT

(
dΦ

dt

)
+ (r − r∗)T dr(t)

dt

= ΦT
(
∇Φ(r)T +∇Φ(r)

)
Φ + (r − r∗)T Φ(r)

(45)

By Lemma 6, we have

ΦT (r)
(
∇Φ(r)T +∇Φ(r)

)
Φ(r) ≤ 0, ∀r 6= r∗. (46)

By lemma 7, we have

(r − r∗)T (Φ(r)− Φ (r∗)) = (r − r∗)T Φ(r) ≤ 0, ∀r 6= r∗. (47)

This means that Ė(r(t)) ≤ 0.

According to Lyapunov globally stable theorem, the equilibrium r∗ of the neural network (27) is globally145

stable. Moreover, it follows from (27), (28), (46) and (47), that Φ(r) = 0 ⇔ Ė(r) = 0, which means

Ė(r) = 0 is true only for the equilibrium point, such that Ė(r) is a negative definite function. Therefore, the

equilibrium point of the neural network is globally asymptotically stable.

4. Numerical Experiments150

In this section, we provide numerical results for using the neural network to solve the stochastic two-

player zero-sum game problem. We use Python3.8, Scipy1.6, Numpy1.20 softwares run on i7-10610U, 1.8GHz

processor with 16 GB RAM to solve our different game problems. We use the following method to study the

quality of the KKT point.

Definition 2. The point (s, u) is an approximate KKT point with ε error if it satisfies

∥∥∥∇f (s) +∇g (s)
T
µ
∥∥∥ ≤ ε

|min {−gi (s) , ui}| ≤ ε ∀i = 1, . . . , nu∥∥g (s)+

∥∥ ≤ ε
(48)

We uniformly generate the data of the game, namely, A, b, d, µ1, µ2, i.e., A ∼ U(0, 10), b ∼ U(7, 10), d ∼155

U(3, 6), µ1 ∼ U(0, 10), µ2 ∼ U(0, 10). For the sake of simplicty, we only consider uniformly distributed
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diagonal matrices Σ1 and Σ2, i.e., Σ1,Σ2 ∼ U(0, 3). By way of illustration, the following is a randomly

generated game instance with 4× 4 payoff matrix.

A =


5.86 6.30 5.38 1.05

3.06 6.06 2.48 2.03

6.36 1.46 9.32 3.79

3.83 0.97 4.09 2.16

 , b =


8.27

9.55

7.13

 , d =


3.02

5.54

4.89

 ,

µ1 =


0.57 0.49 4.40 7.56

8.89 0.40 2.54 6.25

7.97 4.70 7.48 0.76

 , µ2 =


5.18 2.12 8.93 4.55

5.53 4.94 9.94 5.04

5.94 6.66 1.62 9.49



Σ1
1 =


1.05 0 0 0

0 0.86 0 0

0 0 2.80 0

0 0 0 1.59

Σ1
2 =


2.11 0 0 0

0 1.66 0 0

0 0 0.10 0

0 0 0 2.59

Σ1
3 =


0.24 0 0 0

0 0.55 0 0

0 0 2.32 0

0 0 0 2.38



Σ2
1 =


0.02 0 0 0

0 2.10 0 0

0 0 2.85 0

0 0 0 1.02

Σ2
2 =


0.15 0 0 0

0 1.06 0 0

0 0 2.68 0

0 0 0 0.61

Σ2
3 =


0.60 0 0 0

0 0.01 0 0

0 0 1.86 0

0 0 0 0.83


Table 1 shows the experiment results for different game sizes, confidence level α, and probability distri-

butions. Each game size represents the action set size for both players, and each case has linear probability160

constraints. The data of the games are generated by the above method. We consider the Normal and

Laplace distributions, and the confidence levels α are 0.8 or 0,9. The number of iterations of the neural

network algorithm is 100.

From table 1, we can see that the CPU time depends on the game size. When the game size increases, the

number of variables in the neural network increases, which determines the CPU time. Further, the epsilon165

errors in our experiment are all below 0.06 which shows the high performances of our approach in terms of

the quality of the neural network solutions.

5. Conclusion

In this paper, we studied a neural network model to solve the two-player zero-sum game with stochastic

linear constraints problem. We reformulated our problem as an SOCP problem. We show that the equilibrium170

point of the neural network model is the optimal solution for the original problem. By using the Lyapunov

stability theory, we prove the globally asymptotic stability and the uniqueness of the equilibrium point of the

proposed neural network. Our numerical experiments show the performance of the neural network to solve
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Game size
α

Probability distribution
Neural network model

α1 α2 Neural network size CPU time Value epsilon

4

0.8 0.8
Normal

39

1.19 3.80 0.01
0.9 0.9 0.87 4.00 0.01
0.8 0.8

Laplace
1.14 3.82 0.01

0.9 0.9 0.86 4.11 0.00

10

0.8 0.8
Normal

75

2.08 4.36 0.06
0.9 0.9 2.36 4.46 0.03
0.8 0.8

Laplace
2.11 4.36 0.05

0.9 0.9 1.95 4.55 0.01

50

0.8 0.8
Normal

315

35.69 5.24 0.05
0.9 0.9 36.67 5.29 0.04
0.8 0.8

Laplace
37.14 5.24 0.06

0.9 0.9 44.29 5.34 0.02

100

0.8 0.8
Normal

615

249.40 5.06 0.02
0.9 0.9 345.70 5.00 0.05
0.8 0.8

Laplace
356.80 5.04 0.05

0.9 0.9 352.70 5.04 0.04

200

0.8 0.8
Normal

1215

8182.92 4.98 0.03
0.9 0.9 9202.68 5.03 0.03
0.8 0.8

Laplace
10836.52 4.99 0.03

0.9 0.9 7726.93 5.04 0.02

Table 1: Solving stochastic zero sum games by the neural network model

large size two-player zero-sum games with up to 200× 200 payoff matrix within reasonable CPU time.
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