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Abstract

The ability to collect and store ever more massive databases has been accompanied by the
need to process them efficiently. In many cases, most observations have the same behavior,
while a probable small proportion of these observations are abnormal. Detecting the latter,
defined as outliers, is one of the major challenges for machine learning applications (e.g.
in fraud detection or in predictive maintenance). In this paper, we propose a methodol-
ogy addressing the problem of outlier detection, by learning a data-driven scoring function
defined on the feature space which reflects the degree of abnormality of the observations.
This scoring function is learnt through a well-designed binary classification problem whose
empirical criterion takes the form of a two-sample linear rank statistics on which theo-
retical results are available. We illustrate our methodology with preliminary encouraging
numerical experiments.

Keywords: Anomaly ranking, novelty detection, two-sample linear rank statistics.

1. Introduction

The problem of ranking multivariate data by degree of abnormality, referred to as anomaly
ranking, is of central importance for a wide variety of applications (e.g. fraud detection,
fleet monitoring, predictive maintenance). In the standard setup, the ’normal’ behavior of
the system under study (in the sense of ’not abnormal’, without any link to the Gaussian
distribution) is described by the (unknown) distribution F (dx) of a generic r.v. X, valued
in Rd. The goal pursued is to build a scoring function s : Rd → R+ ∪ {+∞} that ranks
any observations x1, . . . , xn nearly in the same order as any increasing transform of the
density f would do. Ideally, the smaller the score s(x) of an observation x in Rd, the more
abnormal it should be considered. In Clémençon and Thomas (2018), a functional criterion,
namely a Probability-Measure plot referred to as the Mass-Volume curve (the MV curve
in abbreviated form), has been proposed to evaluate the anomaly ranking performance
of any scoring rule s(x). This performance measure can be viewed as the unsupervised
version of the Receiver Operating Characteristic (ROC) curve, the gold standard measure
to evaluate the accuracy of scoring functions in the bipartite ranking context, see e.g.
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Clémençon and Vayatis (2009). Beyond this approach, let us highlight that the problem
of anomaly detection has also been studied via various other modelings. For instance, the
works of Bergman and Hoshen (2020) and Steinwart et al. (2005) are based on classification
methods, while Liu et al. (2008) build on peeling, Breunig et al. (2000) on local averaging
criteria, Frery et al. (2017) on ranking and Schölkopf et al. (2001) on plug-in techniques.

In this paper, we propose a novel two-stage method for detecting and ranking abnormal
instances, by means of scalar criteria summarizing the MV curve and extending the area
under its curve, when F (dx) has compact support. Briefly, starting from a sample of
observations X1, . . . , Xn, we artificially generate an independent second sample U1, . . . , Um
that is used as a proxy for outliers. For theoretical reasons explained in the paper, the
agnostic choice consists in sampling the Ui’s i.i.d. from the uniform law on a subset of Rd,
which F (dx)’s support is supposedly included in. We then learn to discriminate the Xi’s
from the Ui’s thanks to a scoring function that maximizes two-sample empirical counterparts
of the aforementioned criteria, that are in particular robust to imbalanced datasets. The
resulting scoring function allows to rank the Xi’s by degree of abnormality. This novel
class of criteria is based on theoretical guarantees provided by Clémençon et al. (2021)
on general classes of two-sample linear rank processes, that incidentally circumvent the
difficulty of optimizing the functional MV criterion. Beyond the classical results of statistical
learning theory for these processes, Clémençon et al. (2021) obtain theoretical generalization
guarantees for their empirical optimizers. The numerical results performed at the end of
the paper also provide strong empirical evidence of the relevance of the approach promoted
here.

The article is structured as follows. In section 2, the formulation of the (unsupervised)
anomaly ranking problem is recalled at length, together with the concept of MV curve.
In section 3, the anomaly ranking performance criteria proposed are introduced and their
statistical estimation is discussed. Optimization of the statistical counterparts of the criteria
introduced to build accurate anomaly scoring functions is also put forward therein. Finally,
the relevance of this approach is illustrated by numerical results in section 4.

2. Background and Preliminaries

We start off with recalling the formulation of the (unsupervised) anomaly ranking problem
and introducing notations that shall be used here and throughout. By λ is meant the
Lebesgue measure on Rd, by I{E} the indicator function of any event E , while the generalized
inverse of any cumulative distribution function K(t) on R is denoted by K−1(u) = inf{t ∈
R : K(t) ≥ u}. We consider a r.v. X valued in Rd, d ≥ 1, with distribution F (dx) =
f(x)λ(dx), modeling the ’normal’ behavior of the system under study. The observations at
disposal X1, . . . , Xn, with n ≥ 1, are independent copies of X. Based on the Xi’s our goal
is to learn a ranking rule for deciding among two observations x and x′ in Rd which one is
more ’abnormal’. The simplest way of defining a preorder1 on Rd consists in transporting
the natural order on R+∪{+∞} onto it through a scoring function, i.e. a Borel measurable
mapping s : Rd → R+: given two observations x and x′ in Rd, x is said to be more abnormal

1. A preorder 4 on a set Z is a reflexive and transitive binary relation on Z. It is said to be total, when
either z 4 z′ or else z′ 4 z holds true, for all (z, z′) ∈ Z2.
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according to s than x′ when s(x) ≤ s(x′). The set of all anomaly scoring functions that are
integrable with respect to Lebesgue measure is denoted by S. The integrability condition is
not restrictive since the preorder induced by any scoring function is invariant under strictly
increasing transformation (i.e. the scoring function s and its transform T ◦s define the same
preorder on Rd provided that the Borel measurable transform T : Im(s) → R+ is strictly
increasing on the image of the r.v. s(X), denoted by Im(s)). One wishes to build, from the
’normal’ observations only, a scoring function s such that, ideally, the smaller s(X), the
more abnormal the observation X. The set of optimal scoring rules in S should be thus
composed of strictly increasing transforms of the density function f(x) that are integrable
w.r.t. to λ, namely:

S∗ = {T ◦ f : T : Im(f)→ R+ strictly increasing,

∫
Rd

T ◦ f(x)λ(dx) < +∞} . (1)

The technical assumptions listed below are required to define a criterion, whose optimal
elements coincide with S∗.

H1 The r.v. f(X) is continuous, i.e. ∀c ∈ R+, P{f(X) = c} = 0.

H2 The density function f(x) is bounded: ||f ||∞
def
= supx∈Rd |f(x)| < +∞.

Measuring anomaly scoring accuracy - The MV curve. Consider an arbitrary scor-
ing function s ∈ S and denoted by Ωs,t = {x ∈ X : s(x) ≥ t}, t ≥ 0, its level sets. As s is
λ-integrable, the measure λ(Ωs,t) ≤ (

∫
u∈R+

s(u)du)/t is finite for any t > 0. Introduced in

Clémençon and Thomas (2018), a natural measure of the anomaly ranking performance of
any scoring function candidate s is the Probability-Measure plot, referred to as the Mass-
Volume (MV) curve:

t > 0 7→
(
P{s(X) ≥ t}, λ({x ∈ Rd : s(x) ≥ t})

)
= (F (Ωs,t), λ(Ωs,t)) . (2)

Connecting points corresponding to possible jumps, this parametric curve can be viewed
as the plot of the continuous mapping MVs : α ∈ (0, 1) 7→ MVs(α), starting at (0, 0) and
reaching (1, λ

(
supp(F )

)
in the case where the support supp(F ) of the distribution F (dx)

is compact, or having the vertical line ’α = 1’ as an asymptote otherwise. A typical MV
curve is depicted in Fig. 1.
Let α ∈ (0, 1). Denoting by Fs(t) the cumulative distribution function of the r.v. s(X), we
have:

MVs(α) = λ
(
{x ∈ Rd : s(x) ≥ F−1

s (1− α)}
)
, (3)

when Fs ◦ F−1
s (α) = α. This functional criterion is invariant by increasing transform and

induces a partial order over the set S. Let (s1, s2) ∈ S2, the ordering defined by s1 is said
to be more accurate than the one induced by s2 when:

∀α ∈ (0, 1), MVs1(α) ≤ MVs2(α) .

As summarized by the result stated below, the MV curve criterion is adequate to measure
the accuracy of scoring functions with respect to anomaly ranking.
It reveals in particular that optimal scoring functions are those whose MV curve is minimum
everywhere.
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Figure 1: Typical MV curve in red (x-axis:volume, y-axis:mass). In gray, the diagonal
y = x.

Proposition 1 (Clémençon and Thomas (2018)) Let the assumptions H1−H2 be fulfilled.
The elements of the class S∗ have the same (convex) MV curve and provide the best possible
preorder on Rd w.r.t. the MV curve criterion:

∀(s, α) ∈ S × (0, 1), MV∗(α) ≤ MVs(α) , (4)

where MV∗(α) = MVf(α) for all α ∈ (0, 1).

Equation (4) reveals that the lowest the MV curve (everywhere) of a scoring function s(x),
the closer the preorder defined by s(x) is to that induced by f(x). Favorable situations
are those where the MV curve increases slowly and rises more rapidly when coming closer
to the ’one’ value: this correponds to the case where F (dx) is much concentrated around
its modes, s(X) takes its highest values near the latter and its lowest values are located in
the tail region of the distribution F (dx). Incidentally, observe that the optimal curve MV∗

somehow measures the spread of the distribution F (dx) in particular for large values of α
w.r.t. extremal observations (e.g. a light tail behavior corresponds to the situation where
MV∗(α) increases rapidly when approaching 1), whereas it should be examined for small
values of α when modes of the underlying distributions are investigated (a flat curve near
0 indicates a high degree of concentration of F (dx) near its modes).

Statistical estimation. In practice, the MV curve of a scoring function s ∈ S is generally
unknown, just like the distribution F (dx), and it must be estimated. A natural empirical
counterpart can be obtained by plotting the stepwise graph of the mapping:

M̂Vs(α) : α ∈ (0, 1) 7→ λ
({
x ∈ Rd : s(x) ≥ F̂−1

s,n (1− α)
})

, (5)
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where F̂s,n(t) = (1/n)
∑n

i=1 I{s(Xi) ≤ t} denotes the empirical c.d.f. of the r.v. s(X) and

F̂−1
s,n its generalized inverse. In Clémençon and Thomas (2018), for a fixed s ∈ S, consis-

tency and asymptotic Gaussianity (in sup-norm) of the estimator (5) has been established,
together with the asymptotic validity of a smoothed bootstrap procedure to build confi-
dence regions in the MV space. However, depending on the geometry of the superlevel sets
of s(x), it can be far from simple to compute the volumes. In the case where F has compact
support, included in [0, 1]d say for simplicity, and from now on it is assumed it is the case,
they can be estimated by means of Monte-Carlo simulation. Indeed, if one generates a syn-
thetic i.i.d. sample {U1, . . . , Um}, independent from the Xi’s and drawn from the uniform

distribution on [0, 1]d, which we denote by Ud, a natural estimator of the volume M̂Vs(α)
is:

M̃Vs(α) =
1

m

m∑
j=1

I{s(Uj) ≥ F̂−1
s,n (1− α)} . (6)

Minimization of the empirical area under the MV curve. Thanks to the MV curve
criterion, it is possible to develop a statistical theory for the anomaly scoring problem.
From a statistical learning angle, the goal is to build from training data X1, . . . , Xn

a scoring function with MV curve as close as possible to MV∗. Whereas the closeness
between (continuous) curves can be measured in many ways, the L1-distance offers crucial
advantages. Indeed, we have:

d1(s, f) =

∫ 1

α=0
|MVs(α)−MV∗(α)| dα =

∫ 1

α=0
MVs(α)dα−

∫ 1

α=0
MV∗(α)dα ,

Notice that d1(s, f), i ∈ {1, ∞}, is not a distance between the scoring functions s and
f but measures the dissimilarity between the preorders they define and that minimizing
d1(s, f) boils down to minimizing the scalar quantity

∫ 1−ε
α=0 MVs(α)dα, the area under the

MV curve. From a practical perspective, one may then learn an anomaly scoring rule by
minimizing the empirical quantity: ∫ 1

0
M̃Vs(α)dα .

This boils down to maximizing the rank-sum (or Wilcoxon Mann-Whithney) statistic (see
Wilcoxon (1945)) given by:

Ŵn,m(s) =

n∑
i=1

Rank(s(Xi)) , (7)

where Rank(s(Xi)) is the rank of s(Xi) among the pooled sample {s(X1), . . . , s(Xn)} ∪
{s(U1), . . . , s(Um)}: Rank(s(Xi)) =

∑n
l=1 I{s(Xl) ≤ s(Xi)} +

∑m
j=1 I{s(Uj) ≤ s(Xi)}.

Indeed, just like the empirical area under the ROC curve can be related to the rank-sum
statistic, we have:

nm

(
1−

∫ 1

0
M̃Vs(α)dα

)
+ n(n+ 1)/2 = Ŵn,m(s) . (8)

In the next section, we introduce more general empirical summaries of the MV curve that
are of the form of two-sample rank statistics, just like (7), and propose to solve the anomaly
ranking problem through the maximization of the latter.
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3. Measuring and Optimizing Anomaly Ranking Performance

In this section, a class of anomaly ranking performance criteria are introduced, which can
be estimated by two-sample rank statistics. We also emphasize that a natural approach to
anomaly ranking consists in maximizing such empirical scalar criteria.

3.1. Scalar Criteria of Performance and Two-sample Rank Statistics

Here we develop the statistical learning framework we propose for anomaly ranking. Let
p ∈ (0, 1), we assume that N ≥ 2 observations are available: n = bpNc ’normal’ i.i.d.
observations X1, . . . , Xn taking their values in [0, 1]d for simplicity drawn from F (dx) =
f(x)λ(dx) and m = N − n i.i.d. realizations of the uniform distribution Ud, independent
from the Xi’s. Hence, p represents the ’theoretical’ proportion of ’normal’ observations
among the pooled sample. Let a class of scoring functions S0 ⊂ S such that, for all s(x),
we consider the mixture distribution Gs = pFs + (1 − p)λs and its empirical counterpart
Ĝs,N (t) = (1/n)

∑n
i=1 I{s(Xi) ≤ t}+ (1/m)

∑m
j=1 I{s(Ui) ≤ t}. Notice that since n/N → p

as N tends to infinity, the quantity above is a natural estimator of the c.d.f. Gs. We refer
to the scored random samples for {s(X1), . . . , s(Xn)} and {s(U1), . . . , s(Um)}. Therefore,
motivated by Eq. (8), Definition 2 below provides the class of Wφ-performance criteria we
consider in the subsequent procedure.

Definition 2 Let φ : [0, 1] → R be a nondecreasing function. The ’Wφ-ranking perfor-
mance criterion’ with ’score-generating function’ φ(u) based on the mixture cdf Gs(dt) is
given by:

Wφ(s) = E[(φ ◦Gs)(s(X))] . (9)

One can naturally relate this generalized form to the MV curve, justifying this choice of
scalar performance criteria as summaries of the MV curve, through the equality:

Wφ(s) =

∫ 1

0
φ (1− pα− (1− p)MVs(α)) dα . (10)

Equipped with the two random samples, the following Definition 3 provides an empirical
counterpart, that generalizes the empirical summaries of the MV curve via collections of
two-sample linear rank statistics. Precisely, for a given mapping s(x), we allow to weight
the sequence of ’normal ranks’ i.e. the ranks of the scored ’normal’ instances among the
pooled sample, by means of a score-generating function.

Definition 3 (Two-sample linear rank statistics) Let φ : [0, 1] → R be a nonde-
creasing function. The two-sample linear rank statistics with ’score-generating function’
φ(u) based on the random samples {X1, . . . , Xn} and {U1, . . . , Um} is given by:

Ŵ φ
n,m(s) =

n∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
, (11)

where Rank(t) = NĜs,N (t) =
∑n

i=1 I{s(Xi) ≤ t}+
∑m

j=1 I{s(Uj) ≤ t}.

6
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Optimality. Briefly, we refer to the comprehensive analysis of the general class of criteria
in Clémençon et al. (2021), that establishes the theoretical guarantees for the consistency
of the two-stage procedure we detail in the following subsection. Importantly, the set of
optimal maximizers of the empiricalWφ-criteria coincides with the nondecreasing transforms
of the likelihood ratio, just like for the MV curves, as shown thourgh the Eq. (10).

The optimal set S∗ derived in Eq. (1) underlines the implicit characterization that inherits
an outlier: the lower the scalar score is and the likelier anomalous the observation can be
considered. Also, the notion of distance induced by the rank-based criteria is in fact directly
related to the distribution of the ’normal’ sample compared to the Uniform one.

Choosing φ. As foreshadowed above, the choice of the score-generating function is an
asset of this class of criteria as it provides a flexibility w.r.t. the weighting of the area
under the MV curve. Indeed, its minimization directly implies the maximization of the
Wφ-criterion (see Eq. (10)), recalling the nondecreasing variation of φ(u). Therefore, one
can hope to recover at best the MV∗ curve by the right choice of φ(u), especially when the
initial sample is noisy. Additionally, when going back to the problem of learning to rank
the (possible abnormal) instances, it is an advantage to weight the ranks accordingly.

First, we recall the simplest uniform weighting of each ’normal’ rank with φ(u) = u. It par-
enthetically yields to Eq. (8), of continuous version: W (s) = p/2+(1−p)(1−

∫ 1
0 MVs(α)dα),

where the area under the MV curve is clearly computed. Other functions were introduced
in the literature related to classic univariate two-sample rank statistics. Figure 2 gathers
classical nondecreasing score-generating functions broadly used for two-sample statistical
tests (refer to Hájek (1962)).

Figure 2: Curves of two-sample score-generating functions with the associated statistical
test: Logistic test φlog(u) = 2

√
3(u−1/2) in blue, Logrank test φlrk(u) = − log(1−

x) in orange, Mann-Whitney-Wilcoxon test φmww(u) = u in green, Median test
φmed(u) = sgn(u−1/2) in red, Van der Waerden test φvdw(u) = Φ−1(u) in purple,
Φ being the normal quantile function.
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3.2. The Two-Stage Procedure

In this paragraph, we detail the two-stage procedure, where we assume that both the frame-
work and assumptions detailed in the previous subsection are adopted. We define the test
sample as the set of i.i.d. random variables {Xt

1, . . . , X
t
nt
}, with nt ∈ N∗, a priori drawn

from F (dx). The goal pursued is to distinguish among the test sample, the instances the
most likelier to be anomalous. In particular, we propose a first step (1.) that outputs an
optimal ranking rule ŝn,m(x), in the sense of the maximization of the rank statistics of Eq.
(3). Then, in the second step (2.) and equipped with this rule, the instances of the test
sample are optimally ranked by increasing order of similarity w.r.t. the X’s. We also choose
to watch a number of nlowest ∈ N∗ worst ranked instances i.e. of lowest empirical score. The
procedure is detailed in the following Fig. 3. By means of the recalled theoretical guar-
antees proved in Clémençon et al. (2021), it results to the asymptotic consistency of step
(1.) as well as its nonasymptotic consistency with high probability, under some technical
assumptions.

Anomaly Ranking Procedure

Consider the ’normal’ i.i.d. random sample {X1, . . . , Xn} of unknown probability
probability function F (dt) defined on a feature space included [0, 1]d. Consider a new
random sample {Xt

1, . . . , X
t
nt
} a priori drawn from F (dt), nt ∈ N∗, independent of

the X’s. Let S0 ⊂ S a class of scoring functions and φ a score-generating function. Set
nlowest ∈ N∗.

1. Maximizing the Wφ-ranking performance criterion.

(i) Generate a i.i.d. random sample {U1, . . . , Um} from Ud(dt), independent of
{X1, . . . , Xn},

(ii) Output the optimal empirical scoring rule ŝn,m = arg maxs∈S0 Ŵ
φ
n,m(s) based on

the two samples {X1, . . . , Xn} and {U1, . . . , Um}.

2. Ranking anomalies.

(i) Compute the empirical scores of the test sample {ŝn,m(Xt
1), . . . , ŝn,m(Xt

nt
)},

(ii) Define as anomalous the nlowest observations of lowest empirical scores among
the sequence ŝn,m(Xt

i ), i ≤ nt.

Result. Output the set of anomalous observations with their corresponding rank.

Figure 3: Two-stage procedure for learning to rank anomalies.

4. Numerical Experiments

In this section, we illustrate the procedure promoted along the paper through numerical
experiments on imbalanced synthetic data. As these experiments are mainly here to support
our methodology, we propose for the step (1.) to learn the empirical maximizer ŝn,m by

8
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means of a regularized classification algorithm. At a technical level, we would ideally like
to replace usual loss criterion such as the BCE (Binary Cross-Entropy) loss by our tailored
objective Wφ. Unfortunately, the latter is not smooth and of highly correlated terms, which
results in many challenges regarding its optimization. In order to incorporate Wφ and still
keeping good performances, we (i) use a regularized proxy of it and (ii) incorporate the
regularized criterion in a penalization term. The second point allows to drive the learning
with a usual BCE loss, which asymptotically amounts to estimate the conditional probability
P(y = 1 |X), while considering Wφ.

Data generating process. We generated the ’positive’ sample by i.i.d. Gaussian vari-
ables X1, . . . , Xn, n = 1000, in dimension d = 2, centered and with covariance matrix 0.1×I2

(where I2 is the identity matrix). We chose the Gaussian law for its attractive structure and
in particular for its symmetry, it can be a reasonable choice in many situations where the
data at hand are indeed well structured. We then sampled the ’negative’ sequence of i.i.d.
r.v. U ′1, . . . , U

′
m, m = 500, from the following radial law, expressed in terms of its density in

polar coordinates:

RadLawα,β : (v, r) ∈ Sd−1 × (0, 1) 7→ 1

Area(Sd−1)
dv × 1

B(α, β)
rα−1(1− r)β−1dr ,

where α, β > 0 are two tunable parameters, Sd−1 = {x ∈ Rd, ‖x‖ = 1} is the unit sphere,
and where B(α, β) =

∫ 1
0 r

α−1(1−r)β−1dr. In other words, v is uniformly sampled in the unit
sphere and r has Beta law with parameters α and β. Notice that α = β = 1 corresponds to
the Uniform law and that, when β = 1, the law puts more mass around 1 as α > 1 increases.
In our experiment, we choose α = 3 and β = 1. Denoting by rad = max1≤i≤n ||Xi||, we
finally obtained m ’synthetic outliers’ U1, . . . , Um defined by Ui = (rad + ε) × U ′i , with
ε = 0.01. To simplify the notations, we denote by Ztrain the concatenation of the Xi’s
and the Ui’s. We also denote by ytrain the labels, where we choose to assign the label 1
(resp. 0) to the ’positive’ (resp. ’negative’) sample. Figure 4 illustrates both data generating
processes. For the test set, we generated similarly a sequence of nt = 400 i.i.d. Gaussian
r.v. Xt

1, . . . , X
t
nt

from the same Gaussian law as the ’positive’ sample, and a i.i.d. random
sequence U t1, . . . , U

t
mt

, mt = 100, drawn from the law RadLawαt,βt , with αt = 2. and βt = 1.,
dilated by a factor (rad + ε).

Metrics. Once the algorithm that learns a (renormalized) optimal scoring function ŝn,m :
Rd → (0, 1) has been trained (i.e. step (1.)), we score the test data with ŝn,m and compute
the proportion of true outliers among the nlowest points having lowest scores (i.e. step
(2.)). We let nlowest varies in {25, 50, 75, 100}. Formally, if ξ1 4 · · · 4 ξnt+mt denote the
points Xt

i and U ti sorted by scores, i.e. the ordered sequence based on ŝn,m(Ztest,1), · · · ,
ŝn,m(Ztest,nt+mt), we compute the following accuracy:

Accnlowest
=

1

nlowest

nlowest∑
i=1

I{ξi ∈ {U t1, . . . , U tmt
}} . (12)
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−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Observations

(a) Train data. (n, m) = (1000, 500).
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(b) Test data. (nt, mt) = (400, 100).

Figure 4: Data visualization for the two generating processes. The Gaussian observations
are represented in blue. The ’synthetic outliers’ samples drawn from the radial
law are represented in red. The left figure (a) corresponds to the train dataset,
the right (b) to the test dataset.

Neural Network. We trained a neural network mlp composed of one hidden layer of size
2×d, a ReLu activation function and whose last layer is a Sigmoid function, computing the
desired score. For each nepoch = 30 epochs, we use the following training scheme:

1. Each sample of (Ztrain, ytrain) is individually passed through the network, the BCE
loss is computed2 and a backpropagation step is performed,

2. At the end of each epoch, the whole batch of the training dataset (Ztrain, ytrain) is
passed through the network and we computed the Binary Cross Entropy loss, denoted
by BCE, and the following proxy of Wφ:

Ŵ φ
n,m =

n∑
i=1

φ

(
(n+m)×mlp(Xi) + 1

n+m+ 1

)
.

In our experiments, we choose φ(u) = u and φu0(u) = uI{u ≥ u0} with u0 = 0.7, as

defined in section 3.1. We then compute the regularized loss BCE− λŴ φ
n,m, where λ

is a hyperparameter in {0, 0.01, 0.1, 1, 10}.

The training procedure of the Neural Net is summarized in the Algorithm 1.

Repetitions. We repeat B = 100 times the procedure, each time computing the accuracy
metric defined above.

Visualization and results. In this section, we only display the results obtained with
φ(u) = u since they are very similar to the one obtained with φ(u) = uI{u ≥ u0}. This
is probably due to the very simple framework adopted for the data generating process and
further investigations would be of interest.

2. Remember it is given by −y ln ŷ − (1− y) ln(1− ŷ), where ŷ = mlp(X).
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Algorithm 1: Training of the Neural Network

Data: (Ztrain,ytrain).
Input: Network mlp, number of epochs nepoch, penalization strength λ.
Result: Trained network.

for n = 0, . . . , nepoch do
for X, y ∈ Ztrain,ytrain do

compute ŷ = mlp ;
compute BCE = BCE(ŷ, y), backpropagate and zero grad ;

end
compute ŷ = mlp(Ztrain) ;

compute BCE = BCE(ŷ,y) and Ŵ φ
n,m ;

compute the regularized loss BCE− λŴ φ
n,m, backpropagate and zero grad ;

end

For the first learning loop, we saved the evolution of the BCE losses, for all values of λ,
computed at each epoch together with the Wφ proxy and the accuracy metric for nlowest =
75. As displayed in Figure 5, one can see that the incorporation of the empirical Wφ

criterion in the penalization term improves the performances for a well chosen parameter
λ. For instance, λ ∈ {1, 10} output the best results in this setting.

0 5 10 15 20 25 30
0.5

1.0

1.5
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3.5
BCE Loss evolutions
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λ: 0.01
λ: 0.1
λ: 1.0
λ: 10.0
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AUC evolutions
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λ: 0.1
λ: 1.0
λ: 10.0
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Score evolutions

λ: 0.0
λ: 0.01
λ: 0.1
λ: 1.0
λ: 10.0

Figure 5: Evolutions of the BCE loss, the AUC proxy and the accuracy for nlowest = 75
in function of the epochs, for φ(u) = u and all values of the hyperparameter
λ ∈ {0, 0.01, 0.1, 1, 10}.

At the end of the training, we select the network having the highest empirical Wφ score,
which here corresponds to choosing λ = 1. We then score the initial observations X1, . . . , Xn

and display in Figure 6 the points with an intensity varying from red to blue as the score
increases from 0 to 1. The fact that the red points are on the sides of the dataset empirically
validates our methodology. We represent in Fig. 7 the averaged mass volume curve together
with standard deviation computed for λ = 1 over B = 50 repetitions. Table 1 gathers the
results averaged over B = 50 repetitions. Notice that these results support the soundness
of our approach. Indeed, the area under the MV curve is minimized and the proportion of
detected outliers is high even when nlowest increases.
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Figure 6: A heatmap of the scores for φ(u) = u.

nlowest 25 50 75 100

Accnlowest
0.91± 0.13 0.84± 0.15 0.74± 0.15 0.64± 0.13

Table 1: Tabular view of the empirical accuracy +− its standard deviation, when nlowest
varies in {25, 50, 75, 100}, with λ = 1.
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(a) λ = 1 and φ(u) = u.
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(b) λ = 1 and φ(u) = uI{u ≥ u0}.

Figure 7: Empirical Mass-Volume curves.

5. Conclusion

In this paper, we promoted a binary classification approach to the problem of learning to
rank anomalies. We established a clear theoretical link between these two machine learning
tasks through the study of the mass-volume curve. In particular, our procedure is robust
with respect to imbalanced datasets through the choice of the parameter p that is chosen
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initially in practice. Previous results (see Clémençon et al. (2021)) support the effectiveness
of our methodology. Moreover, we illustrate our method with numerical experiments of
synthetic data.
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J. Hájek. Asymptotically most powerful rank-order tests. The Annals of Mathematical
Statistics, 33(3):112–1147, 09 1962.

F.T. Liu, K.M. Ting, and Z.H. Zhou. Isolation forest. In Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on Data Mining, pages 413–422, 2008.

B. Schölkopf, J. Platt, A. J. Shawe-Taylor, J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution. Neural Computation, 13(7), 2001.

I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection.
Journal of Machine Learning Research, 6(8):211–232, 2005.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83, 1945.

13


	Introduction
	Background and Preliminaries
	Measuring and Optimizing Anomaly Ranking Performance
	Scalar Criteria of Performance and Two-sample Rank Statistics
	The Two-Stage Procedure

	Numerical Experiments
	Conclusion

