Abstract. As pointed out by Alexandre Bailleul, the paper mentioned in the title contains a mistake in Theorem 2.2. The hypothesis on the linear relation of the almost periods is not sucient. In this note we x the problem and its minor consequences on other results in the same paper.

Corrected statement of Theorem 2.2, and related results

First recall some notations used in [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]2].

Denition 1. Let P be a set of positive integers, the natural density dens(P) of P is given by

dens(P) = lim X→∞ 1 X k≤X 1 P (k)
if the limit exists, where 1 P is the indicator function of the set P.

For γ 1 , . . . , γ N ∈ R, we denote by γ 1 , . . . , γ N Q the Q-vector space spanned by these elements.

The following theorem corrects the awed hypothesis in [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Th. 2.2].

Theorem 1. Let N ≥ 1 and let γ 1 , . . . , γ N ∈ (0, π) be distinct real numbers

such that π / ∈ γ 1 , . . . , γ N Q . Let D ≥ 1 and x c 1 , . . . , c N ∈ C D . Let F = (F 1 , F 2 , . . . , F D ) : N → R D be the function dened by F (k) = N n=1 c n e ikγn + c n e -ikγn = N n=1 (a n cos(γ n k) + b n sin(γ n k)) .
The image of F is contained in a compact subset of the subspace

V F of R D generated by the vectors a 1 , . . . , a N , b 1 , . . . , b N .
Then, for every subspace H ⊂ R D not containing V F and every vector α ∈ R D , one has dens(F ∈ α + H) = 0.

In particular, if

V F ⊂ D d=1 {x ∈ R D : x d = 0}
, then, for every α 1 , . . . , α D ∈ R, one has dens(F d = α d ) = 0 for all 1 ≤ d ≤ D, and the density

dens(F 1 > α 1 , F 2 > α 2 , . . . , F D > α D )
exists.

Date: September 18, 2020. (1) Note that the dierence with [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Th. 2.2] lies in the hypothesis on the real numbers γ 1 , . . . , γ N : we need that π / ∈ γ 1 , . . . , γ N Q . In particular, the hypothesis is stronger than the one in [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Th. 2.2], but still weaker than the full Linear Independence.

(2) In the case π ∈ γ 1 , . . . , γ N Q , Bailleul observed in [START_REF] Bailleul | Explicit Kronecker-Weyl theorems and applications to prime number races[END_REF]Th. 1.5] that the subtorus generated by γ 1 , . . . , γ N over Z may not be connected, this is the reason of the gap in the proof of [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Th. 2.2]. This is also the cause of the dierence between the continuous case ( [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Th. 1.2]) and the discrete case. Indeed, the subtorus {(yγ 1 , . . . , yγ N ) : y ∈ R}/(2πZ) N is connected unconditionally : it is the continuous image of the connected set R. This last remark corrects [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Rem. 2.3.(i) and Rem. 3.7], note also that one should read R/2πZ in [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Rem. 2.3.(i)] instead of Z/2πZ.

The main application of this result is the analogue of Chebyshev's bias in rings of polynomials with coecients in nite elds. Let us recall some denitions.

Denition 2. Let p α be a prime power, and Q ∈ F p α [t]. Let a 0 , a 1 , . . . , a D mod Q be distinct invertible congruence classes, and let π(k; Q, a i ) denote the number of irreducible polynomials in F p α [t] with degree at most k that are congruent to a i mod Q.

If, for each permutation σ, the set

P Q;a σ(0) ,a σ(1) ,...,a σ(D) := {k ∈ N : π(k; Q, a σ(0) ) > π(k; Q, a σ(1) ) > . . . > π(k; Q, a σ(D)
)} admits a natural density, we say that the irreducible polynomial race is weakly inclusive. Moreover, if every set of the form {k ∈ N : π(k; Q, a i ) = π(k; Q, a j )}, i = j, has natural density equal to zero, we say that the ties have density zero.

The hypothesis in [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Cor. 2.5] has to be changed accordingly.

Corollary 2. Let p α be a prime power, and Q ∈ F p α [t]. Suppose that there exists M ≥ 1 and γ 1 , . . . , γ M ∈ (0, π) such that π / ∈ γ 1 , . . . , γ M Q , and such that for each character χ mod Q, there exists

1 ≤ m ≤ M with L( 1 2 + iγ m , χ) = 0 but L( 1 2 + iγ m , χ ) = 0 for χ = χ.
Then, every irreducible polynomial race in F p α [t] modulo Q is weakly inclusive and the ties have density zero.

Finally, the hypothesis in Theorem 1 is now too strong to deduce [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Cor. 2.6], we should thus consider this statement as not proved. Indeed, one needs to take into account all the zeros of the Dirichlet L-functions of the quadratic characters modulo f (T )(T -u), but we only have information on the zeros of the Dirichlet L-functions of the primitive quadratic character.

Proof of the corrected statement

The key lemma is the following. Lemma 3. Let N ≥ 1 and γ 1 , . . . , γ N ∈ (0, π) be distinct real numbers such that

π / ∈ γ 1 , . . . , γ N Q . Then the sub-torus A = {(kγ 1 , . . . , kγ N ) : k ∈ Z}/(2πZ) N is connected.
Proof. We will show that A = {(yγ 1 , . . . , yγ N ) : y ∈ R}/(2πZ) N , then the conclu- sion follows from the fact that this sub-torus is connected. The rst inclusion (⊂) is immediate.

Let (e 1 , . . . , e d ) be a basis of γ 1 , . . . , γ N Q , such that for all 1 ≤ i ≤ N , one has γ i = d k=1 g i,k e k with g i,k ∈ Z. By hypothesis, the set {2π, e 1 , . . . , e d } is linearly independent over Q, thus, by the discrete version of the KroneckerWeyl Equidistribution Theorem (see e.g. [START_REF] Bailleul | Explicit Kronecker-Weyl theorems and applications to prime number races[END_REF]Th. 1.2]), one has {(ke 1 , . . . , ke d ) : k ∈ Z} = (R/2πZ) d . In particular, for every y ∈ R and > 0, there exists ∈ Z and m

1 , . . . , m d ∈ Z such that max 1≤k≤d | e k -ye k -m k 2π| < / max 1≤i≤N d k=1 |g i,k |.
Thus, for all 1 ≤ i ≤ N , we have

| γ i -yγ i - d k=1 g i,k m k 2π| ≤ d k=1 |g i,k | • | e k -ye k -m k 2π| < .
Using the fact that g i,k ∈ Z, this shows that y(γ 1 , . . . , γ N ) ∈ A, for all y ∈ R, which concludes the proof.

We can now give the proof of Theorem 1.

Proof of Theorem 1. We follow the proof from [De], the only aw is in the proof of [START_REF] Devin | Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes[END_REF]Lem. 3.5].

Let S be the unit sphere of R D and, let f : (V ∩ S) × A be the function dened by

f (u, θ) := N n=1 2 Re( u, c n e iθn ) (1) = N n=1 u, a n cos θ n + u, b n sin θ n ,
this function is analytic in the variable θ.

Since the vectors a 1 , . . . , a N , b 1 , . . . , b N span V , there exists at least one of them, say v j , such that u, v j = 0. So, the function f (u, •) is a linear combination of the 2N characters of A dened by (θ 1 , . . . , θ N ) → e iθn , (θ 1 , . . . , θ N ) → e -iθn , 1 ≤ n ≤ N , with at least one non-zero coecient. Note that these 2N characters are all distinct, and also distinct from the trivial character (θ 1 , . . . , θ N ) → 1. This follows from the fact that the values of the derivative of these functions restricted to {(yγ 1 , . . . , yγ N ) : y ∈ R}/(2πZ) N ⊂ A at y = 0 are respectively γ n , -γ n , 1 ≤ n ≤ N , and 0 which are distinct. Thus by a result of DedekindArtin ( [START_REF] Lang | Algebra[END_REF]VI,Th. 4.1]), those characters are linearly independent and the function f (u, •) is not constant on A. Moreover, Lemma 3 implies that A is connected, and the fact that N > 0 and γ 1 = 0 ensures that it is not restricted to {0}, so that a non-constant analytic function on A is indeed non-locally constant.

The rest of the proof follows similarly to [De].
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