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Abstract

Poisson-statistics based spectral unmixing has been shown to be an efficient

analysis tool for the radionuclides activity estimation from gamma-ray spec-

trometry measurements. However, the calculation of the corresponding charac-

teristic limits has not been investigated so far. In this paper, we present the

quantification of the decision threshold and the limits of the coverage interval

for the metrological use of such spectral unmixing algorithms. The proposed

approach is evaluated and validated with simulated spectra of HPGe and NaI

measurements by comparing the results to characteristic values calculated from

Monte Carlo simulations. We focus particularly on the validation of the method

for the metrological analysis of environmental measurements, for which the low-

level activity quantification requires an accurate characteristic limits determi-

nation. Along with the instrument calibration studied in Xu et al. (2021), we

establish a metrological analysis tool by using the spectral unmixing algorithm

for environmental aerosol gamma-ray measurements.
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1. Introduction

Gamma-ray spectrometry is one of the main techniques used for the identifi-

cation and quantification of gamma-emitting radionuclides. The measurements

can be performed with different types of detectors, including semi-conductor

detectors such as High Purity Germanium detectors (HPGe) and the scintilla-

tion detectors, e.g., Sodium Iodide (thallium doped), NaI(Tl). A gamma-ray

spectrum is the histogram of the number of detected events as a function of the

energy that is deposited by the gamma-ray or the X-ray in the detector. In this

context, radionuclides are classically identified and quantified with peak-based

or deconvolution-based spectrum analysis methods (e.g.,Mirion Technologies

(Canberra)’s Genie 2000 gamma analysis software 1), which however has lim-

ited performances in terms of low-level activity measurements. In recent stud-

ies, with the purpose of providing more accurate and sensitive activity mea-

surements, spectral unmixing methods have been investigated for gamma-ray

spectrum analysis in Xu et al. (2020) applied to HPGe measurements and in

Paradis et al. (2020), André et al. (2020) applied to NaI measurements.

In contrast to peak-based analysis only from the full energy peaks, spectral

unmixing is an analysis tool that identifies and quantifies radionuclides from the

full energy spectrum (i.e., peaks and their associated continua) of a gamma-

ray measurement. Furthermore, it allows accounting for the Poisson statistics

that underlie the detection process. In this framework, gamma-ray spectrum

analysis is recast as a regularized inverse problem, with the aim of decomposing a

measured spectrum into the individual spectral contribution of each radionuclide

present in the measured sample. A measured spectrum x is composed of M

channels: x = [x1, ...xM ]. For ∀i ∈ [1, ...M ], the Poisson process of radioactive

decay leads to model the problem as:

xi ∼ Poisson ([Φa]i + bi) (1)

1https://www.mirion.com/products/genie-2000-gamma-analysis-software
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where we note the radionuclides’ spectral signatures as Φ = [φ1, ...φN ] (con-

taining N radionuclides’ spectral signatures) and the background spectrum as

b. The spectral unmixing addresses the estimation of radionuclides’ mixing

weights vector a that are proportional to radionuclides’ activities. According to

the Poisson statistics, the likelihood of measuring a spectrum x knowing that

the spectra linear combination is Φa+ b can be written as follows:

P (X = x|Φa+ b) =

M∏
i

[Φa+ b]i
xie−[Φa+b]i

xi!
(2)

Minimizing the neg-log-likelihood of this distribution leads to the following

estimator of the mixing weights (Xu et al., 2020):

â = argmin
a≥0

Φa+ b− x� log (Φa+ b) (3)

where � is the Hadamard product and â (i.e. entry-wise product) represents

the estimate of the mixing weights vector a. The above optimization problem

has been tackled as a regularized inverse problem, where the non-negativity is

imposed on the solution to be estimated.

The Poisson-statistics based spectral unmixing has been shown to be a more

accurate activity estimation method than peak-based analysis. To use such es-

timation algorithms for experimental data analysis, quantifying uncertainties is

a critical step for assessing the statistical confidence of the estimation procedure

as well as for decision making purposes. In radioactivity metrology, it is conven-

tionally called the characteristic limits of a measurement. These limits comprise

the decision threshold, the detection limit and the limits of the coverage interval,

they are essential to achieve a metrological use of the spectral unmixing proce-

dure. The determination of these limits are defined in the ISO 11929 (2010).

Their assessment has been studied for commonly used peak-based gamma-ray

spectrum analysis method. Korun et al. (2014) studies the calculation of the

decision thresholds. Boshkova (2018) investigates the statistical significance of

the measured net signal through the determination of characteristic limits. So

far, and to the best of our knowledge, no study has considered the full spectrum

analysis case. The aim of this work is to explore how the evaluation of the
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characteristic limits can be generalized to the Poisson-statistics based spectral

unmixing procedure.

The paper is organized as follows: Section 2 presents the concept of charac-

teristic limits for radioactivity measurements. In Section 3, we describe the data

used in this work. Section 4 explores the calculation of the decision threshold.

Next, we discuss the assessment of the coverage intervals in Section 5. Section

7 provides the conclusions of this work.

2. Characteristic limits in radioactivity measurements

2.1. Definitions

Before going further, we first introduce some useful notations to describe the

characteristic limits:

• A: Measurand, the quantity of interest.

• â: Determined value of the measurand Y (i.e., the estimate of A).

• ã: True value of the measurand.

[JB: Pourquoi ne pas mettre les mixing weights en gras, ils le sont plus loin ?]

JX: dans ce contexte, il s’agit l’estimation de l’activity d’un radionucleide, i.e.,

mixing weigt, donc c’est un scalar

Quantifying the characteristic limits in gamma-ray spectrum analysis is car-

ried out within the classical statistical hypothesis framework. It considers test-

ing hypotheses with the two following alternatives (associated with type I error

and type II error described in Table 1):

• H0: the null hypothesis, where a given radionuclide is not “active”, i.e.,

namely not present in the sample.

• H1: the alternative hypothesis, where the radionuclide is present in the

mixture.
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The standardization document (ISO 11929, 2010) defines the characteristic

limits for ionizing radiation measurements and provides a framework for the

computation of these limits. Referring to Weise et al. (2005), Michel (2016), the

definition and interpretation of these limits for some estimate â of a measurand

A are as follows:

• Decision threshold (DT) allows a decision to be made on whether or

not the physical effect quantified by the measurand is present.

The determination of DT is related to the Type I error described in Table

1. When the quantity y exceeds the critical value (DT), the null hypothesis

H0 should be rejected with respect to a given false positive rate (FPR).

It can be described with:

α = P (â ≥ DT |ã = 0) (4)

where ã is the true value of the measurand and α is the desired critical

FPR.

• Detection limit (DL) indicates the smallest true quantity value of the

measurand, which can still be detected with the applied measurement

procedure.

The determination of DL is related to the Type II error described in Table

1. It is selected with respect to a desired false negative rate (FNR) based

on the decision threshold level.

More precisely, the detection limit (DL) is the smallest value that provides

a desired Type II error probability β:

β = P (â ≤ DT |ã = DL) (5)

where the DT is given and ã is the true value of the measurand.

• The coverage interval for the estimate â is an interval that has a prob-

ability 1− γ of containing the true value ã:

1− γ = P (âl < ã < âr) (6)
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where [âl, âr] stands for the coverage interval.

The regular radioactivity monitoring throughout France is ensured by the

operators, regulated by the ASN (French Nuclear Safety Authority) and supple-

mented by IRSN (French Radiation Protection and Nuclear Safety Institute).

The environmental samples measurements are performed in this framework and

the measurements data are fed into the RNM network 1. For that purpose

ASN imposes that data contain the activity, the expanded uncertainty and the

decision threshold. Indeed the decision threshold serves to conclude if the mea-

surement is statistically significant or not, given a fixed false positive rate α.

The detection limit is not required because it is supposed to be compared with

some regulatory levels, while the radioactivity monitoring aims to detect rapidly

any increase in environmental radioactivity.

In this paper, we thus focus on the determination of the decision threshold

and the coverage interval for Poisson-statistics based spectral unmixing algo-

rithm. Firstly, one can determine whether the resulting activity of a radionu-

clide is significant by comparing it to the decision threshold. Secondly, the

coverage interval provides the statistical uncertainty of the estimation.

2.2. Quantification of characteristic limits with Monte Carlo simulations

A traditional approach to quantify the characteristic limits for some estima-

tion method is to make use of Monte Carlo simulations. The main drawback is

their massive computational cost since Monte-Carlo simulations are needed for

each new spectrum to be analyzed. Furthermore, the true value of the measur-

and in a measured spectrum is not known in advance. Therefore, we focus on

alternatives which are less computationally demanding and yet precise to derive

the characteristic limits without resorting to Monte-Carlo simulations. To eval-

uate and validate these methods, we propose to use synthetic spectra in which

the radionuclides’ mixtures are perfectly known. This approach was employed

because the characteristic limits of these synthetic mixtures can be precisely

1https://www.mesure-radioactivite.fr/en#/expert
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calculated by Monte Carlo simulations, which allows assessing the statistical

uncertainty of the proposed approach.

Decision threshold from Monte Carlo simulations. Let the probability

distribution of the mixing weight under null hypothesis of the radionuclide in-

dexed by j be defined as:

P (aj |ãj = 0) (7)

According to Eq.(4), the decision threshold can be derived from 1 − α per-

centiles of this probability distribution, for α being the false positive rate with

respect to the DT level. In practice, α = 2.5% is usually used in environmental

measurements. Assuming that the linear combination model of radionuclides is

known, one can make use of Monte Carlo simulations that mimic the mixture

under the null hypothesis of each radionuclide to evaluate their DT levels.

In the experiments of this paper, 1000 simulations are performed to calculate

an accurate DT value according to α = 2.5% for each radionuclide. In each ran-

dom simulation process, we set the radionuclide to zero and other radionuclides

to their actual levels. The spectral unmixing algorithm is subsequently applied

to estimate radionuclides’ mixing weights from these simulated spectra. The

results obtained for the radionuclide set to zero (i.e., null hypothesis) allow us

to compute its decision threshold value.

Coverage interval from Monte Carlo simulations. Since each estimate of

the mixing weights is assumed to have a limited estimation bias or error, a cov-

erage interval with respect to a given probability γ for individual radionuclides

can also be derived by performing Monte-Carlo simulations. In practice, γ = 5%

is usually taken into account. More precisely, we first perform 1000 Monte Carlo

simulations that mimic the actual mixing scenario of radionuclides. Next, the

spectral unmixing algorithm is applied to estimate mixing weights from these

simulated spectra. Finally, the coverage intervals of radionuclides can be derived

from the distribution of their estimated mixing weights.
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3. Data description

The main contribution in this paper is the characteristic limits calculation

with spectral unmixing analysis, applied to aerosol measurements performed

with HPGe detectors. The validated methods are further studied in Xu et al.

(2021) for quantitative analysis of experimental data. In this context, we make

use of simulations of aerosol filter measurements of a Mirion Broad Energy

Germanium (BEGeTM ) (61 % relative efficiency) investigated in Xu et al.

(2020), covering the energy range from 20 keV to 1640 keV composed in 16384

channels. The choice of gamma-ray emitters consists of 10 radionuclides: 7Be,

22Na, 40K, 137Cs, 210Pb, 208Tl, 212Bi, 212Pb, 214Bi, 214Pb. The background

radiation spectrum is according to a measurement without sample during 560000

s and normalized to the simulation counting time. The activity of the blank

filters is disregarded since it has been checked experimentally to be negligible.

Table 2 shows the activities of these radionuclides that are customary in real

aerosol measurements (i.e., measured during 320000 s). Since each simulated

spectral signature corresponds to the energy response with unit particle (i.e.

one disintegration), the relationship of the radionuclides’ mixing weights vector

a and their activities can be described as follows (see details in Xu et al. (2021)):

g =
a

t
(8)

where g is the radionuclides’ activities in becquerel (Bq) (i.e., number of

disintegrations per second) and t is the counting time.

We focus on the assessment of characteristic limits for 4 radionuclides: 7Be,

22Na, 137Cs, 212Pb, since these radionuclides cover the whole energy range and

different statistical regimes. The simulation model of 10 radionuclides and the

contributions of these 4 radionuclides are displayed in Fig. 1.

Next, we also generate simulations of measurements of a 3”x3” NaI(Tl) de-

tector without shielding using point sources placed at a distance of 1 m (Paradis

et al., 2020), which is made of 1024 channels. The spectral signatures corre-
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spond to the detector response of 4 gamma-emitting radionuclides with photon

emissions covering a range of energies between 40 keV and 2 MeV: 60Co, 134Cs,

137Cs, 152Eu (see Fig. 2). We make use of simulated spectra with respect to

the numbers of counts shown in Table 3.

4. Quantifying the decision threshold

In peak-based gamma-ray spectrum analysis, the decision threshold is usu-

ally derived from some statistical test based on the measured spectrum. This

means to evaluating how much the estimated quantity associated with a radionu-

clide’s activity departs from the background (i.e., other contributions composed

in the measured spectrum) and is therefore statistically consistent or not with

this background.

In the full spectrum analysis context, the spectral unmixing decomposes a

gamma-ray spectrum into individual spectra of radionuclides. To determine

the decision threshold of a single radionuclide indexed by j in the unmixing

model, we reformulate the true linear mixing model with this radionuclide and

an equivalent background:

Φa+ b→ φjaj +m (9)

where φjaj represents the contribution of the jth radionuclide in the spectrum.

The equivalent background is then composed of the background spectrum b and

the contribution of all but the tested radionuclide:

m =

l 6=j∑
φlal + b (10)

Take an example of 137Cs in the measurement presented in Fig. 1, the

spectral contributions are illustrated in Fig. 3.

Recall the definition in Section 2, the decision threshold of the measurand

aj (i.e., the mixing weight of the jth radionuclide) is derived from:

α = P (aj ≥ DT |ãj = 0) (11)
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The null hypothesis of ãj (i.e., true value of aj) implies that m is the mean

value of the distribution:

x ∼ Poisson (m) (12)

We assume thatm is accurately estimated by the spectral unmixing method.

This estimate is denoted by m̂. The decision threshold of the jth radionuclide

can then be derived by the following statistical test:

α = P (t ≥ T (λ)|λi = m̂i,∀i ∈ [1, ...M ]) (13)

where M is the number of channels in the measured spectrum. The quan-

tity T (λ) is some test statistics that is defined as a scalar function of some

background model λ. The decision threshold can be derived from the statisti-

cal distribution of such a test statistics under the null hypothesis: the tested

radionuclide is not present and the observed spectrum is described by the equiv-

alent background only. Next, we will consider different choices for the λ and

T (λ). More precisely, we will considered test statistics T (λ) that will be defined

of weighted sums of the total number of counts:

T (λ) =

M∑
i=1

wixi (14)

Thanks to the statistical independence of each channel of the measured spec-

trum, the distribution of such general test statistics can be written by the fol-

lowing generic expression:

P

(
M∑
i=1

wixi

∣∣∣ M∑
i=1

wim̂i

)
(15)

where w = [w1, ...wM ] stands for a vector of weights. The goal of this

general approach is that it allows to select weights that are better adapted to

distinguish between the radionuclides’ contribution in the measured spectrum

and its equivalent background. The DT (noted a∗j ) of the jth radionuclide with

respect to a given false positive rate α, are studied with 4 different choices of

w.
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1. A simple statistical test to consider is based on the total number of counts,

as measured by the sum of observed counts under the null hypothesis

ãj = 0, which leads to:

wsum = {wi = 1,∀i ∈ [1, ...M ]} (16)

Eq.(15) can be formulated with the following Poisson distribution:

M∑
i=1

xi ∼ Poisson

(
M∑
i=1

m̂i

)
(17)

The DT, a∗j can be derived from its cumulative distribution function

(CDF):

α = P

(
M∑
i=1

xi ≥
M∑
i=1

[φja
∗
j ]i +

M∑
i=1

m̂i

)
(18)

2. By using wsum, we take into account the information carried out by the

full spectrum, it however poorly distinguishes the radionuclide to be tested

from the background. For instance, in Fig. 3, the Compton continuum

of the 137Cs is under its equivalent background, while it is better distin-

guished from the background in the peak region. Therefore, we rather use

the pre-specified channels in a region of interest (ROI - e.g, peak region

of the radionuclide), which can be written as:

wROI =

wi = 1, if i ∈ ROI

wi = 0, otherwise

(19)

Indeed, this approach is carried out in the same manner as peak-based

analysis, in which the DT level is derived based on the number of back-

ground counts (ISO 11929, 2010) for more details).

We calculate the DT from the CDF of the following distribution:

∑
i∈ROI

xi ∼ Poisson

( ∑
i∈ROI

m̂i

)
(20)

3. In order to better distinguish between the radionuclide to be tested and

its equivalent background in the full energy range, we further investigate
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the DT calculation based on the measured spectrum x weighted by the

projection of x onto φj parallelly to m, which is graphically illustrated

in Fig. 4. In constrast to a standard orthogonal projection, a projection

onto φj parallely to m allows to measure the contribution of x explained

by the signature φj while guaranteeing its contribution along the direc-

tion m to be zero. This eventually enhances the contrast between the

contribution of the j-th radionuclide and the equivalent background m in

x, thus providing a more sensitive evaluation of the detection threshold.

Such a parallel projection is denoted by wpb.

In pratice it can be evaluate by first defining the 2-columns matrix Ψ =[
φj m̂

]
: the spectral signature φj and the estimated equivalent back-

ground m̂. A simple weights vector to be considered is:

wpb = {(ΨTΨ)−1ΨT }φj
(21)

where {}φj
defines the entry related to φj .

However, the resulting statistical test does not follow a Poisson distribu-

tion. Thankfully, since it is defined as a linear combination of a large

number of observed channels, one can approximate the distribution to

be Gaussian. The resulting statistical test with observed counts x and

estimated equivalent background m will be calculated as follows:

M∑
i=1

[wpb]ixi ∼ N

(
M∑
i=1

[wpb]im̂i,

M∑
i=1

[wpb]
2
i m̂i

)
(22)

while in each channel, the mean value µ = [wpb]im̂i and variance σ2 =

[wpb]
2
i m̂i are considered due to the Poisson statistics of the model.

The DT, a∗j can be derived from the CDF of the above distribution:

α

2
= P

( M∑
i=1

[wpb]ixi ≥
M∑
i=1

[wpb]i[φja
∗
j ]i +

M∑
i=1

[wpb]im̂i

)
(23)

4. The above statistical test assumes the underlying noise is additive, white

and Gaussian. To consider the covariance matrix underlying the Poisson

noise, we further make use of an approach based on the a re-weighted
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projection parallel to the background, noted wrpb:

wrpb =

{(
ΨTdiag

(
1

φj âj + m̂

)
Ψ

)−1
ΨTdiag

(
1

φj âj + m̂

)}
φj

(24)

and calculate the DT from the CDF of:

M∑
i=1

[wrpb]ixi ∼ N

(
M∑
i=1

[wrpb]im̂i,

M∑
i=1

[wrpb]
2
i m̂i

)
(25)

Experimental results

These four proposed statistical tests are applied to assess the decision thresh-

old for HPGe and NaI measurements described in Section 3. The results are

compared to those carried out with Monte Carlo simulations, noted as MC (de-

scribed in Section 2.2). The false positive rate is fixed to α = 2.5%. More

precisely, the proposed statistical tests are used to assess the decision threshold

of radionuclides in the simulations of the HPGe and NaI measurements for each

Monte Carlo simulation. The statistical test with wROI is only used for HPGe

measurements. Indeed, NaI measurements have much lower spectral resolution,

which makes it much harder to define an accurate ROI. Experiments on the de-

scribed selection of gamma-ray emitters (see Fig. 1) of the HPGe measurement

considers the following peak regions: 7Be at 477 keV, 22Na at 1274 keV, 137Cs

at 662 keV and 212Pb at 238 keV.

For HPGe spectra, the different statistical tests are compared in Fig. 5,

6, 7 and 8 for 7Be, 22Na, 137Cs and 212Pb respectively. For NaI spectra, the

statistical tests are compared in Fig. 9, 10, and 11, and 12 for 60Co, 134Cs,

137Cs and 152Eu respectively. The results show the distributions of:

• the accurate DT level calculated from Monte Carlo (i.e., 1− α percentile

of the distribution under the null hypothesis) is displayed with a dotted

line (red).

• Distribution of calculated DT based on the statistical test of equivalent

background weighted by wsum (red), wROI (green), wpb (blue) and wrpb

(orange).
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From these results, we can draw the following conclusions:

• Firstly, the statistical test based on the equivalent background weighted

by wsum is less precise to derive the DT than other approaches, since it

poorly distinguishes the radionuclide’s spectrum from the background.

• Compared to statistical tests based on the projected equivalent back-

ground (i.e., weighted bywpb andwrpb), the ROI-based statistical test(i.e.,

weighted by wROI) is less precise since it only uses information at the

vicinity of the peak regions.

• For HPGe measurement, for 22Na, 137Cs and 212Pb, statistical tests based

on the equivalent background weighted by wrpb derives similar DT levels

compared to the actual 1− α percentile of the distribution (i.e., accurate

DT level), which is better than the choice of wpb. This is not valid for 7Be

due to the fact that 7Be is predominant in the measured spectrum, while

its equivalent background is poorly estimated. However, the determina-

tion of an accurate DT level for low-level radionuclides is more important

for decision making. Indeed, in such a case, the dominant spectral con-

tribution, such as 7Be, generally yield a more precise estimation of the

equivalent background, which entail a more accurate DT determination

for low-level radionuclides.

• When we further focus on the results of NaI measurements, the choice of

using wrpb is shown to be more consistent than wpb. It allows to better

distinguish a radionuclide from its equivalent background when the spectra

have a significant overlap in the whole energy range.

The DT assessment is evaluated with Monte Carlo simulations of realistic

measurements of aerosol samples performed with HPGe detectors. The pro-

posed analysis involving a statistical test based on re-weighted projections of

the equivalent background is shown to be an efficient and rapid tool to de-

termine DT. We apply this procedure to real measurements in the companion

article Xu et al. (2021).
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5. Coverage interval

Evaluating the statistical reliability of a parameter estimation procedure is

generally composed of two elements: the estimation bias and an interval of

values that contains the true value of the parameter up to some probability.

In the spectral unmixing approach, the statistical uncertainty assessment can

be carried out from Monte Carlo simulations that mimic the actual mixture of

radionuclides as presented in Section 2.2. The distribution of estimated val-

ues provides both the estimation bias and the coverage interval. However, this

requires a massive amount of simulations, making this approach hard to imple-

ment in practice. In this study, we focus on the metrological use of the Poisson-

based spectral unmixing for analyzing the described HPGe detectors performed

aerosol measurements. In Xu et al. (2020), we showed that estimation biases

with spectral unmixing analysis are low for routine aerosol measurements.

In this context, we propose to make used of the Fisher information matrix

of the estimated mixing weights to compute the coverage interval. This al-

lows for an analytic expression of the coverage interval, which does not require

computationally expensive Monte Carlo simulations. Such method has been

also investigated in André et al. (2020) for the coverage intervals assessment of

spectral unmixing approach applied to NaI measurements.

For the observed variable x distributed as f (x|θ), the asymptotic distri-

bution of the maximum likelihood estimator (MLE) of the parameter θ is a

Gaussian distribution:

N
(
θ, I(θ)−1

)
(26)

where I(θ) is the Fisher information (Fisher, 1956) defined as:

I(θ) = Eθ
[
∂2 log f(x|θ)

∂θ2

]
(27)

where Eθ stands for the expectation taken with respect to f (x|θ). The true

value of the parameter is generally not known. When the estimation bias |θ̂−θ|

is assumed to be low, the estimation of standard error of θMLE can be obtained

by replacing the unknown true value θ by the estimated value θ̂. To validate
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the metrological use of such an approach, we will compare the coverage interval

obtained from the information matrix associated with θ̂ to the one we would

obtain from Monte Carlo simulations.

Recall that the Poisson-based spectral unmixing provides a maximum likeli-

hood estimate of the mixing weights, noted â. We propose a first approximation

by considering that the estimator of the mixing weights vector is non-biased and

follows a Gaussian distribution centered at â. According to the Poisson like-

lihood Eq.(3), the covariance matrix is approximated with the inverse of the

Fisher information matrix:

I(â)−1 =
(
ΦTdiag

(
x� (Φâ+ b)2

)
Φ
)−1

(28)

where � is the element-wise division operator. The coverage interval of the

estimated mixing weights â can be derived from the diagonal elements of the

inverse of the Fisher matrix; the resulting standard deviation for âi is then

defined as
√

[I(â)−1]i,i, which approximates the standard deviation of the max-

imum likelihood estimator distribution. This approximation will adapted when

estimated activity is high enough so that the coverage interval does not contain

0. In Section 6, we discuss how the proposed approach can be extended to this

case.

Experimental results

The coverage intervals assessment with Fisher information matrix is eval-

uated with the simulations of HPGe and NaI measurements described in Sec-

tion 3. To validate this approach, the Gaussian distribution approximated with

Fisher information matrix associated with the estimated mixing weights need to

agree with the expected distribution (i.e., estimated distribution obtained from

Monte Carlo simulations). Firstly, we make use of the Q-Q (quantile-quantile)

plots of the Normal distribution generated from the standard deviation calcu-

lated with the Fisher information and the distribution of estimations derived

from the Monte Carlo simulations, by plotting their quantiles one against an-

other. The aim is to i), test the normality of the estimator, which allows val-
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idating the coverage interval with a standard uncertainty in terms of Normal

distribution. ii), compare the standard deviation of each estimation calculated

with the Fisher information to those obtained with Monte Carlo simulations.

More precisely, the Q-Q plots are shown in Fig. 13 and Fig. 15 for the HPGe

measurement and the NaI measurement, respectively.

The Q-Q plots allows comparing the distribution of the scales and centered

estimated parameters with a centered normal distributed, which is its expected

asymptotic distribution. The straight lines show that taling the asymptotic

Normal approximation provides a very accurate evaluation of the distribution

of the estimated mixing weights, at least in the interval [0, 3]. [JB: taling dans

ce context ?] Additionally, we can asses how accurate are the coveral inter-

vals derived form the Fisher information matrix. For that purpose, we perform

Monte-Carlo simulations to compute the probability associated with the inter-

vals : a0±σf , a0±2σf and a0±3σf , where a0, σf stand for the expected mixing

weight (i.e., simulated value), which we comapre with the error determined by

the Fisher matrix. The corresponding percentages are expected to be 68.27 %,

95.45 % and 99.73 % for Normal distribution. The results are shown in Table 4

and Table 5 for HPGe and NaI measurements respectively, which confirms that

for this measurement scenario, the coverage intervals computed from the Fisher

information matrix are quite accurate.

The results in Table 4 show that the quantiles of the estimation distribution

of Monte Carlo simulations within: a0±σf , a0±2σf and a0±3σf are consistent

with their expected values for 7Be, 137Cs and 212Pb, whereas the results for

22Na show a slight deviation. As shown in Fig. 1, the spectrum of 22Na has

a significant continuum, which is impacted by the background. It should be

noted that the coverage interval assessment with Fisher information matrix has

limited performance when the number of counts is low. This is further confirmed

with results of NaI simulations shown in Table 5, in which the number of counts

of radionuclides is low. In particular, with a number of counts of only 500,

the coverage interval evaluation of 134Cs from Fisher information matrix has

limited performance. The limited performances of using the Fisher information
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matrix is due to: i), the larger estimation bias at low statistics which is shown

in recent studies (Xu et al., 2020). ii), the underlying optimization problem of

the spectral unmixing is a maximum likelihood estimation with non-negativity

constraint which makes the Gaussian distribution no longer true at low statistics.

6. Discussion about the limitations of the proposed methods

In this paragraph, we discuss some potential limitations of the proposed

approach.

Statistical limitation

The derivations of the detection threshold and the coverage interval are both

based on assumptions that we discuss hereafter:

• Computation of the decision threshold : In the proposed approach, the

detection threshold for a given radionuclide is defined from the statisti-

cal distribution of some test statistics T that depends upon an equivalent

background. This equivalent background is function of the contribution of

all the radionuclides except the tested one. Since the such an equivalent

background depends upon the result of the unmixing process, it is implic-

itly a function of the estimated activity of all the radionuclides. However,

it is important to highlight that this dependency is weak. Indeed, for

each radionuclide to be tested, the equivalent background derives from

the (weighted) sum of the contributions of all radionuclides except the

tested one. These linear combinations are dominated by the radionuclides

with the highest activities, which are generally accurately estimated thus

providing a reliable equivalent background estimation.

Traditional peak-based methods also depend on the estimation of an equiv-

alent background at the vicinity of the energy peaks of the tested radionu-

clides. In the proposed method, the equivalent bakground estimates bear

more physical information as the method allows to account for the comp-

ton continuum of each radionuclide in the full observed energy range.
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• Determination of the coverage interval In the context of spectral unmix-

ing, coverage intervals can be determined in several ways. One standard

way would be to perform Monte-Carlo simulations, assuming some prior

model about the mixture (e.g. the maximum likelihood estimate of the

mixture weights). Similarly to the previous point dedicated to the detec-

tion threshold, the resulting coverage intervals will weakly depend on the

estimates of the mixing weights. While Monte-Carlo simulations allow to

determine potentially complex, non-symetric, coverage intervals, they also

require a significantly large computational cost to derive reliable coverage

intervals, which might limit its applicability for fast analysis purposes. To

that end, we rather proposed to opt for an approximation of the distribu-

tion of the mixing weights distribution based on the Fisher information

matrix. The inverse of the Fisher information matrix provably provide

the asymptotic covariance matrix of the mixing weights distribution about

the maximum likelihood estimate. The quality of this approximation will

strongly depend on the actual statistics of the data, at very low statistics,

this approximation is unlikely to be valid. Similarly, for radionuclides with

very low activities, the corresponding coverage intervals are likely to be

non-symetric.

Determining coverage intervals only make sense when for radionuclides

that have activities larger than the detection thresholds. In the aforemen-

tioned limit cases, we made the assumption that the measured activities

are high enough so that the coverage interval does not include 0. This

is generally not the case for radionuclides whose activities are close to

the detection threshold. In this case, the non-negativity constraint used

in the spectral unmixing method prevents the estimated mixing weights

to be negative. Consequently, the distribution of the estimated mixing

weights can be described by a truncated Gaussian distribution defined as

follows:

f(θ) = pδ(0) + Π+(θ)
1√

2πσ2
i

exp− (θ − aML
i )2

2σ2
i

(29)
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where δ(0) is the Dirac function centered about 0 and the probability

weight at 0 is defined as:

p =

∫ 0

−∞

1√
2πσ2

i

exp− (θ − aML
i )2

2σ2
i

dθ

The function Π+(θ) is a step function that takes the value 0 when θ < 0

and 1 when θ > 0. The coverage interval for a given probability α can

then be defined as the smallest interval [σ1, σ2] so that:∫ σ2

σ1

f(θ)dθ = α (30)

As an illustration, we perform a comparison of the above analytic model

with Monte-Carlo simulations for 137Cs with an activity taken at the de-

tection threshold. Figure 14 shows the distribution obtained from 15000

Monte-Carlo simulations in blue and the analytic Fisher-based approxi-

mate distribution defined in 29, which show a very good agreement. This

experiments highlights that the Fisher-based approximate distribution can

be generalized to low-level cases, close to the detection threshold.

Modeling limitations

[AVO: A RELIRE. TROP LONG ???]

In standard gamma-ray spectrometry analysis the detection efficiency cali-

bration is required for each radionuclide and each detection configuration (spe-

cific detector and counting geometry). Alike the determination of the spectral

signatures is required for each radionuclide and each detection configuration in

the spectral unmixing approach. Due to the unavailability of standard sources

containing all the radionuclides of interest in single emitter standard source,

the spectral signatures are calculated using Monte Carlo type particle transport

codes. MCNP-CP simulates the interaction between the photons emitted by the

radionuclide of the source (or the sample) and the germanium crystal, and the

surrounding materials. In this paper the simulations were performed consider-

ing the detection system used for the aerosol filters measurements : the same
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HPGe detector (61% Mirion-Canberra Broad Energy Germanium detector), the

same counting geometry (10 mL) and the same sample matrix (polypropylene

fibers). The sample height or position variability will be taken into account in

the uncertainty budget described in the associated paper Xu et al. (2021) Jiaxin

et al. (2021). Another component is also added in the uncertainty budget to

account for the simulation process : indeed the modeling of the detection con-

figuration is adjusted to reproduce the full energy peak (FEP) efficiency which

is experimentally determined by the measurement of a standard source whose

activities are given with uncertainties. Neither the total detection efficiency nor

the full spectrum shape can be compared to experimental data, except with

single radionuclide source measurements. This lack of knowledge is certainly a

limitation of the proposed approach in the case when the spectral signatures

must be determined by simulation. Forthcoming study will be dedicated to the

potential differences between simulated and experimental spectral signatures,

using single gamma-ray emitter standard sources.

7. Conclusion

In this paper, we investigate how the characteristic limits, i.e. the decision

thresholds and coverage intervals, can be determined for spectral unmixing al-

gorithms. These two quantities, which are related to the statistical limits for

decision making purposes in gamma ray spectra analysis, are first investigated

for such full spectrum analysis methods.

Firstly, we propose to determine the decision threshold of each radionuclide

based on different statistical tests of its equivalent background. This back-

ground spectrum, consisting of other spectral contributions provides a mean

value of the distribution under null hypothesis, allowing quantifying the deci-

sion threshold based on a given false negative rate. Next, we propose to assess

the limits of coverage intervals with the Fisher information matrix of estimated

mixing weights, which approximates the standard deviation of the estimation

distribution. This statistical uncertainty must be added to other uncertainty
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components which are introduced and described in Xu et al. (2021) to obtain

the final uncertainty.

The proposed approaches have been evaluated with Monte Carlo simulations

of both HPGe and NaI detectors. They have been shown as efficient and re-

liable methods to both of these simulated data. As the simulated spectra are

calculated for radionuclides in samples measured on the HPGe detector of the

routine aerosols measurements in the laboratory, the methods proposed in this

paper can be used to provide metrological results of experimental data, which

is presented in Xu et al. (2021).
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H0 is true H1 is true

rejecting

H0

Type I error: the error of

rejecting H0 when it is true,

the probability of committing

a type I error is denoted by α,

called false positive rate.

accepting

H0

Type II error: the error of

accepting H0 when H1 is true,

the probability of committing

a type II error is denoted by β,

called false negative rate.

Table 1: Two types of errors of hypotheses test.

7Be 22Na 40K 137Cs 210Pb 208Tl 212Bi 212Pb 214Bi 214Pb

391 0.078 1.24 0.015 27 0.098 0.425 0.239 0.054 0.056

Table 2: Activity (Bq) of radionuclides of HPGe simulations.

Radionuclide 60Co 134Cs 137Cs 152Eu background

Number of counts 1500 500 1500 2500 4000

Table 3: Number of counts of NaI simulations.

7Be 22Na 137Cs 212Pb expected value

percentage within a0 ± σf 68.0 67.3 68.87 68.25 68.27

percentage within a0 ± 2σf 96.49 94.28 95.85 95.02 95.45

percentage within a0 ± 3σf 99.9 99.8 99.76 99.9 99.73

Table 4: Standard deviation from Fisher information matrix comparing to Monte Carlo sim-

ulations (HPGe measurements).
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60Co 134Cs 137Cs 152Eu expected value

percentage within a0 ± σf 68.38 65.81 68.7 65.58 68.27

percentage within a0 ± 2σf 95.34 94.78 94.62 95.23 95.45

percentage within a0 ± 3σf 99.73 99.54 99.95 99.8 99.73

Table 5: Standard deviation from Fisher information matrix comparing to Monte Carlo sim-

ulations (NaI measurements).

Fig. 1: Spectral unmixing model used to illustrate the evaluation of the characteristic limits.

The simulated measurements (gray) are composed of 10 radionuclides: 7Be, 22Na, 40K, 137Cs,

210Pb, 208Tl, 212Bi, 212Pb, 214Bi, 214Pb, while individual spectra of 7Be,22Na,137Cs,212Pb

will be evaluated.
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Fig. 2: Spectral unmixing model of simulations of NaI measurements.

Fig. 3: Illustration of equivalent background spectrum of the 137Cs.
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Fig. 4: [JB: Figure à refaire, la projection sur m ne devrait pas être // à gauche] ist of

parallel projection with respect to the equivalent background. The vector φj is the spectral

signature of the radionuclide. The vectors x, m are the measured spectrum and the equivalent

background spectrum. wpb is the weight vector.

Fig. 5: Decision threshold assessment for HPGe measurements: 7Be. In Fig. 5, 6, 7 and 8: the

right plot shows the distribution of calculated DT based on the statistical test of equivalent

background weighted by wsum (red), wROI (green), wpb (blue) and wrpb (orange). The

accurate DT level calculated from Monte Carlo (i.e., 1−α percentile of the distribution under

the null hypothesis) is displayed with a dotted line (red). The left panels show the zoom in

of the distributions in the right plot.
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Fig. 6: Decision threshold assessment for HPGe measurements: 22Na.

Fig. 7: Decision threshold assessment for HPGe measurements: 137Cs.
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Fig. 8: Decision threshold assessment for HPGe measurements: 212Pb.
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Fig. 9: Decision threshold assessment for NaI measurements: 60Co. Fig. 9, 10, 11 and 12:

the plot shows the distribution of calculated DT based on the statistical test of equivalent

background weighted by wsum (red), wpb (blue) and wrpb (orange). The accurate DT level

calculated from Monte Carlo (i.e., 1−α percentile of the distribution under the null hypothesis)

is displayed with a dotted line (red).
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Fig. 10: Decision threshold assessment for NaI measurements: 134Cs.
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Fig. 11: Decision threshold assessment for NaI measurements: 137Cs.
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Fig. 12: Decision threshold assessment for NaI measurements: 152Eu.
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(a) 7Be (b) 22Na

(c) 137Cs (d) 212Pb

Fig. 13: Evaluation for the HPGe simulation: the Q-Q plots for Fisher quantiles (N
(
a0, σ̄2

f

)
,

where a0 is the expected mixing weight of the radionuclide and σ̄f is the mean value of

the standard uncertainty calculated from the Fisher information matrix of estimated mix-

ing weights of 1000 Monte Carlo simulations.) versus estimation distribution quantiles for

radionuclides (blue). The theoretical Q-Q plots are shown in red.
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Fig. 14: Evaluation of coverage intervals assessment with Fisher information matrix: HPGe

measurements with 137Cs at decision threshold level. The distribution of estimated mixing

weight of 137Cs of 15000 Monte Carlo simulations (blue) is compared to the probability density

function of the truncated normal distribution N
(
a0, σf

)
.
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(a) 60Co (b) 134Cs

(c) 137Cs (d) 152Eu

Fig. 15: Evaluation for the NaI simulation: the Q-Q plots for Fisher quantiles versus estimation

distribution quantiles for radionuclides.(blue). The theoretical Q-Q plots are shown in red.
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