Optimization = a quantitative formulation of decision

Optimization is a 1 way of mathematically modeling decision. min x∈S f (x)

x vector of decision parameters (variables) : dimensions, investment, tuning of a machine / program, . . . f (x) : decision cost x S : set of possible values for x, search space 1 non unique, incomplete when considering human beings or life Optimization example: design (from [START_REF] Sgueglia | Exploration and sizing of a large passenger aircraft with distributed ducted electric fans[END_REF] x = aircraft parameters (here distributed electrical propulsion) f () = -1× performance metric (aggregation of -1× range, cost, take-off length, . . .) At the minimum, the design is "optimal".

Optimization example: model identification (from [START_REF] Fukushima | Evolution of magma conduits during the 1998-2000 eruptions of piton de la fournaise volcano, réunion island[END_REF] x = dike position, geometry, internal pressure f () = distance between measures (from RADARSAT-1 satellite) and model (boundary elements, non trivial computation) At the minimum, the model best matches measurements and should correspond to the underground phenomenon.

Optimization example: neural net classification

Predict if a person stays at home or goes out based on longitude, latitude and temperature = a 2 classes classification problem.

x = neural network (NN) weights and biases f () = an error of the NN predictions (a cross-entropy error):

e entries: e 1 longitude, e 2 latitude, e 3 temperature t = 1 if person stays, t = 0 otherwise Observed data set: (e i , t i), i = 1, . . . , N y (e; x): output of the NN, the probability that t(e) = 1 f (x) = -N i=1 {t i log(y (e i ; x)) + (1 -t i) log(1 -y (e i ; x))}

(a word on the classification cross-entropy error)

View the relationship between the entry e and the class t as probabilistic (generalizes deterministic functions): t(e) is a Bernoulli variable with a given probability that t(e) = 1

The NN models this probability: y (e; x) is the probability that t(e) = 1, 1 -y (e; x) is the proba that t(e) = 0, 0 ≤ y (e; x) ≤ 1.

The probability of t knowing e can be written y (e; x) t × (1 -y (e; x)) 1-t The likelihood of the N i.i.d observations is N i=1 y (e i ; x) t i × (1 -y (e i ; x)) 1-t i , to be maximized The likelihood is turned into an error, to be minimized, by taking log(likelihood), Optimization example: image denoising Numerical approximation of the gradient By forward finite differences

f (x) = - N i=1 {t i log(y (e i ; x)) + (1 -t i) log(1 -y (e i ; x))}
min x f (x) , f (x) = 1 2 N pixels i=1 (y i -x i) 2 + λ N pixels i=1 j near i |x i -x j | λ ≥ 0 regularization constant
∂f (x) ∂x i ≈ f (x + he i) -f (x) h
Proof: by Taylor,

f (x + he i) = f (x) + he i .∇f (x) + h 2 /2e i ∇ 2 f (x + ρhe i)e i , ρ ∈]0, 1[∇f (x) = f (x+he i)-f (x) h -h/2e i ∇ 2 f (x + ρhe i)e i
and make h very small

Other (better but more difficult to implement) schemes: central differences, automatic differentiation (e.g., in TensorFlow or PyTorch), (semi-)analytic differentiation (e.g., backpropagation in NN).

Descent direction

A search direction d which makes an acute angle with -∇f (x) is a descent direction, i.e., for a small enough step f is guaranteed to decrease!

Proof: by Taylor, ∀α ≤ 0, ∃ ∈ [0, 1] such that f (x + αd) = f (x) + αd .∇f (x) + α 2 2 d ∇ 2 f (x + α d)d lim α→0 + f (x+αd)-f (x) α = d .∇f (x) = -1 × ∇f (x) cos(d, -∇f (x)) is negative if the cosine is positive

Necessary optimality condition (1)

A necessary condition for a differentiable function to have a minimum at x is that it is flat at this point, i.e., its gradient is null

x ∈ arg min x∈S f (x) ⇒ ∇f (x) = 0 x* flat tangent plane

Optimizers as iterative algorithms

We look for x ∈ arg min

x∈S f (x) , S = R d
Except for special cases (e.g., convex quadratic problems), the solution is not obtained analytically through the optimality conditions (∇f (x) = 0 + higher order conditions). We typically use iterative algorithms: x i+1 depends on previous iterates, x 1 , . . . , x i and their f 's. Often calculating f (x i) takes more computation than the optimization algorithm itself. Qualities of an optimizer: robustness, speed of convergence. Often have to strike a compromise between them.

Fixed step steepest descent algorithm (1)

Repeat steps along the steepest descent direction, -∇f (x t) [START_REF] Cauchy | Méthode générale pour la résolution des systèmes d'équations simultanées[END_REF]. The size of the steps is proportional to the gradient norm.

Require: f (), α ∈]0, 1], x 1 , step , grad , i max i ← 0, f best so far ← max double repeat i ← i + 1 calculate f (x i) and ∇f (x i) if f (x i
) < f best so far then update x best so far and f best so far with current iterate end if direction: neural net.R: a feedforward network coded from scratch. main neural net.R: main script for learning a neural network with the optimization functions.

d i = -∇f (x i)/ ∇f (x i) step: x i+1 = x i + α ∇f (x i) d i until i > i max or x i -x i-1 ≤ step or ∇f (x i) ≤ grad return x best

Fixed step steepest descent algorithm (2)

The choice of the step size factor α is critical : the steeper the function, the smaller α. Default value = 0.1 The true code (cf. gradient descent.R) is much longer and filled with instructions for reporting the points visited and doing plots afterwards. Descent with line search

At each iteration, search for the best step size in the descent2 direction d i (which for now is -∇f (x i)/ ∇f (x i) but it is general). Same algorithm as before, just change the step instruction:

Require: . . . initializations but no α now . . . repeat increment i, calculate f (x i) and ∇f (x i) . . . direction: d i = -∇f (x i)/ ∇f (x i) or any other descent direction step:

α i = arg min α>0 f (x i + αd i) x i+1 = x i + α i d i until stopping criteria return best so far
Approximate line search (1)

Notation: during line search i, x = x i + αd i f (α) = f (x i + αd i) df (0) dα = d j=1 ∂f (x i) ∂x j ∂x j ∂α = d j=1 ∂f (x i) ∂x j d i j = ∇f (x i) .d i
In practice, perfectly optimizing for α i is too expensive and not useful ⇒ approximate the line search by a sufficient decrease condition:

find α i such that f (x i + α i d i) < f (x i) + δα i ∇f (x i) .d i
where δ ∈ [0, 1], i.e., achieve a δ proportion of the progress promised by order 1 Taylor expansion.

Require:

d a descent direction, x i , δ ∈ [0, 1], ρ ∈]0, 1[, C > 0 (defaults: δ = 0.1, ρ = 0.5, C = 1) initialize step size: α = max(C × ∇f (x i) , √ d/100) while f (x i + αd i) ≥ f (x) + δα∇f (x i) .d do decrease step size: α ← ρ × α end while return α i ← α
From now on, use line search, and the number of calls to f is no longer equal to the iteration number since many function calls can be done during a line search within a single iteration. Better, but not perfect: oscillations make progress very slow.

Approximate line search (4)

Gradient convergence speed f (x) = 1 2 x Hx in d = 10 dimensions, H > 0, not aligned with the axes, condition number = 10. Empirically (for proofs and more info cf.

[Ravikumar and Singh, 2017]): on convex and differentiable functions, gradient search with line search progresses at a speed such that f (x t) ∝ ξγ t where γ ∈ [0, 1[. Equivalently, to achieve

f (x t) < ε, t > O(log(1/ε)) log f (x t) ∝ t log(γ) + log(ξ) ⇒ log(γ) < 0 slope of the green curve. ξγ t < ε ⇔ t > log(ε)-log(ξ) log(γ) = -1 log(γ) log(ξ/ε) ⇒ t > O(log(1/ε)) .

Gradient descent oscillations

Perfect line search solves

α i = arg min α>0 f (α) where f (α) = f (x i + αd i)
Necessary conditions of optimal step size:

df (α i) dα = d j=1 ∂f (x i + α i d i) ∂x j ∂x j ∂α = ∇f (x i+1) .d i = 0
If the direction is the gradient, Gradient with momentum (1)

-d i+1 .d i = 0 i.e.
Recall fixed step gradient descent,

x i+1 = x i + αs i where s i = -∇f (x i)
s i , the step, corrected by a fixed or optimized (line search) α.

Introduce a momentum (i.e., a memory) in the search step [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF],

s i = -∇f (x i) + βs i-1
where3 β = 0.9. This should contribute to avoid the oscillations occuring at the botton of valleys. s i still a descent direction.

Back to Rosenbrock, d = 2, x = (1, 1) , f (x) = 0, budget=4000, x 1 = (4, 4) gradient The momentum acceleration allows to find the solution.

Nesterov accelerated gradient (NAG)

Same idea as the momentum direction, but anticipate the position of the next point in the gradient calculation [START_REF] Nesterov | A method for unconstrained convex minimization problem with the rate of convergence 2)[END_REF]:

s i = -∇f (x i + β(x i -x i-1)) + βs i-1
On the sketch, ∇f turns upwards and the step is adjusted accordingly. s i is no longer necessarily a descent direction.

Rosenbrock, d = 2: ability to handle curved ravines In accordance with theory, convergence speed of NAG is better than momentum which is better than gradient.

Note however the plateaus (or "ripples") typical of NAG and likely magnified by the finite difference approximation to the gradient.

Bound constraints

S is an hypercube of R d , S = [LB, UB] ⊂ R d .
It could be described by constraints, Constraints handling by penalizations (1)

g 2i-1 (x) := LB i -x i ≤ 0, g 2i (x) := x i -UB i ≤ 0, i = 1, . . . ,
min x∈S∈R d f (x) such that g (x) ≤ 0
(vector notation for the constraints)

We give two techniques to aggregate f and the g i 's into a new objective function (to minimize).

External penalty function: penalize points that do not satisfy the constraints

f r (x) = f (x) + r [max(0, g (x))] 2 ,
) := f (x) + λ g (x)
The Lagrangian L(; λ) is (when no duality gap) a valid penalty function.

Pros: duality provides a way to calculate λ , yields a feasible solution.

Cons: estimating λ has a numerical cost. For most problems with local optima there is a duality gap ⇒ rely on augmented Lagrangians4 .

Constraints handling by penalizations (3) f and g in black, L(x; λ = 4) in red, exterior penalty f r () with r = 1 and 10 in light and dark green, respectively.

Example: f (x) = (x -2) 2 , g (x) = 4 -x ≤ 0, x * = 4, convex problem
The Lagrangian is a valid penalty here.

As r grows, x r → x but the curvature of f r () increases.

Towards ML: regularized quadratic function

Let's consider a function with a relationship to ML: As λ increases, more x i 's tend to 0. Because c i = i, the components of lower rank are closer to 0, they are thus the first ones to be set to 0. This phenomenon can be better understood by interpreting Problem (1) as a constrained optimization problem.

f (x) = d i=1 (x i -c i) 2 + λ d i=1 |x i | , λ ≥ 0 (1)
min x f (x) = x -c 2 tel que g (x) = x 1 -τ ≤ 0 , τ > 0

Solution IV

It is seen that the solution tends to be at a vertex of the feasible domain, where some of the x components cancel out. This phenomenon occurs more often when d is large and is less obvious for d = 2. If the x's were a NN weights, setting x i to 0 is equivalent to cutting the corresponding link, thus reducing the NN capacity, thus making it less prone to overfitting. Finding the best value for λ is something of an art.

Restarted local searches

Restarted local searches: example

Execution of the restarted descent file. fun <-rastrigin, d<-2, budget<-1000, nb restart<-10:

Conclusions

Numerical optimization is a fundamental technique for quantitative decision making, statistical modeling, machine learning, . . . The enthousiasm for machine learning has led to very many optimization algorithms which we did not discuss in this introductory course: see for example [START_REF] Sun | A survey of optimization methods from a machine learning perspective[END_REF][START_REF] Sra | Optimization for machine learning[END_REF]. Also not covered yet emerging: Bayesian optimization for hyper-parameters tuning (regularization constants, number of NN layers, types of neurons, parameters of the gradient based algorithms) [START_REF] Snoek | Practical bayesian optimization of machine learning algorithms[END_REF].

 network (NN) weights and biases f () = an error of the NN predictions (sum-of-squares error):e entries, t(e) target function to learn observed data set, " " : (e i , t i), i = 1, . . . , N y (e; x): output of the NN, the expected value of t(e) f (x) = 1/2 N i=1 (t iy (e i ; x)) 2

 so far and f best so far (code organization) mainOptim.R: main script for starting the descent algorithms. gradient descent.R: gradient-based descent algorithms; the current gradient fixed-step version, and the ones coming up. line searches.R: line search routine. test functions.R: a collection of test functions. 3Dplots.R: plots a 2 dimensional function in a 3D dynamic plot + contour plot. utilities optim.R: additional routines. restarted descent.R: program to restart the descent search + associated vizualizations.

 descent algorithm (3) α = 0.1 on f (x) = Rosenbrock (banana shaped) function in d = 2 dimensions, example of divergence:

 Look at what line search does to f (x) = Rosenbrock where fixed step size diverged

d i+1 and d i perpendicular

First

 term: sphere function centered at c, c i = i , i = 1, . . . , d. A simplistic model to the mean square error of a NN where c minimizes the training error. Second term: L1 norm times λ. The x i 's would be the weights of a NN. This term helps in improving the test error. Let's see why.

2

 Minimize it with any version of the previous descent algorithm with a line search in dimension d = 10 with S = [-5, 5] d . Try several values of λ ≥ 0. What do you notice on the solution x found? Why, if the x's were a NN weights, would it improve the generalization ability of the NN? 1 Cf. function sphereL1 at the end of file test functions.

 d but these constraints are so simple that they can be directly handled by projection.

	If x i is at a bound and		
	the search direction d i takes		
	it outside a S = [LB, UB],		
	project the search direc-		
	tion vector onto the active bound. Exercise: how to code this?	d P(d) S	x

a This can even happen for a convex function in a convex S, as the drawing shows.

 Simple principle: restart descent searches from initial points chosen at random. Use randomness to make deterministic descent searches more robust. A mix between 2 extremes: local vs global, line search vs volume search, specific (to unimodal differentiable functions) vs without assumption, efficient vs very slow. Simplistic implementation (cf. code provided) at a cost × nb restarts:

	Require: budget, nb restarts
	for i in 1 to nb restarts do
	xinit <-runif(n=d,min=LB,max=UB)
	res<-gradient descent(xinit,budget=budget/nb restarts)
	update global search results
	end for

Le Riche et al. (CNRS/fondat. Vallet) Optimization for machine learning July 2021

Application to neural network

Bibliography Le Riche et al. (CNRS/fondat. Vallet) Optimization for machine learning July 2021

July 2021

if d i is not a descent direction, -d i is. Proof left as exercise. Le Riche et al. (CNRS/fondat. Vallet) Optimization for machine learning July 2021

alternatively, for iteration varying momentum,β i = (i -2)/(i + 1) Le Riche et al. (CNRS/fondat. Vallet)Optimization for machine learning July 2021

cf. duality, out of scope for this course Le Riche et al. (CNRS/fondat. Vallet) Optimization for machine learning July 2021

Sufficient decrease condition rewritten with line search notation: A word about constraints

Optimization for machine learning July 2021

Comments on gradient based descent algorithms

Use on nondifferentiable functions: theoretically may converge at a point which is not a minimum even on convex functions (e.g., if an iterate is at a kink). This rarely happens in practice. Try function

Solution II

has the following Lagrangian, to be minimized on x

The first 2 terms are the regularized function (1), the last term doesn't depend on x. Let's draw the sphere function and the constraint boundary x 1 :

Application to neural network

where, for classification,

and for regression,

Solution II

When ntrain is small, it is best to regularize a lot: λ = 1 is the best setting with 5 training points. Vice versa, a large training set (50 points) does not need much regularization. There is a trade-off between the NN flexibility (that increases when λ decreases) and the number of training points that constraint the NN: a flexible NN with little constraints may be wrong away from the data points.

rmsetrain increases with λ since the emphasis is put on the minimization of x 1 at the expense of data fitting.

When λ is large, some weights of the NN cancel out. The number of null weights grows when the size of the training set diminishes.