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Abstract 

3D modal simulation of Hybrid Fabry Pérot (H-FP) consisting of a Bragg grating (Bg) and a 

multilayer mirror between single-mode optical fibres shows that diffraction in their multilayer is 10 

negligible, but that multimode 3D S-matrix calculation is essential in the multilayer to determine the 

adequate thickness of the interface layer with the Bg. The single-mode approximation made in 1D 

calculation is justified for their sinusoidal profile Bg, but is not at the top of the transmission peak for 

their high step profile Bg. The study of manufacturing constraints shows that feasible H-FPs, with 

rejection broad of several hundred nanometers, provide access to bandpass widths as low as 15 fm, but 15 

that the control of the bandwidth shift remains delicate for the realization of large series. The principle 

of H-FP with a high refraction index step reflector and a low step one is also valid for integrated 

optics. All weak spectral oscillations in the rejection band of H-FPs have been interpreted. Finally, the 

simulation of H-FPs with Interleaved Fibre (IF) between their 2 mirrors makes it possible to deduce 

also for H-FPs without IF and for some of their properties a quantitative model of equivalent cavity 20 

filled with homogeneous medium and with localized mirrors equidistant by a fraction of the length of 

the Bg depending only on its reflection coefficient. This equivalent cavity is used to evaluate the line 
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width. This model also applies to 2 Bg-FPs without IF with a double length of the equivalent cavity 

for the same grating. 

Highlights 25 

 Hybrid Fabry-Pérot (H-FP) = multilayer mirror + Bragg grating (Bg) = ultra-narrow bandpass 

and wide rejection 

 3D S-matrix-simulation indispensable at least to determine the boundary layer with the Bg 

even despite little diffraction in the layers, and also for Bg having high refractive index step 

 Detailed study of the transmission peak, rejection band and manufacturing tolerances of H-FP 30 

 Comparison with Bg-FP (where both mirrors are Bg) and simulation of H-FP and Bg-FP with 

fibre between their mirrors 

 Deduction of an equivalent model of the H-FP and Bg-FP explaining quantitatively their line 

width 

Keywords 35 

Narrow bandpass filter, Optical fibre, Integrated Optics, Modal Simulation, S Matrix 

1.  Introduction 

Hybrids Fabry-Pérot (H-FP) were introduced in [1] by 1D numerical simulation. They consist of a 

multi-layer mirror of all-quarter-wave optical thickness layers located at the end of a Bragg grating 

(Bg) embedded in an optical fibre, for example, so that at the interface, the periods of the grating and 40 

the multi-layer are in phase opposition (fig.1a). The interest of H-FP presented in [1] is to obtain a 

bandpass filter a few pm wide in a rejection band several hundred nanometers wide, simultaneously 

obtaining the advantages of FP with 2 Bragg mirrors (Bg-FP) and Multilayer fibred FP (M-FP) 

without their disadvantages. In [1], phase opposition was obtained by an additional photosensitization 
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of any distribution, but whose overall intensity was adjusted in the axial direction, at the interface 45 

between the multilayer glued onto the cleaved Bg. Serial multiple H-FPs were also simulated in [1]. 

Have been simulated in [2] very narrow 2-band H-FPs called "bicornes", and in [3], "chirped" Bg-H-

FPs (with pseudo-periodic Bg's whose period varies for example linearly along the optical axis z). A 

H-FP with phase opposition adjustment during the multilayer deposition by adjusting the thickness of 

its boundary layer with the end of the cleaved Bg was then experimentally performed with a 100 pm 50 

passband [4, 5]. Finally, in [6], a H-FP was performed by adjusting the phase opposition by polishing 

adjusting the millimetre to sub-millimetre length of interleaved fibre (IF) between a photo-recorded 

Bg in a cleaved fibre beyond the photo-recording, and a multi-layer mirror deposited at the end of 

another fibre (the whole being maintained in a ferrule), getting so an IF-H-FP with 9 pm passband in 

a 400 nm rejection band. This amounts to considering in addition a section of fibre interleaved 55 

between the multilayer and the Bg of figure 1a as in figure 1b. 

The 1D calculations made in [1] were based on certain assumptions: 

 Single-mode propagation throughout the Bg of the H-FP in the direction of propagation z 

 In the case of a Bg where the core refractive index nco (z) and the optical cladding index ncl (z) 

vary sinusoidally, sinusoidal variation of the effective index of the fundamental mode neff (z) 60 

 Propagation of a plane wave orthogonal to the layers through the H-FP multilayer, with in 

particular no diffraction 

Thus, Bragg gratings were simulated in 1D using the characteristic matrix method [7, 8] as multilayers 

having as refractive indices the effective indices of the fundamental mode in each sample of the Bragg 

grating period. 65 
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Figure 1.a: Schematic diagram of H-FP. Note the phase shift between the Bg period and the 

multilayer mirror period appearing at a certain z-position. In the simulations of [1, 2, 3], this position 

is any, and the phase between the two periods is adjusted by UV photo-refraction applied to the whole 

H-FP. In [4, 5], this position and so the phase, are adjusted by accurately controlling the thickness of 70 

the interface layer of the multilayer with the Bg. The representation in this diagram is not to scale. 

 

 

Place to polish 
the interleaved fibre

and abut the 
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Figure 1.b: Schematic diagram of an IF-H-FP constructed in [6]. The Bg is photo-written in a fibre 

with un-photo-written parts remaining besides with interfaces at any period position of the Bg. The 75 

multilayer is butted against one of those parts. The phase between the period of the Bg and this of the 

multilayer is any. The phase between the periods is then adjusted by several trials of polishing this 

fibre part and abutting it against the multilayer. 

 

Figure 1.c: Schematic diagram of a Bg-FP as constructed in [13]. The phase shift introduced between 80 

the periods of the 2 parts of a Bg gives them the role of the 2 Bg mirrors of a FP. 

Here, the H-FP simulations are taken over with a 3D calculation method based on the expansion in 

eigenmodes and calculation of the propagation by S-matrix. This method used in [9, 10] is well 

adapted to the calculation of multilayer filters between fibres and has shown that diffraction is 

important through a very optically resonant M-FP (Multilayer FP) between optical fibres with narrow 85 

cores. To do this, we use a configuration of guided wave software distributed by Photon Design: 

Fimmwave for mode calculation, and Fimmprop for propagation calculation by S-matrix. Radially 

about the z-axis, the thin layers of the multilayer mirrors are each considered as a fictitious fibre with a 

uniform refractive index within the metal limit boundary conditions resulting in guidance. This 
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boundary is radially located at  = F far enough from the propagation axis for the electromagnetic 90 

field to be negligible ( is the radius in cylindrical coordinates around the z axis). 

We are considering fibre optic technology here because it is well known by a broad community of 

researchers. But the concept of a hybrid FP with one mirror with a high refractive index step and the 

other with a low refractive index step can be extended to integrated optics technologies, which are 

very diverse. Of course, multilayer mirrors can only be realized at the external interfaces of integrated 95 

optics circuits, but it is possible to obtain mirrors with such a high index step as in multilayer mirrors 

even in the core of integrated optics circuits by using photolithography or etching. Moreover, the 

intermediate refractive index step range between that of thin films (from 0.1 to a few units) and that of 

photorefractive Bg (from 10-6 to 10-1 in silica [11]) is accessible in integrated optics by ion 

implantation [12]. Thus, in integrated optics, it is possible to produce hybrid filters whose mirrors have 100 

any index step between 10-6 and a few units. 

The first purpose is here to verify in which cases the assumptions made in [1] for the 1D calculation 

are verified or not. Therefore, the properties of the H-FPs will be studied more fully than in [1] by 3D 

modal simulation. In [4, 5], only experimental results on a fibred H-FP adjusted via the thickness of 

the interface layer of its multilayer with its Bg were presented: the theory and simulation will be 105 

extensively developed here. Weak spectral oscillation of the transmission in the rejection band, which 

had not been described nor interpreted before, are also studied here. We will show that the study of IF-

H-FP contains information leading to a new quantitative model to interpret the FP properties of H-FP 

and Bg-FP without IF. Here, only single H-FPs are studied, and serial multiple H-FPs will be 

presented in another publication. 110 

Bg-FP (figure 1 c) have been constructed by UV irradiation through a mask with a  phase difference 

between the periods of the 2 parts of the mask [13]. Provided that Bg-FP have poor rejection 

properties (as explained at the end of § 3.1), FP applications as bandpass filters are DWDM and 

sensors and are only industrially available in 2021 in non-fibre form thin film technology where the 
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bandwidth is at least 100 pm. We will see here quantitatively to what extent hybrid filters not only 115 

allow to strongly push back these limits, but also in fibre or integrated optics technology. 

2.  Theory 

This chapter gathers and précises some more or less known elements useful to the readers as S-matrix 

formalism, the notation used for the multilayer and Bg inside the grating, the S-matrix simulation of 

Bg, and the concept of phase difference between the periods of 2 reflectors. 120 

2.1. Summary reminder on propagation simulation by S matrix  

Since the eigenmodes of the fibres are calculated in advance by Fimmwave, Fimmprop simulates 

propagation by a simple S-matrix calculation that is much faster than a direct analytical calculation 

would have been [8, 9, 10, 14]. In all the calculations made here, we study the system's response to 

mode 1 injected only as an input into the left access, the left access fibre being identical to the right 125 

access fibre having the same number d of modes. If power 1 has been injected in mode 1 on the left, 

the device response is given by the power coefficients T1n and R1n only, where the matrices R and T 

are sub-matrix of the S-matrix (modal Reflexion from left to left, and transmission from left to right). 

These coefficients check: 

 1 1
1 1

1 Eq. 1
d d

n n C
n n

T R A L
 
    

 

130 

A represents the absorption losses if not negligible. LC is calculated by Fimmprop and represents the 

losses due to the calculation that exist if the number of modes or spatial resolution are insufficient. If A 

= LC = 0, and if there is no diffraction, for an H-FP between fibres in which the only mode 1 is 

injected on the left, Eq. 1 is reduced to T11 + R11 = 1. For such a filter, the other coefficients T1n and R1n 

are all the more important as there is diffraction in the multilayer where the beam expanding from the 135 

fibres is not guided [9, 10]. 
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2.2. Bg profiles notations & Bg S‐matrix simulation 

We call everywhere 0 the centre wavelength for which the layers of multilayer mirrors are quarter-

wavelength layers1 and it is also chosen as the Bragg wavelength of the gratings. A multilayer mirror 

between identical F fibres is noted F,[(HL)NH],F where H and L are High and low refractive index nH 140 

and nL quarter-wavelength layers of thickness tH and tL, and N is the number of periods.  

Photo-refractivity radial profile of fibres and Bg 

We consider here the case of the uniform photorefractive radial profile, which is the simplest to 

calculate. Let n(z) be the positive photorefractive variation along z of the refractive index. Let nco and 

ncl be the original fibre indices considered uniform in the core and in the optical cladding, and the 145 

indices after UV irradiation nco,i = nco + n(z) and ncl,i = ncl + n(z) considered radially uniform. In the 

case where n(z) <<< nco + ncl, then the single mode approximation can be used, since the fundamental 

mode is almost the same in the photo-sensitized part as in the non-photo-sensitized part. Modal 3D 

simulation will make it possible to verify in which cases n(z) is low enough for this approximation to 

be justified. 150 

Photo-refractivity axial profile of Bg's 

The Bg's obtained experimentally by interference [16] generally have a sinusoidal axial profile 

according to z, which is correctly sampled with 8 samples per period in the 1D model [1]. It is also 

possible to realize step rectangular axial profile gratings by masking the photo-inscription UV beam, 

or by relative displacement of the fibre to be irradiated with an impulse UV laser. 155 

"Sinusoidal" Bg: We choose to model the period of length  with a beginning and an end 

corresponding to a lack of photosensitization. Then, the core and optical cladding refractive index 

nco(z) and ncl(z) in the period are periods of sinusoids with minimums at the beginning and the end of 

the period and with a full amplitude n. We have checked that the effective index of the irradiated 

                                                      
1 0 = 4nt for a layer of thickness t and refractive index n 
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fibre follows also a sinusoidal law neff(z) with minimums at the beginning and end of the period and 160 

full amplitude n. The Bragg relationship for the fundamental mode is: 

0

0

( ) (Eq. 2)
2

eff

z

n z dz





 

The sinusoidal law neff(z) in Eq. 2 gives then: 

0 (Eq. 3)
2

2
eff

n
n


 

  
 

 

Fimmwave has functions developed to edit such adiabatic evolution devices according to z (class of 165 

"tapers" where it is here the refractive index of the core and the optical cladding that vary slowly with 

z, and where an optimizing internal algorithm does not necessarily choose zS,j samples of uniform 

length). This avoids editing each sample of a sinusoidal Bg as soon as you want to modify the 

precision of the sampling, which would be extremely tedious (would require editing each sample and 

then calculating neff of its fundamental mode). Here, it is sufficient to enter the sinusoidal functions 170 

nco(z) and ncl(z) and specify "Min_Step_Frac"  MSF  zMin/, the parameter representing the 

minimum fraction of the sample in the period. Fimmprop obtains the exact period  of the Bg by 

scanning  to obtain a minimum of T11 of the Bg of the H-FP at  = 0. We have carefully verified 

that the results are identical by introducing these elaborate functions or by introducing the period of 

the Bg sample by sample. This verification was necessary because the exact way in which speed 175 

sampling is done by Fimmprop in the tapers is a trade secret that is not disclosed. 

“Quarter-wave” Bg: We define this kind of step Bg as a grating with 2 samples per period, of 

different lengths, built quite like a quarter-wavelength multilayer mirror. The first sample of the Bg 

period is the input-output fibre of the H-FP. The other sample has its core and optical cladding indices 

incremented by the same n value by photo-refractivity. The thickness of each sample is then: 180 
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 
,

0
, Eq. 4

4
l h

l h

eff

t
n




 

where the low and high effective indices of the fundamental modes of the respective 2 samples are 

involved. The quarter wave Bg is convenient to set the phase shift between mirror periods (e.g. by 

ending the Bg with a th photo-written Bg fibre section on which the first complete H layer of tH 

thickness is deposed). So, the quarter-wavelength Bg leads to quick conclusions on step Bg's with 185 

simulation, but is rarely manufactured, despite it could be with a mask. 

Note that the difference in refractive indices between 2 samples adjacent inside a sinusoidal Bg 

becomes as small as desired by increasing the number of samples, allowing a very fast single mode 

calculation. Thus, in 3D, the calculation of sinusoidal Bg's in single mode approximation promises to 

be much faster than the mandatory multimode calculation of step Bg's with high n. To predict the 190 

number of useful modes for simulating step Bg's, we will proceed as follows: 

 We consider only the fundamental mode in the input and output fibres, as well as in the non-

photosensitized part of the Bg period, which is identical to these fibres 

 By analysing with Fimmprop the device constituted by a single period of the Bg, composed of 

non-photosensitized fibre followed by a joint and with photosensitized fibre, we look for the 195 

expression of the mode of the 1st fibre of the period in the base of the modes of the second, 

i.e. the coefficients T1n of the S-matrix of this device, retaining only the highest T1n value 

modes. This composition of modes in the second fibre then reforms the fundamental mode of 

the first if it is injected into a subsequent period of the Bg, confirming the possibility of single 

mode simulation in the first fibre of the period. The acceptable limit is confirmed by checking 200 

whether for the global balanced hybrid filter, T11 is sufficiently close to 1 at 0 with respect to 

the criterion that has been set. 

Except for the determination of these limits, most of the properties of H-FPs are identical for 

sinusoidal or step Bg's: we will therefore check them only on H-FP with sinusoidal Bg's, faster to 

calculate. 205 
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2.3. Definition of the phase shift of the Bg and multilayer periods 

The period phase definitions for initially setting intuitively the correct phase shift at the interface 

between the Bg period and that of the multilayer mirror are as follows: 

 For the Bg, we set the phase origin at z0 = 0 where neff (z) = 0, and the phase of the period is 

defined as: 210 

   
 

 
   

0

0

0

0

0 2 Eq.52

z z

eff

z z

z

eff

z z

n dzz

zz

n dzz

   










  





 

 Inside the quarter wavelength multilayer mirror, the beam is strongly multimode and 

bidirectional. The only simple approximation we can try to make before using Fimmprop is to 

assimilate it as in the 1D model to a plane wave propagating orthogonally to a stack of layers 

of refractive indices nL and nH. The calculations made with Fimmprop will tell us if this 215 

approximation is justified. We set the origin z0 = 0 at the centre of a quarter wavelength layer 

L, and with the period thickness eP = eH + eL, the phase of the period is defined as: 

   
 

 
   

0

0

0

0

0 2 Eq.62
P

z z

z z

z e

z z

n dzz

zz

n dzz

   








  



 

Thus, we can easily find that for a multilayer mirror, in the direction of increasing z, the phase is /2 at 

the beginning of an H-layer of the period starting in the middle of a layer L, in its centre, and 3 /2 220 

at its end.  

For the Bg, we could find according to intuition that the phase is  in z = /2 and 2 in . On the 

other hand, only the integration formula makes it possible to find the less intuitive results2: 

                                                      
2 Only if n(z) was constant over the period (which is not the case!) would we have found (z)-(z0) = 2 
mantissa of (z/) and therefore the phase differences /2 instead of the 2 phase differences calculated just above. 
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2 Eq.7
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2
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   

      

        

 
Both Eq. (5, 6) will be used as first step to find the ideal phase jump between the periods of the H-FP 225 

reflectors in the S-matrix simulation. 

3.  Choice of H‐FPs structures with perfect manufacturing 

Concerning the manufacturing tolerances, the periodicity of Bg and multi-layer mirrors is sufficiently 

controlled [16, 17]. The delicate point is the control of the phase shift of their periods at the interfaces, 

particularly between the two different technologies of layer deposition and Bg cleavage or polishing. 230 

For a single serial H-FP, insufficient control of the thickness of the interface layer with the cleaved or 

polished Bg will result in a spectral shift of the transmission peak, and its subsidence.  

The ideal bandpass filter has a narrow bandwidth with step flanks and a wide rejection band with a 

high rejection ratio. In this chapter, where we are just trying to choose the structures (multilayer 

formula and Bg z-profile), the manufacturing is assumed to be perfectly controlled. 235 

Before introducing new material in this chapter, we recall some points introduced in [1]: 

 The compactness of the H-FP according to z is mainly limited by that of the Bg.  

 Outside the spectral areas where the gratings are reflective, an H-FP behaves like the 

multilayer it contains, i.e. a mirror whose reflection fixes the filter rejection.  

 Multilayer mirror’s reflection increases and approaches 100% when the number of layers is 240 

increased to a certain number determined by the qualities of the materials in terms of 

absorption.  

                                                                                                                                                                      
It is easy to check that the formula for multilayer is not suitable for Bg and vice versa (try for example the 
formula for Bg for multilayer with neff = 0 in layer L and neff = nH – nL in layer H: the phase of the period is 
then constant all along the L layer, which is not convenient!). 
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 The rejection is wider band if the mirror is made with a pair of materials having a high step of 

refractive index between them, which also has the advantage of a faster deposition of fewer 

layers.  245 

 In any case, care should be taken that some moisture-sensitive materials must be encapsulated. 

3.1. Obtaining balanced H‐FPs 

It had been demonstrated in [2] that when at centre wavelength 0, the Bg reflection equals that of 

the multilayer at 0, the H-FP is said to be balanced and a single bandwidth filter is obtained 

centred at the centre wavelength where the transmission is 100% 3. 250 

To obtain a single 100% transmission bandwidth, for a given number of layers of the multilayer 

mirror, it is therefore necessary to adjust the number of periods of the Bg to obtain a balanced H-FP, 

which is observed when its transmission goes back to 100% at 0. This was done roughly in [1] by 1D 

simulation. Here, we make it accurately in 3D S-matrix simulation. It is important not to make the 

mistake of optimizing the reflections of the multilayer mirror and Bragg grating separately at 0 255 

between 2 input-output fibres. Indeed, this gives a quite different result since the refractive index of 

one at less of the multilayer materials and that of the fibres are very different from each other. On the 

other hand, if the index step n of the quarter-wave Bg is fixed, it must be taken into account that the 

step of refractive index between the layers of the multilayer mirror being fixed at a different value, the 

values of the reflection coefficients are discrete and therefore cannot be adjusted perfectly. This is all 260 

                                                      
3 It had also been demonstrated in [2] that: 

 When at centre wavelength 0, the reflection of the grating exceeds that of the multilayer, which is spectrally 

almost invariant, a double bandpass or bicorne filter is obtained, whose bands are centred on both sides from 0 to 

wavelengths where the reflection of the grating equals that of the multilayer. 

 When the Bg reflection is lower than that of the multilayer at 0, we obtain a single bandpass filter centred at 0 but 

with a transmission level that is all the lower the more different these reflections are. 
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the more critical when n is high. So, unless n can be adjusted perfectly, the maximum transmission 

of the H-FP is in general slightly less than 1, even if the NPer number of whole periods of the Bg is 

adjusted as best as possible. 

H-FP vs Bg-FP comparison 

The main difference is that a H-FP has a spectrally uniform mirror over a very wide band compared to 265 

the main reflection band of its Bg. In a Bg-FP, Bg's have identical secondary reflection peaks at the 

same wavelengths. So at all these wavelengths, the Bg-FP is balanced and has secondary transmission 

peaks up to T11 = 1 in addition to the main transmission peak at 0. In addition to the narrow reflection 

band of their Bg, this is why Bg-FPs have a considerably narrower rejection band than H-FPs. 

3.2. Setting the phase shift of the multilayer and Bg periods 270 

Provided that the bundle of gratings has been photo-written and then cleaved or polished identically 

for every fibre by collective manipulations, adjusting this phase shift by adjusting the thickness of the 

interface layer of the multilayer as only experimentally done in [4, 5] has the advantage of easily 

allowing mass production by depositing at the end of a bundle composed of many fibres, but its 

accuracy is limited by that of the deposition technology used. On the other hand, the setting of the 275 

phase shift by UV photosensitization at the interface soon simulated in [1], subsequent to 

manufacturing, is not limited in accuracy, but is less easily suitable for mass processing. Here, we will 

therefore present the until now unpublished theory and simulations only of adjusting the thickness of 

the interface layer to evaluate its limits according to those of CVD technology. 

Note F,[(HL)NHBg],F or F,[Bg,, HL)NH],F a simple H-FP between fibres F, and F,[BgBg],F 280 

a FP purely in Bragg gratings noted Bg-FP. In each of these FPs, the mirror periods are out of phase 

by . 

 To obtain this phase shift in a H-FP with quarter-wave Bg, there are an infinite number of 

ways, but the easiest to program is to put a sample h of thickness th of the Bg (where h and th 



15 
 

have been defined for the Bg in the same way as H and tH for the multilayer) next to a layer H 285 

of thickness tH of the multilayer mirror. 

 In the case of H-FP with a sinusoidal Bg, regardless of the termination of the Bg, phase 

optimization can be simulated by scanning with Fimmprop the etrim thickness of the H layer 

adjacent to the Bg to obtain a maximum of T110) for the H-FP (an experimenter would 

control the thickness of the adjacent H layer by measuring extremes of the transmission or 290 

reflection of the filter during its deposition). 

3.3. Shift  of  a  plane  wave  FP  transmission  peak  in  function  of  etrim 

variations 

v is the wavelength in the vacuum at the top of the transmission peak. We deduce after Eq. A8 that if 

the equivalent length LEq of the cavity (filled with uniform refractive index neff) changes of LEq, the 295 

wavelength of the considered Airy peak is translated in an inversely proportional way to LEq of the 

value: 

v
v (Eq. 8)Eq

Eq

L
L

 
 

The Appendix A model on plane wave FP in which the reflection coefficients of the mirrors are real is 

useful especially for simulating H-FP with IF where the phase opposition between the periods of the 300 

mirrors is determined by adjusting the length of IF. For H-FP without IF, the multilayer mirror has a 

complex reflection coefficient whose complex exponential parts phase shift can be grouped into the 

phase  defined in Eq. A2 and modified according to: 

2 2 /( ) ( ) E2 2 /  ' (  ). 9qeff H trimn f c L n f c e     

where e'trim is a fictive suitable thickness of material H to express the phase shift between the mirrors, 305 

and remaining less than around 0. If the thickness etrim of the layer H boundary with the Bg varies, we 

have e'trim = etrim. After Appendix A, we arrive to: 



16 
 

(Eq. 10)
'

H V H V
V trim trim

eff Eq H trim eff Eq
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    


  

The last approximation is valid because etrim < 0 and the results of § 4.6.3 will show that for any H-

FP, Leq >> 0. 
310 

 

3.4. Secondary transmission peaks of the H‐FP 

The existence of a single peak transmitting almost 100% in a narrow band for the single H-FP is due 

to the uniqueness and spectral narrowness of the band where the H-FP is balanced. However, 

secondary transmission peaks studied here for the first time may occur: 315 

 Since at wavelengths other than 0, the multilayer keeps an approximately uniform reflection 

and much higher than that of the quasi-zero Bg, even for the much higher secondary reflection 

peaks of the Bg, the H-FP is very unbalanced. So, even with the right period phase shift, its 

corresponding secondary transmission peaks are therefore necessarily very low. 

 Another source of low resonances outside the Bg reflection band could be the low dioptre 320 

between a feed fibre nco,cl and the Bg fibre, which outside its reflection band is a fibre of 

average index nco,cl +n/2. 

 A conventional FP has spectrally uniform, infinitely thin mirrors, separated by a well-defined 

length L, and therefore 100% transmission Airy peaks separated by f = c / (2neff L). This is not 

the case here because the Bg has a few mm to a few cm lengths, and is spectrally selective. 325 

Only numerical simulation will tell us whether such small secondary peaks have a significant 

amplitude anyway, and what are their spectral properties. For a first fast reading of the whole paper, 

we signal optional skip reading the chapters dealing with those simulations (4.5.1; 4.5.2; 4.6.2). 
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4.  Simulation results 

For the first time, 3D simulations of hybrid filters are presented here. They will be used mainly to 330 

check the 1D calculation on the main transmission peak of the hybrids, precise the interface layer 

thickness accuracy exigence, and also to simulate their unpublished secondary transmission peaks. 

4.1. Simulation parameters and calculation convergence criteria 

The calculations are all the more accurate when F is sufficient and the "precision parameters" are 

high, which are: the spatial resolution, the number NMod of modes in each fibre, and the minimal 335 

sample length in the Bg period. Nevertheless, quick and sufficiently accurate calculations are obtained 

for the lowest possible values of these parameters. The criteria used to ensure the accuracy of the 

calculations will not be recalled each time, but the methods generally used to set these parameters are 

among the following: 

 Convergence of the system S-matrix according to the value of these parameters. Most often, 340 

only mode 1 (fundamental mode of the input fibre) is injected, and it is sufficient to check the 

convergence of T110) 

 Verification of the existence of LC(z) losses due to calculations made by Fimmprop. The 

possible occurrence of calculation losses from a specific z-position in a device helps to find its 

origin. 345 

 Convergence of the modal composition of the beam into one or more z-positions in the device 

 These criteria must be applied to the complete device to be studied, but a preparatory work 

allowing a first evaluation of the precision parameters is for example to simply examine the 

injection of a mode of a fibre operating in the device into a neighbour fibre operating in the 

device. 350 

Number of modes NMod  
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The modes are such that their complex Ez component is Ez() = Ez() eim. Their real Ez component 

is then described by the m azimuthal and p polarization integer orders: 

     
     

 
For modes with order  1 , sin

Eq. 11
For modes with order  2 , cos

z z

z z

p E E m

p E E m

   
   

  


  

 

If only a mode with m = m0 and p = p0 is injected into the input fibre, throughout the filter, it will then 355 

not be useful to consider modes other than m0, p0 modes through all the device, which considerably 

speeds up the calculations (the integrals of overlap between modes of neighbouring fibres and of 

different orders m or p would be zero, as would the matrices S of joint between these fibres). 

In this publication, the power injected into the input fibre is always the fundamental mode (mode with 

highest neff) in polarization p = 1, and with m = 1. Throughout the filter, it is therefore useless to 360 

consider in each fibre modes other than those with m = p = 1. The modes following the fundamental 

mode are numbered by decreasing neff, and have increasingly higher radial spatial frequencies. In each 

fibre, the accuracy of the beam expansion therefore increases with the number of modes. For a given 

radial resolution, the number of useful modes is therefore limited, because modes with a too high 

spatial frequency are calculated inaccurately. To check the validity of the modes of a fibre that must 365 

form an orthonormal base, Fimmwave tests their orthogonality. Number of useful modes: 

 In access fibres: One mode is sufficient if only the transmission coefficients T11 and reflection 

coefficients R11 of the fundamental mode between the access fibres have to be calculated. This 

is always the case at 0 for balanced H-FP that do not have diffraction to be evaluated and 

into which only the fundamental mode of the input fibre is injected. 370 

 In multilayers: the modes in the uniform fictitious fibres simulating their layers are very 

different from the fundamental mode of the access fibres: therefore, a very multimodal 

calculation is here mandatory. 

 In the Bg: The single mode approximation is all the better as: 
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o  the photorefractive step modulation of the refractive index remains low in front of the 375 

refractive index of the core of the fibre in which the Bg has been photo-written 

(chosen here identical to the access fibres) 

o the variation according to z of the photo-refractivity is adiabatic (e. g. sinusoidal 

profile more adiabatic than step profile). 

We consider the wavelength 0 = 1.55 m throughout the simulations. For greater numerical clarity in 380 

the spectra, the wavelength is noted  = 0 + , and the spectra are all displayed according to . The 

input and output fibres of all filters are of the SMF28 single mode standard for telecommunications at 

1.55 m (step radial profile fibre with core radius 4.m, nco = 1.449, ncl = 1.444; simulated optical 

cladding extending only to F where the field is almost null). Multilayer mirrors are always chosen 

here made with high index H in Si and low index L in SiO2 layers of quarter wavelength thickness at 385 

 and refractive indices of 3.48 and 1.444 respectively. These mirrors, whose layers have a high 

contrast index (2), when between two SMF28 fibres, have with only 7 layers (N = 3) a reflection R11 

= 99.65% between fibres. We will keep N = 3 everywhere, which allows us to obtain very resonant H-

FPs. 

4.2. Verification of the assumptions of the 1D calculation 390 

The precision parameters that allow to converge better than 0.5% on the value of T110) are in all 

cases: 

 F ≥ 20 m. The results will show that the structures studied have almost no diffraction: also 

the beam extends little radially, and it is logical to be able to use F clearly weaker than in [9, 

10] where the highly resonant multilayer M-FPs between SMF28 fibres studied introduce a 395 

lot of diffraction and where F had to be fixed at 40 m. 

 49 modes in the layers of multi-layer mirrors 
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 A radial resolution NRes = 1000 for Fimmwave's cylindrical finite difference mode solver 

(FDM) used with electric wall boundary conditions (perfect metal). 

 A 0/10 spatial resolution of the modes. 400 

For each zS,i sample of the sinusoidal Bg, the calculation by Fimmwave shows that neff (z) strictly 

follows a sinusoidal law, as was only supposed in [1]. With a photorefractive amplitude n = 2 10-3 

and for N = 3, the H-FP with rectangular Bg is balanced with 2544 periods of the Bg, while the H-FP 

with sinusoidal Bg is balanced with 2679 periods of the Bg each with length  = 0.5355622 m 

calculated with MSF = 0.025. The spectra T11() of both H-FPs are represented in figure 2 in the 2 405 

cases where their Bg are considered multimode (9 modes) or singlemode (1 mode). The following 

deductions are made: 

For the H-FP with quarter-wave Bg, the single-mode approximation in the Bg is not justified near 

resonance. In particular, the single mode 1D calculation made in [1] is only a rough approximation to 

the nearest 15% (estimated in figure 2 from the deviation of T11() calculated with 1 or 9 modes4). It 410 

has been verified that the convergence of calculations allowing to have for the H-FP T11 > 99% 

requires 9 modes in the photosensitized fibre of the Bg period. In the expansion of the fundamental 

mode of the un-irradiated fibre based on the modes of the irradiated fibre, the 1st power coefficient is 

0.999999992, the next 8 are in the range [2 10-9, 10-7], and the next smaller ones, are neglected. 

Contrary to what their low value would suggest, the coefficients of the 8 modes following the 415 

fundamental are not negligible in the calculation for the H-FP of T11 at  = 0: on the one hand 

because the Bg presents a large number of periods, and more especially because it is one of the mirrors 

of a resonant H-FP. On the scale of figure 2, we see that 9 modes are sufficient because the maximum 

of T11 () goes up to 99.13%. On the other hand, since T11() approaches 100% better than 1% 

(most part of which is due to the discrete nature of the H-FP balancing with the adjustment of the 420 

number of periods in the Bg), and since the shift of the maximum of T11() from  = 0 is only -1.25 

fm, the diffraction (accurately explained in [9, 10]) is negligible. Figure 2 shows that whereas the 
                                                      
4 Be careful that the uninformed user satisfied with a single mode calculation in the Bg could have confused this 
deviation with diffraction in the multilayer! 
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single mode simulation gives T11() = 87.68%, a resonance value 11.4% lower than that obtained 

by the multimode simulation, the difference is only significant near the H-FP resonance wavelength, 

which is the most important place to characterize a bandpass filter. For calculations outside the 425 

resonance, the single mode simulation is still correct. 

For the H-FP with sinusoidal grating and a period simulated with MSF = 0.025, the single-mode 

approximation is perfectly justified in the Bg, since T11() rises to 99.54% with 1 mode5, and since 

the maximum transmission is precisely for  = 0. The transmission peak, which has a FWHM 12.84 

pm is nearly 3 times wider than that of the H-FP with quarter-wavelength Bg (Fig. 2). The simulations 430 

have been done after setting etrim to the right value as explained in next chapter. 

 

Figure 2: T11 () for single H-FPs with quarter-wave rectangular Bg profile, or sinusoidal Bg, with 1 

or 9 modes taken into account in the Bg. The curve T11_sinus_9mod is masked by the curve 

T11_sinus_1mod on which it is perfectly superimposed. Spectral resolution 257 points. 435 

Table 1 shows some properties of balanced H-FP with sinusoidal Bg as a function of N, which 

determines the multilayer and therefore also the reflection coefficient RBg0) of the Bg alone between 

                                                      
5 the single mode calculation at 0 gives R11 = 2.74 10-8 and LC = 4.59 10-3; whereas the 9 mode calculation gives 
T11 = 99.66%, T1n other than T11} = 4.23 10-5; R1n} = 3.19 10-3; LC = 6.82 10-4 
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fibres. In Table 1, these properties are represented for only one value of the photo-refractivity 

amplitude n of the sinusoidal Bg, as simulations show that NPer and (FWHM of the transmission 

peak) are respectively almost inversely proportional and proportional to n. According to Eq. 3 or to a 440 

Fimmprop scanner calculation described in 2.2, the Bg period decreases slightly with n. Both ways 

of calculation give almost the same results6, and the result of Fimmprop is kept for later calculations 

by Fimmprop. 

  

Table 1: For a balanced H-FP with a sinusoidal Bg and n = 2 10-3, as a function of N of the 

multilayer: RBg 0) between fibres, NPer and  

N 1 2 3 

RBg0) 0.668 0.933 0.9887 

NPer 1059 1870 2679 

 (pm) 550.3 76.76 12.86 

 445 

Let H-FP1 be the single balanced multilayer H-FP with N = 3 in Si/SiO2, and Bg sinusoidal with n = 

2 10-3. For the balanced filter H-FP2 identical to H-FP1 without n = 2 10-6, and optimized etrim, the 

calculation still gives good results with T11,max = 0.997 and FWHM = 13.3 fm, (so about 12.86 fm, 

which would correspond to an exact proportionality to n in comparison with n = 2 10-3). In the 

following, we will no longer consider hybrids of this FP fineness for n less than 2 10-6, which almost 450 

corresponds to the experimental limit of realization of Bg, and already allows FWHM as narrow as 

about 15 fm.  

                                                      
6 for n = 2 10-3, respectively. = 0.5355627 m and  = 0.5355622 m with the precision necessary for a 
bandpass centring at 0 
7 The reasons why this value is lightly different from the 0.9965 value of the multilayer reflection between fibres 
are explained in Chapter 3.1. 
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4.3. Adjusting  the phase  shift between  the period  of  the  sinusoidal Bg 

and that of the multilayer mirror 

The H-FP1 simulation by S-matrix shows that: 455 

 The phase shift between multilayer and Bg has been obtained for the ideal thickness etrim = 

0.2507736m. Let us check whether the order of magnitude found for etrim corresponds to 

the simplified model in §2.3. H-FP1 consists of a Bg composed of an integer number of 

periods as defined in Eq. 3, followed by a multilayer. The phase of the period of the Bg at 

the interface is therefore 0 according to Eq. 5. The phase of the period of the multilayer 460 

must therefore be  at the interface, i.e. the interface must be at the centre of a quarter-

wave H layer according to Eq.6. Experimentally, it is easier to deposit a slightly thicker 

layer [(0.5 +2q) eH] where q  , which gives very similar spectral characteristics of the 

multilayer mirror. Since for q =1 Fimmprop gives an optimal value etrim  2.25 eH ≠ 2.5 

eH, this shows that the simplified model of §2.3 is not justified. It just helps to explain the 465 

concept of phase jump between periods of Bg and multilayer, and the bi-directional multi-

mode calculation in the multilayer done by S-matrix is indispensable to obtain 

quantitatively accurate results for the value of etrim. So not all the hypotheses of the 1D 

calculation are verified: in particular, the multimode calculation of the unguided beam in 

the multilayer is indispensable to find the right etrim value (the simulations of 4.2 for the 470 

H-FPs gave a good result in some cases with a single mode calculation in the Bg, only 

because we had soon injected the right etrim value calculated by S-matrix into the 

calculation). 

 As experimentally, the deposition of quarter-wavelength layers’ stacks is done by 

measuring extremes of the reflection or transmission of the filter during deposition, we 475 

also simulated the deposition of the boundary H-layer at the end of the Bg. So, we verified 
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that the optimal etrim value found for the overall filter gives a reflection minimum for the 

filter consisting only of the grating and an H-layer between fibres8. 

 As shown in figure 3, an error etrim from 0 to about 5 nm on the thickness etrim of the H 

layer adjacent to the Bg has almost no effect on the maximum value T11,max of T11 () for 480 

H-FP1. It has been checked also: 

o That for etrim ≤ 5nm, there is almost no broadening of the FWHM  of the 

transmission peak. 

o That the curve T11,max (etrim) of figure 3 stays almost unchanged for any n 

decreasing until n = 2 10-6 corresponding to H-FP2.  485 

 The simulations show that the top of the transmission peak moves linearly in function of 

etrim as predicted by Eq. 10 with Max /etrim = +21.09 pm/nm (this numerical value will 

be compared with these given by Eq. 10 only after knowing LEq established in § 4.6.3). By 

keeping N = 3, the simulations show that for R thus fixed, Max /etrim is also inversely 

proportional to n, which will be explained in 4.6.4. So, as FWHM a n, this shows that 490 

the ratio [Max /etrim]/FWHM is independent of n. 

 The optical control of the deposit cannot be better than an atomic interlayer distance, i.e. 

dC = (3 1/2/4) a = 0.235 nm for the two closest planes of crystalline silicon with mesh 

parameter a = 0.543 nm and a thickness of the same order for silica glass. The use of 

deposition to the atomic layer accuracy alone therefore leads at best to the accuracy of 495 

max/FWHM = 38.3%. 

 So, the experimenter will have to use all his know-how to adjust the optical thickness of 

the layers. For example, by using sophisticated optical control during the deposition, and 

technologies such as ion beam assistance [18], which makes it possible to slightly modify 

                                                      
8 The minimum reflection thickness found for 0.25070703 m coincides to etrim to the nearest relative 3 10-4 
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the density of the material and thus globally the "mesh optical thickness". Other simple 500 

approaches that do not allow simultaneous filter production can be used to precisely 

compensate for the phase shift afterwards: sorting after series production, or additional 

UV photosensitisation near the interface area as simulated in [1], which can be made as 

precise as necessary by attenuating the UV beam. 

 505 

Figure 3: For H-FP1, T11,max in function of etrim. 

4.4. Absorption losses 

M-FP's have an optically resonant layer between their 2 mirrors, which is responsible for 

absorption losses effects that can be important [9]. On the other hand, the phase opposition 

between the periods of the 2 mirrors of a H-FP does not require a resonant layer between them: 510 

since absorption exists only in the mirrors, low absorption losses effects are expected. We 

consider losses of 0.15 dB/km typical of telecommunication fibres. In Table 2, we consider typical 

losses of ordinary to optimal quality layers (from k = 10-4 to k = 10-6 where k is the imaginary part 

of their refractive index). It appears in table 2 that the effect of absorption is negligible with good 

quality layers, very low with the lowest quality layers, and a little bit worse for the narrower 515 
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passbands9. Furthermore, we observed that the transmission peak in the presence of losses is 

neither shifted nor asymmetrical with respect to its peak apex. Losses by absorption will therefore 

no longer be considered here for H-FP's. In comparison, in addition to diffraction losses, the 

absorption losses are the prohibitive element to realize M-FP with narrower bandwidth than 100 

pm. For M-FPs, absorption losses do not only occur in the mirrors as for H-FPs, but especially in 520 

the layer between these mirrors, which is a multiple layer of 2H or 2L, and losses are therefore 

exacerbated in such an optically resonant layer. 

Table 2: Losses effects 

k T11,max(H-FP1) T11,max(H-FP2)

10-4 * 0.97117 0.92344 

10-5 * 0.99284 0.98816 

10-6 * 0.99504 0.99500 

0 * 0.99529 0.99576 

0 ** 0.99543 0.99717 

* With 0.15 dB/km losses in fibres 

** Without losses in fibres 

 

4.5. Rejection and secondary transmission peaks 

We have verified that the spectra of the simple H-FPs with rectangular quarter-wavelength profile 525 

Bg verify properties similar to those shown below for the H-FP1 filter with sinusoidal Bg profile. 

As already noted in § 4.2, multimode simulation in the high index part of a rectangular profile Bg 

is essential mainly at the top of its main transmission peak. We have verified that apart from this 

peak, for the H-FP with rectangular quarter-wavelength profile Bg presented in § 4.2, a 9-mode 

calculation is much longer, but only makes a relative change of less than 4.5 per thousand 530 

(reaching the top of the largest secondary transmission peak). Therefore, for H-FP to Bg with 

                                                      
9 Without absorption losses in the multilayer, the transmission of both filters appears to be excellent. It is surprising at first sight that the 
results are there very slightly better for H-FP2. But in fact, we are entering an area where computational accuracy should be pushed to the 
maximum, and this is not significant (as the results are soon excellent for both filters, spending too much time on it is not worth it here). 
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rectangular profile, the simulation can be single mode in the Bg, except for the main transmission 

peak. 

So, the rejection is carefully studied below for the H-FP1 filter. In figure 4.a, a very wide rejection 

band (width 0.7 m with T11 < 0.027) appears around the transmission peak of H-FP1. This band 535 

is asymmetrical and has a much better rejection in some areas. In particular, a "super-rejection" 

band of 1.4445 nm width with T11 < 0.005 appears (fig. 4.b). The super-rejection band corresponds 

substantially to the main reflection band of the Bg of H-FP1 that we call R_Bg Band (fig. 4.b). In 

this band, the reflections of the 2 mirrors of the H-FP are substantially equal, uniform and close to 

1, and their individual transmissions are T1 = T2  1.2 10-2 near  = 0 (corresponds substantially 540 

to the average T11 of H-FP1 outside the R_Bg Band on Figure 4.b, where we verified that except 

the small spectral oscillations of its T11 described later, the H-FP is strictly equivalent to the 

multilayer mirror alone). Therefore, according to Appendix A, the minimum transmission that this 

FP can achieve is Tmin = T1
2/4  1.44 10-4, which explains well the existence of this super-

rejection band if the minimum of T11 is close enough of this value. Figure 4.b shows that the 545 

minimum 7.1 10-4 of T11 achieved for H-FP1 is intermediate between T1 and Tmin. The fact that 

Tmin is not reached simply means that the FSR (Free Spectral Range) of H-FP1 is too much wider 

than the R_Bg Band, which will be demonstrated quantitatively in § 4.6.3 by finding this FSR. 

Apart from the R_Bg Band, we analyse the H-FP1 transmission in reference to 2 other bands 

describing the reflection of the Bg: the one called O_Bg Band where the Bg reflection oscillates 550 

with still significant reflection values as in Figure 4.b, and this located outside the O_Bg Band 

where the reflection of the Passing Bg is almost zero and flat, called P_Bg Band (the Bg 

reflection peaks have there R11 < 1.1 10-4). 
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Figure 4.a: T11 () on the entire H-FP1 rejection band (transmission peak zone zoomed in fig. 4.b). 555 

Spectral resolution 513 points. 

 

Figure 4.b: T11 () for H-FP1 and RBg = 1- T11 () of the included Bg. For H-FP1, the main 

transmission peak reaches T11 = 0.9955 100%. The most intense secondary peaks are closest to  = 

0 and have an amplitude +/- 0.78% of the average rejection T11 = 1.2 10-2 around and near the super-560 
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rejection band. The main reflection peak of the Bg corresponds well to the super-rejection of H-FP1 

and it is centred on the main transmission peak of H-FP1. 

4.5.1. Transmission of H‐FP1 in the P_Bg Band 

The simulation in Figure 5 is small part of this band where the T11() small peaks of H-FP1 are 

closely spaced. It shows very evenly spaced H-FP1 transmission peaks. We verified that the positions 565 

of these peaks do not correspond to the secondary reflection peaks of the Bg, which fall rather in anti-

phase in the band of the figure, proving that there is no correlation. On the other hand, the positions of 

these secondary peaks correspond perfectly to a Fabry-Pérot effect between 2 mirrors spaced the 

length of the Bg 10. We interpret it as one of the contingencies provided for in § 3.4 as the FP formed 

by: 570 

 between the reflectors, the Bg considered in the P_Bg Band as a homogeneous medium with 

an average refractive index neff + n/2 where neff is the effective index of the fundamental 

mode of the non-photosensitized fibre. 

 as reflectors, the multilayer mirror, and the dioptre of step of refractive indexn/2 between 

this homogeneous medium and that of the input or output fibre considered as another 575 

homogeneous medium of index neff. 

                                                      
10

 The peaks in figure 5 are at frequencies f1 = 1.81665116 1014 Hz; f2 = 1.81593161 1014; f3 = 1.81521208 1014 giving FSR1 = f1-f2 = 
7.19551 1010 Hz and FSR2 = f2-f3 = 7.19531 1010 Hz. These FSRs have a relative variation of only 2.78 10-5. The corresponding LEQ length = c 
/ (2 neff FSR) is 1.439944 mm, identical to LBG = 1.434771mm with L/L = 0.33% and f = c/(2nL) ==> f/f = L/L. It was calculated with neff 
= 1.446869, the average effective index of the fundamental mode in the Bg calculated according to Fimmwave, and for FSR the average of 
the 2 differences between the peaks above. For the calculation of the average neff, we start from neff calculated by Fimmwave for SMF28 at 
 = 0. m, i.e. in the middle of the scanning range of figure 5, then add n photorefractive/2. For n = 2 10-3 it comes average neff = 
1.446869. Very similar results are obtained everywhere else in the P_Bg band. 
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Figure 5: T11 () for the H-FP1 filter showing some secondary transmission peaks of H-FP1 in a 

rejection area of the P_Bg band very far from the main transmission peak. The peaks oscillate +/- 

0.01% around the average transmission of 2.1% (with an increasing slope as also visible in Figure 4a). 580 

Spectral resolution 257 points. 

On the frequency point of view, the agreement is perfect to within 0.33% to consider that the 

oscillations of T11 for the H-FP1 filter in the P_Bg band correspond well to an equivalent FP of 

length LBg (see note 10 again). According to Eq. A5 and A6, the peak-to-peak amplitude of the 

oscillations should be T14r2. In Table 3, the amplitude of the oscillations have been corrected for the 585 

slope shown in Figure 5 at  1 m. Table 3 shows the interpretations of the amplitude of these 

oscillations according to 2 ways of calculating r2. The calculation of r2 for a n/2 step of refractive 

index dioptre gives worse results than the calculation of r2 made by Fimmprop, corresponding to the 

reflection of the entire Bg between an input fibre and the output fibre, for which the match is good for 

 corresponding to a flat average rejection (table 3 and fig 4.a). For  =0.1 m, corresponding to a 590 

significant slope of the rejection in fig 4.a, only the order of magnitude is quite good in table 3, and the 

inexact value comes presumably from the slope and the approximate origin of equations A5 & A6.  
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Table 3: Oscillations of T11 for H-FP1 in three places of 
the P_Bg band 

m  0.1  0.2  0.3

T1 2.11E-02 2.66E-02 2.63E-02
Oscillations 
amplitude 
(Fimmprop) 2.12E-04 1.63E-04 1.21E-04

T14r2      (a) 2.91E-05 3.67E-05 3.63E-05

T14r2      (b) 5.22E-05 1.78E-04 3.83E-04
(a) r2 calculated for a n/2 step of refractive index dioptre located at the fibre-to-Bg 

(b) r2 calculated by Fimmprop for the reflection of the Bg between SMF28 fibres 

 

4.5.2. Transmission of H‐FP1 in the O_Bg Band  595 

The situation in this band is well represented in figure 4.b, which represents the closest part of this 

band to the R_Bg Band. Secondary transmission peaks spaced at the same order of magnitude as in 

P_Bg Band are observed, but with some notable differences: these peaks are not regularly spaced in 

frequency (Table 4 corresponding to the peaks in figure 4.b), but closer to each other and more intense 

when they are closer to the R_Bg Band. In figure 4.b, it is clear that these peaks do not correspond 600 

either with the secondary reflection peaks of the Bg. We suggest that the increase in the intensity of 

these peaks is however related to the increase in the intensity of the Bg 's secondary reflection peaks, 

and that their position results from simultaneity of: 

 a FP effect identical to that described in the P_Bg Band, predominant outside the secondary 

reflection peaks of the Bg  605 

 another FP effect between the Bg, which has more and more effect in its secondary 

reflections, and the multilayer mirror. 

Table 4: FSR between secondary peaks  < 0 of fig. 4.b close to the main peak numbered 0 

Pair of peaks (n°) 0-1 1-2 2-3 3-4 4-5 

FSR (1010 Hz) 10.47 6.57 6.93 7.04 7.04 
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4.6. Interleaved‐Fibre‐H‐FP (IF‐H‐FP) 

We consider here H-FPs similar to those made in [6], which include a length section Li of non-

photosensitized single-mode fibre interposed between the Bg and the multilayer mirror. 610 

Experimentally, this fibre section is one of the non-photosensitized ends of the fibre in which the Bg 

has been photo-written, cleaved or polished to adjust the Li length, and abutment or glued with a 

multilayer mirror deposited on another single mode fibre to achieve an H-FP. The results of [6] show 

that Li can easily be adjusted experimentally in a satisfactory way: for IF-H-FP, it is this adjustment 

that allows to obtain the desired phase shift between the multilayer and Bg periods by a more basic 615 

method for a non-multiple H-FP, than the adjustment of a layer of the multilayer mirror or a 

photorefractive correction, but less well adapted to the parallel manufacture of a large number of H-

FP, or to the construction of a serial multiple H-FP. Here, we simulate IF-H-FP filters with sinusoidal 

Bg, whose simulation, lighter at all , is entirely singlemode in the Bg. In [6], a 1D model was given, 

where the equivalent length of the IF-H-FP to a plane wave FP gives is Leq = Li. We will show here 620 

that this fits well for Li >> LBg by doing a 3D S-matrix simulation of IF-H-FP in order to find the 

right model also for low values of Li, and then also for Li = 0. 

4.6.1. Observation of the main peak centred at 0 

The T11 () spectrum 3D simulations of IF-H-FP with Fimmprop show the following behaviour: 

 To maintain continuity when Li  0, for the H layer at the interface with the IF, we keep in 625 

the simulations the etrim value adjusted for H-FP1 and therefore adapted for Li = 0. For Li >> 

LBg (this restriction on Li is evident according to Eq. 12 demonstrated later in 4.6.3), LEq  Li 

and the only values of Li, which give T11(0)  1, are then such that for the fundamental mode 

of the interleaved fibre, Li = M 0 / (2 neff) with M integer (and where neff = 1.4460763 is the 

effective index of the fundamental mode of the fibre at 0)
 11. The experimenter will prefer to 630 

                                                      
11

 For example, for IF-H-FP1, a 1921 0.3 variation of M around its integer value 1921 <==> Li = 1028.m0m brings T11(0) 
below 40% A polishing accuracy to within a few nanometres is therefore sufficient. 
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have the thickness eH instead of etrim for the H layer at the interface with the IF and will obtain 

the transmission peaks for (mantissa of M) = 0.5 for Li >> LBg. 

 The larger Li and M are, the narrower the main peak is (fig. 6). IF-H-FP therefore have the 

advantage of an adjustable and narrower bandwidth, but do not have the robustness of a fixed 

technology and are sensitive to vibrations if the fibre is buffered and not glued to the 635 

multilayer (then well adapted to sensor applications). For the spectrum of IF-H-FP1 following 

observations, the description is made with reference to the R_Bg Band, O_Bg Band, P_Bg 

Band of the incorporated Bg. 

 

Figure 6: T11 () for the IF-H-FP1 filter with Li corresponding to the values of M = {0; 155; 774; 640 

1921}. They respectively result in an increasingly narrow transmission peak at  = 0, of which only 

the left part is represented here, the spectrum being almost symmetrical with respect to  = 0 for the 

spectral band represented. 

4.6.2. Observations in the P_Bg Band 

Small secondary transmission peaks appear in figure 7, but not regularly, spectrally or in amplitude, 645 

unlike what was observed for H-FPs without FI in figure 5. Outside the Bg reflection band, we again 
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assimilate the Bg to a homogeneous medium with an average index neff + n/2. Three mirrors are 

involved, very thin (M1), or of null thickness (M2, M3): 

 M1 = multilayer = mirror of almost zero thickness (thickness in the order of  0) 

 M2 = dioptre FI-Bg, did not intervene in the H-FP without FI 650 

 M3 = dioptre Bg-input fibre 

M1 alone has a high reflection coefficient, while M2 and M3 have the same tiny reflection coefficient 

as a n/2 step of refractive index dioptre. The phenomena observed for the secondary peaks result 

from beats between the longitudinal modes of the 3 FPs formed by the 3 pairs of mirrors (M1-M2 

separated from Li, M2-M3 separated from LBG, M3-M1 separated from Li + LBG). Since the amplitude of 655 

these beats is low (<0.0005 in figure 7 for IF-H-FP1), they have no disadvantage or interest for use as 

a bandpass filter, and their study will not be continued here. 

 

Figure 7: T11 () for the IF-H-FP1 filter simulated with M = 7464  Li 4.000 mm, showing some 

secondary transmission peaks in the same spectral band as in figure 5, very far from the R_Bg band. 660 
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4.6.3. Observations in the R_Bg Band and O_Bg Band 

In the R_Bg Band, we consider only the reflections between the Bg and the Multilayer of 

reflection coefficients each close to 1 and preponderant, which form an effective cavity whose 

effects exceed those of all the other pairs of mirrors. These mirrors do not form a classic FP, since 665 

the Bg is a very thick mirror with very narrow reflecting band. The simulation shows that for IF-

H-FP1, if Li > Li,Th (Li,Th = Li Threshold value), secondary peaks appear that are simultaneously in 

the R_Bg Band and become larger than all secondary transmission peaks in the O_Bg Band (fig. 

6 & 8). For IF-H-FP1, we obtain Li,Th = 723.m <=> MTh = 1350. The simulations show that this 

threshold is inversely proportional to n. This is because the spectral reflection width of a Bragg 670 

grating and therefore that of the super-rejection of an H-FP are also, as confirmed by simulations. 

Given the high value of Li,Th in comparison with polishing accuracy, it is therefore easy to set Li < 

Li,Th. 

 

Figure 8: T11 () for IF-H-FP1- filter with M = 7464  Li 4.000 mm > Li,Th, showing the left half 675 

of the main peak on the far right and some secondary transmission peaks. When located in the H-FP1 

super-rejection band, the first secondary transmission peaks are very narrow (this is why a few additional 
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calculation points have been added to the regular resolution of 513 points to precisely determine their vertex, which shows that the first one 

here goes back to 100%). 

For Li > Li,Th, the simulation shows that for IF-H-FP1, secondary peaks appear close to the main 680 

transmission peak, exactly equidistant of the FSR of an equivalent conventional FP filled with a 

uniform medium having the refractive index neff of the fundamental mode of the fibre SMF28 at 

0, and of equivalent length: 

 Eq (Eq. 12)i BgL L x LR   

with x depending only on R, and x (R) = 0.179 for the IF-H-FP1 filter high Li values (figure 9). 685 

So, LEq also represents the average length travelled by the fundamental mode passing through the 

real cavity. To determine x, only the largest values of Li are considered, as those starting to 

approach Li,Th only allow to observe a single secondary transmission peak whose position at the 

boundary between the R_Bg Band and O_Bg Band is disturbed (fig. 6, 8) by the other FPs 

described in § 4.6.2. Since the value of x appears constant in figure 10 for the large Li values, we 690 

propose to keep the same value of x for all Li values. Note that this new model, more precise than 

in [6] where x is zero, is consistent with the experimental observations described qualitatively in 

[6] for Li >> LBG.  
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Figure 9: For IF-H-FP1, comparison of the FSR as a function of M simulated with Fimmprop 695 

between the main peak and the first neighbour (stars), with the FSR of a conventional FP of length LEq 

= Li + x LBg, for various values of x. The value x = 0.179 allows a good recovery for the large values of 

M corresponding to large Li. 

The simulation shows that x decreases sharply as the reflection coefficient R of the H-FP mirrors 

increases and approaches 1 (fig 10 where R of the multilayer and of the Bg depend on N, see table 1; 700 

the IF-Bg-FP also in figure 10 are discussed later in 4.6.4). We have verified that x does not depend 

on how R is obtained by choosing the photorefractive variation amplitude n of the Bg. 

 

 

Figure 10: Dependence of x as a function of the reflection coefficient R of Bg for balanced IF-H-FPs 705 

(with N = 1, 2 or 3), and balanced IF-Bg-FPs with various NPer each having M = 3464 <=> Li  1.856 

mm, and sinusoidal Bg with n 2 10-3 similarly as for the IF-H-FPs. The IF-H-FP1 filter 

corresponds to the right-most point of the figure with R = 0.988. 

4.6.4. Consequences of the equivalent FP model with x independent of Li 

It should be emphasized that it was only the extension of Eq. 12 by keeping x invariable for low Li 710 

values that allowed us to estimate the FSR of an H-FP without interleaved fibre. The logical 
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consequences of this model are not in contradiction with numerical simulations, which, without 

providing perfect quantitative evidence, confirm it as very likely: 

 For H-FP without IF, LEq = x LBg is then the average length travelled by the fundamental mode 

passing through the real cavity, and is in good accordance found less than LBg. 715 

 The FSR of a H-FP without IF is FSR = c / [2neff x LBg] = 3.182 nm for H-FP1, i.e. 

significantly more than the 0.78 nm half-width of the corresponding R_Bg band. Therefore, 

significant secondary peaks of FP resonance between the multilayer and the Bg cannot occur. 

Indeed, the observation of T11() for H-FP1 in Figure 4.b near of  = -FSR shows a weak 

transmission peak (the 5th secondary peak in the O_Bg band). However, this belongs to a 720 

group of secondary peaks spaced far less than the FSR, and thus to a different phenomenon, 

which has already been described in § 4.6.2. 

 For IF-Bg-FP with the same Bg's as an H-FP, the validity of our model implies that we must 

obtain LEq = Li + 2 x LBg with the same value of x as the IF-H-FP having even R mirrors and 

even Li. This is precisely what is observed with the good overlap of the 2 curves in Figure 10. 725 

The IF-H-FP simulation only allows access to a small number of R values, given the high step 

of refractive index in its multilayer. On the other hand, n = 2 10-3 being far much lower in the 

simulated Bg than in the multilayer, this allows access by varying NPer to much lower, and 

much closer together, R values for IF-Bg-FPs. The case R < 10-2 is not considered, as it does 

correspond to so weak reflectors, that it makes the usual FP calculation inappropriate. For the 730 

selected Li value of fig. 10 and small values 10-2 < R < 10-1, x(R) varies little around 0.5. For R 

> 10-1, x(R) then decreases sharply. Obviously, for IF-Bg-FP, in the case R =1, the grating 

length is infinity, and this leads to x = 0 (not represented on the figure because it corresponds 

to an infinity fineness inaccessible due to manufacturing tolerances and material absorption). 

 For Bg-FP without IF, FSR = c / [2neff 2 x LBG] is half that of the H-FP with the same Bg if 735 

we assume that each of the 2 Bg corresponds to an average path x LBg by the fundamental 

mode when crossing the cavity. Consequently, the widening of the main peak due to cavity 
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losses, which is FSR /F must be double for the H-FP than for the Bg-FP with the same Bg (F 

is the fineness [19] corresponding to both the H-FP and the Bg-FP with the same Bg). In 

addition, the width of the simulated peak, which may also have other origins, must be greater 740 

than the broadening by cavity losses. Our simulations confirm that the width of the main 

transmission peak of a balanced H-FP is indeed twice that of this peak for the Bg-FP with the 

same Bg as this H-FP. In addition, in figure 4.b., it appears that the FWHM of the line of the 

main transmission peak of H-FP1 is 12.856pm. The calculation of the broadening due to the 

losses of the equivalent cavity is indeed found to be lower and is 11.705 pm12. A plausible 745 

interpretation of the small difference is the consequence of the standard deviation of the length 

of the mean path of the fundamental mode in the cavity around its mean value x LBg. 

 For Bg-FPs without IF, the simulations reported in 4.3 show that Max /etrim is inversely 

proportional to n. This corresponds perfectly to Eq. 10 & 12. Let us note however that if Eq. 

10 allows to find the proportionality of Max to etrim and the order of magnitude of the 750 

proportionality coefficient, it does not allow to find its right value: indeed, in 4.3, Fimmprop 

gave for H-FP1 Max /etrim = 21.09 pm/nm, while Eq. 10 & 12 give Max /etrim = 14.53 

pm/nm. Again, this is because the assumption of a plane wave in the layers used to establish 

Eq. 10 instead of multimode propagation is inadequate. 

4.6.5. Manufacturing tolerances on M and Li: 755 

For IF-H-FP1, for an interleaved fibre SMF28, Li = M 0 / (2 neff) with 0 / (2 neff) = 0.535932993 m 

13. When the integer part of M increases, the FWHM  of the central transmission peak of the IF-H-

FP decreases significantly as outlined in 4.6.1. The ratio between the shift of the transmission peak 

Max and  depends only on M's mantissa. For small variations of M's mantissa around 0, the main 

peak degrades little. According to Eq. 8, this peak moves linearly as a function of Li. For IF-H-FP1 760 

and small variations of Li from Li = 0, the Fimmprop simulation shows that the top of the main peak 

                                                      
12

 For H-FP1 filter, FSR = 3.046 nm. The fineness F = R0.5/(1-R) with at 0 the power reflection of the Bg ==> R = 0.9880 ==> F = 
260.224 ==> FSR/F = 11.705 pm. 
13 This accuracy corresponds to a mantissa accuracy of M corresponding to an uncertainty of +/- 1nm on Li for M 
up to 106, i.e. Li  0.5 m 
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shifts by Max/Li = +6.28pm/nm. For the adjustment of the H layer of H-FP1 Fimmprop simulation 

in 3.3, we found Max/etrim = 21.09pm/nm, or 3.36 times more, which rendered the adjustment 

significantly more difficult in this case. This ratio should be compared with the ratio of the effective 

indices in the H layer (multimode certainly, but with effective indices each very close to 3.479 for the 765 

first dominant modes), and the effective index of the single-mode fibre neff  1.446, i.e. a different 

ratio of 2.41 with the same calculation accuracy. But it suggests that using a low refractive index like 

SiO2 at the interface renders the adaptation easier. Finally, it should not be forgotten that according to 

Eq. 8, Max /Li varies considerably according to Li and so to M. This is observed in figure 11 where 

the calculation made from Eq. 8 & 12 also shows a perfect coincidence with the shifts of the main 770 

transmission peak of IF-H-FP1 simulated by Fimmprop in function of the integer part of M. The 

calculation of figure 11 is made with x = 0.174 (very close to the value x = 0.179 retained above) and a 

mantissa of each M corresponding to Li =1 nm. 

 

Figure 11: For Li = + 1nm <=> M =  0.00187, shift Max of the main peak of IF-H-FP1 as a 775 

function of the integer part of M: 

a) Calculated with Eq. 8 & 12 for x = 0.174 

b) According to the displacement with M of the peak top simulated by Fimmprop 
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5.  Discussion 

5.1. Modelling 780 

The 3D S-matrix simulations allowed us to check that only certain assumptions of the 1D simulation 

model by CMMS presented in [1] are verified and only in some cases for H-FP without IF: 

 Only a multimode calculation by S-matrix in the layers can find the correct values of etrim and 

Max /etrim order of magnitude. We have shown that the experimenter can find himself etrim, 

which corresponds to a minimum of reflection of the filter during the deposition of the 785 

boundary layer with the interface. Nevertheless, the knowledge of this thickness by numerical 

simulation helps the experimenter to develop his process. 

 A single-mode calculation in the Bg can only be performed for the H-FP with sinusoidal Bg 

even at optical resonance, and for H-FP with sharp step Bg outside resonance only. 

For BG-FPs, there are no thin layers, and a single mode calculation in the fibre and in the Bg is 790 

possible, excepted at resonance in the case of sharp step Bg. 

For IF-H-FP, the phase shift is set in the IF, which is single mode, so a single mode calculation can 

easily find the right fibre length to adjust the phase shift of the mirrors, and this length can easily be 

retouched afterwards, unlike the thickness of the adjusted interface layer of H-FPs without IF. So a 

single mode 1D calculation is sufficient, except at resonance in the case of sharp step Bg. 795 

Since the CMSS requires knowledge of the effective fibre indices, which are not calculated by 

common thin-film software, it is however preferable in all case to make all calculations with software 

such as Fimmwave/Fimmprop, which calculate fibre modes as well as S-matrix propagation, and have 

great programming flexibility to optimize sampling, thanks to their "adiabatic taper" algorithm. 

To obtain balanced H-FPs whose transmission is 100% at the centre wavelength, the number of 800 

periods in the Bg must be carefully adjusted. For a given multilayer in the H-FP, this results in a 

smaller number of Bg periods and a narrower H-FP bandwidth in the case of a step longitudinal 
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profile Bg than a sinusoidal one. The discrete appearance of the Bg reflection coefficient according to 

its number of periods can prevent the transmission of the H-FP from increasing exactly to 100%, as 

more as the Bg index step is high. 805 

The considerably wider rejection band for H-FPs than for Bg-FP reported in [1] has been studied here 

more fully. Around the transmission peak of the H-FP, there is a stronger rejection band whose 

spectral width corresponds to the reflection band of the Bg. Beyond that, the rejection, less strong, 

corresponds mainly to the reflection coefficient of the multilayer, however lightly degraded by very 

low secondary transmission peaks studied in detail here.  810 

The study of strong FP oscillation (fig. 8) appearing in the reflecting band of IF-H-FP with Li,Th ≤ Li ≤ 

some LBg allowed to develop a new equivalent cavity model of length LEQ = Li + x LBg for the IF-H-FP 

and LEQ = Li + 2 x LBg for the IF-Bg-FP, where x depends only on the assumed reflection coefficient 

common to all mirrors (fig. 10). The trick to determine x for H-FP or Bg-FP without FI is to 

determine it for long lengths of interleaved fibre where x varies little (not too long either so as not to 815 

produce too sharp resonances that would disturb the calculations, and not to short so as those 

resonances do not vanish in the secondary transmission speaks studied earlier in the rejection band). 

Keeping this x-value for Li = 0, where it cannot be determined otherwise, allows an excellent 

quantitative analysis of the line width of H-FP and Bg-FP taking into account their fineness, and to 

explain why the line width of the main transmission peak of a balanced H-FP is twice that of a Bg-FP 820 

whose Bg have the same reflection.  

All these elements will help in the study of serial multiple H-FPs to be presented in detail in a later 

publication, which, like for bulk substrate M-FPs, simultaneously improve the rejection and spectral 

profile of the transmission peak of a single H-FP, but with more demanding manufacturing tolerances. 

5.2. Performance and applications 825 

The 3D simulation of single H-FP shows that unlike M-FPs with the same Fineness between single-

mode narrow core fibres, they exhibit no diffraction in the multilayer. In opposition, diffraction only 

allowed passbands of 2 to 3 nm for fibred M-FPs, and 0.1 nm for M-FPs on bulk, and for 
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sophisticated fibred M-FPs presented in [10]. But since the latter are difficult to achieve, non-multiple 

H-FPs are the simplest fully fibred filters to achieve for bandwidths from 15 fm, to 2 to 3 nm. This is 830 

very exciting, but the biggest difficulty with these filters is controlling the position of their pass 

wavelength max at which they have maximum transmission as a function of the phase adjustment of 

their mirror periods. We have shown that [max/etrim]/FWHM is independent of n.  

For an included (HL)3H Si/SiO2 multilayer, the use of deposition to the atomic layer accuracy alone 

therefore leads at best to respective accuracies of max/FWHM = 38.3% for equilibrated H-FP filters 835 

and 11.49% for an equilibrated IF-H-FP near Li = 0. This is insufficient for many applications, unless 

by chance the thickness grid accessible by atomic layer adjustment just happens to fall on the right 

value, or the filters are retouched one by one by photo-refractivity. Improving these results for mass 

production would require another publication focused on this subject, and of a mainly experimental 

nature, for which we suggest here only a few leads: 840 

 A multilayer mirror terminated with a very high refractive index Si H matching layer gave us 

a very compact multilayer mirror and a fairly optimal multilayer reflection value. But the 

somewhat better result with polishing the interleaved silica fibre of lower refractive index 

suggests that the use of multi-layer mirrors terminated with SiO2 or other low refractive index 

L material may allow somewhat better phase matching accuracy. 845 

 In the same vein, it could be tried to dope the matching layer during its deposition, so that the 

available optical thickness grid is shifted when setting the thickness to the nearest atomic 

layer, so that the right value can be better achieved. Ion plating technology can work on this 

principle. 

 In the case of mirrors produced by integrated optics photolithography, an experimental 850 

approach specific to each technology chosen is of course essential. It must also be considered 

that Bg with n = 2 10-6 and the same reflection at 0 than for H-FP1 would be more than 1m 

long, which is not a problem for fibres, but for integrated optics it is, as it would require for 

example over 100 folding of the grating inside a 1 cm2 square circuit. 
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For the same internal multilayer mirror and Bg, interleaved fibre filters have a narrower main 855 

bandwidth, and it is easy to obtain a bandpass filter with a single bandwidth since it is sufficient for 

the interleaved fibre length to be under just over 700 m for the IF-H-FP considered, and half for IF-

Bg-FP.  

From the point of view of their performance requirements, FP applications as bandpass filters with 

broad rejection band fall into two categories:  860 

 The most demanding require control of the absolute bandwidth position  

o Signal applications: DWDM filtering for telecommunications (typical bandwidths 
400, 200 or 100 pm until now [20]). 

o Spectrally absolute sensors: e.g. filtering of Raman Lidar Stokes and anti-stokes 
responses, filtering of fluorescence lines... 865 

 Spectrally relative sensors for which only the displacement of the bandwidth following a 
variation of the mesurande is measured, only require that the bandwidth exists, but do not fix 
its position in an absolute way (e.g. pressure and/or distance sensor obtained by an air gap 
between the FP mirrors). On the other hand, these sensors require calibration. 

Thus, it can be seen that fibre-optimised or integrated H-FPs with bandwidths as narrow as 15 fm and 870 

with a rejection of several hundred nanometres would greatly expand the possible applications.  

For DWDM, it would become fully fibred on the one hand, and on the other hand, it would allow fine 

spectral processing within a metropolitan telecommunications network. Allowing spectral sorting with 

narrower bandwidths better suited to single subscriber selection as suggested in [21], this could 

increase the number of DWDM filters placed at the subscriber's premises and thus their market. 875 

However, for such applications leading to the manufacture of very large series of components, solving 

the phase matching tuning difficulty by front-end parallel processing is essential. On the other hand, 

relative sensor applications see their possibilities immediately increased considerably, as well as 

certain absolute sensors if they are manufactured in small numbers and if, in exchange for an increase 

in price, the individual adjustment of their phase matching, for example by photo-refraction, is 880 

acceptable with respect to their market (in this case, IF-H-FP can be more flexible to realise, but less 

stable over time). 
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6.  Conclusion 

Despite they are partially constructed with un-guiding layers, the modal 3D simulation of hybrid FP 

shows no diffraction, and the absorption effects are also negligible, both in opposition to multilayer 885 

FP between narrow core fibres. Their 3D simulation by S-matrix, which is highly multimodal in the 

layers, is essential in the case of H-FPs without interposed fibre to find the thickness of the layer at the 

interface with the grating. Once this has been found, and also for H-FPs with interleaved fibre or 

purely in Bg, their multimodal simulation in the grating is only indispensable at the top of their 

transmission peak, only in the case where their grating has a sharp step axial refractive index profile. 890 

Their very broad and large rejection, far wider than that of BG-FP, is similar to that of their multilayer 

mirror (with weak oscillations studied precisely here), except in the main reflection band of their Bg 

where it is much stronger. The control of the layer thickness at the interface is not critical for the 

collapse of a peak broader than 15 fm, but is critical for controlling its shift. So, 15 fm passband filters 

can be obtained for individual devices and also industrially for spectrally relative sensors. But 895 

applications with an absolutely fixed wavelength and requiring large industrial production such as 

DWDM require an experimental research effort in each chosen technology for a better control of the 

passband shift, and passband of 1.5 pm to 150 fm would be more realistic for integrated optics because 

of the grating length. Every small spectral oscillations appearing in the rejection band of the H-FP 

have been accurately observed and interpreted. The simulation of hybrids with interleaved fibre 900 

between mirrors allows us to show for certain properties the equivalence of a hybrid without 

interleaved fibre with a FP travelled by plane waves and with localized mirrors, having for length a 

fraction that we have determined of the length of their Bg. The same is true for all properties of a FP 

with 2 Bg identical to that of the hybrid, where the equivalent cavity length is found to be double. 

Appendix A: Formalism for plane waves FP interferometers 905 

The intensity transmission of a FP is expressed as a function of its Airy transmission [20], which is: 
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   
 2 2

1
Eq. A1

1 4 sin 2
AT

m m 


 
 

As they will be proved to have negligible effect here, we will not consider losses by absorption, and 

the loss factor is therefore m = r1 r2 where r1, r2 are the amplitude reflection coefficients of the mirrors; 

we will also consider R1, R2 the intensity reflection coefficients and t1, t2, T1, T2 the amplitude and 910 

intensity transmission coefficients of these mirrors. The transmission in intensity of the FP is then T = 

T1 TA T2. We will often consider for the cavity equivalent to a single mode propagation between 2 

ultra-thin mirrors, the phase  of a round trip in the cavity, which is: 

( ) E2 2 2 q. /  ( A2)eff EqkL n f c L  
 
 

where k is the wave vector in the cavity, f is the frequency and LEq is the equivalent length of the 915 

cavity filled with neff. For  = 2 p  and for  = (2p+1)  where p is a natural integer, the maximum 

and minimum transmission values are obtained respectively: 

 
max 1 22

1
(Eq. A3)

1
T T T

m



 and 

 
 min 1 22

1
Eq. A4

1
T T T

m



 

The extreme transmissions of the cavity Tmax and Tmin can be easily specified after limited development 

calculations in some particular cases that will facilitate our reasoning following the simulations, and 920 

for which mirrors transmissions T1T2 = t12 t22 if we consider identical media on each side of the FP: 

 For 2 identical mirrors with reflection coefficients R2 = R1 close to 1, since then the loss factor 

m  R1 and T1 = 1-R1, we find Tmax = 1 and Tmin = T1
2/4. 

 For one mirror R1  1 and the other mirror R2  0, since then m  r2 reflection amplitude and 

T2  1, we find values close to T1, which are: 925 

       max 1 2 min 1 21 2  and 1 2Eq. A5 Eq. A6T T r T T r    
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TA has a transmission peak each time sin ( = 0, which is obtained at the frequencies 

eff
v

eff

2
(Eq. A7)

2
Eq

Eq

n Lc c
f p

n L f p
     

where p is the interference order, and v is the wavelength in the vacuum of the top of the transmission 

peak (p0 is the order for v = 0). We deduce that if the length of the cavity changes from L to L' = L + 930 

L, the wavelength of the Airy peak of order p is translated proportionally to L of the value: 

eff
v v

2
(Eq. A8)Eq Eq

Eq

n L L

p L

 
  

 

A variation in the thickness of the H-layer next to the Bg introduces a phase term to the reflection 

coefficient of the multilayer mirror, which can no longer be considered real. Here we make the 

approximation that the beam is a plane wave in the H-layer. This phase shift can then be represented 
935 

by a thickness e'trim of material H. Thus, Eq. A2 becomes: 

( ) (2 2 /  2 2 ) Eq./  ' ( A9) eff H trimn f c L n f c e   
 

This thickness can always be written as e'trim = e0 + etrim, where e0 is a constant thickness whose value 

does not matter: so, e'trim = etrim. The Airy peaks correspond to V such that sin () = 0, i.e.: 

 2 2 ' 1
Eq. A10

2 2 '
eff Eq H trim V

V
eff Eq H trim

n L n e

p p n L n e




  


 940 

For a fixed p-order peak, it comes: 

 2 ' 2
Eq. A11

2 2 '
H trim H trim V H V

V trim
eff Eq H trim eff Eq

n e n e n
e

p n L n e n L

     

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