N

N
N

HAL

open science

Secure Aggregation Against Malicious Users
Ferhat Karakoc, Melek Onen, Zeki Bilgin

» To cite this version:

Ferhat Karakoc, Melek Onen, Zeki Bilgin. Secure Aggregation Against Malicious Users. SACMAT
2021, 26th ACM Symposium on Access Control Models and Technologies, Jun 2021, Barcelona (vir-

tual), Spain. pp.115-124, 10.1145/3450569.3463572 . hal-03345683

HAL Id: hal-03345683
https://hal.science/hal-03345683
Submitted on 28 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03345683
https://hal.archives-ouvertes.fr

Secure Aggregation Against Malicious Users

Ferhat Karakocg
Ericsson Research
Istanbul, Turkey
ferhat.karakoc@ericsson.com

ABSTRACT

Secure aggregation protocols allow an aggregator to compute the
sum of multiple users’ data in a privacy-preserving manner. Existing
protocols assume that users from whom the data is collected, are
fully trusted on the correctness of their individual inputs. We believe
that this assumption is too strong, for example when such protocols
are used for federated learning whereby the aggregator receives
all users’ contributions and aggregate them to train and obtain the
joint model. A malicious user contributing with incorrect inputs can
generate model poisoning or backdoor injection attacks without
being detected. In this paper, we propose the first secure aggregation
protocol that considers users as potentially malicious. This new
protocol enables the correct computation of the aggregate result, in
a privacy preserving manner, only if individual inputs belong to a
legitimate interval. To this aim, the solution uses a newly designed
oblivious programmable pseudo-random function. We validate our
solution as a proof of concept under a federated learning scenario
whereby potential backdoor injection attacks exist.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols.

KEYWORDS

secure aggregation; oblivious pseudo-random function; malicious
users

ACM Reference Format:

Ferhat Karakog, Melek Onen, and Zeki Bilgin. 2021. Secure Aggregation
Against Malicious Users. In Proceedings of the 26th ACM Symposium on
Access Control Models and Technologies (SACMAT) (SACMAT °21), June 16—
18, 2021, Virtual Event, Spain.. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/XXXXXX. XXXXXX

1 INTRODUCTION

With the advent of the IoT and cloud technologies, data becomes a
critical corporate asset. More and more companies are nowadays
collecting huge amounts of data from a variety of sources and use
data analytics tools to acquire meaningful insights and make value
out of them. Among these tools, secure aggregation protocols have
been intensively studied in the last two decades. The basic setting

Melek Onen
EURECOM
Sophia-Antipolis, France
melek.onen@eurecom.fr

Zeki Bilgin
Arcelik Research
Istanbul, Turkey

zeki.bilgin@arcelik.com

of such protocols consists of multiple parties coordinating with an
aggregator whose goal is to compute the sum of parties’ inputs with-
out leaking any information on individual parties’ private inputs
beyond the aggregated value itself.

There exist many secure aggregation solutions in the literature
(for example, see [12, 17]). These solutions mostly focus on the
problem of data privacy, i.e., on keeping parties’ individual inputs
confidential while enabling the aggregator to compute and reveal
the sum of the inputs. On the other hand, all parties involved in
the aggregation protocol, are assumed to be fully trusted on the
correctness and integrity of the inputs and computation. While few
of the solutions such as [12] consider the aggregator as a poten-
tially malicious adversary, in this paper, we consider the existence
of malicious parties who can send bogus inputs instead of their
legitimate inputs and consequently render the computation useless.
We study this stronger threat model whereby collaborating parties
are considered as potentially malicious and build the first secure
aggregation protocol under this model. Similar to [12], our solution
allows the aggregator to compute the sum of the collected inputs in
a privacy preserving manner while at the same time enabling the
aggregation of some individual tags that help verify the correctness
of the computation. On the other hand, additionally, this verifica-
tion tag is correctly computed only if the collected individual inputs
belong to a specific interval and more specifically whenever the
individual values are lower than a specific threshold.

Hence, our new solution extends the secure aggregation scheme
in [12] by introducing a preliminary phase during which users are
only able to compute valid verification tags when their individual
value is below a certain threshold value. Otherwise, the users hold
random tags and therefore the verification will fail. This preliminary
phase involves a newly designed oblivious programmable pseudo-
random function (OPPRF) that is executed between the aggregator
and each user in order to avoid the aggregator to discover the
private inputs and to output specific integrity values when the
user’s input is legitimate. The design of this new OPPRF scheme
is based on the private set membership (PSM) protocol introduced
in [4]. This particular PSM protocol is transformed into a secure
comparison protocol similar to [8].

As a proof of concept, we further apply our new secure aggrega-
tion protocol to a particular federated learning scenario exposed
to model backdoor injection attacks. In [14], authors developed a
construction of a machine learning model whereby multiple parties
collaborate to the training of the model with their private local
model parameters without revealing them to other parties includ-
ing the aggregator. More specifically, a trusted aggregator initializes
a model and sends its parameters to the parties; Each party retrains
the model using its local dataset and sends the updates of the model
parameters to the aggregator who, in turn, merges these individual
updates to obtain the global model. In [1], authors show that these

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

solutions suffer from malicious parties intervening the training
phase in the pursuit of their aims. We evaluate the performance of
our solution in this particular context and validate its effectiveness
against backdoor attacks.

Our contributions. Our contributions can be summarized as fol-
lows:

e We propose the design of a secure aggregation protocol that
considers both the aggregator and the collaborating parties
as potential adversaries;

o As a building block, we develop a new OPPRF construction
which enables the aggregator to blindly check that the value
is below a given threshold. This construction is based on
Ciampi and Orlandi’s PSM protocol [4] and can also be inde-
pendently used;

e We introduce a privacy enhanced federated learning (FL)
that is secure against malicious users by applying our secure
aggregation protocol on FL in the aggregation step;

e We implement our secure aggregation to evaluate its perfor-
mance;

o We validate the solution towards an FL scenario exposed
to backdoor attacks, by identifying that the most sensitive
parameters (to backdoor attacks) belong to the last layer bias
values of neural network and applying our secure aggrega-
tion to these actual parameters.

Related work. There have been several studies on privacy pre-
serving aggregation such as [7, 11, 17] whereby all players are
considered as honest-but-curious. In [12], authors study a stronger
threat model in which the adversary is the aggregator and may
tamper with the aggregated result. Recently, some solutions [3, 9]
instantiate secure aggregation for federated learning whereby data
collected from collaborating users actually are machine learning
models’ parameters. These solutions, consider users from which
data are collected in a privacy preserving manner, as potential
adversaries: Youssef et al [9], study potential poisoning attacks
launched by users against a collaborative learning scheme. The
solution employs aggregation over secret shared inputs. As op-
posed to our solution, the security of their scheme relies on the
existence of two non colluding servers. Furthermore, in [3], au-
thors combine secret sharing with random masking and digital
signatures. Although the study considers active adversaries they
do not guarantee the correctness of the result. Furthermore, their
solution requires the collaboration of all users among each other
whereas in our solution each user only communicates with the
aggregator. In [18], authors propose a collaborative linear machine
learning framework named Helen whereby collaborating parties
are assumed malicious. Authors make use of zero knowledge proofs
when parties perform local computations. As stated in the paper,
Helen does not protect against "bad data". Hence our solution can
be considered as complementary to Helen. Finally, a recent solution,
FLGUARD, was proposed to protect the federated learning process
against multiple backdoor attacks in [15]. This solution involves a
secure two-party protocol to satisfy the privacy requirements while
preventing the backdoor attacks. Although this solution supports
the protection against multiple backdoors, its runtime is significant
compared to our proposal’s one.

Outline. In Section 2, we give brief information about the un-
derlying primitives of our protocols. We present our OPPRF and
secure aggregation protocols in Section 3. We analyze the setting of
federated learning, which we apply our secure aggregation protocol
on, in Section 4. Sections 5 and 6 respectively include security and
performance analyses.

2 PRELIMINARIES

2.1 PUDA Protocol

The PUDA protocol [12] is a secure aggregation protocol which, in
addition to the privacy of users’ data, also ensures the correctness of
the aggregation operation and the integrity of the aggregated result
against malicious aggregators. The protocol involves a trusted key
dealer KD, a data analyzer DA, an aggregator A and the users U;
whose data are collected and aggregated. The main role of KD is
to generate the global parameters and the required keying material
during a preliminary setup phase. KO further becomes offline and
does not take any role in the actual protocol. A aggregates the
users’ data and DA receives the result and verifies its correctness.
More specifically, during the setup phase, KD takes the security
parameter x as input and generates the following parameters:

o cyclic groups Gy, Gz and Gt of prime order p where g; and
g2 are generators of G and Gy, respectively.

e a bilinear map e where e(gf,gé’) = e(g1,92)% fora,b € Zyp;
It is easy to compute e(gf,gzb); e(g1,92) # 1.

e a hash function H : {0, 1}* — Gy.

e an encryption key ek; from Z,, for each user U;. ek; is sent
to Uj, securely (1 < i < n where n is the number of users).

e ska = — X7 ek;. ska is further sent to A.

g7 where a is randomly generated. g{’ is sent to each user.
o the verification key VK = (vkj, vky) = (922 tki,gg) whereby
tk;

g, ' is received from each user U;. This verification key is
further sent to DA.

After the setup phase, during the actual execution of the protocol,
users encrypt their private input and compute an integrity tag.
The aggregator computes the aggregated value using the received
encrypted inputs and decrypts the result using the decryption key.
A also computes the aggregated integrity tag. The sum and the
integrity tag are sent to DA for validation of the result. The steps
of the protocol are specified in Protocol 1.

2.2 Oblivious Transfer

An oblivious transfer (OT) [16] is a secure two-party protocol be-
tween a sender and a receiver where the sender inputs two mes-
sages (mg, m1) and the receiver inputs a choice bit (b); The receiver
outputs my, while the sender outputs nothing.

2.3 Ciampi-Orlandi Private Set Membership
Protocol

Private set membership (PSM) is a multi-party protocol where
parties holding private sets can learn the intersection of these sets
and nothing more. Ciampi and Orlandi propose a two-party PSM
protocol in [4] which outputs an encrypted result of the intersection
instead of the intersection itself. The solution mainly consists of

Protocol 1: PUDA Protocol

Public Parameters. generated by KD during the setup phase:
H,p, 91,92, Gl, Gz, GT, e.

Inputs. U; holds a value x; ; for time interval ¢, a tag key
tki, an encryption key ek; and gf. A has ska. DA has the
verification key VK.

Outputs. A outputs sum; = 3.7, x;,; and DA outputs the
result of the verification.

Protocol steps for each time interval t:

(1) Each U; computes ciphertext c; ; and tag value o; ; for its
input x; ; as follows

ci,e = HO*1g!™ 1,y = H(t)'ki g8yt

(2) A computes V; = ([]; c,-,t)H(t)SkA = gfum’, extracts the
sum value from V; by brute-force, and finally generates the
aggregated tag as oy = [[; 0y, = H(t)%i tkiv’(gf)sum’.
Both sum; and o; are sent to DA.

(3) DA verifies the aggregation as follows:

e(0t,92) == e(H(1), vk)e(g; "™, vky).

party P; constructing a particular graph for its set and of party P,
tracing the graphs, obliviously, for the items in its set. It is worth to
note that this protocol can be instantiated for secure equality check
when the cardinality of each party’s set is one (see [8]). Similarly,
in our protocol construction we convert Ciampi-Orlandi’s PSM
protocol into a variant of secure comparison protocol and use this
comparison protocol to allow the users to get a valid encrypted tag
value if their inputs belongs to a legitimate interval.

3 OUR SECURE AGGREGATION PROTOCOL

We propose to design a new secure aggregation protocol which
considers users from whom input is collected in a privacy preserv-
ing manner, as potentially malicious. With this aim, we propose to
extend the PUDA protocol [12] by introducing a preliminary phase
where the individual tag is correctly computed only if the input
belongs to a legitimate interval. This phase involves the use of a
newly designed oblivious programmable pseudo-random function
(OPPREF) that is based on the oblivious graph tracing idea proposed
in [4]. In this section, we first define an oblivious programmable
pseudo-random function and describe a new construction for OP-
PRF. We further provide the specification of the resulting aggrega-
tion scheme.

3.1 Our OPPRF Construction

An oblivious pseudo-random function (OPRF) [5] is a two-party
protocol where party P; and party P respectively inputs a key K
and a string x and P, outputs Fx (x) where F is a pseudo-random
function family that receives a key K and a string x and outputs a
random-looking result (P; outputs nothing).

An oblivious programmable pseudo-random function (OPPRF)
[10] is defined as an extension of OPRF whereby the protocol out-
puts predefined, specific values for some of the programmed inputs
(and random-looking outputs for other values).

For our secure aggregation protocol, we construct a variation of
OPPREF such that P, corresponding to the user, can learn a specific

value only if x is smaller than a predefined threshold value. Other-
wise, the user learns a random-looking value (i.e., Fx(x)). For this
purpose, we introduce our OPPRF protocol (described in Function-
ality 2) to be run between a user (P2) holding private input x and
an aggregator (P;) holding secret key g% and threshold value A. At
the end of the protocol, P; learns k,pprr(g%)*, only if x is smaller
than or equal to A and the Py learns ko, . This value helps the
user contribute to a valid construction of the validation tag. If, on
the other hand, x > A, then the user learns a random-looking value
and thus the tag verification will later fail. It is worth to note that
the aggregator learns nothing about the private input x.

Functionality 2: Oblivious Programmable Pseudo Random
Function
Parameters. A generator g of a group G.
Inputs. P, inputs x, P; inputs a threshold value A and secret
keys g%.
Outputs. If x < A then P; learns ko, r(9%)*, otherwise the
user outputs a random value. P outputs Kopprf-

For the sake of clarity, the specification of a simple version of
our OPPRF protocol is provided in Protocol 3. This protocol can
only be executed with positive integer inputs. An improved version
also supporting negative integers is described in Appendix A.

More specifically, the user and the aggregator run [OT protocols
where [is the bit length of x. In each OT execution, the user learns
a masked piece of the information about the result (¢%)* and a
key which is necessary to remove the masks on the result if x < A.
More precisely, in the i-th OT the user learns (g“)ZH"i-lr"ki-1
where roki-1 is the mask and x;_p is the (i — 1)-th right most bit of
x = xp_1||...||x1]|x0. At the end of £ OTs, the aggregator sends the

|x]-1
encryption result of ko, rr~2i=0 °i and a random value under
the different keys. If x < A then the user learns the key used for
-1
izo 0k

the encryption of koppr 7™ Z i. Note that the user can extract

kopprr(g?)* as follows:

Kapprr™ 20 KX I (672170 5 roKiot) = k(9%
Otherwise, the output becomes a random value.

To enable the user to remove the mask from the actual result
only when x < A, we utilize Ciampi-Orlandi’s PSM protocol, which
is based on oblivious graph tracing. The aggregator assigns three
encryption keys for each bit of x and builds a chain of encryption
keys to build a secure comparison protocol. Figure 1 shows an
example graph for A = (100). Since the leftmost bit of A is '1’, the
user learns k2< when the leftmost bit of x is ’0’, otherwise learns
k; after the execution of the first OT. Let us assume that x = (001).
After the execution of the first OT protocol, the user learns k. After
the second execution of OT, since the second bit of x is ’0’, the user
receives Ej< k), Ep; (kT) and Ep> (k7). Because the user holds
key k5 received from the previous OT protocol, can only decrypt
Ejs (kS)L. After the decryption operation the user learns k;S. Since

the user only knows k;°, it can only recover k; that is finally

!t is worth to note that the encryption function has the property that the user can
validate whether the decryption operation is successful or not.

Protocol 3: (Our OPPRF Protocol)

Inputs. Py inputs x of length ¢, P; inputs a threshold A and
secret keys g%.
Outputs. If x < A then P outputs kopprr(g?)”, otherwise
outputs a random value. Py outputs Kopprf-
Protocol steps:
(1) Py randomly chooses k., r € G and prepares (S?,S}) for
1 < i < ¢, which are the input message pairs for each OT, as
follows:
(a) Chooses four symmetric keys ké’ » k; » k(?_l,
randomly and a random value r and then computes Sg

and oky_q

and Sll; as follows:

-1 .
§0 = {ky_ p(qa)oxzf_lroh‘l} iflp1=0
‘£ (k0 (g™ roke-1} otherwise
-1 i
gl = {k7_ 1,(9“)“2[_1’0](”’1} ifAp1=0
¢ {k;_» (g2 poke-1y otherwise
(b) Fori=¢—-1to1
e Chooses four symmetric keys kl vk kl.>_1, and
ok;j_1 randomly and computes S? and Sll as follows:

IfA;—1 =0,
i-1
S7 = {Epe= (k) Ex(ky), Eg= (k7), (9) ™ rokim1y

St = {Ex= (k). Ex= (k7). By (k7). (g°) P2 rokimn}
Otherwise,
Sy = {Ex= (k2. Eg= (k2), By (K721, (9°)Ox2' ! okioy

St = Bk (k). B (K), B (7). (g2 rokiony
(c) Permutes the ciphertexts in S? and Si1 for1<i<¢,
randomly.

(2) P; and P; run ¢ oblivious transfer protocols where in the
i-th OT P; inputs the message pair (SO S 1) and P; inputs
xi—1 as the choice bit and P, learns Sx‘ L

(3) P; chooses a random number r’ and a key kopprf to mask

-1
the result, computes Eko< (Kopprfr™ Lizp okiy,

Ey- (kopprir™ T oki), and Eko> (r") and sends the
encryption results in random order to Ps.

(4) P, sets result = (g“)zfileflr"kffl from the received
message S;“ in the ¢-th OT. P; also sets k;_, as the key in
the received message.

(5) Fori={—-1to1 _

(a) Po sets result = result X (g“)zl_lxi*1r0k5*1 from the
received message S; '~ in the i-th OT. P, will also be able
to decrypt only one of the ciphertexts in the received
message using k; and sets k{_, as the decryption result.

(6) P2 will be able to decrypt only one of the ciphertexts
received in Step 3 using kj and multiplies the result with
the decryption result.

(7) P; and Py respectively output result and kopp; £

used to encrypt the mask needed to hide output kopprr(9%)*. The

N
N
\

Figure 1: Graph representation of key encryptions executed
by the aggregator for 1 = (100). Note that the path to k; is
never used in this example. If the left-most bit of A was ’0’,
then the path to k5 would not be used.

e

(=)
)

=]
—

|
o

—

|

o

=

0

(=)

—
|«
47

lol

underlying OT protocol for each step of our OPPRF is specified in
Protocol 3. In step 1, the aggregator prepares message pairs for OTs
(one message for each potential bit value). These messages include
the encryption of keys used to encrypt/decrypt the messages for
the next step. Hence the chain of OT protocols follow the actual
graph of encryption keys illustrated in Figure 1: The keys in the
child nodes are encrypted with the keys in the parent nodes. In Step
5 of Protocol 3, the user obliviously traces this graph, which allows
the user to learn only one of the keys in the leaves. The execution
of our OPPREF protocol for the example where A = 100 and x = 001
is depicted in Figure 2. As seen from the figure, since the private
input of the user is less than the threshold value, the user is able to
compute (g%)*.

3.2 Our Secure Aggregation Protocol

In this section, we introduce our secure aggregation protocol which
is secure against honest-but-curious aggregator (A). The aggrega-
tor and users respectively input a threshold (1) and private input
(ox; for U;), and the aggregator outputs the sum of the users’ inputs
if each user’s input is smaller than A, otherwise the aggregator
outputs an error indicating that at least one of the user’s input is
larger than A. For the design of our solution we use the idea in the
PUDA protocol [12]. In PUDA, the aggregator can be malicious
and the users are assured that the sum of their inputs is not altered.
In our case, in addition to the correctness of the actual sum, the
aggregator ensures that the private input of each participating user
is smaller than the threshold 1.

Our protocol steps are given in Protocol 4. Similar to PUDA, a
preliminary setup phase involves a trusted key dealer KO which
generates the keys used in the protocol. KD disappears afterwards.

Setup. KD takes the security parameter k as input and gener-
ates the following parameters as follows:

o Creates cyclic groups G1, G, and Gt of prime order p with
a bilinear mapping e where g; and gy are respectively gener-
ators of G and Gyo.

e Selects a hash function H : {0,1}* — Gy.

e Selects encryption keys ek; from Z,, randomly and sends ek;
to U; in a secure way for 1 < i < n where n is the number
of users.

The user
inputs « = (001)

b=0 —»
oT | Si=
59 +—if ~

2 .
Learns k5 and (g®)0%2 pokz

b=0 ——»
59 <+

1 .
Learns k5 and (g#)0%2 rok1

b=1 —»

51147

20
Learns kg and (g@)!*2 roko

2
- k
Learns koppr 7 Do oks

OT [83 = {(Bus (9), (B (7)), (o

8 = {(Bxs (kg), (B (k
oT St ={(Brs (k5)), (Exz (
Ej< (Foppr g™ 2oic0°%0), Bz (koppryr™ 00k, amd B> (random)

and computes koppr (g“)(om>

The aggregator
inputs A = (100), a, and koppr s

(g vk}
,((g“)1X227‘0k2)}

), ((g")°%2 rokn)}
). ((g7)1 =2 rokn)}

=
=V o=V

(k5)), ((g")°* roko)}
(53)), ((g%) 2" roko)}

Ek]>
Ek|>

Figure 2: Execution of Protocol 3 for x = (001) and A = (100).

e Computes skq = — 3.7 ek; and sends sk to A.

e Receives g;ki from U; where tk; is chosen randomly by the
user.
e Computes a part of the verification key vk; = gzz tki and

sends vk to A.

Protocol 4: (Our Secure Aggregation Protocol)

Parameters. H, p, g1, g2, G1, G2, G, €

Inputs. U; inputs value x; ; for time interval t, tag key tk;,
encryption key ek;. A inputs sk4 and vk;.

Outputs. The A outputs an alert if at least one x; ; is larger
than A, otherwise outputs sum; = Z;’:l Xi,t-

Protocol steps:

(1) Each U; computes the ciphertext as ¢; ; = H(t)ekigfi" and

sends it to A.

(2) A chooses a random number a;, runs Protocol 3 with each

U;. U; learns koppr f; t(gft)x“ if x; s < A, otherwise
learns a random number. Let 0, , denote the output of
U; in Protocol 3.

(3) Each U; computes the tag value as 0; ; = H(t)tkioop,fi’t
and sends it to A.

(4) A, computes V; = ([; ¢i.) H(t)ka = gf“m’, extracts sum;
from V; and computes the aggregated tag value
o = Hi(o'i,t/kopprf,-,z) = H(t)Zi tki,t(gf)sumt.

(5) A, verifies the aggregation by checking the equation
elor.g2) == e(H(1), vk1)e(g5"™ . gf)

(6) If the verification fails, A discards the sum value.

4 APPLICATION TO FEDERATED LEARNING

In this section, we show how to use our proposed secure aggregation
protocol in a real case study which consists of a federated learning
(FL) scheme. By definition a federated learning scheme allows the
training of a model across multiple edge devices holding local data

samples, without exchanging them. Particularly, we demonstrate
how to prevent backdoor attacks in FL, where a malicious data
owner tries to perturb the joint model only for certain inputs with
specific characteristics, by using our secure aggregation protocol
and therefore without disclosing the local model parameters.

Case Study: Backdoor Attack. In a backdoor attack, any par-
ticipant in federated learning can replace the joint model with an-
other so that (i) the new model is equally accurate on the federated-
learning task, yet (ii) the malicious participant manages how the
model performs on an attacker-chosen backdoor subtask [1]. For
example, as demonstrated in [1], a backdoored image-classification
model misclassifies images with certain features to an attacker-
chosen class. More precisely, it was shown in [1] that a malicious
participant can manage the model to misclassify all cars with a
racing stripe as birds on CIFAR-10 dataset while preserving the
model accuracy on other inputs. Figure 3 shows some car images
that are used for the mentioned backdoor attack.

Anomalies in a Backdoor Attack: To investigate and reveal
potential anomalies caused by a backdoor attack, we implemented
the backdoor attack demonstrated in [1] on CIFAR-10, and analysed
the local model weights for both malicious and benign participants
in a comparative manner. In our experimental setting, we used 10
clients, one of which is malicious and the others are benign. Figure
4 shows some statistics of the gradients in the bias values of the
last layer for 10 local models (i.e the difference between the bias
values of the joint model and the local model). Figure 4a shows
the absolute sum of the bias gradients for 10 clients at training
round 1, where the malicious client (i.e. client 1) is indicated with
red color. According to the figure, the malicious client’s bias val-
ues deviate from the joint model more with respect to the benign
clients’ ones, which could be a sign of anomaly for backdoor attack.
Similarly, Figure 4b and Figure 4c respectively show the maximum
and minimum values for the model bias gradients, where the mali-
cious client has the greatest absolute values. Figure 4d, 4e and 4f

Figure 3: Sample car images from CIFAR-10, with racing stripe, used for backdoor injection [1].

Gradient sum for clients model weigth

Gradient max for clients model weigth

Gradient min for clients model weigth

20

15

Sum

Max
o
N
S

0.5

0.0 0.00

Clients Clients

(a) Sum of the gradients

Gradient sum for clients model weigth

(b) Max gradient

Gradient max for clients model weigth

-0.05

-0.10

0.5

0.4

Sum

0.2

0.1

0.0

Clients Clients

(d) Sum of the gradients

(e) Max gradient

-0.15
£
H
-0.20
-0.25
-0.30
7 8 9 10 1 2 3 4 5 6 7 8 9 10
Clients
(c) Min gradient
0.00 Gradient min for clients model weigth
-0.05
£ -0.10

-0.15

-0.20

Clients

(f) Min gradient

Figure 4: (a), (b), (c) at round 1 and (d), (e), (f) at round 30

depict similar graphs for round 30, which display identical pattern?.
From these experimental results, we observe that a backdoor attack
in federated learning setting creates anomaly in bias values. This
could be used to detect this type of attacks. Therefore, our secure
aggregation protocol enabling the blind verification of each user’s
input can be executed for this layer only and the aggregation of
other parameters in previous layers can be performed with simpler
secure aggregation solutions (such as [17]) that do not consider
users as malicious.

Impact of Truncation on FL Performance. To perform the
actual operations of the proposed secure aggregation protocol over
the model weights, these values need to be transformed into inte-
gers. A truncation process would result in speeding up the execution
of our secure aggregation protocol. Therefore, we investigate the
impact of truncation on the accuracy of the joint model. We con-
ducted some experiments by applying truncation on model weights,
and compared the accuracy and loss of the joint model with the non-
truncated case. Figures 5a and 5b respectively show the averaged

2We do not display the parameters for each round because they show similar behaviour
as the 1-st and 30-th rounds.

joint model accuracy and loss over 10 trials at each training round
for both cases: where weights are truncated to 3 significant digits;
where there is no truncation. We observe that truncation does not
have a significant impact on both the model accuracy and the loss
as the corresponding curves overlap to a large extend, while minor
differences between the curves may be due to the stochastic nature
of model training.

Impact of Multiple Malicious Users. We have also investi-
gated the case where multiple malicious users could collaboratively
perturb the model. In this new experiment, we consider that the
malicious data is uniformly distributed among malicious users. We
studied three main scenarios: (i) 1 malicious user with malicious
data rate of 1/3, (ii) 2 malicious users with malicious data rate of
1/6 for each, and finally (iii) 5 malicious users with malicious data
rate of 1/15 for each. Figure 6 exhibits the absolute sum of the bias
gradients for 10 clients at training round 30, where the malicious
clients are illustrated with red color. We observe that with the in-
crease of number of malicious users, it is getting more difficult to
differentiate them from legitimate ones. Therefore our solution is
effective up to a certain number of malicious users (such as in [15]

Model Accuracy (averaged over 10 trials)

0.9
—— Truncated
0.8 1 No truncation
0.7
0.6 4 e) ~
o \/ﬁ/\,” ,J«»V‘\//-\'\J“ \A_/\/\/\Nv \\/ﬁ\»/~~»
8 0.51
5 /
S04 /“
<
0.3
|
024 |
0.1
0.0 T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Round
(a) Accuracy
Model Loss (averaged over 10 trials)
—— Truncated
No truncation
2.4 4

Loss

i ﬂf\v\ i

i

1.8 \J
1.6 1 \J
1.4 T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Round
(b) Loss

Figure 5: Impact of weight truncation on model accuracy
and loss

where the maximal rate of malicious users is set to 50%). Further
investigation on such sophisticated attacks can be performed as
part of future work. Furthermore, the number of malicious users
does not increase the computational and communication cost of
our protocol since one OPPRF is run between each user and the
aggregator.

5 SECURITY ANALYSIS

We present a security proof sketch for our secure aggregation pro-
tocol. Similarly to [12], we first consider the aggregator as an ad-
versary and show that the proposed protocol ensures aggregator
obliviousness, i.e. that the aggregator only learns the sum of users’
inputs and nothing more. We further discuss the security of Protocol
2 against users following the simulation proof technique.

Aggregator obliviousness: The formal definition of aggregator
obliviousness is provided in [12]. Intuitively, by receiving the en-
crypted inputs from users and the corresponding tags, aggregator
A should not discover any additional information than the actual
sum. Since the proposed solution basically implements PUDA with

no modification, we can deduce that the protocol ensures aggregator
obliviousness.

Secure computation: To prove the security of the computation,
we need to compare the distribution of the outputs of all parties to
an ideal model where a trusted third party is given the inputs from
the parties, computes the function and returns the outputs and show
that the view of the adversary in the real world is computationally
indistinguishable from the simulated view (see [13] for definitions
on computational indistinguishability and security).

e Case when user U is corrupted: Consider that the simu-
lator of U, denoted as Simy, is given input x and output
kopprrg®* if x < A or random value r otherwise. In simula-
tion, we need to show that Sim; can generate the view of
incoming messages to the user. Namely, we would like to
show that the following condition holds:

{Simy (x, OPPRFy (x, ", 1)), OPPRF(x, g%, 1)}

~ {viewdTPRE (x, g%, 1), output OPPRE (x, g4, 1)}

Simy first needs to run a simulator for OT that we call
Simyor for the € OT executions. Further on, Simg; executes
the protocol as if user U and aggregator A would do.
Similar to Lemma 1 in [4], the proof uses hybrid arguments
starting from the real execution of OPPRF.
— Hybrid experiment Hj is identical to the real execution
of OPPRF.
— H; proceeds according to Hy with the difference that in
the i-th OT execution Simy ot is run on input (x¢_;, S}C:’H)
As proved in [4], the views of Simy; in the hybrid experi-
ments H; are indistinguishable with each other.
We can conclude that Simy can generate the view of incom-
ing messages to U and the indistinguishability guarantees
that a corrupted user has no advantage on differentiating
the view of U and the output of OPPREF in the real world
and the view generated by Simy; and the output of OPPRF
during simulation.

e Case where aggregator A is corrupted: The simulator of
the aggregator Sim4 is provided with the inputs to OPPRF,
namely: the secret keys g%, the threshold value A and the
output ko, To simulate A, Sim4 acts as a sender for all
OTs and sends to U {S:C"‘l} forall 1 <i <l Simy further
follows the execution of Protocol 2.

Similar to Lemma 2 in [4], the proof uses hybrid arguments
starting from the real execution of Protocol 2. As a first
step, Sim 4 randomly generates 4 X £ symmetric keys, one
additional random value, and computes (S?,Sil) according to
Step 1. Simy4 runs the simulator of £ OT protocols. Finally
Simy chooses a random number r’, a random key koppr £
and computes three values following Step 2.

We can observe that the indistinguishability between each
experiment derives from the security of OT, and the encryp-
tion algorithms. We can conclude that Sim 4 can generate the
view of incoming messages to the aggregator and a corrupted
aggregator has no advantage on differentiating the view of
the aggregator in the real world and the view generated by
Simy4 during simulation.

Gradient sum for clients model weigth

Gradient sum for clients model weigth

Gradient sum for clients model weigth

25 25

2.0 2.0

15 15

Sum
Sum

1.0 1.0

Clients

(a) 1 malicious user

0.5 0.5 0.5
v ll----l-l_ ol Tl fTTir~nr~

(b) 2 malicious users

Clients

(c) 5 malicious users

Figure 6: Sum of the bias gradients at round 30 for different number of malicious users cases

6 PERFORMANCE ANALYSIS

In this section, we analyze the complexity of our secure aggregation
protocol and validate our scheme through the implementation of
a proof of concept and its instantiation in a backdoor detection
scenario under federated learning.

6.1 Complexity Analysis

Asymptotic complexity of our OPPRF and secure aggregation pro-
tocols. In our OPPRF protocol (Protocol 3), the aggregator (P;) ex-
ecutes O(¢) OTs as the sender, O(f) symmetric key encryptions
and O(¢) exponentiations and multiplications in G;. Similarly, the
user runs O({) oblivious transfer operations as the receiver, O(¢)
symmetric key decryptions and O(¢) multiplication operations in
G1. Thus, the computation complexity of our OPPRF protocol is
O({). 1t is trivial to see that the communication complexity of the
protocol is also O(¢). Our secure aggregation protocol (Protocol
4) requires the users to run a constant number of symmetric key
operations, exponentiation and multiplication operations in G; and
one OPPREF protocol execution. Thus, the cost on users becomes
O(¢) because of the OPPRF protocol. On the aggregator side, O(n)
multiplication operations in G are executed to compute V; and o
value and O(2¢) multiplication operations in Gy are performed to
extract the aggregation result from V;. These come in addition to
O(n) OPPRF executions where n is the number of users. As a result,
the computation complexity of the aggregator becomes O(2¢ + nf).
The total communication cost becomes O(nf) because of running n
OPPREF protocols in total.

Concrete complexity of our OPPRF protocol. The aggregator pre-
pares { message pairs (S?, Sl}) by executing six symmetric key en-
cryptions, one exponentiantion and two multiplication operations
in G;. The total number of operations to produce these message
pairs approximately equals to 6¢ symmetric key encryptions, £
exponentiation and 2¢ multiplication operations. Note that the ex-
ponentiation operations (r°%%) can be done offline to lower the
online computation cost. The aggregator also performs one expo-
nentiation, one multiplication and three symmetric key encryptions
in Step 3 of Protocol 3. In addition to producing these message pairs
and ciphertexts, the aggregator plays the sender role and needs to
perform 2¢ asymmetric key decryptions for the £ OT operations.
When an OT extension method [6] is used , the cost of one OT

becomes 3¢ symmetric key encryption operations under the as-
sumption that the base OT executions are performed offline. Thus,
the total cost of running our OPPRF protocol for the aggregator
is 9¢ + 3 symmetric key encryptions, £ + 1 exponentiations and
2¢ + 1 multiplications in G; when OT extension is used. The user
(P2) performs 3¢ symmetric key operations while executing £ obliv-
ious transfer if OT extension is used (otherwise, £ asymmetric key
encryptions), 3¢ symmetric key operations to decrypt the messages
and ¢ — 1 multiplications in Gy in Step 5 of Protocol 3. Finally, the
user performs three symmetric key decryptions and one multipli-
cation to reach the output of the OPPRF protocol. Thus, the user
performs 6¢ + 3 symmetric key operations and ¢ multiplications
in total when OT extension is used. When we look at the concrete
communication complexity, we see that the total amount of data
approximately equals to 2£(3(5 + {5) where (s is the ciphertext
length of the symmetric key encryption and ¢, is the item’s length
in Gq, under the assumption that the communication cost of OT
extension is approximately equal to the length of the inputs.

Concrete complexity of our secure aggregation protocol. The aggre-
gator performs n multiplications and one exponentiation in G; and
one hash computation to compute V;, 2¢ multiplications to extract
sumy from V;, n inverse operations and n— 1 multiplications in G; to
compute oy, and finally one hash, one exponentiation in Gy, three
pairing operations and one multiplication in Gt for validation in
addition to the OPPRF executions. Thus the total computation cost
on the aggregator is two hash computations, 9nf + 3n symmetric
key encryptions, 3n + 2¢ + 2nf — 1 multiplications in Gy, n inverse
operations in Gq, nf + n + 1 exponentiations in Gp, one exponenti-
ation in Gy, three pairing operations and one multiplication in G7.
When we look at the computation cost on one user, we see that
the user needs to perform one hash operation, two exponentiations
and one multiplication in G; to compute the ciphertext and one
exponentiation and one multiplication in G; to compute the tag in
addition to the execution of OPPRF as the receiver. Thus the total
computation complexity of the user becomes one hash operation,
three exponentiations and ¢ + 2 multiplications in G; and 6 + 3
symmetric key operations. As a result, the total computation cost
of our secure protocol considering the costs on the users and the
aggregator is n + 2 hash computations, 15nf + 6n symmetric key
encryptions, 51 + 2¢ + 3n€ — 1 multiplications in Gy, n inverse op-
erations in Gy, n{ + 4n exponentiations in G1, one exponentiation

Table 1: Execution times in seconds of our secure aggregation protocol.

of users (n) 20 28 210
sum; 212 214 216 212 214 216 212 214 216
4 12 14 16 12 14 16 12 14 16
Aggregation 2.2 59 | 18.0 6.2 9.7 21.3 24.2 31.0 38.4
OPPRF 58.5 | 67.5 | 76.7 || 238.3 | 272.4 | 308.4 || 1006.4 | 1213.1 | 1209.1
Verification 2.8 3.0 2.9 10.6 10.6 10.2 444 43.6 37.1
Total time 63.5 | 76.4 | 97.6 || 255.1 | 292.7 | 339.9 || 1075.0 | 1287.7 | 1284.6

in Gy, three pairing operations and one multiplication in Gr. The
communication cost mainly results from sending the ciphertexts
and tags by users to the aggregator and from the OPPRF protocol
executed between each user and the aggregator. Thus, the total com-
munication complexity of our secure aggregation protocol becomes
2nlp + 2nl(3€s + Lp).

6.2 Experimental Verification

We implemented our secure aggregation protocol using python and
run the implementation on a standard user laptop with Intel Core i7
CPU and 32 GB RAM. We use RSA 2048 and BN256 [2] respectively
as asymmetric encryption algorithm in the oblivious transfer proto-
col and elliptic curve for the bilinear pairing needed for verification.
Instead of running every entity as a separate program thread, we
simulated them as functions to be called sequentially. To simulate
the communication, we used files where the message sender party
writes a file and the receiving party reads that file. While measur-
ing the computation time, we removed the overhead caused by file
read/write operation costs and initial key set-up procedures. We did
not use any OT extension method and also included computation
cost related to r°%i in the OPPRF protocol. Note that the usage of
OT extension, the execution of base OTs and computation of roki
offline would remarkably increase the speed of our OPPRF protocol.
We choose the AES encryption algorithm with 128-bit key length
and the statistical correctness parameter as 48 bits in the validation
of the symmetric key decryption operations.

Table 1 presents execution times of our protocol with the gran-
ularity of main functionalities (secure aggregation, OPPRF and
verification) to show the dependency of their performances with
respect to the number of users, the aggregated sum value and the
length of the input that is aggregated. Note that the execution times
presented in the table are the total execution times at the users and
at the aggregator. The aggregation time includes the time for the en-
cryption of inputs by the users, the aggregation of ciphertexts and
the extraction of the sum by the aggregator. The verification time
includes the time for the computation of tag values by the users,
the aggregation of the tags and the verification by the aggregator.
The table reports the average execution times of 20 executions of
the protocol. Note that the implementation is not speed optimized
and is just a proof of concept. With several optimizations and with
the usage of OT extension methods, we believe that the execution
times will significantly decrease.

We also integrated our secure aggregation protocol (involving
negative inputs as well) into the federated learning setting described
in Section 4 with the CIFAR dataset. We used our protocol for the
last bias values where these values for malicious users diverge from

the legitimate users’ bias values (see Section 4 for details). These
values are scaled and truncated in order for them to belong to the
{—999, .., 999} interval. The experimental results show that indeed
our protocol can help the detection of backdoor attacks.

7 CONCLUSION

We introduced a new secure aggregation solution for a particular
setting where users may provide malicious inputs to change the
aggregation result on purpose. To prevent such attacks, our solution
allows the aggregator to detect inputs larger than a predetermined
threshold value and this without learning any information about
the inputs. To develop such a solution, we proposed a new obliv-
ious programmable pseudo-random function which can also be
of independent use for further designs. This OPPRF is based on
a secure comparison protocol and is executed between the aggre-
gator and each user. Thanks to this OPPRF, the aggregator only
sums legitimate values that are under/below a certain threshold and
this, without discovering users’ inputs. This solution only supports
interval-based verification. The protocol is proved being secure
under the assumption that the aggregator is honest-but-curious.
We have also evaluated the performance of our solution. Finally,
we have instantiated our secure aggregation protocol into a fed-
erated learning scenario with the existence of an adversary who
launches a backdoor attack. In this particular scenario, the data
consists of model parameters and the aggregator compares the last
layer bias values with a pre-determined threshold in a privacy pre-
serving manner. Our protocol can also be used in other use cases
for anomaly detection such as the ones mentioned in [17]: sensor
network aggregation, smart metering, population monitoring and
sensing, etc. Future work can focus on investigating the impact of
the number of malicious users in the context of the federated learn-
ing case-study. Another direction of potential research work could
be to study a stronger adversary model whereby the aggregator is
malicious.

ACKNOWLEDGMENT

This work was funded by the Scientific and Technological Research
Council of Turkey (TUBITAK), under 1515 Frontier RD Laboratories
Support Program with project n0:5169902. This work has also been
partially supported by the 3IA Céte d’Azur program (reference
number ANR19-P3IA-0002). The authors thank Shagufta Mehnaz
for her valuable comments.

REFERENCES

[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2018. How To Backdoor Federated Learning. CoRR abs/1807.00459

[2

(3

[10

[11

[12

(13

[

=

]

[14]

(15

[16

[17

(18

(2018). arXiv:1807.00459 http://arxiv.org/abs/1807.00459

Paulo S. L. M. Barreto and Michael Naehrig. 2005. Pairing-Friendly Elliptic
Curves of Prime Order. In Selected Areas in Cryptography, 12th International
Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised Selected
Papers (Lecture Notes in Computer Science), Bart Preneel and Stafford E. Tavares
(Eds.), Vol. 3897. Springer, 319-331. https://doi.org/10.1007/11693383_22

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1175-1191.
https://doi.org/10.1145/3133956.3133982

Michele Ciampi and Claudio Orlandi. 2018. Combining Private Set-Intersection
with Secure Two-Party Computation. In Security and Cryptography for Networks
- 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Pro-
ceedings (Lecture Notes in Computer Science), Dario Catalano and Roberto De
Prisco (Eds.), Vol. 11035. Springer, 464-482. https://doi.org/10.1007/978-3-319-
98113-0_25

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005.
Keyword Search and Oblivious Pseudorandom Functions. In TCC. 303-324.
https://doi.org/10.1007/978-3-540-30576-7_17

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious
Transfers Efficiently. In CRYPTO. 145-161. https://doi.org/10.1007/978-3-540-
45146-4 9

M. Joye and Libert B. 2013. A scalable scheme for privacy-preserving aggregation
of time-series data. In Financial Cryptography.

Ferhat Karakog, Majid Nateghizad, and Zekeriya Erkin. 2019. SET-OT: A Secure
Equality Testing Protocol Based on Oblivious Transfer. In Proceedings of the
14th International Conference on Availability, Reliability and Security, ARES 2019,
Canterbury, UK, August 26-29, 2019. ACM, 12:1-12:9. https://doi.org/10.1145/
3339252.3339264

Youssef Khazbak, Tianxiang Tan, and Guohong Cao. 2020. MLGuard: Mitigating
Poisoning Attacks in Privacy Preserving Distributed Collaborative Learning. In
29th International Conference on Computer Communications and Networks, ICCCN
2020, Honolulu, HI, USA, August 3-6, 2020. IEEE, 1-9. https://doi.org/10.1109/
ICCCN49398.2020.9209670

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
2017. Practical Multi-party Private Set Intersection from Symmetric-Key Tech-
niques. In ACM CCS. 1257-1272. https://doi.org/10.1145/3133956.3134065

1. Leontiadis, K. Elkhiyaoui, and R. Molva. 2014. Private and Dynamic Time-Series
Data Aggregationwith Trust Relaxation. In CANS.

Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Onen, and Refik Molva. 2015. PUDA
- Privacy and Unforgeability for Data Aggregation. In Cryptology and Network
Security - 14th International Conference, CANS 2015, Marrakesh, Morocco, December
10-12, 2015, Proceedings (Lecture Notes in Computer Science), Michael Reiter and
David Naccache (Eds.), Vol. 9476. Springer, 3-18. https://doi.org/10.1007/978-3-
319-26823-1_1

Yehuda Lindell. 2017. How to simulate it - A tutorial on the simulation proof
technique. Tutorials on the Foundations of Cryptography. CoRR (2017).

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agiiera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Laud-
erdale, FL, USA (Proceedings of Machine Learning Research), Aarti Singh and
Xiaojin (Jerry) Zhu (Eds.), Vol. 54. PMLR, 1273-1282. http://proceedings.mlr.
press/v54/mcmahani7a.html

Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Méllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-Reza
Sadeghi, Thomas Schneider, and Shaza Zeitouni. 2021. FLGUARD: Secure and
Private Federated Learning. IACR Cryptol. ePrint Arch. 2021 (2021), 25. https:
//eprint jacr.org/2021/025

Michael O. Rabin. 1981. How to Exchange Secrets by Oblivious Transfer. Technical
Report. Harvard Aiken Computation Laboratory Technical Report TR-81. http:
//eprint.iacr.org/2005/187.pdf

Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn
Song. 2011. Privacy-Preserving Aggregation of Time-Series Data. In Pro-
ceedings of the Network and Distributed System Security Symposium, NDSS
2011, San Diego, California, USA, 6th February - 9th February 2011. The Inter-
net Society. https://www.ndss-symposium.org/ndss2011/privacy-preserving-
aggregation-of-time-series-data

W. Zheng, R. A. Popa, J. E. Gonzalez, and I Stoica. 2019. Helen: Maliciously
Secure Coopetitive Learning for Linear Models. In IEEE Security and Privacy
(S&P).

A OUR OPPRF PROTOCOL FOR NEGATIVE
NUMBERS

In this appendix, we propose a solution to make our OPPRF protocol
work for negative inputs, also. The aggregator can provide two
encryption keys kj and k;, (one used for negative values and one
for positive values) and put these keys as a message pair to one
additional OT: P, sets b = 0 or b = 1 if the input x is negative or
positive, respectively. By running the OT, P, learns only one of the
keys depending on the sign of the input. The remaining part of the
protocol is run with the input abs(x) instead of the x itself. Another
modification to be applied to our protocol is that in the message

i.ok; :
@)0,1x2'r®" py buts two possible results

a)70,1><2ir°ki)

pairs instead of putting (g
encrypted with the sign related keys as follows: E((g
i,.ok;

and Ep(@a)O,lxz """, Then, P, will be able to have only one of
the results kopprf(g“)“bs(x) or kopprf(ga)_abs(x).

https://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1807.00459
https://doi.org/10.1007/11693383_22
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1145/3339252.3339264
https://doi.org/10.1145/3339252.3339264
https://doi.org/10.1109/ICCCN49398.2020.9209670
https://doi.org/10.1109/ICCCN49398.2020.9209670
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-319-26823-1_1
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://eprint.iacr.org/2021/025
https://eprint.iacr.org/2021/025
http://eprint.iacr.org/2005/187.pdf
http://eprint.iacr.org/2005/187.pdf
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 PUDA Protocol
	2.2 Oblivious Transfer
	2.3 Ciampi-Orlandi Private Set Membership Protocol

	3 Our Secure Aggregation Protocol
	3.1 Our OPPRF Construction
	3.2 Our Secure Aggregation Protocol

	4 Application to Federated Learning
	5 Security Analysis
	6 Performance Analysis
	6.1 Complexity Analysis
	6.2 Experimental Verification

	7 Conclusion
	References
	A Our OPPRF Protocol for Negative Numbers

