
HAL Id: hal-03345132
https://hal.science/hal-03345132v2

Preprint submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Instance segmentation of 3D woven fabric from
tomography images by Deep Learning and

morphological pseudo-labeling
Samy Blusseau, Yanneck Wielhorski, Zyad Haddad, Santiago Velasco-Forero

To cite this version:
Samy Blusseau, Yanneck Wielhorski, Zyad Haddad, Santiago Velasco-Forero. Instance segmentation
of 3D woven fabric from tomography images by Deep Learning and morphological pseudo-labeling.
2022. �hal-03345132v2�

https://hal.science/hal-03345132v2
https://hal.archives-ouvertes.fr


Instance segmentation of 3D woven fabric from tomography images by Deep
Learning and morphological pseudo-labeling

Samy Blusseaua,∗, Yanneck Wielhorskib, Zyad Haddada, Santiago Velasco-Foreroa

aMines Paris, PSL University, Centre for Mathematical Morphology
35, rue Saint Honoré - F-77305 Fontainebleau Cedex, France

bSafran Aircraft Engines, Rond-point Réné Ravaud - Réau, 77550 Moissy-Cramayel, France

Abstract

In the field of composite materials, mesoscale modelings based on X-ray computed tomography are

becoming ever more widespread. This tool, aiming to increase the fidelity of the descriptive modeling of

textile geometry for Finite Elements Analysis (FEA), requires image processing to identify the different

objects within the material. In the present study, we propose a novel Deep Learning based segmentation of

yarns from tomographic images aiming to provide a complete descriptive modeling of fabrics. The instance

segmentation is achieved through an original two-step approach: (i) the determination of labeled yarn paths,

by a tracking algorithm on detected 2D points, based on custom neighbour rules (distance and slope), and

regression of parametric curves onto selected points, and (ii) a semantic segmentation of the yarn sections.

For the second step, in absence of manual labeling of the yarn envelopes, we propose the use of morphological

pseudo-labeling for training a Deep Convolutional Neural Network (DCNN), in which the yarn sections are

represented by their distance transform. This approach is applied on two samples of a dry 3D woven

ply-to-ply angle-interlock (at low and high compaction levels).

Keywords: Textile composites, Material modeling, Deep Learning, CT analysis

1. Introduction

The growing interest of composite materials in many industrial fields is mainly motivated by their relevant

mechanical properties combined with a quite low density. There exists a great variety of composite materials

according to the kind of fibrous reinforcement and polymer employed for the impregnation which is then cured

until final consolidation. Before the impregnation and the curing steps, the weaving and forming processes

represent also crucial steps of the global composite material manufacturing. Indeed, while the weaving could

lead to miscellaneous topological mistakes, forming could also lead to undesired phenomena such as waviness,

wrinkles or locking [1, 2, 3, 4]. Such phenomena are very linked to the type of reinforcement and could have
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a great influence on the mechanical properties and on the lifetime (service time). It is important to add that

such composite reinforcements could be described at three different scales for predicting textile deformation

during forming [5]: at the microscale, relative to the fibers; at the mesoscale, corresponding to the yarn

scale; or at the macroscale, in which textile is described as an homogenized material with continuous finite

elements.

Thus, the development of effective computational tools enabling to model textiles and predict their

physical properties (e.g., mechanical and thermal behaviors) is required. Moreover, these computational

tools provide a framework allowing to study sensitive parameters such as woven patterns, yarn morphologies

and fiber volume fractions. Overall, two main families of textile modelings could be distinguished [6]:

1. the predictive approach, which consists in purely numerical methods aiming to predict the morphology

of the textile in a given state, and

2. the descriptive approach, which is composed of µ-CT image-based modeling methods where the virtual

model is deduced from a volume of images of existing material by segmentation techniques.

In such approaches, the micro and sub-mesoscale (“intermediate scale”) modeling could be achieved in limited

proportion compared to the whole material to avoid high computational costs. Hence, the common scale

is the mesoscale for which the main issue is to determine accurately the yarn shape (its trajectory and

envelope) during the forming.

In the predictive approach, the modeling of woven fabric at the fiber scale seems unrealistic because of

the great quantity of entities entailing a large number of degrees of freedom. For this reason, a method based

on virtual fibers (1 virtual fiber = a bundle of real fibers) produced a good description of micro-mechanisms

by performing sub-mesoscale simulations [7, 8, 9, 10, 11, 12, 13, 14, 15]. Thus, the wide literature on woven

fabric modeling leads to meso and sub-mesoscale textile generating softwares developed for two decades

such as WiseTex [16, 17], DFMA [7, 18], TexGen [8] and Multifil [11, 15]. Hence, the “as-molded” (as-

manufactured) state could be computed through simulations of the mesoscale forming process with the yarn

mechanical behaviour [19].

The descriptive approaches mainly rely on high-resolution X-ray computed tomography (µ-CT) which

is widely used nowadays in non-destructive control fields. This great tool was used for design and process

modeling of aerospace composites [20] as it provides spatial information allowing to follow the yarn (fiber) life

from its manufacturing to its forming process. For instance, yarn deformations induced by the manufacturing

process were measured thanks to the Digital Image Correlation (DIC) [21]. Similarly, Digital Volume

Correlation (DVC) has proven to be a suitable technique for establishing a novel differentiating tool based

on full field measurements of 3D woven composites. This approach provided a quantifiable description of

woven by assessing metric differences (yarn deformations) and topological differences (missing yarns) with

respect to a reference one [22].

The segmentation method leading to a “digital material twin” can be classified as a region-based segmen-
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tation since the main goal is to distinctly separate different classes of objects inside the images. However,

nowadays, automated procedures for computer tomography data transfer into finite element models are

missing in the literature [23]. Different mesoscale segmentation approaches are described in the literature,

depending on the labeling of images. They range from a simple bimodal segmentation [24] (single global

thresholding value for the whole volume to separate only resin/porous media from yarns), to multimodal

segmentation using clustering [25, 26] or optimization algorithms [27]. Moreover, many studies have shown

that segmentation requires a trade-off between quite high enough resolution (e.g., from 1µm [28, 29] to

25µm [24, 27, 30]) and contrast [31] to highlight the orientation and/or shape of yarns.

Regarding the analysis of µ-CT tomographies, we shall distinguish between three categories of image

processing tasks. First, the object detection consists in locating the yarns in images, without finding

their boundaries. In this case, possible outputs may be the yarn centers or their bounding boxes. Second,

the semantic segmentation produces a partition of the pixels (or voxels) of an image into several classes

(e.g., yarn, resin, porosity). This is a more complex and more accurate task, as it requires to find the object

boundaries. Finally, the instance segmentation goes a step further, as different objects of the same class

are labelled differently (e.g., yarn1, yarn2, etc.). To achieve these tasks, many suitable methods are widely

presented in the literature, as reviewed next.

The principal directions and the degree of microstructural anisotropy of yarns can be measured through

image local descriptors like the structure tensor [25, 26, 28, 32, 33, 34]). This was successfully applied to

separate the warp and weft yarns. However, this approach is efficient for suitable contrast and resolution. In

some cases, for binder identification, additional information related to the voxel orientation is required [34].

A post-processing using mathematical morphology operations (closing, convex hull) is then necessary

to close and fill the yarn cross-sections as the results obtained with these methods remain a binary mask.

Overall, the degree of anisotropy and the average grey value have proven to be suitable to separate entities

like the weft and warp yarn groups as well as the resin/air voxels. However, they do not directly give a

complete identification of each tow (shape and label) requiring a full separation. Indeed, some issues remain

when the yarn is in contact with its neighbour, especially for high compacted states leading to high fiber

volume fraction. Even at high resolution, yarns compressed against each other look merged together. In

such a case, defining proper contours of yarns accurately remains a complex task.

The idea is then to apply clustering algorithms to identify all the subdomains. The two-parameters K-

means clustering algorithm has been studied and shown issues to emphasize yarn clusters [32]. Furthermore,

a supervised scheme seems to be the most efficient for clustering classification [35]. So, many works have

applied a method based on a machine learning clustering Gaussian Mixture Model (GMM) followed by a

3D mapping-smoothing algorithm ([25, 26, 34]). These studies showed that the complete yarn separations

still require additional final steps (e.g., alphaShape function and element orientation [26, 34] or manual user

intervention on first binary image [25]).
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Variational segmentation methods, deforming initial yarn envelopes built from the yarn paths, manually

annotated, are also proposed [27, 36]. As the shape of the yarn cross section could be a priori roughly

determined, an elliptical shape is chosen. Bénézech and Couégnat [27] proposed an image-based variational

segmentation relying on an iterative global-local approach driven by a heuristic algorithm. Overall, the

idea is an expansion method since they initialize the model with small ellipses which grow up just after a

few number of iterations. The goal is to optimize the voxelized geometric model with respect to the µ-CT,

through three terms: a) the gray levels, b) the local directions and, c) the interpenetrations between yarns

(regularization term). Lately, Pidou-Brion and Le Guilloux [36] also proposed a variational mesh active

method which fits the mesh of the yarn envelope by an iterative process. The forces to minimize are derived

directly from the surface mesh of the yarn envelope all along the process. Sinchuk et al. [37] developed

another variational approach consisting in finding an approximation of the initial image by minimizing the

Mumford–Shah functional, also defined by three terms: a) the distance between the initial image and its

approximation, b) an approximation of the smoothness within subregions and c) the total length of the

edges.

Over the past few years, Deep Learning approaches, mainly Deep Neural Networks (DNNs) have yielded

a new generation of image segmentation models with remarkable performance improvements on popular

benchmarks resulting in what many regard as a paradigm shift in the field [38, 39]. It is noteworthy that

most of these benchmarks include thousands or even millions of training data, composed of images with

their respective ground-truth annotation [40]. So the creation of initial training datasets is an essential

point since the main drawback is that it could be a very time-consuming procedure and operator dependent

when they are manually generated.

Thus, Deep Learning was successfully used to semantic segmentation separating weft, warp, resin and

void/pore phases inside 2D woven and 3D woven reinforcements [37, 41, 42]. The authors explored con-

volutional neural networks like U-Net [37] and Residual architectures [41, 42]. Moreover, U-net was also

applied [43] to perform a semantic segmentation of a rod-shaped SiC–SiC composite, identifying four material

phases: fibers, matrix, pores, and environmental barrier coating (EBC).

However, since the semantic segmentation is devoted to separate the different phases with the composites,

it does not allow to label individually each sub-component of these phases. This more accurate segmentation

is known as instance segmentation, since it does not only seek which pixels belong to a yarn, but also to

identify that there are several instances of yarns in each slice of the tomography. This kind of segmentation

could be perform either directly from the neural network [44] or by combining semantic segmentation with

a suitable post-processing [42, 45].

Recently, Mendoza et al. [44] performed instance segmentation on a 3D woven by training a Mask R-CNN

network on synthetic, but realistic, images. The idea was to train the Mask R-CNN, devoted to identifying

yarn outline with few key-points, with images from FE-models converted into “pseudo-CT” images thanks
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to another neural network (U-Net). Indeed, the U-Net was trained on simple labels (yarn path manually

annotated and elliptical section hooked up to it) to perform an “inverse segmentation” since the simple

images are converted into “pseudo-CT” images. Note that this two-steps approach alleviates the issue of

the training dataset usually manually generated [37, 41, 42, 46]. Another kind of data augmentation was

performed [42] in applying a random pixel rotation and translation on the training images.

Finally, very lately, Ali et al. [42] and Sinchuk et al. [45] proposed instance segmentation frameworks

combining different DCNN for a first step of semantic segmentation followed by the watershed technique [47,

48] during the post-processing, separating connected yarns.

Note that although some aforementioned works are devoted to perform instance segmentation only on dry

fabrics [42, 44, 45], they are very useful and suitable to a better analysis of textile composites. Indeed, the

composite reinforcement modeling at the mesoscale (in both predictive and descriptive approaches) improves

the overall knowledge of textile composite manufacturing in assessing the mechanical response of the textile

under various external loads [14, 19, 49, 50] as well as the preform behavior during the forming [15] process.

Furthermore, a better description of the textile geometry could also enhance the knowledge of the injection

process by determining for instance the permeability of the preform [51].

In this paper, we address instance segmentation on dry 3D woven composed of carbon fiber yarns,

especially on layer-to-layer angle interlock as described in section 2.1. This image processing is performed

by combining semantic segmentation, realised thanks to a trained U-Net (see section 2.3), with a suitable

post-processing explained in section 2.4. This study deals with two distinct goals: on the one hand, the

identification of yarn paths and, on the other hand, the yarn cross sections where the results are respectively

shown in section 3 and section 4. Finally, some discussions are brought in section 5. Concerning the

contour detection, it is noteworthy that to predict the yarn envelopes without any prior manual annotation,

the pseudo-labels provided by a morphological approach are used as a training dataset. Regarding the

quantitative evaluation of our methods, the detection of the yarn centers is assessed by classical metrics,

namely: precision, recall and F1 score; and the reconstruction of yarn paths by the Hausdorff distance. For

the instance segmentation of the yarn envelopes, only a qualitative assessment is proposed, in absence of a

reference manual annotation.

2. Materials and methods

2.1. Tomographic volume of 3D woven fabrics

The 3D woven fabric studied in this work is a ply-to-ply angle-interlock, composed of 75 carbon fiber

yarns: 39 warp and 36 weft. All yarns are of the same type and size. The warp yarns are distributed

alternately in a sequence of 4 and 3 yarns in two consecutive columns. Similarly, two consecutive weft

columns are composed of 5 and 4 yarns respectively. In this sample, there are 11 warp planes and 8 weft
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(a) (b)

Figure 1: Images from high-resolution X-ray computed tomography of a 3D woven at two different com-

paction levels: (a) Initial non-compacted and (b) compacted states.

columns. The sample was scanned with a GE Phoenix-Xray tomograph (GE v|tome|x L300) at a resolution

of 20µm (voxel size). Two samples from this woven pattern were studied at two different compaction steps:

a non-compacted state (see Figure 1a), and a half-thickness sample (i.e., 50% thickness of the initial non-

compacted state), called compacted state (see Figure 1b). The image sizes are 1798× 1940× 447 voxels and

1725×1545×255 voxels respectively for the non-compacted and the compacted samples. Note that in these

dry preforms the background is significantly darker than warp and weft yarn gray levels.

2.2. Data labeling

For both tomographies described in the previous section, the yarn path (i.e., the centers of the yarns)

were available thanks to a manual labeling. Indeed, each warp and weft yarn path had been created by first

clicking the center point of each yarn every 30 slices. Then, the complete path was interpolated by B-spline

functions, as shown in Figure 3. For the non-compacted sample, 39 warp and 36 weft yarns were annotated.

Concerning the compacted sample annotations are available for 32 warp and 36 weft yarns.

Concerning the contours of the yarn sections, no labeling was available. Indeed, producing such

labeling is much harder and time consuming by the manual way. Hence, we produced a pseudo ground-

truth segmentation of the non-compacted sample by applying a learning-free baseline algorithm. This

pseudo-labeling was then used to train a deep learning model, as described in section 2.3. The algorithm

used to produce the pseudo-labeling for the segmentation of the yarn cross sections is based on Mathematical

Morphology (MM). Detailing the whole pipeline is beyond the scope of the present paper but its main steps,

illustrated in Figure 2, are as follows. First an adaptive morphological opening, as introduced in [52, 53],

allows to identify the horizontal yarns in each slice, and then to remove them from the binary mask obtained

beforehand by Otsu’s threshold [54]. Then simple morphological filters (fill holes, closings) can recover

compact shapes. Finally, connected components composed of more than one yarn are identified based on

a size criterion. They are split thanks to the watershed algorithm [47, 48] applied to the inverse of their
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Figure 2: Morphological pipeline producing the pseudo-labeling of the yarns cross sections by their distance

transforms.

distance transform (or distance function) [55], which is a very classical process in binary segmentation.

Each single yarn is then represented by its distance transform. Recall that, given a metric d, the distance

transform D(I) (or function) of a binary image I associates to each pixel its distance to the nearest black

pixel:

[D(I)](p) = min {d(p, q), I(q) = 0} . (1)

In our case, we used as metric the length of shortest path in the graph defined by a hexagonal lattice.

Note that this method produced satisfactory labeling on the non-compacted sample but not on the

compacted one. For this reason, we restrict the segmentation of yarn envelopes by supervised learning to

the non-compacted sample, as a proof of concept of the yarn representation that can be efficiently learned

by a U-Net.

2.3. Processing tomographies with Deep Learning

2.3.1. Basics on deep learning

The first main step in the Deep Learning method is to train a dataset for the learning phase of the

algorithm. Let {(xk, yk)}1≤k≤n be a training dataset of pairs, where each xk is a data-sample from an input

space X and yk its corresponding label from the output space Y. In our case, the xks are the slices of a
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Figure 3: Ground truth yarn paths of the non-compacted dry preform (first row) and the compacted one

(second row). Blue stands for warp paths and orange for weft.

tomography, like those of Figure 1, and the yks are images of the same size where the yarn paths or the

yarn sections are highlighted. Learning from these data consists in using the examples {(xk, yk)}1≤k≤n to

build a parametric map φ : X 7→ Y that accurately predicts the label yn+1 of any new data sample xn+1,

that is: yn+1 ≈ φ(xn+1). A DNN, in its simplest form, is a compositional map that may be written as

φf ;θ := f (d)(g(d) · · · f (1)(g(1)(X))) where each f (l) is a nonlinear function called activation function and

each g(l) is usually an affine application defined by its weight matrix W(l) and bias vector b(l): g(l)(Y ) =

W(l)Y + b(l). Here θ denotes the set of affine parameters [W(1), b(1), . . . ,W(d), b(d)] and f = [f (1) . . . f (d)]

the set of activation functions. The composed application f (l) ◦ g(l) is what we call a layer of the network.

The term deep in DNN refers to neural networks with many layers, usually d > 2. As we can see from

the equation above, the output of a layer becomes the input of the following one, except for the input and

output layers, which are merely the input and output of the whole network. When the input of a layer is

an image (or a stack of images) the linear part of the layer’s affine transformation is actually a convolution,

and therefore the matrix W(l) is fully determined by a small number of parameters, called the convolution

kernel. Such a layer is called a convolutional layer, and neural networks including such layers are referred

to as convolutional neural networks (CNNs) [56].

CNNs can model complex non-linear relationships and have shown their goodness in different kinds

of problems such as automatic speech recognition, image recognition, natural language processing, among

others [57]. However, one of the fundamental points is the selection of an adequate architecture [58], i.e.

the structure of composition between layers: number of layers, dimension of each layer’s output, size of

8



the convolution kernels, type of activation functions. In the training process, we would usually tune the

parameters θ so as to minimise the difference between the labels (ideal maps yk) and the CNN outputs

(estimated maps ŷk = φθ(xk)) at any training instance xk, such that the difference goes to zero as the

number of samples N increases. For that, we define a loss function l(yk, ŷk) that represents the difference

between the labels and the CNN output. In an ideal case, we would like to find θ∗ such that:

θ∗ = argmin
θ
E∀xk∈X ,yk∈Y [loss(yk, ŷ(xk))] , (2)

where E∀xk∈X ,yk∈Y denotes the expected value over all possible pairs of (x, y), which is impossible to

calculate in most of scenarios. However, we can compute an approximation, called empirical risk [59], by

averaging the loss function on a large set of training examples (xk, yk)1≤k≤N ,

θ̂ = argmin
θ

N∑
i=0

loss(yk, ŷ(xk)). (3)

This minimization is usually done via stochastic gradient descent (SGD) [60]. SGD starts from a certain

initial θ and then iteratively updates each parameter by moving it in the direction of the negative gradient

with respect to the loss function. The computation of gradient with respect to the loss function is done via

a direct application of the chain rule in networks, called back-propagation [61]. The term stochastic in SGD

indicates that a random small number of training samples, called a batch is used in the gradient calculation.

This reduces considerably the computational cost of the gradient evaluation. Additionally, by the law of

large numbers, this stochastic gradient should be close to the full sample one, though with some random

fluctuations. A pass of the whole training set is called an epoch. Usually, after each epoch, the error on a

validation dataset is evaluated and when it stabilizes the training is complete.

2.3.2. Architecture

For the different tasks presented here, a Deep Convolutional Neural Network (DCNN) architecture, called

U-Net [38], was used. The U-Net architecture was originally designed for biomedical image segmentation

and has become very popular for its impressive performances. In the present work, the U-Net architecture is

chosen as both addressed tasks (the reconstruction of yarn paths and of their envelopes) are viewed as image

segmentation problems. A U-Net maps an input image to an output image expected to show a segmentation

of the input. As shown in Figure 4, the computations performed by a U-Net follow two main steps. In

the first step, it keeps extracting and combining features from the input image while reducing the spatial

resolution by pooling filters at each layer. This is called the contracting path. In the second step, called

expansive path, it increases back the resolution using the accumulated features to produce a new image of

the same size as the input, where only the desired objects should be highlighted. More precisely, for the

yarn paths detection task, the contracting path consists of the repeated application of two 3×3 convolutions
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Figure 4: Architecture of the U-Net used for the yarn paths detection. The number of convolutional filters

per layer is indicated.

with a rectified linear unit (ReLU) activation and a 2×2 max pooling operation for downsampling. At each

downsampling step, the number of feature channels doubles. Every step in the expansive path consists of an

upsampling of the feature map followed by a 2 × 2 convolution (“up-convolution”) that halves the number

of feature channels, a concatenation with the correspondingly cropped feature map from the contracting

path, and two 3×3 convolutions, each followed by a ReLU. In total our architecture has 490,993 parameters

for the detection of yarn centers. For the segmentation of the cross sections, the architecture was almost

the same except that the first layer contained four filters instead of eight, and the last layer was a 1 × 1

convolution instead of a softmax layer as in Figure 4, totalizing 122,953 parameters.

2.3.3. Training protocol

One of the challenges we faced to apply the deep learning approach is that we only dispose of two

3D images with their corresponding ground-truth, the yarn centers (see section 2.2). Hence, our training

protocol is designed to avoid model over-fitting. First, we propose to extract 2D patches of size 256 × 256

pixels, with a random center position (see some examples in Figure 5b). The goal of random crops is to

both prevent the selection bias and the redundancy of the data. We argue that allowing the overlap is

essential for the network to learn features shared between patches. Secondly, we use one direction (warp

or weft) during training and leave the other one for testing, as illustrated in Figure 5a. The direction used

for training is itself split into training and validation slices. More specifically, the training set is composed

of 10000 patches randomly selected from two thirds of the slices in one direction, and the validation set is

composed of 1000 patches also randomly selected from the remaining third in the same direction. When

not specified otherwise, training and test are run on images of the same level of compaction, but a mix can

be done as it will be seen in section 3.3. During training, at the end of each epoch, the current state of the

model is evaluated on the training set to give an idea of how well the model is learning, then the evaluation

on the validation set tells how well the model is generalizing. As it has been explained in section 2.3.1, the
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(a) (b)

Figure 5: Illustration of the training protocol in the Deep Learning approach. (a) Partition of a tomography

into training, validation and test slices. (b) Set of random patches superimposed on a slice.

training is stopped when the error on the validation set does not reduce after a given number of epochs [62],

called patience parameter. In our experiments, the training process was performed on a single NVIDIA

Titan XP GPU using ADAM optimizer [63]. For the detection of yarn centers, the patience parameter was

fixed to ten epochs, the learning rate to 0.001 and the mini-batch size to 64. For the segmentation of yarn

sections, these parameters were set to 20, 10−5 and one respectively. In the sequel, this procedure has been

applied on both compacted and non-compacted samples for the yarn path detection (see section 2.3.4), and

on the non-compacted sample only for the segmentation of sections (see section 2.3.5). Obviously, it could

be noted that after training, the CNN can be applied to any tomography slice.

2.3.4. Detection of yarn centers

The reconstruction of the yarn paths boils down to detecting the location of each yarn in each slice and,

from these locations, inferring as many paths as there are yarns in the tomography.

Labels: For this task, we had the necessary ground truth for supervised learning, namely the coordinates

of the yarn paths in each slice. The training dataset used here is the yarn paths annotated manually as

described in section 2.2. These coordinates are translated into binary images where the yarns’ center is

marked by white squares, as shown in Figure 6. The size of each square is taken equal to 25 × 25 pixels.

Note that the pixel size of the ground truth has been chosen as a trade-off. Indeed, this size has been

set not too small in order to avoid a bias of the model towards trivial predictions, i.e., almost completely

dark images, due to a strong area imbalance between objects to detect (white pixels) and background (dark

pixels). Moreover, this size should be not too big either, so as to well approximate the yarn center and

remain included in the smallest yarn section. The neural network was thus trained to map a 2D input image

showing yarns, to an output image where the yarn paths were marked in white on a black background.

Loss function: A performance measure commonly used for evaluating segmentation masks is the Jac-

card index, also called the intersection-over-union (IoU) score [64]. In the case of a binary ground truth
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(a) (b)

Figure 6: Pair of images (patches) for the training: (a) raw image and (b) binary image with the ground

truth markers.

image y and its gray-scale estimation ŷ, this can be written as follows:

J(y, ŷ) =
ε+

∑
i y[i] · ŷ[i]

ε+
∑N
i (y[i] + ŷ[i]− y[i] · ŷ[i])

, (4)

where y[i] and ŷ[i] denote the values of images y and ŷ at pixel i, N is the number of pixels in each image,

and ε is a very small number preventing division by zero. Accordingly, the corresponding loss function to

be employed in empirical risk minimization (3) is loss(y, ŷ) := 1− J(y, ŷ).

2.3.5. Segmentation of yarn sections

The protocol followed here is very similar to the one in the detection of yarn paths. The training and

validation sets are generated the same way.

Labels: As specified in section 2.2, no manual labeling was available for the cross-sections of yarns.

Therefore, in order to assess the potential of the supervised training of a CNN on the segmentation of

yarns, we used as ground-truth the pseudo-labels obtained by the morphological algorithm briefly described

in section 2.2. Hence, the label images used to train the network here were the distance tranforms of yarns,

as shown in Figure 2.

Loss function: Here the loss function is not the Jaccard index anymore but the mean square error

(MSE):

loss(y, ŷ) =
1

N

N∑
i=1

(y[i]− ŷ[i])2 (5)

where N is the number of pixels in the input y and output ŷ. Here y is an input slice and ŷ the distance

transform used as a label (see Figure 2).

12



2.4. Post-processing: From 2D semantic segmentation to 3D instance segmentation

2.4.1. Recovering yarn paths

The aim of this section is to determine the path of each yarn from the output of the U-Net trained to

detect yarn centers (see section 2.3.4). This trained U-Net maps input tomographic slices to output images

where the centers of yarns are highlighted more or less accurately by bright shapes. The first post-processing

consists in extracting from this output image a set of coordinates representing the detecting yarn centres.

This is done by applying Otsu’s adaptive threshold method [54], removing very small components thanks to

an area opening [65], and finally compute the barycentre of the remaining connected components. Applying

this to each slice in one direction results in a 3D point cloud, which we call the predicted yarn centers. As

it is shown in section 3 (see for example Figure 9), most detected points are close to the actual yarn paths

but some false positive and negative detections also occur. Hence, the second post-processing consists in

recovering the 3D path of each yarn from the noisy cloud of independently detected points.

The procedure relies on two main steps. First, a tracking step identifies candidate clusters of points to

be yarn paths. Second, a parametric modeling fits a parametric function to each cluster.

1. Tracking: This first step consists in building tracks, that is to say sequences of detected points that

are likely to belong to the same yarn. A track is initialized by one detected point in one slice, and extended

forward and backward by points from subsequent and previous slices, complying with a smoothness criterion.

To illustrate this step, let’s detail one forward extension. Consider an incomplete track [p0, . . . , pn], where

each point pi is identified by its coordinates (xi, yi, zi), the last coordinate zi denoting the slice to which

the point belongs and (xi, yi) its 2D coordinates within the slice. Suppose we want to extend the track to

a point from a subsequent slice s indexed by z∗ > zn. We denote by p∗ = (x∗, y∗, z∗) the closest point to

pn in s and define dX = |xn − x∗|, dY = |yn − y∗|, dZ = |zn − z∗|. Then p∗ is appended to the track (that

is, pn+1 ← p∗) if
√
dX2 + dY 2 ≤ min(αdZ, ρmax) for some parameters α > 0 and ρmax > 0. This means p∗

needs to fall within the intersection of a cone pointing on pn and of slope α, and a cylinder of central axis

zn and radius ρmax. If this condition is not fulfilled by any point in s, then we look further for one in a

subsequent slice. The range of subsequent slices to search (step, furthest slice) may vary. If no extension is

found in this range, then the forward tracking is over. The backward tracking works in the same way. By

changing the initial point and the range of subsequent (or previous) slices, we manage to build many tracks

and with high probability the desired yarn paths are among them.

2. Parametric modeling: Among the set of tracks built in the previous step, some may be redundant

(i.e., there might be several tracks for the same yarn) and others may be wrong, in the sense that they might

not follow a yarn path. The goal of this second step is to keep only accurate, mutually different tracks, using

as criteria their fit to a parametric model which is expected to suit yarns paths. Visualizing the tomography

should tell what model seems realistic. In the images considered here, the yarn paths vary like sinusoids
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in one dimension (height) and are almost constant in the other (width). Therefore we solve for each track

[p0, . . . , pn] two least squares problems:

(a0, . . . , aK , b1, . . . , bK)∗ = arg min
(a0,...,aK ,b1,...,bK)

n∑
i=0

(
yi − a0 −

K∑
k=1

[
ak cos(

2kπ

T
zi) + bk sin(

2kπ

T
zi)
])2

(6)

and

(c0, . . . , cN )∗ = arg min
(c0,...,cN )

n∑
i=0

(
xi −

N∑
k=0

ckz
k
i

)2

, (7)

where the period T , the number K of harmonics and the degree N of the polynomial are parameters to

set. Only tracks achieving a small mean squared error for these two problems are kept. Besides, comparing

the best fits of two tracks allows us to tell whether they correspond to the same yarn path or not. For

instance, Figure 7 shows two examples of yarn tracks (in blue) and their parametric fits (in orange). The

polynomial’s degree is N = 3, the number of harmonics is K = 2 and the period is T = 1600. Note that

the left hand track (see Figure 7a) is discarded because of its poor fit to the sinusoidal model in the height

dimension, whereas the right hand track is kept (see Figure 7b). In the latter, the parametric model is

somehow a smoothed version of the track built on the initial noisy output. If one iteration of this process

does not provide an adequate parameterization of all the yarn paths, it is possible to remove from the initial

point cloud the points associated with the found fibers, and repeat the tracking and parametric modeling on

the residual point cloud. As it is shown in section 3, the initial point clouds output by our method are more

or less noisy. When the point cloud is accurate enough, the model based post-processing may converge in

one or two iterations. When it is noisier, this may take a few more iterations, including a user interaction

to select the correctly found yarn paths before computing the residual point cloud.

Note that the proposed approach to recover yarn paths is fairly general and can be adapted to any

kind of preform, as long as the x and y coordinates of the path can be expressed as functions of the z

coordinate. Indeed, different parametric models can be used based on prior knowledge on the yarn paths,

and their complexity can be increased by increasing the order of these models (that is, increasing the

number of harmonics or the degree of polynomials). Furthermore, although the yarns inside the analysed

woven patterns are with limited crimps, the method can be adapted to cases where a yarn cross-sections

vanish in some slices due to high crimp. First, by increasing the values of parameters α and ρmax, tracks

with arbitrary large slopes can be built. Second, note that if a yarn center vanishes at some point, it also

reappears later on, and is therefore likely to be appended to the current track with our strategy. Indeed,

recall that if no candidate is found in one slice, it is searched in subsequent slices. Finally, instead of

choosing a candidate as the closest point to the last point of the current track, we can relax the constraint

and consider the k nearest neighbours, with k and integer larger than 1.
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(a) (b)

Figure 7: Two examples of tracks (in blue) and their parametric fits (in orange).

2.4.2. Recovering yarn envelopes

Here we describe how we achieve a 3D instance segmentation of the yarns from the 2D output images

produced by the U-Net trained as explained in one direction in section 2.3.5, and applied to the orthogonal

direction. This U-Net maps an input slice to an image showing approximations of distance transforms at

each yarn location. As these are not exact distance transforms, the outline of yarns cannot be obtained by

selecting pixels with value one. However, selecting the pixels with positive values is sufficient to recover the

connected components associated to the yarns, and therefore most contours except those separating touching

yarns. Excessively large connected components are identified as touching yarns. Then, their contours are

computed thanks to a watershed transform with markers, applied to the inverse of the output image. The

intersection points between the parameterized yarn paths (described in section 2.4.1) and the connected

components are used as markers for the watershed. This completes the step of semantic segmentation of

each yarn in 2D slices. To turn this into a 3D instance segmentation, each segmented region in each slice

is assigned the label of the yarn path intersecting it. If there is no such path, the region is discarded.

This simple step produces 3D regions following the previously found paths and corresponding to the yarn

envelopes. This result is then regularized by a morphological filter (oriented opening) to remove obvious

segmentation errors. Finally, to obtain a 3D surface mesh from the labeled 3D image, the Marching Cubes

algorithm [66] is applied, as implemented in Scikit Image [67]. The marching cubes algorithm provides a

means to compute a triangular mesh approximation to the isosurface produced by each one of the segmented

regions.

2.5. Overview of the method

The main steps of the method are summarized in Figure 8. As illustrated, we address two tasks: first,

find the path of each yarn and, second, their envelopes. In both cases, a U-Net is trained to process 2D
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slices. One the one hand, for the first task, a manual labeling of the yarn centers is available. On the other

hand, for the second task, a pseudo-labeling of the yarn sections computed from the morphological approach

is used. Then, a post-processing of the 2D outputs of both U-Nets allows it to move from a 2D semantic

segmentation to a 3D instance segmentation. The 3D yarn paths are recovered first, and then used to label

the sections in each slice, producing a final 3D instance segmentation of envelopes.

Target

Yarn 
paths

Yarn
envelopes

Training data

Input
slices

Manual labeling:
yarn centers

Pseudo labeling:
distance tranforms

U-Net1

U-Net2

Inference
(Semantic segmentation)

Tracking
+ parametric modeling

Post-processing
(Instance segmentation)

Watershed
+ marching cubes

Figure 8: Summary of the method.

3. Results on the identification of yarn paths

3.1. Quality assessment

The assessment of our method is performed through four different metrics. First, precision, recall and

F1 score are used to compare the set of true yarn section centers to those predicted, before and after the

tracking-modeling step. These metrics aim at measuring how noisy the detected point clouds are, and how

much the noise is reduced after tracking and modeling. Second, in order to assess the quality of the 3D

paths reconstructions, the Hausdorff distance is used, as suggested by Mendoza et al. [44]

The method concerning the detection of yarn section centers presented in section 2.3.4 outputs a set of

coordinates representing the points detected as part of the yarn paths in the tomography. This set will be

called the output point cloud. The latter is compared to the ground truth section center marked as another
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set of points, referred to as the ground truth point cloud. A ground truth point is considered as detected if,

at least, one output point is close enough to it. Proximity is measured by the Euclidean distance in three

dimensions. The threshold defining detection is 25 pixels. Finally, as the performance of a method is given

by its ability to detect just the yarn paths and no other object, two quantities are considered, precision and

recall. The recall is the proportion of ground truth points (i.e., true positives + false negatives) that are

correctly detected, while precision is the proportion of true positives among the output point cloud (i.e.,

true positives + false positives). Both are numbers between zero and one, and the closer to one the better.

recall = #true positives
#ground truth and precision = #true positives

#output
(8)

From these two measures a unique score called F1 score is computed as follows:

F1 = 2 · precision · recall
precision+ recall

(9)

Again, the closer F1 to one, the better.

Concerning the yarn paths assessment, the symmetric Hausdorff distance is used. Given two sets A and

B, this distance is defined as

DH(A,B) = max (δH(A,B), δH(B,A)) (10)

with

δH(A,B) = max
a∈A

min
b∈B
‖a− b‖ (11)

and ‖·‖ the Euclidean norm. Every ground truth yarn path Ai is matched to the predicted path Bi that

minimizes the Hausdorff distance:

Bi = arg min
B∈predicted paths

DH(Ai, B). (12)

If this predicted path is already matched to another true path with lower Hausdorff distance, then the

second closest is chosen, and so on. It may happen that no predicted path matches a ground truth one, in

which case we consider that the path has not been reconstructed by our method.

3.2. Results on the non-compacted dry preform

Table 1 sums up the results of the approach in terms of recall and precision. Figure 9 is a 3D visualiza-

tion of the detected points and their filtered version after post-processing (tracking and parameterization).

Although the raw results are already very satisfactory, the post-processing allows the removal of most false

positives, as the improvement of precision shows. Additionally, it offers an identification of entire yarn paths

along the volume, instead of independent points. The accuracy of the path reconstruction, measured by the

Hausdorff distances between predicted and true paths, is reported in Figure 10b and Figure 10c. They may

be compared to the average minimal distances between neighbour yarns in the slice plane, which is 1.81mm
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Warp Weft Both warp and weft

Figure 9: Points detected on the non-compacted dry preform (first row: semantic segmentation), and result

after post-processing (second row: instance segmentation).

in warp and 1.83mm in weft. Note that in both warp and weft directions, some yarn paths were accurately

reconstructed near the edges of the tomography although they were not labeled in the ground truth. They

were discarded in the computation of precision, not to undermine it unfairly.

Table 1: Results of the yarn center segmentation on the non-compacted dry preform, before and after

post-processing.

Warp Weft

Raw Post-proc. Raw Post-proc.

Recall .980 .996 .979 .987

Precision .959 .996 .962 .987

F1 score .969 .996 .971 .987

3.3. Results on the compacted dry preform

In a first attempt to apply our approach to compacted dry preform tomography, we used as training

data images from the same tomography but orthogonal direction with respect to the test direction (that is,

we sampled patches from the weft direction and tested on warp or the other way around). The results in
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0.39 0.52 0.4 0.34 0.32 0.29 0.6 0.55

0.34 0.27 0.6 0.23 0.21 0.22 0.34 0.32

0.24 0.25 0.51 0.21 0.32 0.32 0.23 0.25

1.06 1.06 0.26 0.35 0.56 0.24 0.49 0.3

(c)

Figure 10: Yarn path assessment for the non-compacted dry preform: (a) Histogram of Hausdorff distances

(in mm) for both warp (red line) and weft (blue line) orientation and listing of all distances for each (b)

warp and (c) weft yarn.

terms of precision and recall are presented in Table 2. They are not good enough to recover all the yarns

paths after post-processing. In particular, the drop in recall is explained by the fact that the post-processing

removes correctly detected points if they are not sufficient to recover the whole yarn path.

Therefore, we tried to add images from the non-compacted preform tomography, but still the orthogonal

direction, to the training data. This improved significantly the quality of the raw output point clouds, as

shown in Table 3. From the visualization of Figure 11, top row, it appears that it is still quite noisier than

for the initial non-compacted state. The post-processing step needed therefore a few more iterations and

user interactions than with the non-compacted sample, but the process still converged quickly. The final

results after pre-processing, shown in Table 3 in terms of precision and recall, and in Figure 12 in terms of

Hausdorff distances, still need to be improved in the weft direction, where we still get a drop in recall. This

is mainly due to the fact that one yarn could not be reconstructed. To help interpret the Hausdorff distance

results compiled in Figure 12, we shall precise that the average minimal distance between two neighbour

yarns in a slice plane, is about 1.10mm in warp and 1.24mm in weft.
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Warp Weft Both warp and weft.

Figure 11: Points detected on the compacted dry preform by the Deep Learning method (first row: semantic

segmentation), and result after post-processing (second row: instance segmentation).

Table 2: Results of the yarn center segmenta-

tion, before and after post-processing, on the

compacted dry preform. Training on the com-

pacted sample, orthogonal direction.

Warp Weft

Raw Post-proc. Raw Post-proc.

Recall .949 .839 .854 .710

Precision .851 .927 .782 .857

F1 score .897 .881 .817 .777

Table 3: Results of the yarn center segmenta-

tion, before and after post-processing, on the

compacted dry preform. Training on both com-

pacted and non-compacted samples, orthog-

onal direction.

Warp Weft

Raw Post-proc. Raw Post-proc.

Recall .980 .983 .895 .799

Precision .901 .985 .824 .829

F1 score .939 .984 .858 .814
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Figure 12: Yarn path assessment for the compacted dry preform: (a) Histogram of Hausdorff distances (in

mm) for both warp (red line) and weft (blue line) orientation and listing of all distances for each (b) warp

and (c) weft yarn. The hyphen indicates a missing yarn path in the reconstruction.

4. Results on the segmentation of yarn cross sections

In this section we present the results obtained by our approach in the instance segmentation of yarns

for the non-compacted sample since the pseudo-labeling method was not satisfactory on the compacted

sample. Regarding their quality assessment, it can only be made based on visual inspection, as we lack a

reference ground truth for this task. All the segmentation results are made available online, as indicated

hereafter. The whole results are presented in two videos available online1. For a slice by slice examination,

the corresponding sequences are also made available2.

As described in section 2.3.5, the labels used to train a U-Net to segment yarns were the distance maps

produced by a morphological algorithm. We observe that the model does learn to compute an output similar

to a distance transform, as shown on the top row of Figure 13. Most importantly, the contours of yarns can

be recovered accurately from the network’s output, following the method described in section 2.4.2. This

advocates in favour of the representation of yarns by their distance transforms and training a deep CNN to

learn this representation.

Compared to the morphological algorithm used to produce pseudo-labels for the supervised learning, it

seems that the DNN shows better robustness to artifacts, as shown on the bottom row of Figure 13.

1https://bit.ly/video_warp and https://bit.ly/video_weft
2https://bit.ly/imseq_compB
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Regarding the surface mesh which can be produced from our 3D instance segmentation explained in sec-

tion 2.4.2, an example is shown in Figure 14.
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Output: Distance transform Yarn outlines Output Yarn outlines

Morphological pipeline Deep Learning pipeline

Figure 13: Comparison between the morphological pseudo-labeling and the deep-learning-based results on

two warp slices from the non-compacted preform (training on weft slices).

Figure 14: Instance segmentation of yarns, represented as a 3D surface mesh.
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5. Discussion

The emergence of Deep Learning applied to segmentation domain offers a great perspective to solve

complex image processing issues in composite field. Indeed, it provides a great tool allowing us to extract

information of the internal structure of the composite materials with a strong efficiency and robustness never

reached by classical morphological methods. The trained models DCNN using learnt features associated

with several extra-parameters from the images (e.g., resolution, grayscale distribution) as well as from the

textile geometry (e.g., yarn shape and aspect ratio, distance between yarns). However, the main difficulty in

supervised approaches is to create annotated data, also called ground-truth. Generally, these annotations are

generated manually, therefore starkly time-consuming and human-dependent. Our approach showed notably

that it is possible to replace the manual ground-truth by a flawed automatised mathematical-morphology-

based segmentation.

The proposed method separates the extraction of the yarn paths from the yarn envelopes but uses yarn

trajectories to perform a complete yarn instance segmentation with their global shapes. This enables to select

which level of details the user needs. Indeed, on the one hand, when information only on potential pattern

anomalies (e.g., wrong topology, strong transverse undulation, missing yarns) is required, only yarn path

detections could be extracted. On the other hand, if more complete details are looked for, the yarn envelopes

have to be reconstructed. Hence, for example, the envelopes computation can provide the intra-yarn fiber

volume fraction and so, the overall fiber volume fraction of the composites. This complete description

allows also to optimize the manufacturing of the composites materials by achieving forming process or

testing simulations, in order to characterize the mechanical behaviour of the fibrous preform, as well as the

injection process simulations (e.g., determination of time filling, permeability). Finally, high fidelity FEA

(e.g., homogenization, crack propagation) on the consolidated material could thus be performed.

6. Conclusions and perspectives

In this paper we have presented an image processing framework aiming at extracting the yarn paths and

their envelopes from µ-CT tomographies of a dry 3D ply-to-ply angle-interlock fabric, producing an instance

segmentation of yarns.

Regarding the extraction of paths, our approach performed very well on the non-compacted sample, and

also on the compacted one when training our DCNN on mixed data (slices from both samples) manually

annotated. Regarding the segmentation of yarns, we used the output of a morphological algorithm to train

a Deep Learning model. From this experiment we can draw an important conclusion: a deep architecture

such as U-Net can learn to approximate the distance transform of the yarn sections, which indicates that

the distance transform is a suitable labeling for such a supervised learning algorithm on this task.
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In future works, we shall focus on the difficult issue of highly compacted fabrics, for which the segmen-

tation of yarn sections is not satisfactory yet. To achieve a good quality pseudo-labeling for this sample,

several strategies may be explored, such as pre-processing to regularize the data. More a priori information

on the shape of yarns and the expected woven pattern, can also be exploited. Furthermore, the deep learning

models we trained may be tuned to work on compacted samples thanks to data augmentation strategies.

7. References

[1] P. Boisse, B. Zouari, A. Gasser, A mesoscopic approach for the simulation of woven fibre composite forming, Composites

Science and Technology 65 (3-4) (2005) 429–436.

[2] S. Mathieu, P. Boisse, N. Hamila, F. Bouillon, Locking and Stability of 3D Woven Composite Reinforcements, Key

Engineering Materials 611-612 (2014) 292–299.

[3] S. Mathieu, N. Hamila, F. Dupé, C. Descamps, P. Boisse, Stability of 3D Textile Composite Reinforcement Simulations:

Solutions to Spurious Transverse Modes, Applied Composite Materials 23 (2016) 739–760.

[4] A. Iwata, T. Inoue, N. Naouar, P. Boisse, S. V. Lomov, Coupled meso-macro simulation of woven fabric local deformation

during draping, Composites Part A 118 (January) (2019) 267–280.

[5] X. Sun, J. P.-H. Belnoue, A. Thompson, B. El Said, S. R. Hallett, Dry Textile Forming Simulations: A Benchmarking

Exercise, Frontiers in Materials 9 (2022) 831820.

[6] Y. Wielhorski, A. Mendoza, M. Rubino, S. Roux, Numerical modeling of 3D woven composite reinforcements: A review,

Composites Part A: Applied Science and Manufacturing 154 (March) (2022) 106729.

[7] G. Zhou, X. Sun, Y. Wang, Multi-chain digital element analysis in textile mechanics, Composites Science and Technology

64 (2) (2004) 239–244.

[8] M. Sherburn, Geometric and Mechanical Modelling of Textiles, Ph.D. thesis, University of Nottingham, 2007.

[9] Y. Miao, E. Zhou, Y. Wang, B. A. Cheeseman, Mechanics of textile composites: Micro-geometry, Composites Science and

Technology 68 (7-8) (2008) 1671–1678.

[10] Y. Mahadik, S. R. Hallett, Finite element modelling of tow geometry in 3D woven fabrics, Composites Part A: Applied

Science and Manufacturing 41 (9) (2010) 1192–1200.

[11] D. Durville, Simulation of the mechanical behaviour of woven fabrics at the scale of fibers, International Journal of Material

Forming 3 (2) (2010) S1241–S1251.

[12] S. Green, A. Long, B. El Said, S. Hallett, Numerical modelling of 3D woven preform deformations, Composite Structures

108 (2014) 747–756.

[13] A. Drach, B. Drach, I. Tsukrov, Processing of fiber architecture data for finite element modeling of 3D woven composites,

Advances in Engineering Software 72 (2014) 18–27.

[14] L. Daelemans, J. Faes, S. Allaoui, G. Hivet, M. Dierick, L. Van Hoorebeke, W. Van Paepegem, Finite element simulation

of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the

digital element method, Composites Science and Technology 137 (2016) 177–187.

[15] D. Durville, I. Baydoun, H. Moustacas, G. Périé, Y. Wielhorski, Determining the initial configuration and characterizing

the mechanical properties of 3d angle-interlock fabrics using finite element simulation, International Journal of Solids and

Structures 154 (December) (2018) 97–103.

[16] S. Lomov, A. Gusakov, G. Huysmans, A. Prodromou, I. Verpoest, Textile geometry preprocessor for meso-mechanical

models of woven composites, Composites Science and Technology 60 (11) (2000) 2083–2095.

[17] I. Verpoest, S. Lomov, Virtual textile composites software WiseTex: integration with micro-mechanical, permeability and

structural analysis, Composites Science and Technology 65 (15-16) (2005) 2563–2574.

25



[18] Y. Wang, X. Sun, Digital-element simulation of textile processes, Composites Science and Technology 61 (2) (2001)

311–319.

[19] A. Charmetant, E. Vidal-Sallé, P. Boisse, Hyperelastic modelling for mesoscopic analyses of composite reinforcements,

Composites Science and Technology 71 (2011) 1623–1631.

[20] K. Naresh, K. A. Khan, R. Umer, W. J. Cantwell, The use of X-ray computed tomography for design and process modeling

of aerospace composites: A review, Materials and Design 190 (2020) 108553.

[21] A. Mendoza, J. Schneider, E. Parra, S. Roux, Measuring yarn deformations induced by the manufacturing process of

woven composites, Composites Part-A: Applied Sciences and Manufacturing 120 (2019) 127–139.

[22] A. Mendoza, J. Schneider, E. Parra, E. Obert, S. Roux, Differentiating 3D textile composites: A novel field of application

for Digital Volume Correlation, Composite Structures 208 (2019) 735–743.

[23] R. M. Auenhammer, L. P. Mikkelsen, L. E. Asp, B. J. Blinzler, Automated X-ray computer tomography segmentation

method for finite element analysis of non-crimp fabric reinforced composites, Composite Structures 256 (2021) 113136.

[24] M. Ali, R. Umer, K. Khan, S. Bickerton, W. J. Cantwell, Non-destructive evaluation of through-thickness permeability in

3D woven fabrics for composite fan blade applications, Aerospace Science and Technology 82 (2018) 520–533.

[25] W. Wijaya, M. A. Ali, R. Umer, K. A. Khan, P. A. Kelly, S. Bickerton, An automatic methodology to CT-scans of 2D woven

textile fabrics to structured finite element and voxel meshes., Composites Part-A: Applied Sciences and Manufacturing

125 (2019) 105561.

[26] Y. Liu, I. Straumit, D. Vasiukov, S. V. Lomov, S. Panier, Prediction of linear and non-linear behavior of 3D woven

composite using mesoscopic voxel models reconstructed from X-ray micro-tomography, Composite Structures 179 (2017)

568–579.

[27] J. Bénézech, G. Couégnat, Variational segmentation of textile composite preforms from X-ray computed tomography,

Composite Structures 230 (2019) 111496.

[28] N. Naouar, E. Vidal-Sallé, J. Schneider, E. Maire, P. Boisse, Meso-scale FE analyses of textile composite reinforcement

deformation based on X-ray computed tomography, Composite Structures 116 (2014) 165–176.

[29] N. Naouar, E. Vidal-Sallé, J. Schneider, E. Maire, P. Boisse, 3D composite reinforcement meso FE analyses based on

X-ray computed tomography, Composite Structures 132 (2015) 1094–1104.

[30] M. Ali, R. Umer, K. Khan, W. J. Cantwell, In-plane virtual permeability characterization of 3D woven fabrics using a

hybrid experimental and numerical approach, Composites Science and Technology 173 (2019) 99–109.

[31] L. Djukic, I. Herszberg, W. Walsh, G. Schoeppner, B. Gangadhara Prusty, D. Kelly, Contrast enhancement in visualisation

of woven composite tow architecture using a MicroCT scanner. Part 1: Fabric coating and resin additives, Composites

Part-A: Applied Sciences and Manufacturing 40 (2009) 553–565.

[32] I. Straumit, S. V. Lomov, M. Wevers, Quantification of the internal structure and automatic generation of voxel models

of textile composites from X-ray computed tomography data, Composite Part-A: Applied Sciences and Manufacturing 69

(2015) 150–158.

[33] N. Naouar, D. Vasiukov, C.-H. Park, S. V. Lomov, P. Boisse, Meso-FE modelling of textile composites and X-ray tomog-

raphy, Journal of Materials Science 55 (36) (2020) 16969–16989.

[34] B. Wintiba, D. Vasiukov, S. Panier, S. V. Lomov, K. Ehab, M. Kamel, T. J. Massart, Automated reconstruction and

conformal discretization of 3D woven composite CT scans with local fiber volume fraction control, Composite Structures

248 (May) (2020) 112438.

[35] D. W. Aha, D. Kibler, M. K. Albert, Instance-Based Learning Algorithms, Machine Learning 6 (1991) 37–66.

[36] V. Pidou-Brion, Y. Le Guilloux, Active yarn meshes for segmentation on X-ray computed tomography of textile composite

materials at the mesoscopic scale, Composite Structures .

[37] Y. Sinchuk, P. Kibleur, J. Aelterman, M. N. Boone, W. V. Paepegem, Variational and Deep Learning Segmentation of

26



Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites, Materials 13 (4).

[38] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: International

Conference on Medical image computing and computer-assisted intervention, Springer, 234–241, 2015.

[39] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-cnn, in: ICCV, 2961–2969, 2017.

[40] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick, Microsoft coco: Common

objects in context, in: European conference on computer vision, Springer, 740–755, 2014.

[41] M. A. Ali, Q. Guan, R. Umer, W. J. Cantwell, T. Zhang, Deep learning based semantic segmentation of µCT images

for creating digital material twins of fibrous reinforcements, Composites Part A: Applied Science and Manufacturing 139

(2020) 106131.

[42] M. Ali, Q. Guan, R. Umer, W. J. Cantwell, T. Zhang, Efficient processing of µCT images using deep learning tools for

generating digital material twins of woven fabrics, Composites Science and Technology 217 (2022) 109091.

[43] A. Badran, D. Marshall, Z. Legault, R. Makovetsky, B. Provencher, N. Piché, M. Marsh, Automated segmentation of

computed tomography images of fiber-reinforced composites by deep learning, Journal of Materials Science 55 (34) (2020)

16273–16289.

[44] A. Mendoza, R. Trullo, Y. Wielhorski, Descriptive Modeling of Textiles using FE Simulations and Deep Learning, Com-

posites Science and Technology (2021) 108897.

[45] Y. Sinchuk, P. Kibleur, J. Aelterman, M. N. Boone, W. V. Paepegem, Geometrical and deep learning approaches for

instance segmentation of CFRP fiber bundles in textile composites, Materials 227 (2020) 114626.

[46] W. Huang, P. Causse, V. Brailovski, H. Hu, F. Trochu, Reconstruction of mesostructural material twin models of engi-

neering textiles based on Micro-CT Aided Geometric Modeling, Composites Part A: Applied Science and Manufacturing

124 (2019) 105481.

[47] S. Beucher, F. Meyer, The morphological approach to segmentation: the watershed transformation, chap. 12, Marcel

Dekker, Inc., 433–481, 1993.

[48] F. Meyer, Topographic distance and watershed lines, Signal Process 38 (1) (1994) 113–125.

[49] X. Zeng, B. L. P., A. Endruweit, M. Mikhail, L. A. C., Geometrical modelling of 3D woven reinforcements for polymer

composites: Prediction of fabric permeability and composite mechanical properties, Composite Part-A: Applied Sciences

and Manufacturing 56 (2014) 150–160.

[50] L. Daelemans, B. Tomme, B. Caglar, V. Michaud, J. Van Stappen, V. Cnudde, M. Boone, W. Van Paepegem, Kinematic

and mechanical response of dry woven fabrics in through-thickness compression : Virtual fiber modeling with mesh overlay

technique and experimental validation, Composites Science and Technology 207 (January) (2021) 108706.

[51] A. Geoffre, Y. Wielhorski, N. Moulin, J. Bruchon, S. Drapier, P.-j. Liotier, International Journal of Multiphase Flow

Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations,

International Journal of Multiphase Flow 129.

[52] S. Blusseau, S. Velasco-Forero, J. Angulo, I. Bloch, Tropical and morphological operators for signal processing on graphs,

in: 25th IEEE International Conference on Image Processing (ICIP), 1198–1202, 2018.

[53] S. Blusseau, S. Velasco-Forero, J. Angulo, I. Bloch, Adaptive Anisotropic Morphological Filtering Based on Co-Circularity

of Local Orientations, Image Processing On Line 12 (2022) 111–141, https://doi.org/10.5201/ipol.2022.397.

[54] N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, man, and cybernetics

9 (1) (1979) 62–66.

[55] P. Soille, et al., Morphological image analysis: principles and applications, vol. 2, Springer, 1999.

[56] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time series, The handbook of brain theory

and neural networks 3361 (10).

[57] L. Deng, D. Yu, Deep learning: methods and applications, Foundations and trends in signal processing 7 (3–4) (2014)

27

https://doi.org/10.5201/ipol.2022.397


197–387.

[58] L. Deng, A tutorial survey of architectures, algorithms, and applications for deep learning, APSIPA Transactions on Signal

and Information Processing 3.

[59] V. Vapnik, Principles of risk minimization for learning theory, in: Advances in neural information processing systems,

831–838, 1992.

[60] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.

[61] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning internal representations by error propagation, Tech. Rep.,

California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[62] L. Prechelt, Early stopping-but when?, in: Neural Networks: Tricks of the trade, Springer, 55–69, 1998.

[63] K. Diederik P., B. Jimmy, Adam: A Method for Stochastic Optimization, in: Y. Bengio, Y. LeCun (Eds.), ICLR, 2015.

[64] M. A. Rahman, Y. Wang, Optimizing intersection-over-union in deep neural networks for image segmentation, in: Inter-

national symposium on visual computing, Springer, 234–244, 2016.

[65] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.

[66] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, ACM siggraph

computer graphics 21 (4) (1987) 163–169.

[67] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, scikit-

image: image processing in Python, PeerJ 2 (2014) e453.

28


	Introduction
	Materials and methods
	Tomographic volume of 3D woven fabrics
	Data labeling
	Processing tomographies with Deep Learning
	Basics on deep learning
	Architecture
	Training protocol
	Detection of yarn centers
	Segmentation of yarn sections

	Post-processing: From 2D semantic segmentation to 3D instance segmentation
	Recovering yarn paths
	Recovering yarn envelopes

	Overview of the method

	Results on the identification of yarn paths
	Quality assessment
	Results on the non-compacted dry preform
	Results on the compacted dry preform

	Results on the segmentation of yarn cross sections
	Discussion
	Conclusions and perspectives
	References

