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In the field of composite materials, mesoscale modelings based on X-ray computed tomography are becoming ever more widespread. This tool, aiming to increase the fidelity of the descriptive modeling of textile geometry for Finite Elements Analysis (FEA), requires image processing to identify the different objects within the material. In the present study, we propose a novel Deep Learning based segmentation of yarns from tomographic images aiming to provide a complete descriptive modeling of fabrics. The instance segmentation is achieved through an original two-step approach: (i) the determination of labeled yarn paths, by a tracking algorithm on detected 2D points, based on custom neighbour rules (distance and slope), and regression of parametric curves onto selected points, and (ii) a semantic segmentation of the yarn sections.

For the second step, in absence of manual labeling of the yarn envelopes, we propose the use of morphological pseudo-labeling for training a Deep Convolutional Neural Network (DCNN), in which the yarn sections are represented by their distance transform. This approach is applied on two samples of a dry 3D woven ply-to-ply angle-interlock (at low and high compaction levels).

Introduction

The growing interest of composite materials in many industrial fields is mainly motivated by their relevant mechanical properties combined with a quite low density. There exists a great variety of composite materials according to the kind of fibrous reinforcement and polymer employed for the impregnation which is then cured until final consolidation. Before the impregnation and the curing steps, the weaving and forming processes represent also crucial steps of the global composite material manufacturing. Indeed, while the weaving could lead to miscellaneous topological mistakes, forming could also lead to undesired phenomena such as waviness, wrinkles or locking [START_REF] Boisse | A mesoscopic approach for the simulation of woven fibre composite forming[END_REF][START_REF] Mathieu | Locking and Stability of 3D Woven Composite Reinforcements[END_REF][START_REF] Mathieu | Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes[END_REF][START_REF] Iwata | Coupled meso-macro simulation of woven fabric local deformation during draping[END_REF]. Such phenomena are very linked to the type of reinforcement and could have a great influence on the mechanical properties and on the lifetime (service time). It is important to add that such composite reinforcements could be described at three different scales for predicting textile deformation during forming [START_REF] Sun | Dry Textile Forming Simulations: A Benchmarking Exercise[END_REF]: at the microscale, relative to the fibers; at the mesoscale, corresponding to the yarn scale; or at the macroscale, in which textile is described as an homogenized material with continuous finite elements.

Thus, the development of effective computational tools enabling to model textiles and predict their physical properties (e.g., mechanical and thermal behaviors) is required. Moreover, these computational tools provide a framework allowing to study sensitive parameters such as woven patterns, yarn morphologies and fiber volume fractions. Overall, two main families of textile modelings could be distinguished [START_REF] Wielhorski | Numerical modeling of 3D woven composite reinforcements: A review[END_REF]:

1. the predictive approach, which consists in purely numerical methods aiming to predict the morphology of the textile in a given state, and 2. the descriptive approach, which is composed of µ-CT image-based modeling methods where the virtual model is deduced from a volume of images of existing material by segmentation techniques.

In such approaches, the micro and sub-mesoscale ("intermediate scale") modeling could be achieved in limited proportion compared to the whole material to avoid high computational costs. Hence, the common scale is the mesoscale for which the main issue is to determine accurately the yarn shape (its trajectory and envelope) during the forming.

In the predictive approach, the modeling of woven fabric at the fiber scale seems unrealistic because of the great quantity of entities entailing a large number of degrees of freedom. For this reason, a method based on virtual fibers (1 virtual fiber = a bundle of real fibers) produced a good description of micro-mechanisms by performing sub-mesoscale simulations [START_REF] Zhou | Multi-chain digital element analysis in textile mechanics[END_REF][START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF][START_REF] Miao | Mechanics of textile composites: Micro-geometry[END_REF][START_REF] Mahadik | Finite element modelling of tow geometry in 3D woven fabrics[END_REF][START_REF] Durville | Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[END_REF][START_REF] Green | Numerical modelling of 3D woven preform deformations[END_REF][START_REF] Drach | Processing of fiber architecture data for finite element modeling of 3D woven composites[END_REF][START_REF] Daelemans | Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[END_REF][START_REF] Durville | Determining the initial configuration and characterizing the mechanical properties of 3d angle-interlock fabrics using finite element simulation[END_REF]. Thus, the wide literature on woven fabric modeling leads to meso and sub-mesoscale textile generating softwares developed for two decades such as WiseTex [START_REF] Lomov | Textile geometry preprocessor for meso-mechanical models of woven composites[END_REF][START_REF] Verpoest | Virtual textile composites software WiseTex: integration with micro-mechanical, permeability and structural analysis[END_REF], DFMA [START_REF] Zhou | Multi-chain digital element analysis in textile mechanics[END_REF][START_REF] Wang | Digital-element simulation of textile processes[END_REF], TexGen [START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF] and Multifil [START_REF] Durville | Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[END_REF][START_REF] Durville | Determining the initial configuration and characterizing the mechanical properties of 3d angle-interlock fabrics using finite element simulation[END_REF]. Hence, the "as-molded" (asmanufactured) state could be computed through simulations of the mesoscale forming process with the yarn mechanical behaviour [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF].

The descriptive approaches mainly rely on high-resolution X-ray computed tomography (µ-CT) which is widely used nowadays in non-destructive control fields. This great tool was used for design and process modeling of aerospace composites [START_REF] Naresh | The use of X-ray computed tomography for design and process modeling of aerospace composites: A review[END_REF] as it provides spatial information allowing to follow the yarn (fiber) life from its manufacturing to its forming process. For instance, yarn deformations induced by the manufacturing process were measured thanks to the Digital Image Correlation (DIC) [START_REF] Mendoza | Measuring yarn deformations induced by the manufacturing process of woven composites[END_REF]. Similarly, Digital Volume Correlation (DVC) has proven to be a suitable technique for establishing a novel differentiating tool based on full field measurements of 3D woven composites. This approach provided a quantifiable description of woven by assessing metric differences (yarn deformations) and topological differences (missing yarns) with respect to a reference one [START_REF] Mendoza | Differentiating 3D textile composites: A novel field of application for Digital Volume Correlation[END_REF].

The segmentation method leading to a "digital material twin" can be classified as a region-based segmen-tation since the main goal is to distinctly separate different classes of objects inside the images. However, nowadays, automated procedures for computer tomography data transfer into finite element models are missing in the literature [START_REF] Auenhammer | Automated X-ray computer tomography segmentation method for finite element analysis of non-crimp fabric reinforced composites[END_REF]. Different mesoscale segmentation approaches are described in the literature, depending on the labeling of images. They range from a simple bimodal segmentation [START_REF] Ali | Non-destructive evaluation of through-thickness permeability in 3D woven fabrics for composite fan blade applications[END_REF] (single global thresholding value for the whole volume to separate only resin/porous media from yarns), to multimodal segmentation using clustering [START_REF] Wijaya | An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes[END_REF][START_REF] Liu | Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography[END_REF] or optimization algorithms [START_REF] Bénézech | Variational segmentation of textile composite preforms from X-ray computed tomography[END_REF]. Moreover, many studies have shown that segmentation requires a trade-off between quite high enough resolution (e.g., from 1µm [START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography[END_REF][START_REF] Naouar | 3D composite reinforcement meso FE analyses based on X-ray computed tomography[END_REF] to 25µm [START_REF] Ali | Non-destructive evaluation of through-thickness permeability in 3D woven fabrics for composite fan blade applications[END_REF][START_REF] Bénézech | Variational segmentation of textile composite preforms from X-ray computed tomography[END_REF][START_REF] Ali | In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[END_REF]) and contrast [START_REF] Djukic | Contrast enhancement in visualisation of woven composite tow architecture using a MicroCT scanner. Part 1: Fabric coating and resin additives[END_REF] to highlight the orientation and/or shape of yarns.

Regarding the analysis of µ-CT tomographies, we shall distinguish between three categories of image processing tasks. First, the object detection consists in locating the yarns in images, without finding their boundaries. In this case, possible outputs may be the yarn centers or their bounding boxes. Second, the semantic segmentation produces a partition of the pixels (or voxels) of an image into several classes (e.g., yarn, resin, porosity). This is a more complex and more accurate task, as it requires to find the object boundaries. Finally, the instance segmentation goes a step further, as different objects of the same class are labelled differently (e.g., yarn 1 , yarn 2 , etc.). To achieve these tasks, many suitable methods are widely presented in the literature, as reviewed next.

The principal directions and the degree of microstructural anisotropy of yarns can be measured through image local descriptors like the structure tensor [START_REF] Wijaya | An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes[END_REF][START_REF] Liu | Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography[END_REF][START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography[END_REF][START_REF] Straumit | Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data[END_REF][START_REF] Naouar | Meso-FE modelling of textile composites and X-ray tomography[END_REF][START_REF] Wintiba | Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[END_REF]). This was successfully applied to separate the warp and weft yarns. However, this approach is efficient for suitable contrast and resolution. In some cases, for binder identification, additional information related to the voxel orientation is required [START_REF] Wintiba | Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[END_REF].

A post-processing using mathematical morphology operations (closing, convex hull) is then necessary to close and fill the yarn cross-sections as the results obtained with these methods remain a binary mask.

Overall, the degree of anisotropy and the average grey value have proven to be suitable to separate entities like the weft and warp yarn groups as well as the resin/air voxels. However, they do not directly give a complete identification of each tow (shape and label) requiring a full separation. Indeed, some issues remain when the yarn is in contact with its neighbour, especially for high compacted states leading to high fiber volume fraction. Even at high resolution, yarns compressed against each other look merged together. In such a case, defining proper contours of yarns accurately remains a complex task.

The idea is then to apply clustering algorithms to identify all the subdomains. The two-parameters Kmeans clustering algorithm has been studied and shown issues to emphasize yarn clusters [START_REF] Straumit | Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data[END_REF]. Furthermore, a supervised scheme seems to be the most efficient for clustering classification [START_REF] Aha | Instance-Based Learning Algorithms[END_REF]. So, many works have applied a method based on a machine learning clustering Gaussian Mixture Model (GMM) followed by a 3D mapping-smoothing algorithm ( [START_REF] Wijaya | An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes[END_REF][START_REF] Liu | Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography[END_REF][START_REF] Wintiba | Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[END_REF]). These studies showed that the complete yarn separations still require additional final steps (e.g., alphaShape function and element orientation [START_REF] Liu | Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography[END_REF][START_REF] Wintiba | Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[END_REF] or manual user intervention on first binary image [START_REF] Wijaya | An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes[END_REF]).

Variational segmentation methods, deforming initial yarn envelopes built from the yarn paths, manually annotated, are also proposed [START_REF] Bénézech | Variational segmentation of textile composite preforms from X-ray computed tomography[END_REF][START_REF] Pidou-Brion | Active yarn meshes for segmentation on X-ray computed tomography of textile composite materials at the mesoscopic scale[END_REF]. As the shape of the yarn cross section could be a priori roughly determined, an elliptical shape is chosen. Bénézech and Couégnat [START_REF] Bénézech | Variational segmentation of textile composite preforms from X-ray computed tomography[END_REF] proposed an image-based variational segmentation relying on an iterative global-local approach driven by a heuristic algorithm. Overall, the idea is an expansion method since they initialize the model with small ellipses which grow up just after a few number of iterations. The goal is to optimize the voxelized geometric model with respect to the µ-CT, through three terms: a) the gray levels, b) the local directions and, c) the interpenetrations between yarns (regularization term). Lately, Pidou-Brion and Le Guilloux [START_REF] Pidou-Brion | Active yarn meshes for segmentation on X-ray computed tomography of textile composite materials at the mesoscopic scale[END_REF] also proposed a variational mesh active method which fits the mesh of the yarn envelope by an iterative process. The forces to minimize are derived directly from the surface mesh of the yarn envelope all along the process. Sinchuk et al. [START_REF] Sinchuk | Variational and Deep Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites[END_REF] developed another variational approach consisting in finding an approximation of the initial image by minimizing the Mumford-Shah functional, also defined by three terms: a) the distance between the initial image and its approximation, b) an approximation of the smoothness within subregions and c) the total length of the edges.

Over the past few years, Deep Learning approaches, mainly Deep Neural Networks (DNNs) have yielded a new generation of image segmentation models with remarkable performance improvements on popular benchmarks resulting in what many regard as a paradigm shift in the field [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] He | Mask R-cnn[END_REF]. It is noteworthy that most of these benchmarks include thousands or even millions of training data, composed of images with their respective ground-truth annotation [START_REF] Lin | Microsoft coco: Common objects in context[END_REF]. So the creation of initial training datasets is an essential point since the main drawback is that it could be a very time-consuming procedure and operator dependent when they are manually generated. Thus, Deep Learning was successfully used to semantic segmentation separating weft, warp, resin and void/pore phases inside 2D woven and 3D woven reinforcements [START_REF] Sinchuk | Variational and Deep Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites[END_REF][START_REF] Ali | Deep learning based semantic segmentation of µCT images for creating digital material twins of fibrous reinforcements[END_REF][START_REF] Ali | Efficient processing of µCT images using deep learning tools for generating digital material twins of woven fabrics[END_REF]. The authors explored convolutional neural networks like U-Net [START_REF] Sinchuk | Variational and Deep Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites[END_REF] and Residual architectures [START_REF] Ali | Deep learning based semantic segmentation of µCT images for creating digital material twins of fibrous reinforcements[END_REF][START_REF] Ali | Efficient processing of µCT images using deep learning tools for generating digital material twins of woven fabrics[END_REF]. Moreover, U-net was also applied [START_REF] Badran | Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning[END_REF] to perform a semantic segmentation of a rod-shaped SiC-SiC composite, identifying four material phases: fibers, matrix, pores, and environmental barrier coating (EBC).

However, since the semantic segmentation is devoted to separate the different phases with the composites, it does not allow to label individually each sub-component of these phases. This more accurate segmentation is known as instance segmentation, since it does not only seek which pixels belong to a yarn, but also to identify that there are several instances of yarns in each slice of the tomography. This kind of segmentation could be perform either directly from the neural network [START_REF] Mendoza | Descriptive Modeling of Textiles using FE Simulations and Deep Learning[END_REF] or by combining semantic segmentation with a suitable post-processing [START_REF] Ali | Efficient processing of µCT images using deep learning tools for generating digital material twins of woven fabrics[END_REF][START_REF] Sinchuk | Geometrical and deep learning approaches for instance segmentation of CFRP fiber bundles in textile composites[END_REF].

Recently, Mendoza et al. [START_REF] Mendoza | Descriptive Modeling of Textiles using FE Simulations and Deep Learning[END_REF] performed instance segmentation on a 3D woven by training a Mask R-CNN network on synthetic, but realistic, images. The idea was to train the Mask R-CNN, devoted to identifying yarn outline with few key-points, with images from FE-models converted into "pseudo-CT" images thanks to another neural network (U-Net). Indeed, the U-Net was trained on simple labels (yarn path manually annotated and elliptical section hooked up to it) to perform an "inverse segmentation" since the simple images are converted into "pseudo-CT" images. Note that this two-steps approach alleviates the issue of the training dataset usually manually generated [START_REF] Sinchuk | Variational and Deep Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites[END_REF][START_REF] Ali | Deep learning based semantic segmentation of µCT images for creating digital material twins of fibrous reinforcements[END_REF][START_REF] Ali | Efficient processing of µCT images using deep learning tools for generating digital material twins of woven fabrics[END_REF][START_REF] Huang | Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling[END_REF]. Another kind of data augmentation was performed [START_REF] Ali | Efficient processing of µCT images using deep learning tools for generating digital material twins of woven fabrics[END_REF] in applying a random pixel rotation and translation on the training images.

Finally, very lately, Ali et al. [START_REF] Ali | Efficient processing of µCT images using deep learning tools for generating digital material twins of woven fabrics[END_REF] and Sinchuk et al. [START_REF] Sinchuk | Geometrical and deep learning approaches for instance segmentation of CFRP fiber bundles in textile composites[END_REF] proposed instance segmentation frameworks combining different DCNN for a first step of semantic segmentation followed by the watershed technique [START_REF] Beucher | The morphological approach to segmentation: the watershed transformation[END_REF][START_REF] Meyer | Topographic distance and watershed lines[END_REF] during the post-processing, separating connected yarns.

Note that although some aforementioned works are devoted to perform instance segmentation only on dry fabrics [START_REF] Ali | Efficient processing of µCT images using deep learning tools for generating digital material twins of woven fabrics[END_REF][START_REF] Mendoza | Descriptive Modeling of Textiles using FE Simulations and Deep Learning[END_REF][START_REF] Sinchuk | Geometrical and deep learning approaches for instance segmentation of CFRP fiber bundles in textile composites[END_REF], they are very useful and suitable to a better analysis of textile composites. Indeed, the composite reinforcement modeling at the mesoscale (in both predictive and descriptive approaches) improves the overall knowledge of textile composite manufacturing in assessing the mechanical response of the textile under various external loads [START_REF] Daelemans | Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[END_REF][START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF][START_REF] Zeng | Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[END_REF][START_REF] Daelemans | Kinematic and mechanical response of dry woven fabrics in through-thickness compression : Virtual fiber modeling with mesh overlay technique and experimental validation[END_REF] as well as the preform behavior during the forming [START_REF] Durville | Determining the initial configuration and characterizing the mechanical properties of 3d angle-interlock fabrics using finite element simulation[END_REF] process. Furthermore, a better description of the textile geometry could also enhance the knowledge of the injection process by determining for instance the permeability of the preform [START_REF] Geoffre | International Journal of Multiphase Flow Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF].

In this paper, we address instance segmentation on dry 3D woven composed of carbon fiber yarns, especially on layer-to-layer angle interlock as described in section 2.1. This image processing is performed by combining semantic segmentation, realised thanks to a trained U-Net (see section 2.3), with a suitable post-processing explained in section 2.4. This study deals with two distinct goals: on the one hand, the identification of yarn paths and, on the other hand, the yarn cross sections where the results are respectively shown in section 3 and section 4. Finally, some discussions are brought in section 5. Concerning the contour detection, it is noteworthy that to predict the yarn envelopes without any prior manual annotation, the pseudo-labels provided by a morphological approach are used as a training dataset. Regarding the quantitative evaluation of our methods, the detection of the yarn centers is assessed by classical metrics, namely: precision, recall and F 1 score; and the reconstruction of yarn paths by the Hausdorff distance. For the instance segmentation of the yarn envelopes, only a qualitative assessment is proposed, in absence of a reference manual annotation.

Materials and methods

Tomographic volume of 3D woven fabrics

The 3D woven fabric studied in this work is a ply-to-ply angle-interlock, composed of 75 carbon fiber yarns: 39 warp and 36 weft. All yarns are of the same type and size. The warp yarns are distributed alternately in a sequence of 4 and 3 yarns in two consecutive columns. Similarly, two consecutive weft columns are composed of 5 and 4 yarns respectively. In this sample, there are 11 warp planes and 8 weft columns. The sample was scanned with a GE Phoenix-Xray tomograph (GE v|tome|x L300) at a resolution of 20µm (voxel size). Two samples from this woven pattern were studied at two different compaction steps: a non-compacted state (see Figure 1a), and a half-thickness sample (i.e., 50% thickness of the initial noncompacted state), called compacted state (see Figure 1b). The image sizes are 1798 × 1940 × 447 voxels and 1725 × 1545 × 255 voxels respectively for the non-compacted and the compacted samples. Note that in these dry preforms the background is significantly darker than warp and weft yarn gray levels.

Data labeling

For both tomographies described in the previous section, the yarn path (i.e., the centers of the yarns) were available thanks to a manual labeling. Indeed, each warp and weft yarn path had been created by first clicking the center point of each yarn every 30 slices. Then, the complete path was interpolated by B-spline functions, as shown in Figure 3. For the non-compacted sample, 39 warp and 36 weft yarns were annotated.

Concerning the compacted sample annotations are available for 32 warp and 36 weft yarns.

Concerning the contours of the yarn sections, no labeling was available. Indeed, producing such labeling is much harder and time consuming by the manual way. Hence, we produced a pseudo groundtruth segmentation of the non-compacted sample by applying a learning-free baseline algorithm. This pseudo-labeling was then used to train a deep learning model, as described in section 2.3. The algorithm used to produce the pseudo-labeling for the segmentation of the yarn cross sections is based on Mathematical Morphology (MM). Detailing the whole pipeline is beyond the scope of the present paper but its main steps, illustrated in Figure 2, are as follows. First an adaptive morphological opening, as introduced in [START_REF] Blusseau | Tropical and morphological operators for signal processing on graphs[END_REF][START_REF] Blusseau | Adaptive Anisotropic Morphological Filtering Based on Co-Circularity of Local Orientations[END_REF], allows to identify the horizontal yarns in each slice, and then to remove them from the binary mask obtained beforehand by Otsu's threshold [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. Then simple morphological filters (fill holes, closings) can recover compact shapes. Finally, connected components composed of more than one yarn are identified based on a size criterion. They are split thanks to the watershed algorithm [START_REF] Beucher | The morphological approach to segmentation: the watershed transformation[END_REF][START_REF] Meyer | Topographic distance and watershed lines[END_REF] applied to the inverse of their distance transform (or distance function) [START_REF] Soille | Morphological image analysis: principles and applications[END_REF], which is a very classical process in binary segmentation.

Each single yarn is then represented by its distance transform. Recall that, given a metric d, the distance transform D(I) (or function) of a binary image I associates to each pixel its distance to the nearest black pixel:

[D(I)](p) = min {d(p, q), I(q) = 0} . (1) 
In our case, we used as metric the length of shortest path in the graph defined by a hexagonal lattice.

Note that this method produced satisfactory labeling on the non-compacted sample but not on the compacted one. For this reason, we restrict the segmentation of yarn envelopes by supervised learning to the non-compacted sample, as a proof of concept of the yarn representation that can be efficiently learned by a U-Net.

Processing tomographies with Deep Learning

Basics on deep learning

The first main step in the Deep Learning method is to train a dataset for the learning phase of the algorithm. Let {(x k , y k )} 1≤k≤n be a training dataset of pairs, where each x k is a data-sample from an input space X and y k its corresponding label from the output space Y. In our case, the x k s are the slices of a that is: y n+1 ≈ φ(x n+1 ). A DNN, in its simplest form, is a compositional map that may be written as

φ f ;θ := f (d) (g (d) • • • f (1) (g (1) (X)))
where each f (l) is a nonlinear function called activation function and each g (l) is usually an affine application defined by its weight matrix W (l) and bias vector b (l) : l) . Here θ denotes the set of affine parameters [W (1) , b (1) , . . . , W (d) , b (d) ] and f = [f (1) . . . f (d) ]

g (l) (Y ) = W (l) Y + b (
the set of activation functions. The composed application f (l) • g (l) is what we call a layer of the network.

The term deep in DNN refers to neural networks with many layers, usually d > 2. As we can see from the equation above, the output of a layer becomes the input of the following one, except for the input and output layers, which are merely the input and output of the whole network. When the input of a layer is an image (or a stack of images) the linear part of the layer's affine transformation is actually a convolution, and therefore the matrix W (l) is fully determined by a small number of parameters, called the convolution kernel. Such a layer is called a convolutional layer, and neural networks including such layers are referred to as convolutional neural networks (CNNs) [START_REF] Lecun | Convolutional networks for images, speech, and time series, The handbook of brain theory and neural networks[END_REF].

CNNs can model complex non-linear relationships and have shown their goodness in different kinds of problems such as automatic speech recognition, image recognition, natural language processing, among others [START_REF] Deng | Deep learning: methods and applications[END_REF]. However, one of the fundamental points is the selection of an adequate architecture [START_REF] Deng | A tutorial survey of architectures, algorithms, and applications for deep learning[END_REF], i.e.

the structure of composition between layers: number of layers, dimension of each layer's output, size of the convolution kernels, type of activation functions. In the training process, we would usually tune the parameters θ so as to minimise the difference between the labels (ideal maps y k ) and the CNN outputs (estimated maps ŷk = φ θ (x k )) at any training instance x k , such that the difference goes to zero as the number of samples N increases. For that, we define a loss function l (y k , ŷk ) that represents the difference between the labels and the CNN output. In an ideal case, we would like to find θ * such that:

θ * = arg min θ E ∀x k ∈X ,y k ∈Y [loss(y k , ŷ(x k ))] , (2) 
where E ∀x k ∈X ,y k ∈Y denotes the expected value over all possible pairs of (x, y), which is impossible to calculate in most of scenarios. However, we can compute an approximation, called empirical risk [START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF], by averaging the loss function on a large set of training examples

(x k , y k ) 1≤k≤N , θ = arg min θ N i=0 loss(y k , ŷ(x k )). ( 3 
)
This minimization is usually done via stochastic gradient descent (SGD) [START_REF] Lecun | Deep learning[END_REF]. SGD starts from a certain initial θ and then iteratively updates each parameter by moving it in the direction of the negative gradient with respect to the loss function. The computation of gradient with respect to the loss function is done via a direct application of the chain rule in networks, called back-propagation [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF]. The term stochastic in SGD indicates that a random small number of training samples, called a batch is used in the gradient calculation.

This reduces considerably the computational cost of the gradient evaluation. Additionally, by the law of large numbers, this stochastic gradient should be close to the full sample one, though with some random fluctuations. A pass of the whole training set is called an epoch. Usually, after each epoch, the error on a validation dataset is evaluated and when it stabilizes the training is complete.

Architecture

For the different tasks presented here, a Deep Convolutional Neural Network (DCNN) architecture, called U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], was used. The U-Net architecture was originally designed for biomedical image segmentation and has become very popular for its impressive performances. In the present work, the U-Net architecture is chosen as both addressed tasks (the reconstruction of yarn paths and of their envelopes) are viewed as image segmentation problems. A U-Net maps an input image to an output image expected to show a segmentation of the input. As shown in Figure 4, the computations performed by a U-Net follow two main steps. In the first step, it keeps extracting and combining features from the input image while reducing the spatial resolution by pooling filters at each layer. This is called the contracting path. In the second step, called expansive path, it increases back the resolution using the accumulated features to produce a new image of the same size as the input, where only the desired objects should be highlighted. More precisely, for the yarn paths detection task, the contracting path consists of the repeated application of two 3 × 3 convolutions with a rectified linear unit (ReLU) activation and a 2 × 2 max pooling operation for downsampling. At each downsampling step, the number of feature channels doubles. Every step in the expansive path consists of an upsampling of the feature map followed by a 2 × 2 convolution ("up-convolution") that halves the number of feature channels, a concatenation with the correspondingly cropped feature map from the contracting path, and two 3 × 3 convolutions, each followed by a ReLU. In total our architecture has 490,993 parameters for the detection of yarn centers. For the segmentation of the cross sections, the architecture was almost the same except that the first layer contained four filters instead of eight, and the last layer was a 1 × 1 convolution instead of a softmax layer as in Figure 4, totalizing 122,953 parameters.

Training protocol

One of the challenges we faced to apply the deep learning approach is that we only dispose of two 3D images with their corresponding ground-truth, the yarn centers (see section 2.2). Hence, our training protocol is designed to avoid model over-fitting. First, we propose to extract 2D patches of size 256 × 256 pixels, with a random center position (see some examples in Figure 5b). The goal of random crops is to both prevent the selection bias and the redundancy of the data. We argue that allowing the overlap is training is stopped when the error on the validation set does not reduce after a given number of epochs [START_REF] Prechelt | Early stopping-but when?[END_REF],

called patience parameter. In our experiments, the training process was performed on a single NVIDIA Titan XP GPU using ADAM optimizer [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF]. For the detection of yarn centers, the patience parameter was fixed to ten epochs, the learning rate to 0.001 and the mini-batch size to 64. For the segmentation of yarn sections, these parameters were set to 20, 10 -5 and one respectively. In the sequel, this procedure has been applied on both compacted and non-compacted samples for the yarn path detection (see section 2.3.4), and on the non-compacted sample only for the segmentation of sections (see section 2.3.5). Obviously, it could be noted that after training, the CNN can be applied to any tomography slice.

Detection of yarn centers

The reconstruction of the yarn paths boils down to detecting the location of each yarn in each slice and, from these locations, inferring as many paths as there are yarns in the tomography.

Labels: For this task, we had the necessary ground truth for supervised learning, namely the coordinates of the yarn paths in each slice. The training dataset used here is the yarn paths annotated manually as described in section 2.2. These coordinates are translated into binary images where the yarns' center is marked by white squares, as shown in Figure 6. The size of each square is taken equal to 25 × 25 pixels.

Note that the pixel size of the ground truth has been chosen as a trade-off. Indeed, this size has been set not too small in order to avoid a bias of the model towards trivial predictions, i.e., almost completely dark images, due to a strong area imbalance between objects to detect (white pixels) and background (dark pixels). Moreover, this size should be not too big either, so as to well approximate the yarn center and remain included in the smallest yarn section. The neural network was thus trained to map a 2D input image showing yarns, to an output image where the yarn paths were marked in white on a black background.

Loss function:

A performance measure commonly used for evaluating segmentation masks is the Jaccard index, also called the intersection-over-union (IoU) score [START_REF] Rahman | Optimizing intersection-over-union in deep neural networks for image segmentation[END_REF]. In the case of a binary ground truth image y and its gray-scale estimation ŷ, this can be written as follows:

J(y, ŷ) = + i y[i] • ŷ[i] + N i (y[i] + ŷ[i] -y[i] • ŷ[i]) , (4) 
where y[i] and ŷ[i] denote the values of images y and ŷ at pixel i, N is the number of pixels in each image, and is a very small number preventing division by zero. Accordingly, the corresponding loss function to be employed in empirical risk minimization (3) is loss(y, ŷ) := 1 -J(y, ŷ).

Segmentation of yarn sections

The protocol followed here is very similar to the one in the detection of yarn paths. The training and validation sets are generated the same way.

Labels: As specified in section 2.2, no manual labeling was available for the cross-sections of yarns.

Therefore, in order to assess the potential of the supervised training of a CNN on the segmentation of yarns, we used as ground-truth the pseudo-labels obtained by the morphological algorithm briefly described in section 2.2. Hence, the label images used to train the network here were the distance tranforms of yarns, as shown in Figure 2.

Loss function:

Here the loss function is not the Jaccard index anymore but the mean square error (MSE):

loss(y, ŷ) = 1 N N i=1 (y[i] -ŷ[i]) 2 (5) 
where N is the number of pixels in the input y and output ŷ. Here y is an input slice and ŷ the distance transform used as a label (see Figure 2).

2.4.

Post-processing: From 2D semantic segmentation to 3D instance segmentation

Recovering yarn paths

The aim of this section is to determine the path of each yarn from the output of the U-Net trained to detect yarn centers (see section 2.3.4). This trained U-Net maps input tomographic slices to output images where the centers of yarns are highlighted more or less accurately by bright shapes. The first post-processing consists in extracting from this output image a set of coordinates representing the detecting yarn centres. This is done by applying Otsu's adaptive threshold method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF], removing very small components thanks to an area opening [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF], and finally compute the barycentre of the remaining connected components. Applying this to each slice in one direction results in a 3D point cloud, which we call the predicted yarn centers. As it is shown in section 3 (see for example Figure 9), most detected points are close to the actual yarn paths but some false positive and negative detections also occur. Hence, the second post-processing consists in recovering the 3D path of each yarn from the noisy cloud of independently detected points.

The procedure relies on two main steps. First, a tracking step identifies candidate clusters of points to be yarn paths. Second, a parametric modeling fits a parametric function to each cluster.

1. Tracking: This first step consists in building tracks, that is to say sequences of detected points that are likely to belong to the same yarn. A track is initialized by one detected point in one slice, and extended forward and backward by points from subsequent and previous slices, complying with a smoothness criterion.

To illustrate this step, let's detail one forward extension. Consider an incomplete track [p 0 , . . . , p n ], where each point p i is identified by its coordinates (x i , y i , z i ), the last coordinate z i denoting the slice to which the point belongs and (x i , y i ) its 2D coordinates within the slice. Suppose we want to extend the track to a point from a subsequent slice s indexed by z * > z n . We denote by p * = (x * , y * , z * ) the closest point to

p n in s and define dX = |x n -x * |, dY = |y n -y * |, dZ = |z n -z * |. Then p * is appended to the track (that is, p n+1 ← p * ) if √ dX 2 + dY 2 ≤ min(αdZ, ρ max )
for some parameters α > 0 and ρ max > 0. This means p * needs to fall within the intersection of a cone pointing on p n and of slope α, and a cylinder of central axis z n and radius ρ max . If this condition is not fulfilled by any point in s, then we look further for one in a subsequent slice. The range of subsequent slices to search (step, furthest slice) may vary. If no extension is found in this range, then the forward tracking is over. The backward tracking works in the same way. By changing the initial point and the range of subsequent (or previous) slices, we manage to build many tracks and with high probability the desired yarn paths are among them.

2. Parametric modeling: Among the set of tracks built in the previous step, some may be redundant (i.e., there might be several tracks for the same yarn) and others may be wrong, in the sense that they might not follow a yarn path. The goal of this second step is to keep only accurate, mutually different tracks, using 

n i=0 y i -a 0 - K k=1 a k cos( 2kπ T z i ) + b k sin( 2kπ T z i ) 2 (6) 
and

(c 0 , . . . , c N ) * = arg min (c0,...,c N ) n i=0 x i - N k=0 c k z k i 2 , ( 7 
)
where the period T , the number K of harmonics and the degree N of the polynomial are parameters to set. Only tracks achieving a small mean squared error for these two problems are kept. Besides, comparing the best fits of two tracks allows us to tell whether they correspond to the same yarn path or not. For instance, Figure 7 shows two examples of yarn tracks (in blue) and their parametric fits (in orange). The polynomial's degree is N = 3, the number of harmonics is K = 2 and the period is T = 1600. Note that the left hand track (see Figure 7a) is discarded because of its poor fit to the sinusoidal model in the height dimension, whereas the right hand track is kept (see Figure 7b). In the latter, the parametric model is somehow a smoothed version of the track built on the initial noisy output. If one iteration of this process does not provide an adequate parameterization of all the yarn paths, it is possible to remove from the initial point cloud the points associated with the found fibers, and repeat the tracking and parametric modeling on the residual point cloud. As it is shown in section 3, the initial point clouds output by our method are more or less noisy. When the point cloud is accurate enough, the model based post-processing may converge in one or two iterations. When it is noisier, this may take a few more iterations, including a user interaction to select the correctly found yarn paths before computing the residual point cloud.

Note that the proposed approach to recover yarn paths is fairly general and can be adapted to any kind of preform, as long as the x and y coordinates of the path can be expressed as functions of the z coordinate. Indeed, different parametric models can be used based on prior knowledge on the yarn paths, and their complexity can be increased by increasing the order of these models (that is, increasing the number of harmonics or the degree of polynomials). Furthermore, although the yarns inside the analysed woven patterns are with limited crimps, the method can be adapted to cases where a yarn cross-sections vanish in some slices due to high crimp. First, by increasing the values of parameters α and ρ max , tracks with arbitrary large slopes can be built. Second, note that if a yarn center vanishes at some point, it also reappears later on, and is therefore likely to be appended to the current track with our strategy. Indeed, recall that if no candidate is found in one slice, it is searched in subsequent slices. Finally, instead of choosing a candidate as the closest point to the last point of the current track, we can relax the constraint and consider the k nearest neighbours, with k and integer larger than 1.

(a) (b)

Figure 7: Two examples of tracks (in blue) and their parametric fits (in orange).

Recovering yarn envelopes

Here we describe how we achieve a 3D instance segmentation of the yarns from the 2D output images produced by the U-Net trained as explained in one direction in section 2.3.5, and applied to the orthogonal direction. This U-Net maps an input slice to an image showing approximations of distance transforms at each yarn location. As these are not exact distance transforms, the outline of yarns cannot be obtained by selecting pixels with value one. However, selecting the pixels with positive values is sufficient to recover the connected components associated to the yarns, and therefore most contours except those separating touching yarns. Excessively large connected components are identified as touching yarns. Then, their contours are computed thanks to a watershed transform with markers, applied to the inverse of the output image. The intersection points between the parameterized yarn paths (described in section 2.4.1) and the connected components are used as markers for the watershed. This completes the step of semantic segmentation of each yarn in 2D slices. To turn this into a 3D instance segmentation, each segmented region in each slice is assigned the label of the yarn path intersecting it. If there is no such path, the region is discarded.

This simple step produces 3D regions following the previously found paths and corresponding to the yarn envelopes. This result is then regularized by a morphological filter (oriented opening) to remove obvious segmentation errors. Finally, to obtain a 3D surface mesh from the labeled 3D image, the Marching Cubes algorithm [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF] is applied, as implemented in Scikit Image [START_REF] Van Der Walt | scikitimage: image processing in Python[END_REF]. The marching cubes algorithm provides a means to compute a triangular mesh approximation to the isosurface produced by each one of the segmented regions.

Overview of the method

The main steps of the method are summarized in Figure 8. As illustrated, we address two tasks: first, find the path of each yarn and, second, their envelopes. In both cases, a U-Net is trained to process 2D slices. One the one hand, for the first task, a manual labeling of the yarn centers is available. On the other hand, for the second task, a pseudo-labeling of the yarn sections computed from the morphological approach is used. Then, a post-processing of the 2D outputs of both U-Nets allows it to move from a 2D semantic segmentation to a 3D instance segmentation. The 3D yarn paths are recovered first, and then used to label the sections in each slice, producing a final 3D instance segmentation of envelopes.

Target

Yarn paths 

Yarn envelopes

Training data

Results on the identification of yarn paths

Quality assessment

The assessment of our method is performed through four different metrics. First, precision, recall and F 1 score are used to compare the set of true yarn section centers to those predicted, before and after the tracking-modeling step. These metrics aim at measuring how noisy the detected point clouds are, and how much the noise is reduced after tracking and modeling. Second, in order to assess the quality of the 3D paths reconstructions, the Hausdorff distance is used, as suggested by Mendoza et al. [START_REF] Mendoza | Descriptive Modeling of Textiles using FE Simulations and Deep Learning[END_REF] The method concerning the detection of yarn section centers presented in section 2.3.4 outputs a set of coordinates representing the points detected as part of the yarn paths in the tomography. This set will be called the output point cloud. The latter is compared to the ground truth section center marked as another set of points, referred to as the ground truth point cloud. A ground truth point is considered as detected if, at least, one output point is close enough to it. Proximity is measured by the Euclidean distance in three dimensions. The threshold defining detection is 25 pixels. Finally, as the performance of a method is given by its ability to detect just the yarn paths and no other object, two quantities are considered, precision and recall. The recall is the proportion of ground truth points (i.e., true positives + false negatives) that are correctly detected, while precision is the proportion of true positives among the output point cloud (i.e., true positives + false positives). Both are numbers between zero and one, and the closer to one the better. recall = #true positives #ground truth and precision = #true positives #output [START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF] From these two measures a unique score called F 1 score is computed as follows:

F 1 = 2 • precision • recall precision + recall (9) 
Again, the closer F 1 to one, the better.

Concerning the yarn paths assessment, the symmetric Hausdorff distance is used. Given two sets A and B, this distance is defined as 

D H (A, B) = max (δ H (A, B), δ H (B, A)) (10) 
B i = arg min B∈predicted paths D H (A i , B). (12) 
If this predicted path is already matched to another true path with lower Hausdorff distance, then the second closest is chosen, and so on. It may happen that no predicted path matches a ground truth one, in which case we consider that the path has not been reconstructed by our method.

Results on the non-compacted dry preform

Table 1 sums up the results of the approach in terms of recall and precision. Figure 9 is a 3D visualization of the detected points and their filtered version after post-processing (tracking and parameterization).

Although the raw results are already very satisfactory, the post-processing allows the removal of most false positives, as the improvement of precision shows. Additionally, it offers an identification of entire yarn paths along the volume, instead of independent points. The accuracy of the path reconstruction, measured by the Hausdorff distances between predicted and true paths, is reported in Figure 10b and Figure 10c. They may be compared to the average minimal distances between neighbour yarns in the slice plane, which is 1.81mm

Warp Weft

Both warp and weft in warp and 1.83mm in weft. Note that in both warp and weft directions, some yarn paths were accurately reconstructed near the edges of the tomography although they were not labeled in the ground truth. They were discarded in the computation of precision, not to undermine it unfairly. terms of precision and recall are presented in Table 2. They are not good enough to recover all the yarns paths after post-processing. In particular, the drop in recall is explained by the fact that the post-processing removes correctly detected points if they are not sufficient to recover the whole yarn path.

Therefore, we tried to add images from the non-compacted preform tomography, but still the orthogonal direction, to the training data. This improved significantly the quality of the raw output point clouds, as shown in Table 3. From the visualization of Figure 11, top row, it appears that it is still quite noisier than for the initial non-compacted state. The post-processing step needed therefore a few more iterations and user interactions than with the non-compacted sample, but the process still converged quickly. The final results after pre-processing, shown in Table 3 in terms of precision and recall, and in Figure 12 in terms of Hausdorff distances, still need to be improved in the weft direction, where we still get a drop in recall. This is mainly due to the fact that one yarn could not be reconstructed. To help interpret the Hausdorff distance results compiled in Figure 12, we shall precise that the average minimal distance between two neighbour yarns in a slice plane, is about 1.10mm in warp and 1.24mm in weft. 

Results on the segmentation of yarn cross sections

In this section we present the results obtained by our approach in the instance segmentation of yarns for the non-compacted sample since the pseudo-labeling method was not satisfactory on the compacted sample. Regarding their quality assessment, it can only be made based on visual inspection, as we lack a reference ground truth for this task. All the segmentation results are made available online, as indicated hereafter. The whole results are presented in two videos available online1 . For a slice by slice examination, the corresponding sequences are also made available2 .

As described in section 2.3.5, the labels used to train a U-Net to segment yarns were the distance maps produced by a morphological algorithm. We observe that the model does learn to compute an output similar to a distance transform, as shown on the top row of Figure 13. Most importantly, the contours of yarns can be recovered accurately from the network's output, following the method described in section 2.4.2. This advocates in favour of the representation of yarns by their distance transforms and training a deep CNN to learn this representation.

Compared to the morphological algorithm used to produce pseudo-labels for the supervised learning, it seems that the DNN shows better robustness to artifacts, as shown on the bottom row of Figure 13.

Regarding the surface mesh which can be produced from our 3D instance segmentation explained in section 2.4.2, an example is shown in Figure 14. 

Discussion

The emergence of Deep Learning applied to segmentation domain offers a great perspective to solve complex image processing issues in composite field. Indeed, it provides a great tool allowing us to extract information of the internal structure of the composite materials with a strong efficiency and robustness never reached by classical morphological methods. The trained models DCNN using learnt features associated with several extra-parameters from the images (e.g., resolution, grayscale distribution) as well as from the textile geometry (e.g., yarn shape and aspect ratio, distance between yarns). However, the main difficulty in supervised approaches is to create annotated data, also called ground-truth. Generally, these annotations are generated manually, therefore starkly time-consuming and human-dependent. Our approach showed notably that it is possible to replace the manual ground-truth by a flawed automatised mathematical-morphologybased segmentation.

The proposed method separates the extraction of the yarn paths from the yarn envelopes but uses yarn trajectories to perform a complete yarn instance segmentation with their global shapes. This enables to select which level of details the user needs. Indeed, on the one hand, when information only on potential pattern anomalies (e.g., wrong topology, strong transverse undulation, missing yarns) is required, only yarn path detections could be extracted. On the other hand, if more complete details are looked for, the yarn envelopes have to be reconstructed. Hence, for example, the envelopes computation can provide the intra-yarn fiber volume fraction and so, the overall fiber volume fraction of the composites. This complete description allows also to optimize the manufacturing of the composites materials by achieving forming process or testing simulations, in order to characterize the mechanical behaviour of the fibrous preform, as well as the injection process simulations (e.g., determination of time filling, permeability). Finally, high fidelity FEA (e.g., homogenization, crack propagation) on the consolidated material could thus be performed.

Conclusions and perspectives

In this paper we have presented an image processing framework aiming at extracting the yarn paths and their envelopes from µ-CT tomographies of a dry 3D ply-to-ply angle-interlock fabric, producing an instance segmentation of yarns.

Regarding the extraction of paths, our approach performed very well on the non-compacted sample, and also on the compacted one when training our DCNN on mixed data (slices from both samples) manually annotated. Regarding the segmentation of yarns, we used the output of a morphological algorithm to train a Deep Learning model. From this experiment we can draw an important conclusion: a deep architecture such as U-Net can learn to approximate the distance transform of the yarn sections, which indicates that the distance transform is a suitable labeling for such a supervised learning algorithm on this task.
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 1 Figure 1: Images from high-resolution X-ray computed tomography of a 3D woven at two different compaction levels: (a) Initial non-compacted and (b) compacted states.

Figure 2 :

 2 Figure 2: Morphological pipeline producing the pseudo-labeling of the yarns cross sections by their distance transforms.

Figure 3 :

 3 Figure 3: Ground truth yarn paths of the non-compacted dry preform (first row) and the compacted one (second row). Blue stands for warp paths and orange for weft.

Figure 4 :

 4 Figure 4: Architecture of the U-Net used for the yarn paths detection. The number of convolutional filters per layer is indicated.

Figure 5 :

 5 Figure 5: Illustration of the training protocol in the Deep Learning approach. (a) Partition of a tomography into training, validation and test slices. (b) Set of random patches superimposed on a slice.

Figure 6 :

 6 Figure 6: Pair of images (patches) for the training: (a) raw image and (b) binary image with the ground truth markers.

  as criteria their fit to a parametric model which is expected to suit yarns paths. Visualizing the tomography should tell what model seems realistic. In the images considered here, the yarn paths vary like sinusoids in one dimension (height) and are almost constant in the other (width). Therefore we solve for each track [p 0 , . . . , p n ] two least squares problems: (a 0 , . . . , a K , b 1 , . . . , b K ) * = arg min (a0,...,a K ,b1,...,b K )

Figure 8 :

 8 Figure 8: Summary of the method.

  • the Euclidean norm. Every ground truth yarn path A i is matched to the predicted path B i that minimizes the Hausdorff distance:

Figure 9 :

 9 Figure 9: Points detected on the non-compacted dry preform (first row: semantic segmentation), and result after post-processing (second row: instance segmentation).

Figure 10 :

 10 Figure 10: Yarn path assessment for the non-compacted dry preform: (a) Histogram of Hausdorff distances (in mm) for both warp (red line) and weft (blue line) orientation and listing of all distances for each (b) warp and (c) weft yarn.

Figure 12 :

 12 Figure 12: Yarn path assessment for the compacted dry preform: (a) Histogram of Hausdorff distances (in mm) for both warp (red line) and weft (blue line) orientation and listing of all distances for each (b) warp and (c) weft yarn. The hyphen indicates a missing yarn path in the reconstruction.
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 2213 Figure 13: Comparison between the morphological pseudo-labeling and the deep-learning-based results on two warp slices from the non-compacted preform (training on weft slices).

Figure 14 :

 14 Figure 14: Instance segmentation of yarns, represented as a 3D surface mesh.

Table 1 :

 1 Results of the yarn center segmentation on the non-compacted dry preform, before and after post-processing.

			Warp		Weft
		Raw Post-proc. Raw Post-proc.
	Recall	.980	.996	.979	.987
	Precision .959	.996	.962	.987
	F 1 score .969	.996	.971	.987
	3.3. Results on the compacted dry preform			
	In a first attempt to apply our approach to compacted dry preform tomography, we used as training
	data images from the same tomography but orthogonal direction with respect to the test direction (that is,
	we sampled patches from the weft direction and tested on warp or the other way around). The results in

https://bit.ly/video_warp and https://bit.ly/video_weft

https://bit.ly/imseq_compB
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Weft

Both warp and weft.