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DISCRETE COXETER GROUPS

GYE-SEON LEE AND LUDOVIC MARQUIS

ABSTRACT. Coxeter groups are a special class of groups generated by involutions. They play
important roles in the various areas of mathematics. This survey particularly focuses on how
one use Coxeter groups to construct interesting examples of discrete subgroups of Lie group.
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1. INTRODUCTION

It is a fundamental problem in geometry and topology to understand discrete subgroups of
Lie groups G. For example, when G is the isometry group Isom(Hd) of the hyperbolic d-space
Hd, the study of discrete subgroups of Isom(Hd) is closely related to that of complete hyper-
bolic d-manifolds. More precisely, there is a one-to-one correspondence between torsion-free
discrete subgroups Γ of Isom(Hd) and complete hyperbolic d-manifolds Hd/Γ.

Convex cocompact subgroups of rank-one Lie groups G are specially an important class of
discrete subgroups of G. In particular, given a finitely generated group Γ, the space of rep-
resentations ρ : Γ→G whose image is convex cocompact is open in the representation space
Hom(Γ,G), i.e. the space of all the representations ρ : Γ→ G. So, if ρ is convex cocompact
and is not isolated, then all the nearby representations of ρ are again convex cocompact, and
hence discrete.

Recently, new notions of representations are introduced to generalize convex cocompact
subgroups of rank-one Lie groups: Anosov representations in real semisimple Lie groups (see
[Lab06, GW12]) and convex cocompact subgroups in real projective space (see [DGK17a]).
Such representations also have the property of openness. As new theories are developed, it
is also important to have many examples to support them. From this perspective, the role of
Coxeter groups is crucial.
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The aim of this survey is to illustrate how one can build interesting examples of discrete
Coxeter groups.
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2. COXETER GROUPS

2.1. What is a Coxeter group? A Coxeter matrix M = (ms,t)s,t∈S on a finite set S is a
symmetric matrix with entries ms,t ∈ {1,2, . . . ,m, . . . ,∞} such that the diagonal entries ms,s =
1 and off-diagonal entries ms,t 6= 1. From any Coxeter matrix M = (ms,t)s,t∈S, one may obtain
the Coxeter group W of M given by generators and relations:

W = 〈
s ∈ S | (st)ms,t = 1, ∀s, t ∈ S

〉
It is implicit that (st)∞ = 1 means no relation between s and t. Since ms,s = 1, each generator
s is an involution, i.e. s2 = 1. We shall use the notation W , WS or WS,M for the Coxeter group,
depending on what is important to stress. One should remember that a Coxeter group is a
group with a preferred generating set, namely S. The rank of WS is the cardinality #S of S.

The Coxeter diagram of the Coxeter group WS is the labeled graph GW such that:
(i) the set of nodes1 of GW is the set S;

(ii) two nodes s, t ∈ S are connected by an edge st of GW if ms,t ∈ {3,4, . . . ,∞};
(iii) the label of the edge st is ms,t if ms,t ∈ {4,5, . . . ,∞}.
It is well-known that for any subset T of S, the subgroup of WS generated by T is the

Coxeter group WT,M′ with generating set T and exponents m′
s,t = ms,t for every s, t ∈ T (see

[Bou68, Chap. IV, Th. 2]). Such a subgroup WT is called a standard subgroup of WS.

The connected components of the graph GWS are graphs of the form GWSi
, i ∈ I, where

the (Si)i∈I form a partition of S. The standard subgroups WSi are called the irreducible
components of WS. Since ms,t = 2 if and only if st = ts, we see that the group WS is the
direct product of the subgroups WSi for i ∈ I. A Coxeter group WS is irreducible when the
Coxeter diagram GWS is connected, i.e. #I = 1. A subset T of S is said to be "something" if
the Coxeter group WT is "something". For example, the word "something" can be replaced by
"irreducible", and so on. Two subsets T,U ⊂ S are orthogonal if mt,u = 2 for every t ∈ T and
every u ∈U .

The Cosine matrix of WS,M is the S×S symmetric matrix CW whose entries are:(
CW

)
s,t =−2cos

(
π

ms,t

)
for every s, t ∈ S

An irreducible Coxeter group W is said to be spherical (resp. affine) when the Cosine
matrix CW is positive definite (resp. positive semi-definite but not definite).

Theorem 2.1 (Coxeter [Cox32, Cox34] and Margulis-Vinberg [MV00]). Let WS be an irre-
ducible Coxeter group. Then exactly one of the following is true:

1A Coxeter group often comes with a Coxeter polytope in such a way that the nodes of the Coxeter diagram
are in bijection with the facets of the Coxeter polytope. We shall use the word node of the Coxeter diagram
rather than vertex to make distinction between the vertices of the Coxeter polytope and the vertices of the
Coxeter diagram.
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(i) If WS is spherical, then WS is a finite group.
(ii) If WS is affine, then #S Ê 2 and WS is virtually2 Z#S−1.

(iii) Otherwise, WS is large, i.e. there exists a surjective homomorphism of a finite index
subgroup of WS onto a free group on two generators.

Remark 2.2. These three cases are clearly exclusive. Consequently, if an irreducible Coxeter
group WS is finite (resp. infinite and virtually abelian), then WS is spherical (resp. affine).

Remark 2.3. The irreducible spherical and irreducible affine Coxeter groups are classified
by Coxeter [Cox32, Cox34]; see also Witt [Wit41]. The complete list can be found in Table 1.

A Coxeter group (not necessarily irreducible) is spherical (resp. affine) when all its irre-
ducible components are spherical (resp. affine).

I2(p) (p Ê
5)

p Ã1
∞

An (n Ê 1) Ãn (n Ê
2)

Bn (n Ê 2) 4 B̃2 = C̃2
4 4

H3
5 B̃n (n Ê

3)
4

H4
5 C̃n (n Ê

3)
4 4

Dn (n Ê 4) D̃n (n Ê
4)

F4
4 F̃4

4

G̃2
6

E6 Ẽ6

E7 Ẽ7

E8 Ẽ8

TABLE 1. The irreducible spherical Coxeter diagrams on the left and irre-
ducible affine Coxeter diagrams on the right.

2A group G is virtually "something" if there is a finite index subgroup H ÉG such that H is "something".
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3. HYPERBOLIC REFLECTION GROUPS

3.1. Hyperbolic polytopes. Let Rd,1 be the vector space Rd+1 endowed with a non-degenerate
symmetric bilinear form 〈·, ·〉 of signature3 (d,1), and let q be the associated quadratic form.
A coordinate representation of q with respect to some basis of Rd,1 is:

q(x)= x2
1 +·· ·+ x2

d − x2
d+1.

A hyperbolic d-space Hd is a connected component of a hyperquadric:

Hd = {x ∈Rd,1 | q(x)=−1 and xd+1 > 0}.

The isometry group of Hd is O+
d,1(R), which consists of the elements of Od,1(R) that preserve

Hd. We often work with the projective model of Hd:

Hd = {x ∈Rd,1 | q(x)< 0 and xd+1 > 0}/R+,

where the set R+ of positive scalars acts on Rd,1 à {0} by multiplication. If we set

S(Rd,1) := (Rd,1 à {0})/R+,

then Hd is an open subset of the projective sphere S(Rd,1). The closure Hd of Hd in S(Rd,1) is
the compactification of Hd.

A subset of Hd is a hyperbolic d-polytope if it is the intersection of a finite family of closed
half-spaces of Hd and it has non-empty interior. A hyperbolic Coxeter d-polytope (or simply
a Hd-Coxeter polytope) is a hyperbolic d-polytope P all of whose dihedral angles are sub-
multiples of π. In other words, if two facets4 s, t of P are adjacent,5 then the dihedral angle
θ(s, t) between s and t equals π/m for some integer m Ê 2. When two facets s, t are parallel,
it is common to say that θ(s, t) = 0. A hyperbolic Coxeter polytope is right-angled if all its
dihedral angles are π/2.

Associated with a hyperbolic Coxeter polytope P is a Coxeter matrix M = (ms,t)s,t∈S on the
set S of facets of P: if s, t ∈ S are adjacent, then ms,t = π/θ(s,t); otherwise, ms,t =∞. We denote
by WP the Coxeter group of the Coxeter matrix M, and call it the Coxeter group of P. If s is
a facet of P, then σs denotes the reflection in the hyperplane containing s.

Theorem 3.1 (Poincaré [Poi83]). Let P be a Hd-Coxeter polytope, and WP the Coxeter group
of P. Then the homomorphism σ : WP → Isom(Hd) defined by

σ(s)=σs for each s ∈ S

is injective and the image ΓP := σ(WP ) is discrete. Moreover, P is a fundamental domain for
the action of ΓP on Hd. In particular, if P has finite volume (resp. is compact), then ΓP is a
lattice (resp. uniform lattice) of Isom(Hd).

A subgroup H of Isom(Hd) is called a hyperbolic reflection group if H = ΓP for some Hd-
Coxeter polytope P. In this case, we call ΓP the reflection group of P. Theorem 3.1 provides
a nice way to construct discrete subgroups of Isom(Hd), even lattices. We shall review in the
next section the classification of Hd-Coxeter polytopes of finite volume in small dimension
and their non-existence in large dimension.

3The signature of a symmetric matrix B is the triple (p, q, r) of the positive, negative, and zero indices of
inertia of B. In the case r = 0, we simply say that B is of signature (p, q).

4A face of P of codimension 1 (resp. 2) is called a facet (resp. ridge) of P.
5Two facets s and t of P are adjacent if s∩ t is a ridge of P.
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3.2. Classical results in dimension 2 and 3.

3.2.1. Dimension 2. A necessary and sufficient condition for the existence of hyperbolic Cox-
eter 2-polytopes of finite volume follows immediately from:

Theorem 3.2. Let θ1, . . . ,θn be real numbers such that 0 É θi < π for each i = 1, . . . ,n. Then
there exists a hyperbolic polygon of finite volume with dihedral angles θ1, . . . ,θn if and only if∑n

i=1θi < (n−2)π.

3.2.2. Dimension 3. Hyperbolic Coxeter 3-polytopes of finite volume are well understood,
notably thanks to the classification of hyperbolic 3-polytopes with dihedral angle É π/2 due to
Andreev [And71a, And71b]. During his PhD, Roeder found and fixed a gap in the original
proof of Andreev (see [RHD07]). Hodgson and Rivin [HR93] gave a characterization of hy-
perbolic 3-polytopes, which generalizes Andreev’s theorem, in terms of a generalized Gauss
map.

To express properly Andreev’s theorem, one needs some definitions. Two compact poly-
topes P ,P ′ of the Euclidean space Rd are combinatorially equivalent if there is a bijection
between their faces that preserves the inclusion relation. A combinatorial equivalence class
is called a combinatorial polytope. Note that if a hyperbolic polytope P ⊂Hd is of finite vol-
ume, then the closure P of P in Hd is combinatorially equivalent to a compact polytope of Rd.
A labeled polytope is a combinatorial polytope P with a labeling θ, which is a function from
the ridges of P to (0,π/2]. A hyperbolic polytope P of finite volume realizes a labeled polytope
P if there exists a combinatorial equivalence φ between the faces of P and P such that the
dihedral angle at the ridge e of P is the label θ(φ(e)) of P .

Let P be a labeled 3-polytope with labeling θ. A k-circuit of P is a sequence of distinct
facets s1, . . . , sk such that e i := si ∩ si+1 (indices are modulo k) is an edge of P . A k-circuit
is prismatic if all the (closed) edges e i are disjoint. The angle sum of a k-circuit is the real
number

∑k
i=1θ(e i). A k-circuit is spherical (resp. Euclidean, resp. hyperbolic) if its angle sum

is bigger than (resp. equal to, resp. less than) (k−2)π. A vertex v of P is spherical (resp.
Euclidean) if the circuit consisting of the facets that contain v is spherical (resp. Euclidean).
The graph WP of P is the graph whose nodes are the facets of P and such that two nodes
s, t are connected if and only if s∩ t is not an edge, or s∩ t is an edge and θ(s∩ t)< π/2.

Theorem 3.3 (Andreev [And71a, And71b]; see also [RHD07]). Let P be a labeled 3-polytope
whose underlying polytope is not a tetrahedron. Then there exists a compact (resp. finite
volume) hyperbolic 3-polytope P that realizes P if and only if:

(i) all the vertices of P are spherical (resp. spherical or Euclidean);
(ii) all the prismatic 3- and 4-circuits of P are hyperbolic;

(iii) the graph WP of P is connected.
In that case, the polytope P is unique up to isometry of H3.

Remark 3.4. The careful reader probably wonder what happen when the underlying polytope
of P is a tetrahedron. This case is explained in [Roe06]. And the list of all Coxeter tetrahedra
of finite volume can be found in Tables 3 and 4.

Remark 3.5. The condition on the connectivity of WP is often expressed by inequalities. One
may notice that if the conditions (i) and (ii) are satisfied, then the disconnectedness of WP

implies that (see [RHD07, Prop 1.5]):
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• P is a right triangular prism, i.e. all the labels between the base facets and the
joining facets are π/2, or

• P is a quadrilateral pyramid with Euclidean apex such that the labels of two opposite
edges in the base are π/2.

3.3. The Gram matrix of hyperbolic polytope. A hyperbolic d-polytope P is of the form

P =∩N
i=1H−

i ,

where H−
i is a closed half-space of Hd whose boundary is a hyperplane Hi. Each H−

i corre-
sponds to a unique vector ui with the property that:

H−
i =Hd ∩ {x ∈Rd,1 | 〈x,ui〉 É 0} and 〈ui,ui〉 = 1.

The Gram matrix G = (g i, j) of P is a symmetric N × N matrix with entries g i, j = 〈ui,u j〉.
A square matrix B is reducible if B is the direct sum of smaller square matrices B1 and
B2 (after a reordering of the indices), i.e. B =

(
B1 0
0 B2

)
. Otherwise, B is irreducible. Every

square matrix B shall be the direct sum of irreducible submatrices, each of which we call a
component of B. The next theorem tells us that the hyperbolic polytopes are determined by
the Gram matrices.

Theorem 3.6 ([Vin85, Th. 2.1]). Let G = (g i, j) be an irreducible symmetric N × N matrix
of signature (d,1, N − d −1) such that the diagonal entries g i,i = 1 and off-diagonal entries
g i, j É 0. Then there exists a hyperbolic d-polytope P whose Gram matrix is G, and the polytope
P is unique up to isometry of Hd.

Remark 3.7. A detailed analysis of the Gram matrix can reveal the combinatorial structure
of the hyperbolic polytope P (see [Vin85, Th. 3.1 & 3.2]) and whether P is compact or of finite
volume (see [Vin85, Th. 4.1]).

3.4. Lannér and quasi-Lannér Coxeter groups. A Coxeter group WS is Lannér (resp.
quasi-Lannér) if det(CW ) < 0 and for every proper subset T ⊂ S, the Coxeter group WT is
spherical (resp. spherical or irreducible affine). If P is a compact (resp. finite volume)
Coxeter simplex, then the Coxeter group WP is Lannér (resp. quasi-Lannér). Conversely,
if W is a Lannér (resp. quasi-Lannér) Coxeter group of rank d +1, then its Cosine matrix
CW has signature (d,1) and there exists a compact (resp. finite volume) Hd-Coxeter polytope
whose Gram matrix is 1

2CW .

In short, Lannér (resp. quasi-Lannér) Coxeter groups correspond to compact (resp. finite-
volume) Hd-Coxeter simplices. Such Coxeter simplices exist only in small dimension.

Theorem 3.8 (Lannér [Lan50], Koszul [Kos67] and Chein [Che69]). If WS is a Lannér (resp.
quasi-Lannér) Coxeter group, then #S É 5 (resp. #S É 10). Table 2 indicates the number of
Lannér (resp. quasi-Lannér) of a given rank. The list of Lannér and quasi-Lannér Coxeter
groups of rank Ê 4 can be found in [Che69].

The non-existence of hyperbolic Coxeter simplices in large dimension is in fact the first
side of a more general non-existence theorem in Section 3.5.

Remark 3.9. Tables 3 and 4 give us the list of all the Lannér or quasi-Lannér Coxeter groups
of rank 4, which correspond to compact or finite volume hyperbolic tetrahedra, respectively.
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Dimension ] of quasi-Lannér ] of Lannér
d = #S−1 not Lannér Coxeter groups

2 ∞ ∞
3 23 9
4 9 5
5 12 0
6 3 0
7 4 0
8 4 0
9 3 0

TABLE 2. The numbers of quasi-Lannér or Lannér Coxeter groups

4 5 4

4

5

4

5

5

5 5 4 5 5 5

TABLE 3. The nine compact hyperbolic tetrahedra

4

4

4

44

4

4

4

4

6 6

4

6

5

6

6

4 5 6

6 4 4 4 4 4 6

6 4 6 5 6 6

6 4 4 4 4

4

TABLE 4. The twenty-three hyperbolic tetrahedra of finite volume which are
not compact

3.5. Absence in large dimension.
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Theorem 3.10 (Vinberg [Vin84] and Prokhorov [Pro86]). If ΓP is a discrete reflection group
of Isom(Hd) with compact (resp. finite volume) fundamental domain P, then d É 29 (resp.
d É 995).

The proof of Vinberg (resp. Prokhorov) used Nikulin’s inequality for simple polytope (resp.
edge-simple polytope) established in [Nik81] (resp. [Kho86]). The upper bounds in the right-
angled case are better:

Theorem 3.11 (Potyagailo-Vinberg [PV05] and Dufour [Duf10]). If ΓP is a discrete reflection
group of Isom(Hd) with compact (resp. finite volume) right-angled fundamental domain P,
then d É 4 (resp. d É 12).

Except for compact right-angled polytopes, the upper bounds are far from being sharp.

• There exists a compact right-angled hyperbolic 4-polytope: 120-cell.
• Examples of finite volume right-angled d-polytopes are known in dimension d É 8

(see [PV05]).
• Examples of compact d-polytope are known in dimension d É 8 (see [Bug84, Bug92]

for d = 7,8).
• Examples of finite volume d-polytope are known in dimension d É 21 and d 6= 20 (see

[All06] and reference therein for d É 19 and [Bor87] for d = 21).

Remark 3.12. Moussong observed that the argument of Vinberg [Vin84] may extend to show
that if a Coxeter group W is word hyperbolic and the nerve of W is a generalized homology
(d−1)-sphere, then d É 29 (see [Dav08, Prop. 12.6.7]). Here, the nerve of a Coxeter group WS
is the poset of all nonempty spherical subset of S partially ordered by inclusion, which is an
abstract simplicial complex, and a generalized homology d-sphere is a homology d-manifold
with the same homology as the d-sphere.

3.6. Hyperbolic Coxeter polytopes with few facets. The complete classification of all
compact or finite-volume hyperbolic polytopes is not an easy task. Only compact d-polytopes
with N facets (N É d+3) and finite-volume d-polytopes with N facets (N É d+2) were clas-
sified. For more details, we refer the reader to the web page maintained by Felikson and
Tumarkin:

https://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
This webpage contains all the known examples of hyperbolic Coxeter polytopes of dimension
Ê 4.

3.7. Convex cocompact hyperbolic reflection groups. A subgroup Γ of Isom(Hd) is con-
vex cocompact if there exists a Γ-invariant convex subset C of Hd such that Γ acts properly
discontinuously on C with compact quotient. Using the following theorems, one can easily
check when a reflection group ΓP of Isom(Hd) is convex cocompact.

Theorem 3.13 ([DH13, Th. 4.12]). Let P be a Hd-Coxeter polytope and let ΓP be its reflection
group. Then ΓP is convex cocompact if and only if

(i) ΓP is word-hyperbolic, and
(ii) P has no pair of asymptotic facets.

Remark 3.14. The condition (ii) may be replaced by (ii′) there is no pair of facets s, t of P
such that gs,t =−1, where G = (gs,t) is the Gram matrix of P.

https://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
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Theorem 3.15 (Moussong’s hyperbolicity criterion [Mou88]). Let WS be a Coxeter group.
Then WS is word hyperbolic if and only if S does not contain two orthogonal non-spherical
subsets, nor any affine subset of rank Ê 3.

Remark 3.16. Desgroseilliers and Haglund [DH13, Th. 1.1] found a class of Coxeter groups
which can be realized as convex cocompact subgroup of Isom(Hd), which is not a reflection
group, and they conjectured that there exists a word-hyperbolic Coxeter group which admits
a convex cocompact representation into Isom(Hd) but which cannot be realized as convex
cocompact reflection group of Isom(Hn) for any n ∈N.

4. PROJECTIVE REFLECTION GROUPS

4.1. Tits-Vinberg’s Theorem. Let V be a vector space over R, and letS(V ) be the projective
sphere. We denote by SL±(V ) the group of automorphism of S(V ), i.e.

SL±(V )= {g ∈GL(V ) | det(g)=±1}.

We denote by Ŝ the natural projection of V à {0} to S(V ), and let S(W) := Ŝ(W à {0}) for any
subset W of V . The complement of a projective hyperplane in S(V ) consists of two connected
components, each of which we call an affine chart of S(V ). A cone is a subset of V which
is invariant under multiplication by positive scalars. A subset C of S(V ) is convex if there
exists a convex cone U of V such that C =S(V ), properly convex if it is convex and its closure
lies in some affine chart, and strictly convex if in addition its boundary does not contain any
nontrivial projective line segment. Hyperbolic spaces are special examples of strictly convex
open subsets of S(V ).

A projective polytope is a properly convex subset P of S(V ) such that P has a non-empty
interior and P = ∩N

i=1S({x ∈ V | αi(x) É 0}), where αi, i = 1, . . . , N, are linear forms on V . We
always assume that P has N facets, i.e. to define P, we need all the N linear forms (αi)N

i=1. A
projective reflection is an element of SL±(V ) of order 2 which is the identity on a hyperplane.
Every projective reflection σ can be written as:

σ= Id−α⊗v, i.e. σ(x)= x−α(x)v ∀x ∈V ,

where α is a linear form on V and v is a vector of V such that α(v)= 2.

Let P be a projective polytope and S the set of facets of P. A reflection in a facet s ∈ S is
a projective reflection σs which fixes each point of s. A pre-mirror polytope is a projective
polytope P together with one reflection σs in each facet s of P. So, one may choose σs =
Id−αs ⊗ vs with αs(vs) = 2 such that P = ∩s∈SS({x ∈ V | αs(x) É 0}). Note that the couples
(αs,vs) are uniquely determined only up to multiplication by a positive real numbers.

If P is a pre-mirror polytope, then ΓP denotes the group generated by the reflections in
the facets of P. We say that ΓP is a projective reflection group if for any γ ∈ΓP ,

γ(P̊)∩ P̊ 6=∅ ⇒ γ= Id,

where P̊ denotes the interior of P.
In the next paragraph, we introduce a relevant tool to formulate Proposition 4.2 and The-

orem 4.3 which express necessary and sufficient conditions for ΓP of a pre-mirror polytope
P to be a projective reflection group. A key is the notion of Cartan matrix of mirror polytope
which generalizes the twice of the Gram matrix of hyperbolic polytope.
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Definition 4.1. A Cartan matrix on a set S is a S×S matrix AS = (as,t)s,t∈S which satisfies
the conditions: (i) as,s = 2, ∀s ∈ S; (ii) as,t É 0, ∀s 6= t ∈ S; (iii) as,t = 0⇔ at,s = 0, ∀s 6= t ∈ S.

A mirror polytope is a pre-mirror polytope P such that the matrix AP := (αs(vt))s,t∈S is a
Cartan matrix. In this case, we call AP the Cartan matrix of P. A Cartan matrix A on S is
of type Coxeter if for any s 6= t ∈ S,

as,tat,s < 4 ⇒ π

arccos
(1

2
pas,tat,s

) ∈N.

A projective Coxeter polytope is a mirror polytope P whose Cartan matrix AP is of type
Coxeter. For each pair of adjacent facets s, t of P, the dihedral angle of the ridge s∩ t is
said to be π/ms,t if as,tat,s = 4cos2(π/ms,t).

Proposition 4.2 ([Vin71, Prop. 17]). Let P be a pre-mirror polytope. If the group ΓP is a
projective reflection group, then P is a projective Coxeter polytope.

A Cartan matrix AS and a Coxeter group WS are compatible when:
(i) ∀s, t ∈ S, ms,t = 2 ⇔ as,t = 0;

(ii) ∀s, t ∈ S, ms,t <∞ ⇔ as,tat,s = 4cos2(π/ms,t);
(iii) ∀s, t ∈ S, ms,t =∞ ⇔ as,tat,s Ê 4.

It is clear that there is at most one Coxeter group compatible with a given Cartan matrix,
and that a Cartan matrix AS is compatible with some Coxeter group WS if and only if AS is
of Coxeter type. If P is a projective Coxeter polytope, then WP denotes the unique Coxeter
group compatible with AP . The following is a generalization of Theorem 3.1 to the projective
setting.

Theorem 4.3 ([Bou68, Chap. V] and [Vin71, Th. 2] ). 6 Let P be a projective Coxeter polytope
of S(V ) with Coxeter group WP , and let ΓP be the group generated by the projective reflections
(σs)s∈S in the facets of P. Then the following hold:

(i) the homomorphism σ : WP →SL±(V ) defined by σ(s)=σs is an isomorphism onto ΓP ;
(ii) the group ΓP is a discrete projective reflection group;

(iii) the union CP of the ΓP -translates of P is a convex subset of S(V );
(iv) if ΩP is the interior of CP , then ΓP acts properly discontinuously on ΩP .

4.2. From Cartan matrix to mirror polytope. Given a Cartan matrix AS, there is a
simple process to build a canonical mirror polytope ∆A such that A∆A = AS. In this con-
struction, ∆A will be a simplex of dimension #S−1.

Let V = RS. We denote by (es)s∈S the canonical basis of V and (e∗s )s∈S its dual basis. We
set αs := e∗s and vs :=∑

t At,s e t, i.e. vs is the s-column vector of AS. Hence, by taking ∆ to be
the (projectivization of) negative quadrant in S(V ) and σs = Id−αs ⊗ vs to be the reflection
in the facet ∆∩S(Kerαs), we obtain a mirror polytope ∆A whose underlying polytope is a
simplex of dimension #S−1. We call ∆A the mirror simplex associated to AS.

In the case where WS is any Coxeter group and AS = CW , the mirror simplex associated
to AS is called the Tits simplex associated to WS and denoted by ∆W . The corresponding

6Theorem 4.3 was proved by Tits for ∆W , which we define in Section 4.2, and by Vinberg for the general
case.
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representation σ : WS →S(RS) is dual to Tits geometric representation described in [Bou68].

For example, if W is a spherical (resp. irreducible affine), then∆W gives rise to the classical
tiling of S(V ) (resp. of an affine chart) with Γ∆W in the isometry group of sphere (resp.
Euclidean space). If W is Lannér (resp. quasi-Lannér), then Ω∆W is the projective model
of the hyperbolic space and ∆W (resp. ∆W ∩Ω∆W ) is the hyperbolic Coxeter polytope whose
Coxeter group is W .

An irreducible Cartan matrix A has a simple eigenvalue λA which corresponds to an
eigenvector with positive entries and has the smallest modulus among the eigenvalues of A ,
by the Perron-Frobenius theorem. We say that A is of positive, zero or negative type when
λA is positive, zero or negative, respectively. For example, the Gram matrix of a hyperbolic
polytope of finite volume is always of negative type. Now, the following is a generalization of
Theorem 3.6 to the projective setting.

Theorem 4.4 ([Vin71, Cor. 1]). Let A be a Cartan matrix of size N ×N. Assume that A is
irreducible, of negative type and of rank d+1. Then there exists a mirror d-polytope P with
N facets unique up to automorphism of S(Rd+1) such that AP =A .

Remark 4.5. Theorem 4.4 is not explicitly stated in [Vin71, Cor. 1] for non-Coxeter polytopes,
but may be proved from [Vin71, Prop. 13 & 15].

4.3. Anosov reflection groups. Anosov representations are discrete representations of
word-hyperbolic groups into semisimple Lie group with good dynamical properties. They
have received a lot of attention and have been much studied recently (see e.g. [Lab06, GW12]
for the definition of Anosov representation). But examples of Anosov representations of word
hyperbolic groups, which are more complicated than free groups and surface groups, into Lie
group of higher rank are less known. The following theorem, which generalizes Theorem
3.13, tells us that any infinite, word hyperbolic, irreducible Coxeter groups admit Anosov
representations.

Theorem 4.6 ([DGK+21, Cor. 1.18]). Let P be a projective Coxeter polytope of S(V ) with
Coxeter group WS. Suppose that WS is word-hyperbolic. Then the following are equivalent:

• the representation σ : WS →SL±(V ) defined by σ(s)=σs is P1-Anosov (i.e. Anosov with
respect to the stabilizer of a line in V );

• As,tAt,s > 4 for all s 6= t with ms,t =∞.

Remark 4.7. Anosov reflection groups in O(p, q) can be used to give a new proof of Theorem
3.15 (Moussong’s hyperbolicity criterion); see [DGK17b, LM19].

Theorem 4.8 ([LM19, Th. A]). In dimension d = 4, . . . ,8, there exists a projective Coxeter
polytope of S(Rd+2) with Coxeter group WS such that:

• the group WS is word-hyperbolic and its boundary is a (d−1)-sphere;
• the image of the representation σ : WS →SL±(Rd+2) defined by σ(s)=σs lies in Od,2(R);
• the representation σ : WS →Od,2(R) is P-Anosov, where P is the stabilizer of an isotropic

line;
• the group WS is not quasi-isometric to H4.



12 GYE-SEON LEE AND LUDOVIC MARQUIS

4.4. Convex cocompact projective reflection groups. An infinite discrete subgroup Γ
of SL±(V ) is convex cocompact in S(V ) if it acts properly discontinuously on some properly
convex open subset Ω of S(V ) and cocompactly on a nonempty Γ-invariant closed convex
subset C of Ω whose closure in S(V ) contains all accumulation points of all possible Γ-orbits
Γ · y with y ∈Ω.

The notion of Convex cocompactness in S(V ) introduced in [DGK17a], in some sense, gen-
eralizes that of Anosov representation, but it does not require that the group Γ is word
hyperbolic. There is also a simple characterization of convex cocompactness for projective
reflection groups:

Theorem 4.9 ([DGK+21, Th. 1.3]). Let P be a projective Coxeter polytope of S(V ) with infinite
irreducible Coxeter group WS, and σ : WS → SL±(V ) the representation defined by σ(s) = σs.
If σ(WS) is convex cocompact in S(V ), then WS satisfies the following two conditions:

(i) S does not contain two orthogonal non-spherical subsets;
(ii) if S contains an irreducible affine subset T of rank Ê 3, then WT is of type Ãk where

k = #T −1.

Theorem 4.10 ([DGK+21, Th. 1.8]). Let P be a projective Coxeter polytope of S(V ) with
infinite irreducible Coxeter group WS, AS = (As,t)s,t∈S the Cartan matrix of P, and σ : WS →
SL±(V ) the representation defined by σ(s) = σs. If WS satisfies the conditions (i) and (ii) of
Theorem 4.9, then the following are equivalent:

• σ(W) is convex cocompact in S(V );
• for any irreducible standard subgroup WT of WS with ∅ 6= T ⊂ S, the Cartan subma-

trix AT := (As,t)s,t∈T is not zero type;
• det(AT) 6= 0 for all T ⊂ S with WT of type Ãk, k Ê 1.

As a result, any infinite, irreducible Coxeter group WS satisfying the conditions (i) and
(ii) of Theorem 4.9 admits projective reflection groups, which are convex cocompact in S(RN)
with N = #S (see [DGK+21, Th. 1.3]).

4.5. Divisible and quasi-divisible domains. Every properly convex open subset Ω of
S(V ) admits a Hilbert metric dΩ on Ω so that the group Aut(Ω) of automorphisms of S(V )
preserving Ω acts on Ω by isometries for dΩ. A properly convex domain Ω is divisible (resp.
quasi-divisible) by Γ if there exists a discrete subgroup Γ of Aut(Ω) such that Ω/Γ is com-
pact (resp. of finite volume with respect to the Hausdorff measure induced by dΩ). (see e.g.
[Mar14] for more details for the Hilbert metric and the Hausdorff measure).

In general, it is difficult to construct divisible or quasi-divisible domains with various
properties. But, in small dimension, one can use perfect or quasi-perfect projective Coxeter
polytopes to build such domains. We first introduce the definition of 2-perfect polytopes,
which is slightly more general than that of perfect or quasi-perfect polytopes, and Section 5
illustrates some interesting examples of divisible domains.

Let P be a projective Coxeter polytope of S(V ) and S the set of facets of P. Given a vertex
v of P, we denote by Sv the set of facets that contain v. For any s ∈ Sv, the projective
reflection σs induces a projective reflection σs of the projective space S(V /〈v〉), where 〈v〉 is
the subspace spanned by v and V /〈v〉 is the quotient vector space. The projection of P to
S (V /〈v〉) with the reflections (σs)s∈Sv defines a projective Coxeter polytope Pv of S(V /〈v〉),
called the link of P at v.
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Definition 4.11. A projective Coxeter d-polytope P is elliptic (resp. parabolic, resp. loxo-
dromic) when each component of AP is of positive type (resp. zero type, resp. negative type)
and the rank of AP is d+1 (resp. d, resp. d+1).

Remark 4.12. If P is elliptic, then WP is a spherical Coxeter group and P is the Tits simplex
associated to WP . If P is parabolic, then WP is an affine Coxeter group, P is the Cartesian
product of the Tits simplices associated to the irreducible components of WP , and ΩP is an
affine chart of S(V ).

A projective Coxeter polytope P is perfect (resp. quasi-perfect, resp. 2-perfect) when all its
vertex link are elliptic (resp. elliptic or parabolic, resp. perfect). For example, quasi-perfect
Coxeter polytopes should be 2-perfect.

Remark 4.13. A perfect Coxeter polytope is either elliptic, parabolic or irreducible loxo-
dromic, by [Vin71, Prop. 26].

Let P be an irreducible loxodromic Coxeter polytope and ΓP the projective reflection group
of P. Then ΩP is a properly convex domain, hence it admits a Hilbert metric dΩP . A pro-
jective Coxeter polytope P is perfect if and only if the action of ΓP on ΩP is cocompact, by
[Vin71, Th. 2]. So, in this case, the domain ΩP is divisible by ΓP .

The action of ΓP on ΩP is said to be of finite covolume if P ∩ΩP has finite volume with
respect the Hausdorff measure µΩP induced by dΩP , and of geometrically finite if µΩP (P ∩
C (ΛΩP )) <∞, where ΛP is the limit set of ΓP and C (ΛP ) is the convex hull of ΛP of ΩP (see
[Mar17] for more details).

Theorem 4.14 ([Mar17, Th. A]). Let P be an irreducible, loxodromic, 2-perfect Coxeter poly-
tope of S(V ). Then the action of ΓP on ΩP is always geometrically finite, and

• ΓP is of finite covolume if and only if P is quasi-perfect;
• ΓP is convex cocompact in S(V ) if and only if all the vertex links of P are elliptic or

loxodromic.

4.6. Cocompact action of Coxeter groups. There are many examples of discrete Coxeter
subgroups of SL±(V ) other than projective reflection groups. However, if a Coxeter group Γ
divides a properly convex domain, then Γ=ΓP for some projective Coxeter polytope P:

Theorem 4.15 ([Dav08, Prop. 10.9.7] and [CD00]; see [LM19, Lem. 5.4]). Let W be a Cox-
eter group, and let ρ : W → SL±(V ) be a faithful representation. Suppose that there exists a
divisible domain Ω by ρ(W). Then the following hold:

(i) for each s ∈ S, the image ρ(s) of s is a projective reflection of S(V );
(ii) ρ(W) is a projective reflection group generated by (ρ(s))s∈S.

Remark 4.16. It is an open question whether Theorem 4.15 still holds when the word "divis-
ible" is replaced by "quasi-divisible".

5. EXAMPLES OF PROJECTIVE REFLECTION GROUPS

The construction of projective reflection groups had led to several existence theorems in
convex projective geometry.

A properly convex domainΩ of S(V ) is decomposable if a cone of V liftingΩ is a non-trivial
direct product of two smaller cones, and homogeneous if the group Aut(Ω) acts transitively on
Ω. Since the homogeneous quasi-divisible domains are well-understood by [Vin63, Koe99],
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only inhomogeneous ones are of interest to us. So, all properly convex domains in this section
are assumed to be inhomogeneous and indecomposable.

5.1. Kac-Vinberg’s example. The first example of divisible 2-domain which is not a hy-
perbolic plane was found by Kac and Vinberg [KV67]. They used perfect projective Coxeter
triangles P with the Cartan matrix AP = (Ai, j)i, j=1,2,3 such that (i) each entry Ai, j is a neg-
ative integer, (ii) det(AP ) < 0, and (iii) A1,2A2,3A3,1 6=A1,3A3,2A2,1. Here, the condition (i)
implies that the projective reflection group ΓP of P is a subgroup of SL(3,Z), (ii) implies that
AP is of negative type, and finally (iii) implies that ΩP is not a hyperbolic plane (see Figure
1).

FIGURE 1. Triangles with dihedral angles π/3, π/3 and π/6 on the left, with dihe-
dral angles π/3, π/4 and π/6 on the center, and with dihedral angles π/6, π/6 and π/6
on the right.

Remark 5.1. Let Γ̂P be any finite-index torsion-free subgroup of ΓP . Then Γ̂P is an infinite
index subgroup of SL(3,Z) and is Zariski dense in SL(3,R). In other words, Γ̂P is a thin
surface group (see [KLLR19] for an introduction to thin groups).

5.2. Benoist’s examples and more. The first known examples of divisible d-domains Ω
which are not strictly convex were introduced by Benoist [Ben06a] in dimension d = 3, . . . ,7
(see Figure 2). In such examples, the discrete group Γ which divides Ω is relatively hyper-
bolic with respect to virtual Zd−1. Later, different examples of non-strictly convex divisible
d-domains were found in [CLM20] in dimension d = 4, . . . ,8, and the group Γ dividing such
d-domain is relatively hyperbolic with respect to a collection of virtually free abelian sub-
group of rank < d−1. Except in dimension 3 (see [BDL]), all the known examples were built
from projective reflection groups.

FIGURE 2. A collection of properly embedded triangles in the non-strictly con-
vex divisible 3-domains is colored. Each triangle is preserved by a subgroup of
Γ, which is virtually Z2.
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Remark 5.2. A generalization of Thurston’s hyperbolic Dehn filling theorem to the projective
setting led to the examples in [CLM20].

In [Ben06b], Benoist found the first example of word-hyperbolic group Γ, not quasi-isometric
to the hyperbolic space, that divides a properly convex 4-domainΩ, again using projective re-
flection groups. Since Γ is word hyperbolic, Ω should be strictly convex by [Ben04]. Shortly
after, Kapovich [Kap07] found examples in any dimension d Ê 4, using Gromov-Thurston
manifolds [GT87].

6. HITCHIN COMPONENT OF POLYGON GROUPS

Let P be a compact hyperbolic polygon with dihedral angles π/m1, . . . ,π/mk, and let W be the
Coxeter group of P. The conjugacy classes of discrete and faithful representations of W to
PGL(2,R) form a connected component T of χ(W ,PGL(2,R)) :=Hom(W ,PGL(2,R))/PGL(2,R),
i.e. the space of conjugacy classes of representations of W to PGL(2,R).

For any n Ê 2, there is a unique irreducible representation κ : PGL(2,R)→PGL(n,R) up to
conjugation. This gives rise to an embedding:

T → χ(W ,PGL(n,R)) :=Hom(W ,PGL(n,R))/PGL(n,R)

The image of this embedding is called the Fuchsian locus and the component of χ(W ,PGL(n,R))
containing the Fuchsian locus is the Hitchin component Hit(W ,PGL(n,R)). A representation
ρ : W → PGL(n,R) is called a Hitchin representation if its PGL(n,R)-conjugacy class is an
element of Hit(W ,PGL(n,R)).

Theorem 6.1 ([ALS18, Th. 1.1 & 1.2]). Let P be a compact hyperbolic polygon with di-
hedral angles π/m1, . . . ,π/mk, and W its Coxeter group. Then each Hitchin representation in
Hit(W ,PGL(n,R)) is discrete and faithfull, and Hit(W ,PGL(n,R)) is an open cell of dimension

−(n2 −1)+
n∑
`=2

k∑
i=1

⌊
`

(
1− 1

mi

)⌋
,

where bxc denotes the biggest integer not bigger than x.

For example, the PGL(2m,R) (resp. PGL(2m+ 1,R)) Hitchin component of the Coxeter
group associated to a right-angled hyperbolic k-gon (k Ê 5) is an open cell of dimension (k−
4)m2 +1 (resp. (k−4)(m2 +m)).

Remark 6.2. In the case of n = 2 (resp. n = 3), Theorem 6.1 was proved by Thurston [Thu]
(resp. Choi-Goldman [CG05]).

Remark 6.3. Let ρ be any Hitchin representation in Hit(W ,PGL(n,R)). In the case n Ê 4, the
image of each generator of W should be an involution but not a projective reflection, hence ρ
is not a projective reflection group.

7. PROPERLY DISCONTINUOUS AFFINE GROUPS

7.1. Auslander’s conjecture and Milnor’s question. In the 60’s, Auslander raised the
following conjecture:

Conjecture 7.1 (Auslander [Aus64]). Every discrete subgroup Γ of the affine group Aff(Rd)
which acts properly discontinuously and cocompactly on Rd is virtually solvable.
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In the 70’s, Milnor asked if the Auslander’s conjecture still holds without the condition
that the action is cocompact:

Question 7.2 (Milnor [Mil77]). Is every discrete subgroup Γ of Aff(Rd) which acts properly
discontinuously on Rd virtually solvable?

In 1983, Fried and Goldman [FG83] showed that the Auslander’s conjecture is true in
dimension 3, and Margulis answered the Milnor’s question negatively:

Theorem 7.3 (Margulis [Mar83, Mar87]). There exists a properly discontinuous action of the
free group on two generators on R3.

Even if some progress have been made over the years toward Auslander’s conjecture (see
e.g. [Tom16, AMS12, AMS20] for a proof assuming d É 6 and [GK84, Tom90, AMS10] for
a proof assuming the linear part is contained in a particular class of semisimple Lie sub-
groups), Auslander’s conjecture is still open.

Back to Milnor’s question, the existence and property of properly discontinuous affine
action of free groups on Rn have been actively studied (see e.g. [Dru92, CDG16, DGK15,
GLM09, AMS02, Smi16b, Smi16a] or the survey [DDGS20]).

7.2. Properly discontinuous affine Coxeter groups. Before the following theorem, prop-
erly discontinuous affine actions by non-virtually solvable non-free groups were unknown.

Theorem 7.4 ([DGK20, Th. 1.1]). Any right-angled Coxeter group of rank k admits a proper
affine actions on Rk(k−1)/2.

Remark 7.5. The action preserves a bilinear form and in some particular cases, one can find
much smaller affine space on which the Coxeter groups acts (see [DGK20, Prop. 1.6]).
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