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Abstract. With the increasing demand for high performance comput-
ing in application domains with stringent power budgets, coarse-grained
reconfigurable array (CGRA) architectures have become a popular choice
among researchers and manufacturers. Loops are the hot-spots of kernels
running on CGRAs and hence several techniques have been devised to
optimize the loop execution. However, works in this direction are predom-
inantly software-based solutions. This paper addresses the optimization
opportunities at a deeper level and introduces a hardware based loop
control mechanism that can support arbitrarily nested loops up to four
levels. Major contributions of this work are, a lightweight Hardware Loop
Block (HLB) for CGRAs that eliminates control instruction overhead of
loops and an acyclic graph transformation that removes loop branches
from the application CDFG. When tested on a set of kernels chosen
from various application domains, the design could achieve a maximum
of 1.9× and an average of 1.5× speed-up against the conventional ap-
proach. The total number of instructions executed is reduced to half for
almost all the kernels with an area and power consumption overhead of
2.6% and 0.8% respectively.

Keywords: Coarse grained reconfigurable array (CGRA) · Loop opti-
mization · Hardware loop · CDFG transformation.

1 Introduction

Coarse Grained Reconfigurable Array (CGRA) architectures have proven to be
good targets as specialized hardware in low power embedded applications, such
as Wireless Sensor Networks (WSN), Internet of Things (IoT) and Cyber Phys-
ical Systems (CPS). Due to the regular structure with several highly optimized
processing elements (PEs) and simple interconnects, CGRAs provide high per-
formance and energy efficiency. Analyzing the energy consumption of the PEs, it
is inferred that the scope of improvement lies in the control path rather than on
individual units [16]. Since CGRAs are mostly used to accelerate the compute-
intensive portions of an application, specifically the loops, optimizing the control
path for loops will result in significant improvement in energy efficiency.

Widely reported works in CGRA implementations [5] [11] [14] rely on soft-
ware based loop optimizations to reduce the control flow bottleneck. Popular
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techniques like loop unrolling [16] [6], modulo scheduling [13] [8] and polyhedral
model based optimizations [10] are broadly used in CGRAs. All these approaches
exploit the parallelism available in the innermost loop body and reduce the num-
ber of branch execution by transforming the loop to a data flow graph (DFG).
However, with the growing complexity of the applications, the loop bounds are
becoming larger and number of loop nests as well as total number of loops in
an application are increasing. Reducing only the branch instruction in the in-
nermost loop is not sufficient anymore to get high energy efficiency for a whole
application. To deal with outer loops, additional instructions to perform itera-
tion counter update, terminating condition checking and branching are required.
These additional instructions diminish the overall energy efficiency. Therefore,
any effort in the direction of eliminating these non-contributing loop control in-
structions will aid in optimizing the control path of the whole application and
achieving better performance and energy gain.

In this paper, we introduce a novel hardware based loop optimization tech-
nique for CGRAs which eliminates the control flow bottleneck in loops. As the
target CGRA, we choose the state-of-the-art Integrated Programmable Array
(IPA) architecture [3]. In this CGRA, to optimize the loop control bottleneck,
loop unrolling is used. On top of this we propose the hardware based loop op-
timization to enhance the overall performance and energy efficiency. As of now,
the optimization is limited to loops with statically known bounds. Experimental
results show that the proposed solution reduces the total number of instruc-
tions executed to half of that in the baseline software based implementation and
achieves a maximum of 1.9× performance gain for a wide range of image and sig-
nal processing applications. The first major contribution of this work is a novel
lightweight Hardware Loop Block (HLB) for CGRAs which eliminates branch
instruction overhead for loop increments or decrements. The second major con-
tribution is in the compilation flow. We propose an acyclic graph transformation
in the compilation to transform the software loops in the application CDFG
eliminating loop branches. Experiments show that the total number of branch
instruction execution is eliminated up to an average of 30× compared to that of
the software based approach. Synthesis results show that the added hardware in
the baseline architecture brings an area and a power consumption overhead of
2.6% and 0.8% respectively.

The rest of the paper is organized as follows. Section 2 presents the related
works on loop optimizations with hardware support, from both general purpose
processor and CGRA architectural domains. Section 3 introduces the baseline
architecture and loop model and explains the motivation behind this work. Sec-
tion 4 is dedicated to detail the proposed approach and present the implemen-
tation. In Section 5 experimental results are discussed and section 6 concludes
the paper.

2 Related Works

Hardware based loop optimizations primarily are of two types, zero overhead
looping extensions and instruction memory hierarchy optimizations [16]. Zero
overhead looping refers to automatically updating the iteration count and tak-
ing branch decisions by using dedicated hardware units. One major optimization
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on instruction memory hierarchy favoring loops is to include loop buffers. Loop
buffers cache the instructions that make up the loop body to reduce the instruc-
tion fetch cost. We have seen hardware loop support on processors from the
early x86 processor, the ISA of which included loop instruction and rep instruc-
tion prefix. The rep prefix triggered repeated execution of a single instruction.
Many early ISAs included rep-like prefixes to support single cycle loops. Pro-
gram address based and instruction count based zero overhead loop accelerations
were proposed for DSP [15] and RISC [9] architectures. They could even provide
multi-level loop support by using stack or scratch pad memory. In VLIW archi-
tectures [12], a special hardware unit is attached with every issue slot to auto-
matically generate the instruction address. By employing loop buffers, DSP [1]
and x86 processors could significantly reduce their energy consumption. The
parallel ultra-low power (PULP) cluster architecture [7] is a multi-core platform
with hardware support for loops. PULP implemented hardware loop by includ-
ing an additional controller and a set of registers to store the loop information
to its RISC-V cores. By having two sets of dedicated registers, the design could
support two level nesting of loops. The instruction pre-fetch-buffer of the archi-
tecture acts as a loop cache if the loop body would fit into it, amplifying the
effect of the hardware loop.

State-of-the-art CGRA architectures are adopting to implement hardware
based loop solutions. Vadivel et al. [16] proposed a zero-overhead loop acceler-
ator (ZOLA) for CGRA architectures. It supports nesting of loops up to four
levels. ZOLA is enabled using a custom instruction after configuring all the loop
parameters in the configuration register. The configuration of inner loops are
kept intact until the outermost loop finishes execution. This prevents the reuse
of configuration registers within a nested loop. Hence the total number of loops
in a nested structure is limited by the number of configuration registers. For
instance, in a ZOLA implementation employing four configuration registers, a
nested loop of depth (number of levels) four can have only one loop at each
level. In this paper, we propose a hardware based loop implementation which
can support up to four levels of nesting and arbitrary number of sibling loops.
The term sibling loops refers to loops at the same level or having the same loop
as immediate parent. Furthermore, loop configuration is done inline with the
execution eliminating the need for an extra configuration phase. ZOLA tries to
reduce energy consumption by freeing the extra hardware units its reference ar-
chitecture employs to implement loop control flow. However, the replacement of
units is possible only when they are not used for any other computation. The
solution we propose aims to minimize the number of loop control instructions
executed by the baseline model, rather than trying to reduce the PE usage.

LASER [2] is another attempt to take hardware support for optimizing the
loop execution. It is a hardware-software hybrid solution designed particularly
for loops with imperfect nesting and random nesting of conditionals. Nesting of
loops is called perfect if all the assignment instructions are inside the innermost
loop; otherwise it is called imperfect nesting. In LASER, the compiler flattens
nested loops into a single loop with conditional statements and fuses the true-
path and false-path operation nodes. The instruction fetch unit (IFU) is modified
to select and execute either the true-path or the false-path instruction based on
the branch outcome. By enhancing IFU, LASER tries to better support loops
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with conditional blocks rather than optimizing the general execution of loops.
The basic implementation of looping mechanism remains to be software based.
It does not eliminate the condition checking or branch instructions. The solution
we propose eliminates those loop control instructions.

3 Background and Motivation

This section gives an introduction to IPA [5], the baseline architecture used to
implement our design. The software based loop model of IPA as well as the
problem statement is discussed in this section.

3.1 Architecture

The IPA integrated system consists of an array of inter-connected homogeneous
processing elements (PEs), a global configuration memory (GCM), and a DMA
controller. It is loosely coupled with a host CPU. A multi-banked tightly cou-
pled data memory (TCDM) facilitates data communication between IPA and
the CPU. Fig. 1 gives the IPA integrated system architecture. Each PE in the
PE array houses a functional unit (FU), a controller, a decoder, an instruction
register file (IRF), a regular register file (RRF), a constant register file (CRF)
and router connections at the input and output. Global configuration memory
stores the configurations (instructions and constants) for all the PEs in the PE
array, which will be loaded to IRFs and CRFs of individual PEs, prior to execu-
tion. At each clock cycle, the PE controller fetches an instruction from IRF and
FU executes it to completion.

3.2 Baseline Loop Model

IPA manages loop control flow by supporting branch instructions. The inner-
most loop is partially unrolled to exploit instruction and data level parallelism.
However, once the loop body completes an iteration, the iteration counter is
updated, an unconditional jump to the instruction which checks the terminat-
ing condition is performed, the condition check is done and then a conditional
jump is performed either to the loop start or to the subsequent instruction in the
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kernel. Evidently, the counter update, condition checking and branching instruc-
tions which contribute only to the loop control mechanism are executed as many
times as does the loop body. Performance bottleneck imposed by this overhead
can be promptly inferred by comparing the number of loop control instructions
against the number of kernel instructions executed. For an imperfectly-nested
loop structure of depth d, total number of kernel instructions executed (Nke)
can be represented as:

Nke =

d∑
i=1

n∑
j=1

p ∗
i∏

k=1

q′ (1)

Total number of loop control instructions executed (Nlc) can be computed as:

Nlc = q ∗
d∑

i=1

n∑
j=1

i∏
k=1

q′ (2)

where n is the number of loops at level i, p is the number of kernel instructions
in jth loop at level i, q′ is the loop count of loop at level k and q is the number
of loop control instructions executed per iteration. Loop count is the number of
times the loop is to be executed. In the proposed design, we target to eliminate
the loop control instruction to improve performance and energy efficiency.

4 Proposed Architecture and Compilation Flow

We propose a novel hardware based approach to implement loop control struc-
ture on CGRAs. Features which distinguish this design from other solutions are:

i Support for arbitrarily nested loops: the proposed solution can handle loop
nesting up to four levels, which suffices for the studied benchmarks. The
loops can be perfectly or imperfectly nested. It can handle arbitrary number
of sibling loops.

ii Synchronous termination of loops at multiple levels: if an instruction hap-
pens to be the last instruction of multiple loops in the nested structure, the
iteration count of each of those loops are updated in a single cycle in which
the innermost loop terminates. If it was the last iteration of those loops, then
they all will be terminated instantly.

iii On the go loop configuration: loop configuration is done inline with the exe-
cution. A separate pass through the loop structure is not required to set the
configuration registers.

The baseline implementation is extended to provide hardware loop support
by introducing a Hardware Loop Block (HLB) in the architecture and a pre-
mapping CDFG transformation in the compilation flow. Two dedicated instruc-
tions, LOOP INIT and LOOP CNT are also provided to initialize and config-
ure the loops. LOOP INIT carries the start and end addresses and LOOP CNT
holds the loop iteration count.
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4.1 Hardware Loop Block (HLB)

Hardware loop units are incorporated into each PE in the PE array, modifying its
architecture as shown in Fig. 2. In the individual PEs, HLB is integrated with
the Controller, redefining its branch unit. The branch unit is responsible for
updating the program counter (PC), which points to the next instruction to be
fetched from the IRF. Loop characteristics such as start address, end address and
iteration count are used to configure the loop and need to be stored in registers.
To support four levels of nested loop, HLB reserves four configuration registers,
one for each level and an extra register for loopLevel which holds the current
level number. Each time a new loop is encountered, loopLevel is incremented
by one, signifying a move one level deeper and when a loop runs to completion,
loopLevel is decremented by one indicating a move up to the parent loop. At
each level, the corresponding loop configuration register gets active. This register
selection is controlled by the Loop Select Control Unit (LSCU). For instance,
when a loop at level 2 is in execution, LSCU chooses the configuration register,
R2 (Fig. 2). For every loop that appears at a particular level, the same register
is reused to hold the configuration data facilitating the support for arbitrary
number of sibling loops at each level.

At each clock cycle, the design compares the current PC value to the config-
ured loop end instruction address to detect the branch-point. Until PC reaches
the loop end, execution happens sequentially incrementing PC by one. When
the PC and end address values evaluate to be equal, the loop count value is
decremented by one and the PC is set to loop start address as long as the loop
count is a non-zero value. Loop count becoming zero implies that the current
loop has run to its completion and hence it is set as a trigger to decrement
loopLevel. Consequently, the parent loop parameters become the current loop
configuration, if there is any. PC is updated as PC + 1 which takes the control
to its parent loop or to the rest of the kernel as the case may be. If the loop
at hand was the outermost loop, then loopLevel will be zero indicating that no
loop is in execution.

When a child loop finishes its execution, the design compares PC with the
end address of parent loop as well. This is to support synchronous configuration
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update and/or termination of loops sharing same end address. If the PC value
and the parent end address are found to be the same, the loop count of the
parent loop is decremented. If the parent loop was in its last iteration, then
the loopLevel decrement will be by two. If not, loopLevel will be decremented
by one and PC will be updated with the loop start address of the parent loop.
This checking repeats for the subsequent levels as well causing loopLevel to
be decremented by one, two, three or four depending on the scenario. LSCU
facilitates this conditional update on PC and loopLevel. This feature allows the
required termination of loops and/or loop count update at multiple levels in a
single cycle, benefit of which is particularly evident in the case of perfectly nested
loops. It is evident that current PC value and the loop end/start addresses
are involved in choosing the next instruction. Since these addresses may vary
across PEs, a completely centralized implementation of HLB is not possible.
The baseline compilation flow and the required modifications are discussed in
the next section.

4.2 Compilation flow

IPA supports block oriented execution of applications. It implies that the kernel
to be accelerated is partitioned into single-entry-single-exit blocks of instructions
called basic blocks (BBs) and only one basic block is executed at a time. There-
fore the configuration as well as the assembly code are prepared in a block by
block fashion. The IPA compiler takes as input the CGRA model and the high
level application expressed as a control and data flow graph (CDFG) in which
nodes represent BBs and edges represent the control flow between them. Each
BB itself is represented as a data flow graph (DFG), BB = (D, O, A) where D is
the set of data nodes, O is the set of operation/activity nodes and A is the set of
arcs representing data dependencies. PE array (PEA) of the IPA is modelled by
a bipartite directed graph of operator nodes and register nodes. CGRA model
is the time extended model of PEA in which the timing is represented by con-
nections between registers and operators. It is homomorphic to the basic block
DFG and hence the mapping of a DFG onto the PEA is equivalent to finding a
DFG in the PEA graph [4].

The baseline compilation flow (Fig. 3) starts with generating a CDFG from
the application expressed in C language. This is done using GCC 4.8. Next step
is to select the BB to be mapped, for which depth first search (DFS) strategy
is used. The first BB is mapped without any constraints. However, to map the
subsequent BBs, the constraints imposed by the maps of previously mapped
BBs are to be considered. For this reason, the first map out of the many map-
pings generated for the previous BB is chosen as the start point. Constraints
from this mapping are inferred and consolidated and this happens in the up-
date constraints phase. To schedule the DFG of each BB, a backward traversal
list scheduling algorithm is used. Operation nodes are listed by a priority order
based on mobility and fanout. Once the highest priority node is identified, the
compiler finds a placement for it in the PEA model and schedules it. If a place-
ment solution could not be found, then the DFG is transformed to improve the
placement possibilities. Graph transformations increase the physical or temporal
distance between source and sink to keep data dependencies or reduce the node
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fan outs by operation splitting. The modified DFG then goes into the scheduling
and placement phase. If the transformation does not make any change in the
DFG, then that calls for a backtracking. Another map from the mapping list
is chosen, constraints are updated and the process starts all over again. If the
mapping is successful, a stochastic pruning is applied on the partial mapping set
to prevent it from growing exponentially. Once the assembly file containing the
map for all the BBs is prepared, it is fed to the assembler together with the ISA.
Assembler then generates the configuration for the PE array.

In the proposed model, a CDFG transformation phase is introduced as the
first step in the compilation flow. Since the transformation is done prior to map-
ping, it is termed pre-mapping CDFG transformation. Additionally, the priority
order in which operations are listed is redefined so that loop activity node would
be scheduled to fire as the first activity in the concerned BB. The IPA ISA is
extended with two dedicated instructions and the assembler is also modified ac-
cordingly. The newly introduced step, CDFG transformation and the modified
blocks like Scheduling & Placement, Assembler and IPA ISA are highlighted in
Fig. 3. The pre-mapping CDFG transformation is detailed next.

We introduce two new terms, Hardware Loop Header (HLH) and Hardware
Loop Terminal (HLT) to title the entry and exit BBs of the loop. HLH is the
BB which dominates all other blocks which constitute the loop body and HLT
is last block in that set. Algorithm 1 lists down the steps in transforming the
input CDFG. The transformation is applied to loops of depth up to four as the
hardware unit is so designed. Iteration count of the loop is computed from the
initial and final values of loop control variable and the step by which the variable
gets updated in each iteration of the loop. The loop step can be greater than
or equal to one and the update can be increment or decrement. The algorithm
identifies the first BB in the set of BBs that forms the loop body, which is
essentially the true path successor of loop condition checking BB. This BB is
designated as the HLH. The last BB in the loop body referred as loop latch in the
baseline model is set as the HLT. A loop activity node and a data node holding
the loop count value are inserted into the HLH. Address of the last instruction
in HLT is the loop end address. As discussed earlier, loop characteristics such
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as start address, end address and loop count are used to configure the hardware
loop and that explains the significance of HLH and HLT. As the next step, the
BB that does the condition checking which was the loop header in the baseline
model and the back jump from HLT to this BB are eliminated from the CDFG.
This essentially does a cyclic to acyclic graph transformation on that part of the
CDFG which represents the loop. If the loop control variable is not used as an
operand in any of the BBs, then the nodes that correspond to its initialization
and increment/decrement operations are removed. If the BB housing those nodes
does not include any other node, then that BB as a whole will be pulled out of
the CDFG. If the loop control variable is used inside the loop body, then those
operation nodes will be preserved and the variable gets updated by the the step
value, each time the loop iterates.

Once this transformation is done for each loop in the CDFG, the algorithm
does another pass through the list of loops to merge the HLTs of outer and
inner loops if possible. The merging is performed recursively down the levels
as long as it is feasible to do so. By doing this merge, these loops will have
the same end address which would trigger the hardware unit to update the
loop count of all those loops together as the inner one finishes its last iteration.
As the algorithm runs to completion transforming the CDFG, we are left with a
very simple acyclic graph representing a significantly reduced set of instructions.
Fig. 4 shows a sample program, the corresponding CDFG and the transformed
version of it.

5 Experiments and Results

5.1 Experimental Setup

In this section, we analyse the implementation results providing performance
and area comparison for a set of commonly used DSP applications. To ensure an
unbiased evaluation and test the range of applicability, we have chosen a set of
loop intensive kernels from various application domains with varying structure
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Algorithm 1: Pre-Mapping CDFG Transformation
Result: CDFG’
loopLevel =0; lp=getLoop(CDFG, ++loopLevel); CDFG’=CDFG;
while lp not NULL do

if lp.height > 4 then
continue;

else
loopStartBB=lp.header.truepathSuccessor;
loopCount=computeLoopCount(lp);
loopNode=createLoopNodeIn(loopStartBB);
loopNode.sourceDataNode=createDataNode(loopCount);
lp.HLH=loopStartBB; lp.HLT=lp.latch;
lp.HLT.successor=lp.header.falsepathSuccessor;
lp.header.falsepathSuccessor.predecessor=lp.HLT;
CDFG’=removeBB(lp.header, CDFG’);
if isUsedElsewhere(lp.controlVar, CDFG) then

continue;
else

loopInitBB=loopStartBB.predecessor;
if initOnlyBB(loopInitBB, lp.controlVar) then

loopInitBB.predecessors.successor=loopStartBB;
loopStartBB.predecessors=loopInitBB.predecessors;
CDFG’=removeBB(loopInitBB, CDFG’);

else
removeConstFlag=isConstDataNodeUsedElsewhere (loopInitBB,
lp.controlVar);

removeInitNodes(loopInitBB, lp.controlVar, removeConstFlag);
end
removeConstFlag=isConstDataNodeUsedElsewhere(lp.HLT, lp.controlVar);
removeUpdateNodes(lp.HLT, lp.controlVar, removeConstFlag);

end
end
lp=getLoop(CDFG’, ++loopLevel);

end
loopLevel=0; lp=getLoop(CDFG’, ++loopLevel);
lpNext=getLoop(CDFG’, loopLevel+1);
while lp not NULL && lpNext not NULL do

if (lp.height < 4) && isEmpty(lp.HLT) && (lp.HLT.predecessorList.size==1) &&
(lp.HLT.predecessor==lpNext.HLT) then

lpNext.HLT.successor=lp.HLT.successor;
CDFG’=removeBB(lp.HLT, CDFG’); lp.HLT=lpNext.HLT;

end
lp=getLoop(CDFG’, ++loopLevel); lpNext=getLoop(CDFG’, loopLevel+1);

end

of loop nesting. Finite Impulse Response (FIR) filter is included to represent the
family of digital filters. By virtue of the four-level nesting of loops, the image
processing kernels, 2D convolution, erosion and dilation will aid in a corner
case testing of the proposed approach. The kernels, Jacobi-1D and Seidel-2D
performing stencil computations are used in several different application domains
including data mining and machine learning. Similar is the case with Floyd
Warshal kernel which is used for solving all pair shortest path problems. Jacobi-
1D performs computations with 3-point stencil pattern over one dimensional
data whereas Seidel-2D is a computation over 2 dimensional data with 9-point
stencil pattern providing a deeper loop to test with. The generic kernels, matrix
multiplication and addition are also included. Altogether the set has a good
mix of perfectly and imperfectly nested loops. A detailed characteristics of these
kernels is listed in Table 1.

Performance of the hardware loop implementation is compared against that
of the baseline IPA architecture that employs only software based loop opti-
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Table 1: Maximum depth and iteration counts of loops for the listed kernels

Kernel Depth of Nesting Max. # of Loop Iterations

Floyd Warshal 3 60×60×60 = 216,000
Jacobi-1D 2 20×(28+28) = 1,120
Seidel-2D 3 20×38×38 = 28,880
FIR filter 2 190×10 = 1,900
2D Convolution 4 80×60×3×3 = 43,200
Erosion 4 78×58×3×3 = 40,716
Dilation 4 78×58×3×3 = 40,716
Matrix Multiplication 3 32×32×32 = 32,768
Matrix Addition 2 32×32 = 1,024
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mization. The IPA achieves an energy efficiency improvement up to 18×, with
an average of 9.23× (as well as a speed-up up to 20.3×, with an average of
9.7×) [5] compared to a RISC-V core [7] specialized for ultra-low power near-
sensor processing.

5.2 Implementation results

This section describes the implementation results for the baseline IPA architec-
ture and the proposed design. Both the designs were synthesized with Cadence
Genus Synthesis Solution 17.22-s017 1 using 90nm CMOS technology libraries.
The IPA implementation on which the experiments are conducted is configured
to have a 4×2 PE array with each PE housing a 21×64-bits IRF, a 20×32-bits
CRF and a 32×8-bits RRF. On top of this baseline IPA, Hardware Loop Block
(HLB) module was integrated to support the proposed optimization. Fig. 5 (a)
and (b) reports the area and power consumption overhead of the proposed HLB
of 2.6% and 0.8% respectively over the baseline architecture.
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Table 2: Comparison of the total number of instructions executed between the
baseline and the proposed models

Kernel Baseline Model Proposed Model Gain Achieved

Floyd Warshal 3,514,585 2,204,373 1.59×
Jacobi-1D 36,525 13,895 2.63×
Seidel-2D 1,627,047 827,389 1.97×
FIR filter 25,858 11,795 2.19×
2D Convolution 1,066,898 1,009,438 1.06×
Erosion 67,379 48,722 1.38×
Dilation 92,379 37,154 2.49×
Matrix Multiplication 410,130 176,399 2.33×
Matrix Addition 12,818 5,391 2.38×

Average 2.00×

5.3 Performance analysis

Table 2 presents the comparison of executed instructions in the software based
baseline and the proposed hardware based optimization. It is observed that the
number of instructions executed is reduced to half for almost all the kernels;
achieving an average gain of 2×. The obtained results clearly emphasize that
by eliminating loop control instructions, the total number of instructions exe-
cuted can be greatly reduced. The same is illustrated in Fig. 6 which gives a
comparison of the number of instructions executed by accelerating a simple loop
on the baseline and proposed models for a 2×1 CGRA. The loop control in-
structions that would be eliminated by the proposed technique are highlighted
in red (Fig. 6(b)). Since the loop variable i is used as an operand in the loop
body, its initialization and update operations are preserved. By eliminating the
highlighted instructions, total number of instructions executed is reduced from
46 to 18 achieving a gain of 2.56× (Fig. 6(e)). It is interesting to note that the
gain on reducing the number of branches is 12× ((Fig. 6(d)) which is multiple
times of what obtained for the total number of instructions. At any given instant,
every PE in the baseline PE array will be executing instructions from the same
basic block (BB). To achieve this block-level synchronicity, branch instructions
(JMP/CJMP) that govern the control flow between BBs are copied to every
PE. Therefore the effect of eliminating one branch instruction from the code
will be reflected in the execution profile by many folds. On top of that, more
than 50% of the loop control instructions that get eliminated would be branch
instructions as can be seen from Fig. 6(b). This explains the huge difference on
the gain obtained for branches and total number of instructions. Speed-up or
the performance gain achieved by the enhancement over the baseline model is
computed as the ratio of execution cycles. As depicted in Table 3, an average
gain of 1.5× is recorded for the set of kernels we considered.

Table 4 gives the comparison of the number of branches executed. As ex-
pected, the proposed solution outperforms the baseline by a huge margin. An
average gain of 30× and a maximum of 78× is recorded. To have the instruction
execution on PEs synchronized to the BB boarders, each PE in the PEA would
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Fig. 6: (a) Partially unrolled kernel and corresponding CDFG; (b) Instructions
executed on the baseline model, and (c) proposed model for a 2×1 CGRA; (d)
Total number of branches executed on baseline vs proposed models; (e) Total
number of instructions executed on baseline vs proposed models

Table 3: Comparison of latency in terms of execution cycles between the baseline
and the proposed models

Kernel Baseline Model Proposed Model Gain Achieved

Floyd Warshal 2,203,210 1,548,434 1.42×
Jacobi-1D 15,197 11,268 1.35×
Seidel-2D 670,945 582,652 1.97×
FIR filter 15,327 9,358 1.64×
2D Convolution 538,623 399,280 1.35×
Erosion 41,726 28,059 1.49×
Dilation 41,750 28,013 1.49×
Matrix Multiplication 271,930 140,713 1.93×
Matrix Addition 9,777 6,569 1.49×

Average 1.50×

be executing the branch instruction simultaneously. Therefore, eliminating one
branch instruction will reduce the number of cycles by one but the reduction
on the number of branches will be by the number of PEs. This is the reason
why we do not see a direct correlation between the reduction in branches and
execution cycles. The total number of basic blocks is also found to be reduced
(Table 5) in the proposed solution for all the kernels, effect of which is already
seen in the number of branches. It is by the pre-mapping CDFG transformation
that the BBs and the branch operations got eliminated. Therefore, the gain in
terms of number of BBs and branches acts as an efficiency measure of the CDFG
transformation as well. In the next phase, we will explore energy efficiency of
the proposed approach.

6 Conclusion

The performance bottleneck imposed by the overhead of having loop control
instructions in kernel execution is often substantial. It is impossible to get rid of
all the control bottlenecks with software only loop optimizations. In this paper,
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Table 4: Comparison of the number of branches executed between the baseline
and the proposed models

Kernel Baseline Model Proposed Model Gain Achieved

Floyd Warshal 1,325,288 446,770 2.97×
Jacobi-1D 11,815 164 72.04×
Seidel-2D 487,064 6,248 77.96×
FIR filter 9,126 764 11.95×
2D Convolution 432,646 274,084 1.58×
Erosion 41,661 14,200 2.93×
Dilation 41,661 9,370 4.45×
Matrix Multiplication 139,526 4,164 33.51×
Matrix Addition 4,358 69 63.16×

Average 30.10×

Table 5: Comparison of the number of basic blocks mapped between the baseline
and the proposed compilation flow

Kernel Baseline Model Proposed Model Gain Achieved

Floyd Warshal 16 13 1.23×
Jacobi-1D 14 10 1.40×
Seidel-2D 14 10 1.40×
FIR filter 11 8 1.34×
2D Convolution 24 20 1.20×
Erosion 22 18 1.22×
Dilation 24 20 1.20×
Matrix Multiplication 19 14 1.56×
Matrix Addition 11 7 1.57×

Average 1.40×

we introduced a hardware based loop control mechanism for CGRAs targeted
to reduce the number of non-contributing control operations. By moving the
loop control to hardware, the proposed model could achieve an average speed-
up of 1.5× and reduce the number instructions executed to half, against the
baseline CGRA architecture running software based loops. Up to 78× and an
average of 30× gain is observed on reducing the number of executed branch
instructions with an area and power consumption overhead of 2.6% and 0.8%
respectively. The significant improvement noted on a set of kernels with varying
loop structure suggests that the discussed design can be presented as a generic
loop optimization technique to a wide range of applications.
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