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Complex systems often exhibit shear banding - the coexistence of two different states characterized by their
internal structuring and local shear rates. For some of them, the heterogeneous flow corresponds to the
final steady state response while for others, shear banding can only be transient, the banding structure
healing back to homogeneous flow in the ultimate steady state after long-lived periods. In order to explain
the diversity of observations, Moorcroft and Fielding have established general criteria for the onset of
banding in time-dependent flows of complex systems, ranging from polymeric fluids to soft glassy materials
[Moorcroft et al., Phys. Rev. Lett., 2013, 110, 086001]. The proposed criteria are based on the time evolution
of the bulk rheological response function of the system to a given time-dependent flow protocol and are
associated with a specific signature in the mechanical response. In this contribution, we test the validity of
these criteria in the case of two common time-dependent flow protocols: a step stress and a shear startup.
Two types of fluids are examined. On the one hand, a wormlike micelles system exhibiting steady shear
banding is studied experimentally, using rheometry coupled with direct visualisations and particle image
velocimetry. On the other hand, we analyse previous literature on yield stress fluids exhibiting transient
shear banding. Under creep flow, for both types of fluids the onset of banding arises in a time window
compatible with the Moorcroft-Fielding criterion. However, the mechanical signature, i.e. the shape of the
bulk mechanical signal as a function of time is not the one expected within some of the specific models with
which the general Moorcroft-Fielding criteria were tested numerically. Under shear startup, both types of
fluids behave differently. The criterion holds for yield stress fluids, the onset of banding arising just after the
stress overshoot, as expected. On the contrary, for wormlike micelles the window of instability is delayed,
even if the overshoot clearly plays a crucial role in the nucleation of the shear-induced structures. Regardless
of the flow protocol or the system, wall slip seems to go hand in hand with banding indicating that it is a
key ingredient to take into account.

I. INTRODUCTION

Shear banding is an ubiquitous phenomenon in com-
plex fluids flows where it is usually associated with
the concentration of the shear in some regions of the
flow33,103. In most common situations, shear banding
results in a heterogeneous flow, in which the fluid splits
into two macroscopic coexisting bands of differing lo-
cal shear rates and internal mesostructures for the same
shear stress. The spatial organisation of the flow corre-
sponds to two shear bands stacked along the flow gradi-
ent direction with the interface between the bands lying
in the velocity-vorticity plane.

Over the past fifteen years, shear banding has been ob-
served in various classes of complex fluids having very
different mesoscopic architectures, including polymeric
fluids and soft glassy materials (SGM). Shear band-
ing has been first reported in surfactant wormlike mi-
celles21,77,100, and has since been observed in lyotropic
lamellar surfactant phases101,102, micellar systems of
block copolymers solutions79, polymer solutions15,61

(even if still controversial73), biological fluids18,66, star
polymers98,99, emulsions6,91, suspensions49,82, colloidal
gels25,50 and microgels32,34. For exhaustive bibliogra-
phy regarding experimental evidence of shear banding
the reader can refer to various reviews that encompass
the different classes of complex fluids9,13,33,43,69,78,103.
Among these systems, not all display shear banding as
ultimate steady state. Indeed shear banding has been
reported to be only transient in polymer solutions55

and in various SGM including simple yield stress fluids
such as soft repulsive glasses32,34,35 and some thixotropic
and aging materials such as attractive colloidal gels and
suspensions49,52,82. In these cases, a homogeneous flow
was ultimately observed after long-lived induction peri-
ods, during which shear bands persisted.

Steady-state shear banding is usually expected when
the underlying constitutive curve is non-monotonic, the
latter being defined as the steady state relation between
total shear stress and shear rate by enforcing homogene-
ity of the system. In any range of shear rate with de-
creasing shear stress, the homogeneous flow is linearly
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mechanically unstable113 (see Fig. 1.a). The criterion for
steady shear banding writes as dσ/dγ̇ < 0. Along BC,
the system is linearly unstable while increasing parts
AB and BD corresponds to metastable states. In prac-
tice, the steady-state flow curve σ = f (γ̇) determined ex-
perimentally exhibits a stress plateau (σ ≡ σp) above a
critical shear rate (γ̇ ≡ γ̇1), and the flow separates into
domains bearing low (γ̇ ≡ γ̇l) and high (γ̇ ≡ γ̇h) local
shear rates, with values respectively connected to the
low (γ̇ ≡ γ̇1) and high (γ̇ ≡ γ̇2) boundaries of the stress
plateau (Fig. 1.a). In other words, between A and D, the
ultimate steady-state flow is observed to be banded. In
flow cells where the stress distribution is homogeneous,
the stress plateau is flat while in flows with curvature
such as the Taylor-Couette (TC) flow, where the stress
distribution is heterogeneous, the stress plateau presents
a slight slope. For systems such as viscosity-bifurcating
SGM, the low-shear rate branch is vertical (γ̇1→ 0) and
steady shear banding corresponds to the coexistence of
an unsheared band with a flowing band. Note that it has
also been shown that flow-concentration coupling may
provide an alternative mechanism by making the consti-
tutive curve monotonic but unstable to banding both in
polymeric systems 26,27,46 and SGM11,62. If this descrip-
tion of steady shear banding in terms of the global me-
chanical response seems to be universal across systems,
the microscopic underlying mechanisms can strongly
vary from a system to another, as illustrated by the vari-
ety of models that have been derived over the past thirty
years to explain the observed phenomenology.

In polymeric fluids, steady-state shear banding is pre-
dicted by microscopically grounded models such as the
tube model36 and all its modern variations83, includ-
ing adaptations for (breakable) living polymers23. It is
also predicted by the popular Rolie-Poly (RP) model,
a simplified differential version of the tube model that
incorporates various refinements taking into account ad-
ditional stress relaxation mechanisms75. Very recent
updates, i.e. extension of the simplified tube approx-
imation for rapid-breaking micelles93,94 and the living
Rolie–Poly-fitted model94 have been proposed to pre-
dict the linear and nonlinear rheology beyond the fast
breaking limit, for which the breaking/recombination
time is much smaller than the reptation time. The
non-monotonic character of the constitutive relation can
also be tuned in simpler phenomenological models such
as, among others, the diffusive Johnson-Segalman (d-
JS) model63,90 and the diffusive Giesekus (d-Giesekus)
model42,51, which can qualitatively reproduce many
of the macroscopic aspects of shear banding. Basic
features of shear banding are also predicted by the
Bautista–Manero–Puig model, which couples the upper-
convected Maxwell constitutive equation to a kinetic
equation that takes into account shear-induced struc-
tural changes4,5. Many properties of the shear-banding
flow are also reproduced by models that incorporate con-
centration coupling with shear banding, such as the two
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FIG. 1. Steady-state shear stress vs global shear rate in ab-
sence of flow/structure coupling and/or curvature of the flow
geometry : the underlying constitutive curve is represented in
black while the measured flow curve is in orange. The insets
display the corresponding steady-state velocity profiles (blue
straight line). In (a), the constitutive curve is non-monotonic
and the corresponding measured flow curve exhibits a stress
plateau extending from γ̇1 to γ̇2, a picture that presents a for-
mal analogy with the liquid-gas transition at thermodynami-
cal equilibrium. The black straight lines correspond to stable
branches. The decreasing dotted part (BC) is linearly unsta-
ble. The increasing dashed parts (AB and CD) correspond to
metastable states. In (b), the experimental flow curve and the
corresponding constitutive curve are monotonic and superim-
posed. In this sketch, a yield stress material that follows a
Herschel-Bulkley rheology is displayed.

species Vasquez-Cook-McKinley model adapted to de-
scribe living polymers96,108,114,115.

In soft glassy materials, non-monotonicity of the
constitutive relation and subsequent steady-state shear
banding can be captured by various types of models. The
formation of permanent shear bands can be accounted
for by an extended version of the ‘soft glassy rheology’
model that involves coupling to a relaxation-diffusion
dynamics for the effective temperature45. It can also be
reproduced by various fluidity models, where, in gen-
eral, a local rheological model is coupled with a non-local
diffusion equation governing the behaviour of a fluid-
ity parameter usually defined as the ratio between the
shear rate and the shear stress and that can be related
to the rate of plastic events8,12,25,43,48,95,111. The non-
local nature of the fluidity leads to cooperative effects
characterized by a spatial cooperativity length scale :
localized plastic events induce long-range elastic modi-
fications of the stress over the system. Recent updates
have shown that appropriate combination of mechan-
ical noise and cooperative effects can lead to perma-
nent banding. Mesoscopic approaches based on elasto-
plastic models are also capable of predicting permanent
shear bands80,81,88. For exhaustive bibliography regard-
ing shear-banding modeling, the reader can also refer to
several reviews13,24,43,71,88,89.
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In the absence of flow-concentration coupling, sys-
tems with monotonic flow curve are not expected to ad-
mit permanent banding (see Fig. 1.b) but are likely to de-
velop transient banding whose lifespan can extend over
very long time scales, much longer than the typical time
scale of the flow γ̇−1. The lifespan of the transients has
been reported to decay as a power law of the control pa-
rameter with exponent specific to the imposed variable
(γ̇ or σ)32. Observation of transient shear banding in both
polymer solutions and simple yield stress fluids has mo-
tivated numerous theoretical contributions over the past
ten years to provide a rationale to the long-lasting hetero-
geneous flows in fluids that do not support banding as
ultimate steady-state1,2,7,43,44,54,59,60,76,85–87,107. For SGM,
Benzi et al. have recently shown in the framework of flu-
idity models that, in conditions of ‘weak’ noise, cooper-
ative effects can capture long-lasting transient heteroge-
neous flows in quantitative agreement with experimen-
tal observations7. Another approach has suggested that
shear banding can arise transiently in flows with strong
time-dependence, even in fluids for which the steadily
flowing state is unbanded. In this context, Moorcroft
and Fielding have derived general mechanical criteria to
predict the onset of transient or permanent shear band-
ing in the inertialess limit of creeping flow. The criteria
encompass most of the widely used models for the rhe-
ology of complex fluids (including polymeric and soft
glassy materials)85–87. For each time-dependent proto-
col such as shear startup, step stress and step strain, an
analytical criterion, independent of any constitutive rela-
tion, was derived using linear stability analysis of a base
state characterized by a response function calculated by
enforcing homogeneous flow. Even though the criteria
do not include flow-concentration coupling, the frame-
work remains general, at least for step stress protocols,
and with some caveats in shear startup, as discussed in
Ref.44 and can in principle apply to systems exhibiting
shear banding or not in steady state. Using numerical
simulations of specific models [RP and soft glassy rheol-
ogy (SGR) models], each criterion for onset of banding
can be expressed in terms of a specific signature in the
measured time-dependent rheological response function
of the system (see44 for a synthetic road map).

For step stress protocol, starting from a fluid initially
at rest and jumping the shear stress to a given value σ,
the criterion for onset of banding was found to obey:

Kσ ≡
d2γ̇

dt2 /
dγ̇
dt
> 0 (1)

The onset of banding is then likely to occur as the shear
rate temporal evolution exhibits simultaneously upward
slope and upward curvature. The shape of the typical re-
sponse function expressed in term of time-differential of
the creep curve γ̇(t) obtained from simulations for both
RP and SGR models is illustrated in Fig. 2.a where the
dotted line represents the region where criterion (1) is
fulfilled. Note that the shear rate response sketched in

FIG. 2. (a) Sketch of the typical evolution of the global shear rate
following step stress. Along the dotted part the system is likely
to be linearly unstable to banding. (b) Sketch of the typical
evolution of the global shear stress following step shear rate.
The dotted part corresponds to the region of linear instability to
banding. For systems exhibiting steady-state shear banding,
the dotted part also extends over the long times. Reprinted
with permission from Fielding44, copyright by the Society of
Rheology.

Fig. 2.a has been computed in planar shear flow (without
curvature) and without considering flow/concentration
coupling, so that it is expected for systems that remain
unbanded at steady state. In other words, the Moorcroft-
Fielding criterion under step stress protocol was not ex-
amined in the simulations for the case of steady shear-
banding.

For shear startup protocol, starting from an initially
undisturbed sample and jumping the shear rate to a fixed
value, the criterion for onset of banding was found to be:

Kγ̇ ≡
dσ
dγ

< 0 (2)

The typical temporal stress response is sketched in
Fig. 2.b. It is dominated by a stress overshoot for γ ∼ 1
that relaxes towards steady state. The onset of banding
is supposed to occur just after the stress overshoot and to
be triggered by the stress drop. Note that the most gen-
eral form of equation 2 contains a correction term that
involves curvature of the stress signal (d2σ/dγ2) leading
to a shift of the instability onset very slightly before the
stress overshoot86. In contrast to Eqn (1), the general
status of the shear startup criterion remains unclear due
to the limitation of the number of dynamical viscoelastic
variables allowed in the constitutive model (see Ref.44

for discussion about caveats).
In the first part of this work20, we studied the full

spatio-temporal dynamics of the shear-banding flow of
a surfactant wormlike micelles system following creep
flow and flow start-up. We mainly focused on the long
time dynamics, and especially on the development, on
top of the shear-banding flow, of secondary flows trig-
gered by elasticity. In the present study, we used the
same surfactant wormlike micelles system, well-known
to exhibit shear banding as ultimate steady state to test
the validity of the suggested criteria. We mainly focus on
the creep flow response to step stress but we also explore
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the validity of the Moorcroft-Fielding criterion in shear
startup [Eqn (2)] and suggest conclusions in this flow
configuration by also building on the existing exhaus-
tive literature. Finally, we elaborate on a comparison
with transient behaviors observed in simple yield stress
fluids, well known to only exhibit transient banding, the
ultimate steady state being homogeneous. The choice of
these two types of systems allows us to encompass two
possible situations observed experimentally, namely, the
occurrence of banding, which will persist at steady state
(case of wormlike micelles for which the constitutive
curve is non-monotonic) and the occurence of banding,
which will heal back to homogeneous steady-state flow
(case of carbopol microgel, for which the constitutive
curve is monotonic).

II. EXPERIMENTAL DETAILS

The complete description of the materials, their vis-
coelastic properties and their steady-state behaviour is
given in the first part of this work20. Here, we limit
ourselves to recalling the essential elements.

The experiments were conducted on a semi-dilute
aqueous mixture of 0.3 M cetyltrimethylammonium bro-
mide (CTAB) and 0.4 M sodium nitrate (NaNO3) at a
temperature fixed to 28.0±0.1◦C. This system has been
extensively studied over the past fifteen years and is
well-known to exhibit shear banding as ultimate steady
state41,68,70. Its viscoelastic properties were found to be
quite well described by the single mode Maxwell model
with characteristic visco-elastic time τ = 0.24±0.05 s and
elastic modulus G0 = 243± 5 Pa. Its steady-state flow
curve is characterized by a stress plateau at σ ≡ σp '

155± 3 Pa indicative of gradient shear banding104,105.
The stress plateau extends between two critical shear
rates γ̇ ≡ γ̇1 ' 4.5± 0.5 s−1 and γ̇ ≡ γ̇2 ' 73± 5 s−1 and
was observed to present a slope, partly due to the in-
trinsic curvature of the TC flow geometry. Secondary
flows70 and flow-concentration coupling46 might also
contribute to the slope. Along the stress plateau, the
steady-state velocity profiles were shown to exhibit the
expected shape for a shear-banding system, with two
coexisting regions of different well-defined local shear
rates20. Slip was observed at the moving wall, a fea-
ture, which is omnipresent in shear-banding wormlike
micelles39,72. We will see in the following (section III C)
that slip appears as the shear-induced structures grow
at the inner wall, suggesting that it results from specific
interactions between the shear-induced structures and
the wall, as already observed in experiments conducted
in strain-controlled mode39.

In the present study the CTAB/NaNO3 system was
investigated through global rheological measurements,
optical visualisations and velocimetry measurements, all
performed in the same home-made TC flow geometry.
The TC cell, which consisted in a glass outer cylinder

with 25 mm radius and a black Delrin R©inner cylinder
with 24 mm radius and 40 mm height, giving a curva-
ture ratio Λ≡ d/Ri = 0.04 and an aspect ratio Γ≡ h/d = 40
was coupled to a stress-controlled rheometer (Anton
Paar MCR 301), except in section III B where compar-
isons with data obtained with a TA Instruments ARES
strain-controlled rheometer are also displayed. To de-
termine the onset of shear banding, time-resolved di-
rect optical visualisations and particle image velocime-
try measurements were performed simultaneously with
recording of the global mechanical signals. In the semi-
dilute range, shear-banding wormlike micelles are prone
to exhibit slightly turbid shear-induced structures, gen-
erating a very good optical contrast between the two
bands and providing a way to finely track the interface
between bands in the velocity gradient-vorticity plane
[(r,z) plane]. The latter was illuminated with a radial
laser sheet and the intensity scattered by the sample at
90◦ was recorded at 6 frames per second by a CCD array
(AVT Stingray 1600 × 1200 pixels) equipped with a mag-
nification device (Zoom 6000 Navitar with a 1.5× objec-
tive and 2× adapter tube) providing a spatial resolution
along the radial direction reaching 520 pixels/mm. Par-
ticle image velocimetry experiments were performed by
seeding the sample with 100 ppm of tracer particles with
a mean diameter of 5 µm [Polyamide Seeding Particles
(PSP), Dantec Dynamics]. We used a commercial 1D sys-
tem from Dantec Dynamics involving a Nd:YAG pulsed
laser (DualPower 66-15 Laser 2x65 mJ, λ = 532 nm) but
the velocity profiles v(r) ≡ vθ(r) were computed from a
home-made Python routine, which involves the ‘Scikit-
image’ library for image processing109. Pairs of images of
the (θ,r) plane were captured with a zoom-microscope
lens (Zoom 6000 Navitar with a 1.5× objective and 2×
adapter tube) mounted on a CCD array (FlowSense EO
4M) working at an image acquisition rate of 10 Hz. The
delay between laser pulses was set to 700 µs. To take into
account the curvature inherent to the TC device, each
image was first unbent using piecewise affine transfor-
mation defined by the appropriate displacement of 10 by
10 control points regularly distributed along the θ and r
directions. The displacement between two frames was
then obtained by correlation over windows of 63 pix-
els height along the velocity gradient direction and 2008
pixels width along the azimuthal direction. Such a large
width of interrogation window was particularly useful
when computing instantaneous velocity profiles since it
allowed us to average along the azimuthal direction and
improves the signal to noise ratio.

III. RESULTS AND DISCUSSION

A. Test of the Moorcroft-Fielding shear-banding
criterion under creep flow

In this section, we focus on the short-time response
of the system under creep flow, the ultimate goal be-
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ing to determine whether the Moorcroft-Fielding shear-
banding criterion is valid or not in shear-banding worm-
like micelles systems. In absence of curvature and/or
flow-concentration coupling, shear-banding fluids ex-
hibit a flow curve with a flat plateau, precluding ex-
ploration of the banding regime under imposed stress.
Here we take advantage of the curved flow geometry to
explore the onset of banding under creep flow of worm-
like micelles. Global and local variables were measured
with increased time resolution in order to provide the
best correlation as possible.

1. Early stages of the shear rate response.

Figure 3 displays the early stages of a typical shear
rate response following step stress applied from t = 0
on a sample initially at rest with stress target inside
the plateau regime (σ = 179 Pa). The initial response
(t . 0.5 s) is dominated by inertio-elastic ringing due
to the coupling between the sample elasticity and the
instrument rotational inertia3,37,38,112. A quantitative de-
scription of the creep-ringing response is given in the
first part of this work20.

FIG. 3. Short-time response of the shear rate following step
stress σ = 179 Pa applied at t = 0 to a sample initially at rest.

The inertio-elastic ringing regime is followed by a
stage, called induction period56,57, where the global
shear rate slightly increases and, which ends at the first
inflexion point in the γ̇(t) curve (Fig. 3). Beyond this
point, γ̇ increases with t and progressively approaches
its steady-state value.

The transient evolution of the shear rate can be com-
pared with the general evolution sketched in Fig. 2.a. In
our experiments the initial slow ‘solid-like’ creep regime
produced in the simulations of the RP model is not ac-
cessible since it is most likely hidden by creep ringing.
Note that inertial effects have been neglected in the nu-

merical simulations so that creep ringing could not be
reproduced87. Furthermore, it can also be noticed that
the subsequent growth of γ̇ towards its asymptotic value
is slightly different from the predicted shape. Interest-
ingly, during this transient growth, the γ̇(t) curve ob-
viously slopes upward but the curvature changes from
negative to positive at the first inflexion point indicating
that criterion (1) is fulfilled right after the inflexion point
of the differentiated creep curve.

In the next section, we focus on the short-time evolu-
tion of the scattered intensity and the velocity field to get
information at local scale.

2. Onset of shear banding.

Time-resolved direct visualisations and velocimetry
experiments were performed in order to detect the nu-
cleation of the shear-banding structure as accurately as
possible. From a typical time sequence as displayed in
Fig. 4.a, the intensity I(r,z) scattered by the sample was
averaged over z for each time step and a spatio-temporal
diagram 〈I(r)〉z(t) was built (see Fig. 5.a). The radial in-
tensity distribution as a function of time can reflect the
organisation of the flow: in principle, we can discrim-
inate between banding or not and the intensity profile
can provide indications about the position and the ap-
parent width of the interface profile. The latter can be
diffuse and large (usually at the beginning of the band-

FIG. 4. Views of the (r,z) plane of the TC illuminated with a
radial laser sheet. Early stages of the response to (a) a step
stress σ = 183 Pa and (b) a step shear rate γ̇ = 23 s−1. Note that
these two values of the control parameter correspond to the
same asymptotic state. The grey levels code for the intensity
I(r,z, t) scattered by the sample.
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6

ing process), sharp (when approaching steady state) or
blurred (when the interface is wavy20). Fig. 5.a displays
〈I(r)〉z(t) for an applied stress σ = 183 Pa. When focusing
on the evolution of the front between dark and bright
zones as a function of time, we can successively distin-
guish a slight increase of the intensity level in the whole
gap, the growth of the intensity level closer to the inner
cylinder, the building of a diffuse front and the progres-
sive stiffening of the front followed by blurring due to
undulations of the interface.

The early stages including the progressive stiffening
of the front are illustrated in Fig. 5.e where we have re-
ported the time evolution of the intensity profile over the
first 6.2 s (delimited by the green rectangle in Fig 5.a).
The main difficulty in the accurate experimental deter-
mination of the onset of banding is to define a criterion as
objective as possible. Moorcroft-Fielding criteria result-
ing from a linear stability analysis, they apply to the very
early time dynamics when heterogeneous fluctuations
are first growing. Accordingly, we chose to define the
onset of banding as the intensity profile departs signifi-
cantly from a linear shape, that is, once curvature in the
profile appears, indicating formation of a diffuse front
between two zones of differing intensities and therefore
differing microstructures. For σ = 183 Pa this specific
‘instant’ is likely to occur between 2 and 2.6 s, as de-
noted by the dashed blue curves in Fig. 5.e. In prac-
tice the departure of the intensity profile from the linear
shape can be well-captured using image processing. We
performed image thresholding using the Renyi entropy
method proposed in ImageJ software64.

Illustration of automatic thresholding with this
method is given in Figs. 5.b and c, which focus on a
portion of the gap over the first 24 s (red rectangle in
Fig. 5.a). The edge detection of the thresholded image
(Fig. 5.c) provides both the onset of banding as defined
above and an estimate of the position of the front as
a function of time (Fig. 5.d). Another possible indica-
tor of emerging heterogeneities is given by the quantity

SI(t) =

√∑
i(〈I(ri,t)〉z−Ilin(ri,t))2

N , which represents the square
root of the squared deviation from the linear intensity
profile Ilin.

The onset of banding was also tracked using time-
resolved PIV velocimetry. Instantaneous velocity pro-
files were recorded as a function of time during a short
period following imposition of the shear stress (Fig. 6).
As illustrated in Figs. 6 [see (a), (b) and (e).top-left panel
for instance] the velocity profiles are found to be initially
approximately linear.

The first signs of deviation from the linear profiles
occur between t ' 2 and 3 s as illustrated in Fig. 6.e.top-
right panel. The banding structure then progressively
develops. To estimate the onset of banding from ve-
locimetry experiments, each velocity profile was fitted
by a linear function and, for each of them, the square
root Sv of the mean of the squared residuals was com-

puted
(
Sv(t) =

√∑
i(v(ri,t)−vlin(ri,t))2

N

)
.

The whole set of results is gathered in Fig. 7 for var-
ious imposed shear stresses. The short-time shear rate
response, its smoothed version and its first derivative,
both computed using Savitzky-Golay filter, are repre-
sented. We also plotted the time evolution of the front
obtained from the thresholding of 〈I(r)〉z.

The apparent width w of the front computed by fit-
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FIG. 5. Procedure used to determine the onset of banding
from direct visualisations in the (r,z) plane. The illustration is
given for an imposed stress σ = 183 Pa. (a) Spatio-temporal
diagram 〈I(r)〉z(t) constructed from a time sequence as given
in Fig. 4.a. For each time step, the intensity scattered by the
sample is simply averaged over z and the resulting intensity
profile 〈I(r)〉z is then re-plotted in grey levels as a function
of the time t. (b) Tracking of the front between bands using
Renyi entropy thresholding method. Only a fraction of the
gap over 24 s [red rectangle in (a)] is displayed. (c) Resulting
black and white thresholded picture. (d) Edge detection of
the thresholded image (c) providing both the onset of banding
and an estimate of the front position as a function of time. (e)
Temporal evolution of the intensity profile over the first 6.2 s
[green rectangle in (a)]. The blue color is used to denote the
profiles which exhibit the first noticeable signs of curvature.
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FIG. 6. Representation as a surface plot of the instantaneous
velocity profiles v(r) as a function of time measured using PIV
technique and recorded during a short period following im-
position of the shear stress (a) σ = 175 Pa, (b) σ = 179 Pa, (c)
σ = 183 Pa, (d) σ = 188 Pa. (e) Selective choice of velocity pro-
files over successive temporal ranges for σ = 183 Pa. As time
evolves, the color code goes from red to black. The time inter-
val between each represented velocity profile is 0.2 s.

ting the intensity profile with an error function [〈I(r)〉z =
A ∗ er f ((r− r f ront)/w) + I0 where A is the amplitude and
I0 the intensity base line] is also displayed as a function
of time. Finally, the time evolution of Sv and SI, the
square root of the mean of the squared residual resulting
from the fitting procedure of the velocity and the inten-
sity profiles are also shown. Let us discuss the example
at σ = 183 Pa (Fig. 7.c). During the shear rate growth
following creep ringing, two successive changes of cur-
vature are observed as illustrated by the local minimum
and maximum in the first derivative dγ̇/dt. In between
these local extrema (2.3 ≤ t ≤ 5.5 s), Eqn (1) is satisfied. It
turns out that, around the specific time associated with
the local minimum of dγ̇/dt (t ' 2.4 s), the intensity pro-
file starts exhibiting slight curvature indicating growth

of shear-induced structures from the inner moving wall.
SI starts growing out of initial noise from t' 2.1 s (closed
pink squares) while a front between a turbid zone and
a clear zone clearly emerges from t ' 2.4 s (open red cir-
cles). At the same time, the apparent front width w (open
blue triangles), which initially diverges starts getting fi-
nite values but still larger than the gap size indicating
that the front between bands is very diffuse. The veloc-
ity profiles, which were linear for t ≤ 2 s (Fig. 6.e.top-left
panel) become curved close to the inner wall (Fig. 6.e.top-
right panel). Between 2 and 4 s, Sv starts increasing out
of the intrinsic noise while w exhibits an abrupt decay
to a value of about 150µm that reflects a rapid stiffening
of the front. The subsequent stage, between 4 and 8 s
is associated with a slow stiffening of the front, which
is approaching its final (sharp) shape (w→ 50 µm), and
with a significant increase of Sv related to the progressive
formation of a distinct kink in the velocity profiles. The
local maximum in the first derivative of γ̇(t) might be
connected to this process. Note that the evolutions of SI
and Sv do not have to be over-interpreted since these in-
dicators are very sensitive to noise. In PIV experiments,
the intrinsic noise of the measurement is evaluated as a
fraction (commonly chosen as 1/10) of pixel per time in-
terval as long as the particles displacement remain small,
i.e. inside the interrogation window. In our experiments,
the pixel size is 1.7 µm and the time interval between im-
ages is 700 µs, giving an order of magnitude of 0.3 mm/s
for the intrinsic noise of the PIV experiment. Only the
variations of Sv above this value can reasonably be inter-
preted as hint of emerging nonlinearity in the velocity
profiles. If the growth of Sv can reasonably be estimated
(between 2 and 2.5 s at 183 Pa), any attempt of quantita-
tive determination of a linear growth rate is precluded.
However, we can qualitatively notice that the growth
rate of SI and Sv are very different. This observation
might be rationalized by arguing that the scattered in-
tensity is most likely related to the polymeric stress field,
which depends in a strongly nonlinear way on the ve-
locity field.

Overall, when Eqn (1) is fulfilled in the shear rate tem-
poral evolution, shear-induced structures start growing
from the inner wall and the corresponding velocity pro-
files depart from the linear shape, exhibiting curvature
closer to the inner wall. The situation is less clear for
the lowest applied shear stress (175 Pa), for which emer-
gence of heterogeneity in the velocity profiles seems to be
slightly delayed with respect to the first inflexion point
in γ̇(t). Furthermore the appearance of a distinct kink in
the velocity profiles (often used as an argument to ascer-
tain the existence of shear banding) and, equivalently, of
a ‘structural interface’ with a sharp steady profile is ob-
served after the window of instability given by Eqn (1),
which is not unexpected since Moorcroft-Fielding crite-
ria were derived from linear stability analysis and may
not be valid when the velocity profiles become nonlinear
enough.

Our observations are compatible with the results of ve-
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FIG. 7. Comparison of temporal evolution of global and local variables following step stress of values (a) σ= 175 Pa, (b) σ= 179 Pa,
(c) σ = 183 Pa, (d) σ = 188 Pa over short time scale. Connected to the right axis are the shear rate response (�) and its evolution
smoothed using a Savitzky-Golay filter (grey line). Connected to the linear left axis are the first derivative of the shear rate dγ̇/dt
also obtained from the Savitzky-Golay filter (dashed grey line), the position of the front r f ront in arbitrary units for clarity of
the graph (open red circle) obtained from optical visualisations and the apparent width of the interface w (open blue triangle).
Connected to the logarithmic left axis are the square root of the mean of the squared residuals computed from linear fitting of
the velocity profiles (Sv(t)- closed green circle) and the intensity profiles (SI(t)- closed pink square). The dark greyed out zone
covers the inertio-elastic ringing regime, which is out of interest here. The light greyed out zone delimits the time region where
the Moorcroft-Fielding criterion is likely to hold.

locimetry experiments performed by Hu et al, which are,
to the best of our knowledge, the only ones that we can
build on for wormlike micelles under step stress protocol
(see Fig. 5 in ref.57). Their data can indeed be revisited
under a slightly different angle when considering the
actual onset of banding. The velocity profiles recorded
with a larger spatial resolution than ours, clearly show
some nonlinearity very close to the first inflection point
in γ̇(t) [i.e., the lower boundary of the unstable regime in
γ̇(t) according to Eqn (1)] and exhibit significant curva-
ture close to the inner wall.

Finally, let us mention other kinds of protocols we
have tested to ascertain the connection between the first
inflexion point in γ̇(t) and the onset of banding. Different
configurations were used both to reduce possible effects
of initial creep ringing and to test for the presence of the
first inflexion point in γ̇(t) and its connexion to the onset

of banding.

• The imposition of a constant stress in the plateau
region was preceded by an initial fast stress ramp:
this protocol suppresses creep ringing. Except for
this change at short times, the subsequent evolu-
tion is completely similar to the one described for
regular step stress in the plateau regime (Fig. 8a).

• A step from rest to σ < σp was followed by a step
to a stress value belonging to the plateau, the
duration of each step being about 60 s. Such a
type of protocol is likely to provide a clear dis-
tinction between the shear rate response towards
a homogeneous state (σ < σp) and the shear-rate
response towards a heterogeneous shear-banded
state (σ≥ σp). During the first step towards a homo-
geneous state, constant shear rate time evolution
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FIG. 8. (a) Time evolution of the shear rate following a stress ramp from 0 to 181 Pa during 5 s after which the stress is kept
constant. The initial ramp allows suppression of creep-ringing. (b) Time evolution of the shear rate following two successive
steps stress from σ = 0 to σ = 140 Pa (< σp) then from σ = 140 to σ = 175 Pa (> σp). (c) Time evolution of the shear rate following
two successive steps stress from σ = 0 to σ = 175 Pa then from σ = 175 to σ = 180 Pa. Each step corresponds to shear stress in the
shear-banding range.

was observed after creep ringing. After the second
step towards a heterogeneous state, the shear rate
was found to evolve in the same way as the one de-
scribed earlier for regular step stress in the plateau
regime (Fig. 8b), with the presence of a distinct
inflexion point.

• Finally, starting from rest, two successive steps ap-
plied during about 60 s with target stresses inside
the plateau were performed. In that case, we ex-
pect the system to jump from a banded state to
another. Interestingly, if the shear rate response
to the first step was found to present an inflex-
ion point and a subsequent regime where Eqn (1)
holds, this signature was fully absent in the re-
sponse to the second step: a monotonic increase
with downward curvature was observed before
reaching the steady state. Indeed, in this precise
case, the banding structure is already established
after the first step and during the second step, the
system simply adapts the relative proportion of
each band (Fig. 8c).

B. The Moorcroft-Fielding shear-banding criterion under
step shear rate.

In contrast to step stress protocol, the response of
shear-banding wormlike micelles to shear startup has
been widely explored in the literature even over short
time scales. If correlation between local and global mea-
surements is not always available and if the time- or
space-resolution is not necessarily adapted to capture the
onset of banding, some insights are worth mentioning.
Note also that experimentally, the onset of banding was
often associated with the occurrence of a well-defined
kink in the velocity profiles while the process might have
started before.

Here we restrict our discussion to applied shear rates
in the plateau region (between points A and D in Fig. 1.a),
recalling that the ultimate steady state is banded in
this entire domain. For applied shear rates along the
low shear rate branch, the transient stress response is
mostly a mono-exponential increase, as expected for a
Maxwellian fluid. As point A in Fig. 1.a is approached,
the stress response becomes slightly non-linear47,56 and
exhibits a small overshoot, the magnitude of which never
exceeds σp. Note that, in this situation, the relaxation of
the small stress overshoot is not associated with transient
banding (data not shown).

An example of correlation between time evolution of
the shear stress and the velocity profiles can be found
in the literature56,57. Before the stress overshoot, the ve-
locity measured using particle tracking velocimetry was
found to be approximately linear across the gap. The
same observation was made by Lettinga et al. using ul-
trasonic velocimetry on the same system but the shear
rate quench was performed from a state along the low
shear rate branch72. The subsequent behaviour, which
extends typically between the stress maximum and the
‘foot’ of the overshoot (namely the region unstable to
banding in Fig. 2.b), was found to depend on the ap-
plied shear rate. For the largest explored shear rates,
significant wall slip at the inner wall transiently set in be-
fore strongly nonlinear velocity profiles were observed
probably related to transient development of an (elastic)
turbulent burst as observed later on the same system39,40

or to shear-induced fracture of the sample. These tempo-
rary abnormal velocity profiles were observed to relax
towards smooth and slightly curved profiles at a time
associated with the ‘foot’ of the stress overshoot. For
lower applied shear rates, no wall slip and no abnor-
mal velocity profiles were reported over the same time
interval. After this fast stress relaxation, the velocity
profiles were found to progressively curve downward
until a kink finally appeared, making the low shear rate
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FIG. 9. Comparison between global and local response follow-
ing step shear rate γ̇= 20 s−1. (a) Stress response obtained with
an Anton Paar MCR 301 stress-controlled rheometer (grey line)
and a TA ARES rheometer operating in strain-controlled mode
(closed square). The green circles and pink squares represent
Sv(t) and SI(t) respectively, while the open triangles represent
the apparent width of the interface w. Inset: Time evolution
of the corresponding imposed shear rate. The light greyed out
zone delimits the time region were Eqn (2) holds. (b) Time-
resolved intensity profiles recorded simultaneously and cov-
ering the first 3.35 s following shear startup. The actual time-
resolution is 0.05 s but only one in two profiles is displayed
to make the reading easier. (c) Time-resolved velocity profiles
recorded over the first 3.2 s with sampling of 0.1 s. In each
panel in (b) and (c) the color code goes from red to black as
time evolves.

band discernible. The following stage was associated
with the expansion of the low-shear rate band towards
the inner wall together with an increase of the local shear
rate in the high-shear rate band. Perge et al. essentially
observed the same scenario, with approximately linear
velocity profiles until the fast relaxation, after which sig-
nificant curvature became discernible92. Wall slip set
in shortly after the stress peak and was found to persist
over time (see also ref.39). Note that delayed formation of
the shear-banding structure with respect to the fast over-
shoot relaxation was also reported for similar wormlike
micelles systems in cone-and-plate geometry16,22. The
velocity profiles were observed to become banded dur-
ing the sigmoidal relaxation.

Correlation between the stress evolution and the
structural organisation of the system has also been re-
ported40,53,70. Direct optical visualisations in the (r,z)
plane suggested a connection between the stress over-
shoot and the growth of turbidity of the sample42,70. The
fast relaxation from the stress peak was associated with
homogeneous decrease of the level of turbidity while
the subsequent slow relaxation was related to building
of a diffuse interface that migrates towards the inner
wall and progressively sharpens. This description seems
fully compatible with the above observations by Hu et
al.56,57. Gurnon et al. reported on the correlation be-
tween the transient stress and the evolution of the lo-
cal microstructure in each band using two-point small
angle neutron scattering measurements53. The space-
and time-resolution were too limited to accurately de-
termine the onset of the main stages but some insights
were found in agreement with the previous findings. Up
to the stress peak, the sample was found to be isotropic.
Homogeneous alignment across the gap was then ob-
served over a time scale from 5 to 6τ, including the fast
stress relaxation and the beginning of the sigmoidal re-
laxation10. Bands of distinct microstructures were found
to emerge beyond this time scale.

In practice, the expected region of linear instability of
the time-dependent flow [Eqn (2)], namely the fast re-
laxation of the stress overshoot, often extends over very
short time scales for wormlike micelles which makes it
difficult to probe with local techniques. In the present
study we tried to resolve this region at best, using op-
tical visualisations as the time resolution for the PIV
experiments was limited to 0.1 s. Because we used
a stress-controlled rheometer, we have checked that
the feed-back loop, when operating in strain-controlled
mode, did not significantly affect the stress response
to shear startup, especially at short times. Compari-
son between data obtained with a strain-controlled TA
ARES rheometer and with our Anton Paar MCR 301
are given in Fig. 9.a. The TC geometry that equipped
the ARES was slightly different from ours, with inner
radius Ri = 16 mm, gap width d = 1 mm, and height
h = 33.2 mm, giving a curvature ratio Λ = 0.06 and an
aspect ratio Γ = 33.2. Except a slight difference in the
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amplitude of the stress overshoot, the stress responses
are consistent. The stress maximum is reached around
t = 0.25 s. The fast stress relaxation starting from the
peak ends around t = 1 s and is followed by a damped
oscillation (t' 1.5−2.5 s) and a slower relaxation already
described in Part I of this work20. The stress overshoot
is clearly associated with an increase of the scattered in-
tensity in the whole gap, which also reaches a maximum
close to t = 0.25 s (Fig. 9.b.top-left panel). However, dur-
ing this process, the level of intensity is not exactly ho-
mogeneous in the gap as it was initially suggested by the
snapshots in Fig. 4.b: the intensity profiles are approxi-
mately linear during the stress growth but the scattered
intensity is lower close to the outer wall. As for the ve-
locity profiles, they exhibit complex shapes, with values
of the velocity sometimes even larger than the velocity
imposed at the moving wall: such shapes at very early
times have not been reported earlier. They might be
related to temporary 3D flow and/or elastic recoil84,106.
Since this peculiar behavior arises over the time interval
preceding the stress maximum, it might potentially mask
a very fine comparison with Moorcroft-Fielding crite-
rion. However, just after the stress peak (t ' 0.3 s), the
velocity profiles become approximately linear, in agree-
ment with observations by Hu et al.56,57 or Perge et al.92.
This is observed in fig. 9.c.top-left panel and shown by
the abrupt drop of Sv in fig. 9.a. The first signs of de-
parture from the linear profile appear at the end of the
fast stress relaxation for t ' 1 s (Fig. 9.c.top-right panel)
where Sv starts increasing out of the noise. Curvature
also starts becoming detectable in the intensity profile
from t ' 0.95 s, especially close to the fixed wall (see
Fig. 9.b.top-right panel). Emergence of structural het-
erogeneity at that time is confirmed by the evolution of
SI as a function of time (Fig. 9.a). This corresponds to the
formation of a diffuse front that progressively sharpens
as illustrated by the evolution of the apparent width w
of the interface (Fig. 9.a) and moves towards the inner
wall (see also Fig. 9.b.bottom panels).

These observations confirm the body of data accumu-
lated by other groups: the onset of banding in shear
startup protocol does not start at or slightly before the
stress overshoot as predicted by Eqn (2). Shear banding
is more likely triggered very slightly before the end of
the fast stress overshoot relaxation. The sharpening of
the interface between bands and the emergence of an
effective kink in the velocity profiles occur during the
slow relaxation towards steady state.

In the next section, we examine whether the situation
observed for other complex fluids under the same type
of time-dependent flow protocols presents similarities
with the case of shear-banding wormlike micelles.

C. Comparison with other complex fluids.

Polymer solutions and polyelectrolytes systems such
as DNA solutions under time-dependent flow protocols

have been probed using combination of global rheology
and particle tracking velocimetry14,15,17–19,55,58,73,74,97.
Note that only refs.14,55,58 dealt with TC flow. Here, we
put aside the controversy about the effective existence of
shear banding in polymer solutions as an intrinsic prop-
erty of the system73,74,110. Overall, from the available
experimental data, it is not simple to extract robust fea-
tures as in the case of micellar systems, which makes a
direct quantitative comparison very difficult. Therefore
we limit ourselves to recalling some of the main obser-
vations. After a step stress, the shear rate response as a
function of time of DNA solutions was found to roughly
follow the sketch depicted in Fig. 2.a17,18, with an initial
slow creep regime followed by a rapid increase of the
strain rate. In polybutadiene solutions, the initial creep
regime was replaced by an induction period where the
shear rate was essentially constant or slightly increas-
ing55. The creep regime (or the induction period) seemed
dominated by wall slip while the subsequent raise in γ̇
was characterized by nonlinear velocity profiles which
may become banded at long times. After shear startup,
the expected shear stress overshoot was observed. Be-
fore the stress peak the velocity profiles were found to
be linear. During the overshoot relaxation, just after the
stress peak, plug-like flow with wall slip at both walls
and sometimes elastic recoil were observed. Curved and
eventually banded profiles were rather found to develop
close to the ‘foot’ of the stress overshoot. In all the exper-
iments cited above, the accurate correlation between the
fine variations of the rheological global signals and the
temporal evolution of the local flow field is not possible
because the time-resolution of the velocimetry data ap-
pears inadequate or because velocimetry data are simply
lacking in the time window of interest, which precludes
the accurate test of the Moorcroft-Fielding criteria.

In soft glassy materials, the response of different
classes of yield stress fluids (simple or aging and
thixotropic YSF) under such time-dependent flow proto-
cols has been investigated in depth by combining global
rheology measurements and time- and space-resolved
velocimetry31,32,34,49,50,82.

Fig. 10.a displays the typical shear rate response to
step stress of carbopol microgel, a soft repulsive glass
that behaves as a simple YSF. The steady-state flow
curve of this kind of fluids follows the Herschel-Bulkley
model(σ = σy + ηγ̇n, with σy the yield stress and n the
shear-thinning exponent) and shear banding is only tran-
sient, the steady-state flow behavior being characterized
by a uniform shear flow. When represented in log-log
scale, the shear rate was found to adopt a S-shaped curve,
compatible with the sketch in Fig. 2.a, with an initial
power law decay followed by a strong increase of γ̇(t) be-
fore a steady state was reached (see left inset in Fig. 10.a).
A similar evolution was also observed for weakly attrac-
tive thixotropic colloidal (carbon black) gels 50. At first
sight, despite very different microstructures that lead to
different early dynamics (inertio-elastic ringing for mi-
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FIG. 10. Time-dependent flow of a carbopol microgel. (a) Shear rate γ̇ vs time t for a shear stress σ = 37 Pa applied at t = 0 under
rough boundary conditions (�). The grey line corresponds to γ̇(t) smoothed using Savitzky-Golay filter. This filter is also used to
provide the ratio between the second and the first derivatives (dashed line). Insets: (Left) Log-log plot of γ̇(t). (Right) Velocity
profiles v(r), where r is the distance to the rotor, at different times labelled by the different symbols in the γ̇(t) curve. On each
profile, the upper value of the velocity scale is set to the current rotor velocity v0. Adapted with permission from Divoux et al.32,
copyright by the Royal Society of Chemistry. (b) Shear stress σ vs time for an imposed shear rate γ̇ = 0.7 s−1. Insets: Normalized
velocity profiles v/v0 at different times indicated in the main panel using the same symbols. Reprinted with permission from
Divoux et al.33, copyright by Annual Reviews.

celles versus creep deformation for YSF) and very differ-
ent time scales, the overall shape of the shear rate time
evolution following step stress presents some similari-
ties. Beyond the early dynamics, in the two cases, γ̇ is an
increasing function of time and exhibits similar succes-
sive changes of curvature. However, the corresponding
behaviour at local scale is somewhat different.

Using simultaneous ultrasonic velocimetry measure-
ments, different stages were identified along the shear
rate response: the microgel first experiences homoge-
neous elastic deformation. The velocity profiles are ap-
proximately linear and involve extremely small veloci-
ties [Fig. 10.a.(i)]. The subsequent stage, whatever the
type of boundary conditions, smooth or rough, corre-
sponds to total wall slip [Fig. 10.a.(ii)]. Nucleation and
growth of a shear band at the rotor is then observed
[Fig. 10.a.(iii)-(iv)]. The final stage corresponds to full
fluidisation of the sample, after which the velocity pro-
files remain linear while wall slip vanishes [Fig. 10.a.(v)-
(vi)]. In Fig. 10, we have added the ratio between the
second and the first derivatives of the shear rate ver-
sus time obtained using Savitzky-Golay filter in order to
visualise more easily the domains where the Moorcroft-
Fielding criterion [Eqn (1)] is likely to hold. As schema-
tized in Fig. 2.a, Eqn (1) holds at early times when the first
derivative becomes positive around t ' 500 s, the local
curvature being positive as well but this regime is as-
sociated with homogeneous deformation characterized
by a linear velocity profile and not with shear banding.
Beyond the minimum in γ̇(t), the first derivative dγ̇/dt
is always positive while several successive changes of

curvature are visible. Disregarding the ‘fast’ (in com-
parison to the time scales of the different stages) local
changes of curvature related to inherent noise of the
experiment, the shear-banding criterion starts holding
around t ' 3000−4000 s, inside the total wall slip regime
and it is also valid in the following shear banding regime.
Finally, the subsequent change of curvature, as d2γ̇/dt2

becomes negative (t . 7000 s) seems related to the tran-
sition towards the homogeneous flow state.

In contrast to wormlike micelles, the first inflexion
point where the local curvature goes from negative to
positive, does not exactly coincide with the onset of
banding. In addition, the regime of total wall slip that
might generally go hand in hand with shear banding for
colloidal gels as well as for repulsives glasses, is absent in
wormike micelles. Interestingly, for wormlike micelles,
wall slip emerges when the shear-induced structure nu-
cleates from the inner wall, as illustrated in Fig. 11, which
compares the velocity at the inner wall computed from
the global shear rate response and the local velocity at
the wall measured using PIV. Departure between the
two seems to happen slightly after the onset of banding,
confirming that wall slip is intimately connected to the
properties of the shear-induced structures in the high-
shear rate band. In contrast, for YSF wall slip is likely to
act as a precursor to bulk shear banding.

In startup flow configuration, the shear stress response
of simple yield stress fluids was found to exhibit a stress
overshoot32 as illustrated in Fig. 10.b for carbopol mi-
crogels. Stress overshoots were also observed in aged
thixotropic materials such as laponite suspensions49,82,
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FIG. 11. Velocity at the inner wall as a function of the time
for various applied steps stress in the banding regime of the
wormlike micelles system. The lines correspond to the velocity
expected at the inner wall from the global shear rate measure-
ments. The symbols provide the local velocity at the inner wall
obtained from PIV measurements. The red arrows indicate the
onset of banding as determined from Fig. 7.

waxy crude oils30, colloidal suspensions28 and colloidal
gels29,67. In both cases, transient shear banding was
observed shortly after the stress overshoot and during
the stress decay towards steady-state [see Fig. 10.b.(i)-
(ii)-(iii)], consistently with predictions by Moorcroft
and Fielding44,85,86. Full fluidisation of the samples
was finally observed after this long-lived shear-banding
regime [see Fig. 10.b.(iv)-(v)]. Wall slip was again ob-
served throughout the (transient) shear-banding regime
whatever the boundary conditions while it was found
to be insignificant in the ultimate homogeneous steady
state at least under rough boundary conditions.

Again, the global response is similar to the case of
wormlike micelles even if the time scales that are in-
volved are very different. For YSF, the onset of banding
is clearly connected to the relaxation of the stress over-
shoot in agreement with Eqn (2) while it is delayed for
wormlike micelles. In the two cases, wall slip is present.
In wormlike micelles slip sets in while the shear-induced
structures are nucleated, that is at the stress ovsershoot,
and seems to precede the onset of banding.

IV. CONCLUSIONS

In this article, we have studied the global and local
responses of a well-known shear-banding micellar sys-
tem to common time-dependent flow protocols such as
step stress and shear startup. The main objective was
to test the validity of shear-banding criteria established
by Moorcroft and Fielding within a general theoretical
framework encompassing both complex fluids and soft
solids44,85–87. These criteria, which are associated with

characteristic mechanical signatures, suggest the pres-
ence of banding (or not) in the underlying flow field
solely on the basis of the time evolution of the measured
bulk rheological signals, even for systems that do not ex-
hibit shear banding as ultimate steady-state. Beyond the
case of shear-banding wormlike micelles, we have exam-
ined data available for simple YSF, for which shear band-
ing is only transient. Direct comparison between the two
types of systems shows that, if the overall time evolution
of the global rheological signals present some strong sim-
ilarities, the correlation with the response at local scale
differs and a strict application of the Moorcroft-Fielding
criterion can be misleading.

The whole picture is summarized in figure 12. For
step stress protocol, the short-time response is very dif-
ferent for both types of systems: γ̇(t) is dominated by
inertio-elastic ringing for wormlike micelles while creep
deformation characterized by a power law decay is ob-
served for simple YSF. The flow field is homogeneous
just after creep ringing in wormlike micelles and during
creep deformation in YSF. Beyond this early stage, the
subsequent evolution of γ̇(t) for both fluids is a mono-
tonic increase towards steady state. For simple YSF, γ̇(t)
simultaneously curves and slopes upward at the tran-
sition from creep to yielding. According to Eqn (1),
the fluid is predicted to be unstable to the formation
of shear bands. However, the experiments show that
homogeneous deformation persists in this time interval.
Beyond that, γ̇(t) keeps sloping upward and exhibits
successive changes of curvature very similar to those
observed for wormlike micelles. For both fluids, a time
window can be identified where γ̇(t) exhibits positive
curvature so that Eqn (1) holds. For wormlike micelles,
we have shown that the onset of banding arises inside
this window of instability. Clear structural heterogene-
ity with a diffuse front between bands emerges while the
velocity profiles become nonlinear and slip at the inner
wall occurs. The stiffening process of the front in both
the structural and velocity profiles starts within the in-
stability window while the formation of a distinct kink
in the shear-band profile occurs after the time window of
instability. For simple YSF, total wall slip precedes shear
banding in the unstable region. Note that for the two
types of complex systems, the observed mechanical sig-
nature does not exactly coincide with the one expected
from the models tested numerically. It seems more likely
related to a change of curvature from negative to positive
rather than a change of slope.

Under shear startup protocol, the stress response for
the two systems is dominated by an overshoot. Shear
banding is observed together with wall slip just after the
stress peak in YSF, in full agreement with the Moorcroft-
Fielding criterion. For wormlike micelles, the situation is
different. Hints of structural and flow field heterogene-
ity are evidenced very slightly before the end of the fast
stress overshoot relaxation, the onset of banding being
delayed with respect to the expected window of insta-
bility. Nevertheless, the stress overshoot clearly acts as
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FIG. 12. Schematic view of the mechanical response of wormlike micelles (top) and simple YSF (bottom) under step shear stress
(left) and shear startup (right). This scheme echoes figure 2. In each case, we specified the ranges where the Moorcroft-Fielding
criteria are valid and the behaviours observed at local scale. In these sketches, the scale of the time axis is linear.

a precursor to banding in wormlike micellar systems
since the shear-induced structures are nucleated during
this stage.

From these sets of data, we suggest that the criteria
based on specific variations of the bulk rheological sig-
nals appear as necessary but not sufficient conditions
for the onset of banding. They constitute indicators in
favour of banding but should not be used without com-
plementary local measurements to claim the existence of
banding or not, either transient or steady. Experimen-
tally, whatever the microscopic details of the structure of
the systems, shear-banding and wall slip appear strongly
intertwined. A milestone would be the incorporation of
wall slip as a key ingredient in the models predicting
shear banding in time-dependent and steady-state flows.
Effects of flow-concentration coupling could also be con-
sidered in the time-dependent evolution of the global
mechanical variables, especially for wormlike micelles
where the emergence of turbidity may be indicative of
such an effect. Finally, the Moorcroft-Fielding criteria
have been established for planar Couette flow and the
possible impact of the curvature inherent to the TC flow
remains to be clarified. Possible effects of fluid inertia
during flow startup should also be examined65.
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