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Foreword

This course was first given during a summer school on AI in Cotonou,
Benin, July-Aug. 2021. The school was organized by the Benin
Excellence NGO and the Vallet Foundation (cf.
https://www.fondationdefrance.org/fr/

au-benin-une-universite-dete-impulsee-par-la-fondation-vallet ).

The course provides basic concepts for numerical optimization

for an audience interested in machine learning

with a background corresponding to 1 year after high school

through examples coded in R from scratch.

Limitation: the algorithms are not exactly those used in
state-of-the-art deep learning, but the main concepts will be
presented.

The code, the slides and the project statement are available at
https://github.com/rleriche/Optimisation_AI_Cotonou2021
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Bibliographical references for the class

This course is based on

[Ravikumar and Singh, 2017] : a detailed up-to-date presentation of
the main convex optimization algorithms for machine learning (level
end of undergraduate, bac +3)

[Minoux, 2008] : a classic textbook for optimization, written before
the ML trend but still useful (level end of undergraduate / bac+3)

[Bishop, 2006] : a reference book for machine learning with some
pages on optimization (level end of undergraduate / bac+3)

[Schmidt et al., 2007] : L1 regularization techniques (research article)

[Sun, 2019] : review of optimization methods and good practices for
tuning neural nets.

The content of these references will be simplified for this class.
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Optimization = a quantitative formulation of

decision

Optimization is a1 way of mathematically modeling decision.

min
x∈S

f (x)

x vector of decision parameters (variables) :
dimensions, investment, tuning of a
machine / program, . . .

f (x) : decision cost x

S : set of possible values for x , search space

1non unique, incomplete when considering human beings or life
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Optimization example: design

(from [Sgueglia et al., 2018])

x = aircraft parameters (here distributed electrical propulsion)
f () = −1× performance metric (aggregation of −1× range, cost,
take-off length, . . . )
At the minimum, the design is “optimal”.
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Optimization example: model identification

(from [Fukushima et al., 2010])

x = dike position, geometry, internal pressure
f () = distance between measures (from RADARSAT-1 satellite) and
model (boundary elements, non trivial computation)
At the minimum, the model best matches measurements and should
correspond to the underground phenomenon.
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Optimization example: neural net classification
Predict if a person stays at home or goes out based on longitude,
latitude and temperature = a 2 classes classification problem.

x = neural network (NN) weights and biases
f () = an error of the NN predictions (a cross-entropy error):

e entries: e1 longitude, e2 latitude, e3 temperature

t = 1 if person stays, t = 0 otherwise

Observed data set: (e i , t i), i = 1, . . . ,N

y(e; x): output of the NN, the probability that t(e) = 1

f (x) = −
∑N

i=1{t i log(y(e i ; x)) + (1− t i) log(1− y(e i ; x))}
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(a word on the classification cross-entropy error)

View the relationship between the entry e and the class t as
probabilistic (generalizes deterministic functions): t(e) is a
Bernoulli variable with a given probability that t(e) = 1
The NN models this probability: y(e; x) is the probability that
t(e) = 1, 1− y(e; x) is the proba that t(e) = 0,
0 ≤ y(e; x) ≤ 1.
The probability of t knowing e can be written
y(e; x)t × (1− y(e; x))1−t

The likelihood of the N i.i.d observations is∏N
i=1

[
y(e i ; x)t

i × (1− y(e i ; x))1−t i
]

, to be maximized

The likelihood is turned into an error, to be minimized, by taking
− log(likelihood),

f (x) = −
N∑
i=1

{t i log(y(e i ; x)) + (1− t i) log(1− y(e i ; x))}
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Optimization example: neural net regression

learn a function from a discrete limited set of observations

e1 e2

t(e)
e1

e2
y(e; x)

x = neural network (NN) weights and biases
f () = an error of the NN predictions (sum-of-squares error):

e entries, t(e) target function to learn

observed data set, “ ” : (e i , t i), i = 1, . . . ,N

y(e; x): output of the NN, the expected value of t(e)

f (x) = 1/2
∑N

i=1(t i − y(e i ; x))2
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Optimization example: image denoising

min
x

f (x) , f (x) =
1

2

Npixels∑
i=1

(yi − xi)
2 + λ

Npixels∑
i=1

∑
j near i

|xi − xj |

λ ≥ 0 regularization constant

target image noisy (observed)

= yi ’s

denoised (optimized)

= x?

(from [Ravikumar and Singh, 2017])
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Basic mathematical concepts for optimization
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Local versus global optimum

min
x∈S⊂Rd

f (x)

global min
local min

R code to generate such a 3D plot given in the project folder,
3Dplots.R
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Gradient of a function

Gradient of a function = direction of steepest ascent = vector of
partial derivatives

∇f (x) =

 ∂f
∂x1

(x)

. . .
∂f
∂xd

(x)
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Numerical approximation of the gradient

By forward finite differences

∂f (x)

∂xi
≈ f (x + he i)− f (x)

h

Proof: by Taylor,

f (x + he i ) = f (x) + he i
>
.∇f (x) + h2/2e i

>∇2f (x +

ρhe i )e i , ρ ∈]0, 1[

∇f (x) = f (x+he i )−f (x)
h

− h/2e i
>∇2f (x + ρhe i )e i

and make h very small �

Other (better but more difficult to implement) schemes: central
differences, automatic differentiation (e.g., in TensorFlow or
PyTorch), (semi-)analytic differentiation (e.g., backpropagation in
NN).
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Descent direction

A search direction d which makes
an acute angle with −∇f (x) is a
descent direction, i.e., for a small
enough step f is guaranteed to de-
crease!

Proof: by Taylor, ∀α ≤ 0, ∃ε ∈ [0, 1] such that
f (x + αd) = f (x) + αd>.∇f (x) + α2

2
d>∇2f (x + αεd)d

limα→0+
f (x+αd)−f (x)

α
= d>.∇f (x) = −1× ‖∇f (x)‖ cos(d ,−∇f (x))

is negative if the cosine is positive �
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Necessary optimality condition (1)

A necessary condition for a differentiable function to have a minimum
at x? is that it is flat at this point, i.e., its gradient is null

x? ∈ arg min
x∈S

f (x)⇒ ∇f (x?) = 0

x*
flat tangent plane
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Necessary optimality condition (2)

necessary is not sufficient (works with a max)

Le Riche et al. (CNRS/fondat. Vallet) Optimization for machine learning July 2021 18 / 62



Necessary optimality condition (3)

∇f (x?) = 0 does not make x? unique (flat valley)
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Necessary optimality condition (4)

∇f () not defined everywhere, example with L1 norm =
∑d

i |xi |
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Optimizers as iterative algorithms

We look for x? ∈ arg min
x∈S

f (x) , S = Rd

Except for special cases (e.g., convex quadratic problems), the
solution is not obtained analytically through the optimality
conditions (∇f (x?) = 0 + higher order conditions).

We typically use iterative algorithms: x i+1 depends on previous
iterates, x1, . . . , x i and their f ’s.

Often calculating f (x i) takes more computation than the
optimization algorithm itself.

Qualities of an optimizer: robustness, speed of convergence.
Often have to strike a compromise between them.
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Fixed step steepest descent algorithm (1)

Repeat steps along the steepest descent direction, −∇f (x t)
[Cauchy et al., 1847].
The size of the steps is proportional to the gradient norm.

Require: f (), α ∈]0, 1], x1, εstep, εgrad, imax

i ← 0, f best so far ← max double

repeat
i ← i + 1
calculate f (x i) and ∇f (x i)
if f (x i) < f best so far then

update xbest so far and f best so far with current iterate
end if
direction: d i = −∇f (x i)/‖∇f (x i)‖
step: x i+1 = x i + α‖∇f (x i)‖d i

until i > imax or ‖x i − x i−1‖ ≤ εstep or ‖∇f (x i)‖ ≤ εgrad

return xbest so far and f best so far
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(code organization)

mainOptim.R: main script for starting the descent algorithms.

gradient descent.R: gradient-based descent algorithms; the
current gradient fixed-step version, and the ones coming up.

line searches.R: line search routine.

test functions.R: a collection of test functions.

3Dplots.R: plots a 2 dimensional function in a 3D dynamic plot
+ contour plot.

utilities optim.R: additional routines.

restarted descent.R: program to restart the descent search
+ associated vizualizations.

neural net.R: a feedforward network coded from scratch.

main neural net.R: main script for learning a neural network
with the optimization functions.

Le Riche et al. (CNRS/fondat. Vallet) Optimization for machine learning July 2021 24 / 62



Fixed step steepest descent algorithm (2)

The choice of the step size factor α is critical : the steeper the
function, the smaller α. Default value = 0.1

The true code (cf. gradient descent.R) is much longer and
filled with instructions for reporting the points visited and doing
plots afterwards.

f (x) = 1/2x>Hx , H positive definite

0 20 60 100
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nb. fct. eval
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Fixed step steepest descent algorithm (3)

α = 0.1 on f (x) = Rosenbrock (banana shaped) function in d = 2
dimensions, example of divergence:

0 20 60 100
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nb. fct. eval

lo
g(

1+
f)
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x2

−4 0 2 4

−
4

−
2

0
2
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1

x? = (1, 1) , f (x?) = 0
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Descent with line search
At each iteration, search for the best step size in the descent2

direction d i (which for now is −∇f (x i)/‖∇f (x i)‖ but it is general).
Same algorithm as before, just change the step instruction:

Require: . . .
initializations but no α now . . .
repeat

increment i , calculate f (x i) and ∇f (x i) . . .
direction: d i = −∇f (x i)/‖∇f (x i)‖ or any other descent
direction
step: αi = arg minα>0 f (x i + αd i)

x i+1 = x i + αid i

until stopping criteria
return best so far

2if d i is not a descent direction, −d i is. Proof left as exercise.
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Approximate line search (1)

Notation: during line search i ,

x = x i + αd i

f (α) = f (x i + αd i)

df (0)

dα
=

d∑
j=1

∂f (x i)

∂xj

∂xj
∂α

=
d∑

j=1

∂f (x i)

∂xj
d i
j = ∇f (x i)>.d i

In practice, perfectly optimizing for αi is too expensive and not useful
⇒ approximate the line search by a sufficient decrease condition:

find αi such that f (x i + αid i) < f (x i) + δαi∇f (x i)>.d i

where δ ∈ [0, 1], i.e., achieve a δ proportion of the progress promised
by order 1 Taylor expansion.
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Approximate line search (2)

Sufficient decrease condition rewritten with line search notation:

find αi such that f (αi) < f (x i) + δαi df (0)

dα
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Approximate line search (3)

At iteration i :

Backtracking line search (Armijo)

Require: d a descent direction, x i , δ ∈ [0, 1], ρ ∈]0, 1[, C > 0
(defaults: δ = 0.1, ρ = 0.5, C = 1)
initialize step size: α = max(C × ‖∇f (x i)‖ ,

√
d/100)

while f (x i + αd i) ≥ f (x) + δα∇f (x i)>.d do
decrease step size: α← ρ× α

end while
return αi ← α

From now on, use line search, and the number of calls to f is no
longer equal to the iteration number since many function calls can be
done during a line search within a single iteration.
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Approximate line search (4)

Look at what line search does to f (x) = Rosenbrock where fixed step
size diverged
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Better, but not perfect: oscillations make progress very slow.
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Gradient convergence speed

f (x) = 1
2
x>Hx in d = 10 dimensions, H > 0, not aligned with the

axes, condition number = 10.

0 20 60 100

0
1

2
3

4
5

nb. fct. eval

lo
g
(1

+
f)

linear 
in log(t)

Empirically (for proofs and more info cf.
[Ravikumar and Singh, 2017]): on con-
vex and differentiable functions, gradi-
ent search with line search progresses at
a speed such that f (x t) ∝ ξγt where
γ ∈ [0, 1[. Equivalently, to achieve
f (x t) < ε, t > O(log(1/ε))

log f (x t) ∝ t log(γ) + log(ξ) ⇒ log(γ) < 0 slope of

the green curve.

ξγt < ε⇔ t > log(ε)−log(ξ)
log(γ)

= −1
log(γ)

log(ξ/ε)

⇒ t > O(log(1/ε)) .
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Gradient descent oscillations

Perfect line search solves

αi = arg min
α>0

f (α) where f (α) = f (x i + αd i)

Necessary conditions of optimal step size:

df (αi)

dα
=

d∑
j=1

∂f (x i + αid i)

∂xj

∂xj
∂α

= ∇f (x i+1)>.d i = 0

If the direction is the gradient,

−d i+1>.d i = 0 i.e. d i+1 and d i perpendicular

d
d

di
i+1

i+2
gradient 
does

less oscillations
seems better d

d

di

i+1

i+2
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Gradient with momentum (1)

Recall fixed step gradient descent,

x i+1 = x i + αs i where s i = −∇f (x i)

s i , the step, corrected by a fixed or optimized (line search) α.
Introduce a momentum (i.e., a memory) in the search step
[Polyak, 1964],

s i = −∇f (x i) + βs i−1

where3 β = 0.9.
This should contribute to avoid the
oscillations occuring at the botton
of valleys.
s i still a descent direction.

3alternatively, for iteration varying momentum, βi = (i − 2)/(i + 1)
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Gradient with momentum (2)

Back to Rosenbrock, d = 2, x? = (1, 1) , f (x?) = 0,
budget=4000, x1 = (4, 4)

gradient
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The momentum acceleration allows to find the solution.
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Nesterov accelerated gradient (NAG)

Same idea as the momentum direction, but anticipate the position of
the next point in the gradient calculation [Nesterov, 1983]:

s i = −∇f (x i + β(x i − x i−1)) + βs i−1

On the sketch, ∇f turns upwards
and the step is adjusted accord-
ingly.
s i is no longer necessarily a descent
direction.
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Comparison of methods (1)

Rosenbrock, d = 2: ability to handle curved ravines
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Comparison of methods (2)

Test convergence speed on quadratic function, d = 10, cond. nb. =
100. green=gradient, red=momentum, violet=NAG
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In accordance with theory,
convergence speed of NAG
is better than momentum
which is better than gradi-
ent.
Note however the plateaus
(or “ripples”) typical of
NAG and likely magnified by
the finite difference approxi-
mation to the gradient.
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A word about constraints

{
minx∈S f (x) , S = Rd

such that gi(x) ≤ 0 , i = 1,m
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Bound constraints

S is an hypercube of Rd , S = [LB ,UB] ⊂ Rd .

It could be described by constraints, g2i−1(x) := LBi − xi ≤ 0,
g2i(x) := xi − UBi ≤ 0, i = 1, . . . , d but these constraints are so
simple that they can be directly handled by projection.

If x i is at a bound and
the search direction d i takes
it outsidea S = [LB ,UB],
project the search direc-
tion vector onto the active
bound.
Exercise: how to code this?

d

P(d)
S x

aThis can even happen for a convex function in a convex S, as the

drawing shows.
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Constraints handling by penalizations (1){
minx∈S∈Rd f (x)
such that g(x) ≤ 0

(vector notation for the constraints)

We give two techniques to aggregate f and the gi ’s into a new
objective function (to minimize).

External penalty function: penalize points that do not satisfy the
constraints

fr (x) = f (x) + r [max(0, g(x))]2 , r > 0

Pros: simple, ∇fr () continuous accross the constraint boundary
(if f and g are)
Cons: Convergence by the infeasible domain (hence external),
need to find r large enough to reduce infeasibility, but not too
large because of numerical issue (high curvature accross
constraint)
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Constraints handling by penalizations (2)

Lagrangian: for problems without duality gap4, e.g., convex
problems, there exists Lagrange multipliers λ? such that

x? ∈ arg min
x∈S

L(x ;λ?)

where L(x ;λ?) := f (x) + λ?g(x)

The Lagrangian L(;λ?) is (when no duality gap) a valid penalty
function.

Pros: duality provides a way to calculate λ?, yields a feasible
solution.

Cons: estimating λ? has a numerical cost. For most problems
with local optima there is a duality gap ⇒ rely on augmented
Lagrangians4.

4cf. duality, out of scope for this course
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Constraints handling by penalizations (3)

Example: f (x) = (x −2)2, g(x) = 4− x ≤ 0, x∗ = 4, convex problem

0 2 4 6

0
5

1
0

1
5

2
0

2
5

x

infeasible feasible

x*

x*r=1 r=10x*

f and g in black, L(x ;λ? = 4) in red,
exterior penalty fr () with r = 1 and 10 in
light and dark green, respectively.

The Lagrangian is a valid penalty here.

As r grows, x?r → x? but the curvature of
fr () increases.
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Comments on gradient based descent algorithms

Use on nondifferentiable functions:
theoretically may converge at a
point which is not a minimum even
on convex functions (e.g., if an it-
erate is at a kink). This rarely
happens in practice. Try function
f (x) =

∑d
i=1|xi | (“L1norm”) with

the code.

x1

x
2

−4 0 2 4
−

4
−

2
0

2
4

forward finite difference
estimation to the gradient:
no progress, stops at

Main flaw: gets trapped in local minima.
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Towards ML: regularized quadratic function

Let’s consider a function with a relationship to ML:

f (x) =
d∑

i=1

(xi − ci)
2 + λ

d∑
i=1

|xi | , λ ≥ 0 (1)

First term: sphere function centered at c , ci = i , i = 1, . . . , d . A
simplistic model to the mean square error of a NN where c minimizes
the training error.
Second term: L1 norm times λ. The xi ’s would be the weights of a
NN. This term helps in improving the test error. Let’s see why.
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Exercise

1 Program the regularized sphere function (1).

2 Minimize it with any version of the previous descent algorithm
with a line search in dimension d = 10 with S = [−5, 5]d . Try
several values of λ ≥ 0. What do you notice on the solution x?

found? Why, if the x ’s were a NN weights, would it improve the
generalization ability of the NN?
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Solution I

1 Cf. function sphereL1 at the end of file test functions.

2

λ = 0.01 0.99 1.99 2.99 3.99 4.99 5 5 5 5 5
λ = 1 0.5 1.5 2.5 3.5 4.5 5 5 5 5 5
λ = 3 0 0.5 1.5 2.49 3.49 4.49 5 5 5 5
λ = 5 0 0 0.48 1.50 2.49 3.51 4.50 5 5 5
λ = 10 0 0 0 0 0.16 0.90 2. 3.23 3.92 5

As λ increases, more xi ’s tend to 0. Because ci = i , the
components of lower rank are closer to 0, they are thus the first
ones to be set to 0.
This phenomenon can be better understood by interpreting
Problem (1) as a constrained optimization problem.{

minx f (x) = ‖x − c‖2

tel que g(x) = ‖x‖1 − τ ≤ 0 , τ > 0
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Solution II

has the following Lagrangian, to be minimized on x

min
x

f (x) + λ?g(x) = ‖x − c‖2 + λ?‖x‖1 − λ?τ

The first 2 terms are the regularized function (1), the last term
doesn’t depend on x . Let’s draw the sphere function and the
constraint boundary ‖x‖1:
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Solution III
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Solution IV

It is seen that the solution tends to be at a vertex of the feasible
domain, where some of the x components cancel out. This
phenomenon occurs more often when d is large and is less
obvious for d = 2.
If the x ’s were a NN weights, setting xi to 0 is equivalent to
cutting the corresponding link, thus reducing the NN capacity,
thus making it less prone to overfitting. Finding the best value
for λ is something of an art.
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Restarted local searches

Simple principle: restart descent searches from initial points chosen
at random.
Use randomness to make deterministic descent searches more robust.
A mix between 2 extremes: local vs global, line search vs volume
search, specific (to unimodal differentiable functions) vs without
assumption, efficient vs very slow.
Simplistic implementation (cf. code provided)

at a cost × nb restarts:

Require: budget, nb restarts

for i in 1 to nb restarts do
xinit <- runif(n=d,min=LB,max=UB)

res<-gradient descent(xinit,budget=budget/nb restarts)

update global search results
end for
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Restarted local searches: example

Execution of the restarted descent file.
fun <-rastrigin, d<-2, budget<-1000, nb restart<-10:

0 400 800

0
1

2
3

4

nb. fct. eval

lo
g(

1+
f)

x1

x2

−4 0 2 4

−
4

−
2

0
2

4
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Application to neural network

min
x∈[LB,UB]⊂Rd

fλ(x) = f (x) + λ‖x‖1

where, for classification,

f (x) = −
N∑
i=1

{t i log(y(e i ; x)) + (1− t i) log(1− y(e i ; x))}

and for regression,

f (x) = 1/2
N∑
i=1

(t i − y(e i ; x))2
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Exercise: regularization vs. training data size

Study the relationship between the number of training points and the
best choice of the regularization parameter.

To do this, use the file main neural net from https:

//github.com/rleriche/Optimisation_AI_Cotonou2021. It
contains the code for a 2 inputs NN in regression, ntrain is the
number of training points, lambda the regularization parameter.
Try all the combinations between ntrain=5, 10 et 50, and
λ = 0.01, 0.1 et 1.

What do you notice on the test error (rmsetest) ? How do you
explain it ? How does the training error evolve (rmsetrain) ? Same
question with the calculated solutions x??
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Solution I

Regularization vs. training size: the experiments yield:

λ = 0.01 λ = 0.1 λ = 1
ntrain=5 0.62266703 0.53166419 0.5217468
ntrain=10 0.66836290 0.21722179 0.4202079
ntrain=50 0.05191297 0.06292801 0.4229770

Table: Root Mean Square Error on the test set, ntest=100. In red:
smallest error per row (i.e., per training data set size).
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Solution II

When ntrain is small, it is best to regularize a lot: λ = 1 is the best
setting with 5 training points. Vice versa, a large training set (50
points) does not need much regularization. There is a trade-off
between the NN flexibility (that increases when λ decreases) and the
number of training points that constraint the NN: a flexible NN with
little constraints may be wrong away from the data points.

rmsetrain increases with λ since the emphasis is put on the
minimization of ‖x‖1 at the expense of data fitting.

When λ is large, some weights of the NN cancel out. The number of
null weights grows when the size of the training set diminishes.
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Conclusions

Numerical optimization is a fundamental technique for
quantitative decision making, statistical modeling, machine
learning, . . .

The enthousiasm for machine learning has led to very many
optimization algorithms which we did not discuss in this
introductory course: see for example
[Sun et al., 2019, Sra et al., 2012].

Also not covered yet emerging: Bayesian optimization for
hyper-parameters tuning (regularization constants, number of
NN layers, types of neurons, parameters of the gradient based
algorithms) [Snoek et al., 2012].

Le Riche et al. (CNRS/fondat. Vallet) Optimization for machine learning July 2021 59 / 62



References I

Bishop, C. M. (2006).
Pattern recognition and machine learning.

Cauchy, A. et al. (1847).
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