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Abstract This study considers the production of chemotherapy drugs for cancer
treatment. An important factor determining the quality of service of chemotherapy
treatment is the time the patient must wait to receive his or her injection of the
chemotherapy drug. Chemotherapy production and delivery are modeled as a produc-
tion scheduling problem combined with a vehicle routing problem. The scheduling
problem is a three-stage hybrid flow shop scheduling problem, and the routing prob-
lem is a variant of the multi-trip vehicle routing problem with due dates. The objective
function is the minimization of the total time delay for chemotherapy treatment. To
solve this problem, we propose several heuristic algorithms to provide quality so-
lutions within reasonable computation times. Computational experiments are used
to compare the performance of the heuristics applied to real data-based random in-
stances.
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1 Introduction

Healthcare is a demanding service with multiple challenges, one of which is the
production and distribution of anticancer drugs. This paper discusses an integrated
chemotherapy production scheduling and delivery problem, which is motivated by a
practical problem faced by the Clinical Oncology Biopharmaceutical Unit (UBCO)
at the regional hospital in Tours, France. The UBCO produces approximately 150
chemotherapy drugs per day and delivers them to three hospital units, with an objec-
tive of reducing patient waiting time by delivering each drug as quickly as possible.
This objective is designed to improve the quality of patient care while complying with
the ISO 9001 quality management certification process. To solve the production and
distribution problem, this study designs and tests several algorithms and integrates
the best one into decision-aid scheduling software.

The first work in collaboration with UBCO was proposed in 2010 to optimize
the scheduling of the preparation of chemotherapy products (Mazier et al. 2010).
The problem identified consisted of a parallel machine scheduling problem where
each “machine” was a pharmacy technician. The first algorithm was implemented
in decision-aid scheduling software used daily by the UBCO, and its impact was
measured and analyzed by Kergosien et al. (2011). Chemotherapy drugs are produced
continuously throughout the day and delivered progressively to the patients. A limited
number of persons perform deliveries and delivery times are not negligible compared
with production times. It is thus important to consider the production scheduling
problem and the delivery problem in an integrated manner. The delivery problem was
introduced by Kergosien et al. (2017), who consider a parallel machine scheduling
problem with a single delivery person to deliver the drugs after production. To solve
the problem, they propose an algorithm based on Benders decomposition. However,
the UBCO now has several delivery persons to distribute the drugs.

To the best of our knowledge, the operations-research literature currently offers
only two papers that deal with cancer-drug production and delivery. In the first of
these papers, Chahed et al. (2009) address a particular issue involved in the plan-
ning of operations for home-based chemotherapy and focus on a simplified problem
of chemotherapy production and delivery in the home-care context. The problem is
confined to a single machine with a single delivery person who undertakes a single
trip, and the objective function is the minimization of the total travel time. To solve
the problem, Chahbed et al. propose a mathematical model and an exact method
based on a branch-and-bound algorithm. In a second paper, Lee et al. (2014) treat
the problem of producing and delivering medical treatment that requires radioactive
substances with half-lives on the order of minutes. The scheduling problem is treated
as a special type of bin-packing problem (machines consist of cyclotrons of varying
capacities), and a fleet of heterogeneous vehicles is available for delivery. To solve the
problem, Lee et al. propose a mixed integer program and a variant of a large neigh-
borhood search algorithm, thus minimizing production costs, fixed vehicle costs, and
travel costs.

Robbes et al. (2019) presented a study at the Fourth International Conference on
Health Care Systems Engineering in which they consider an integrated scheduling
and routing problem that represents the reality of the current UBCO production and
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delivery process. The production part of the problem corresponds to a three-stage
hybrid flow shop scheduling problem, where the first stage is sterilization, the sec-
ond is the drug preparation process, and the final stage is the control. The routing
part of the problem corresponds to a variant of the multi-trip vehicle routing prob-
lem with due dates. The objective function is the minimization of the delivery total
tardiness. Robbes et al. (2019) illustrate the importance of taking into account the
future-delivery problem before planning production. A multilevel heuristic is pro-
posed to minimize the delivery total tardiness. Even if the scheduling problem and
the delivery problem are considered independently, their resolution as independent
problems remains a difficult problem (i.e., NP-hard).

We propose herein an extension of the treatment of Robbes et al. (2019) based
on two new algorithms that significantly extend the computational experiments and
outperform the algorithms used by Robbes et al. (2019).

Most of the variants of the hybrid flow shop scheduling problem are NP-hard
(Abyaneh and Gholami 2015), which is also the case for the multi-trip vehicle routing
problem (Cattaruzza et al. 2016). Numerous studies are available in the literature on
production scheduling problems and distribution problems, but they are often solved
independently. Recently, however, combined production-distribution problems have
started to be studied at the operational level. For a good overview of the integration
the production scheduling and vehicle routing problems, please see the review by
Moons et al. (2017). In all of these studies, the scheduling problem is often based on
a single machine environment (Li and Ferrell 2011; Jamili et al. 2016) or a parallel
machine environment (Ullrich 2013; Belo-Filho et al. 2015), and the distribution is
done with either a single vehicle (Cheref et al. 2016) or a fleet of vehicles (Li et al.
2016).

Since the work of Moons et al. (2017), new studies have emerged on the com-
bined production-distribution problem. Table 1 lists the main studies on integrated
production routing problems that share features with the problem we consider herein.
For each, we give the production model, the distribution model, the main timing con-
straints, and the criteria to minimize. Note that the production model is also often
represented by a single machine. The distribution problem that received the most at-
tention is the Capacity vehicle routing problem, whereas few studies focus on the
hybrid flow shop model for the production problem or the multi-trip aspect with sev-
eral vehicles for the distribution problem.

Figure 1 shows a Venn diagram obtained from Moons et al. (2017) that displays
the studies on integrated production and distribution and the studies listed in Table 1.
The four sets correspond to studies that consider (i) a flow shop or job shop model,
(ii) a single-machine or Parallel machines model, (iii) the multi-trip aspect (with one
or several vehicles), or (iv) the vehicle routing problem (with several vehicles). The
intersection of the “multi-trip” set and the “vehicle routing problem” set is a general
problem, the multi-trip vehicle routing problem. The intersection of the “flow shop or
job shop” set and the “Parallel machines” set is either a single-machine environment
in the dotted rectangle or a hybrid flow shop model. For each possible intersection of
sets the associated number of studies is displayed. The study in the thick-lined square
that of Robbes et al. (2019).
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Article Production Distribution
Timing

con-
straint

Criteria

(Devapriya et al. 2017) 1 MT-C-VRP Dj-Cj Dcost
(Karaoğlan and Kesen 2017) 1 MT-C-TSP Dmax

(Kergosien et al. 2017) P MT-TSP r j ,
D j−S j

Tmax

(Low et al. 2017) 1 Hete C-VRP Dcost , ∑Tj , ∑E j
(Fu et al. 2017) R Hete C-VRP TW Pcost , Dcost
(Miranda et al. 2018) Lot Sizing MT-C-TSP TW Pcost , Dcost
(Chekoubi et al. 2018) Lot Sizing CPD Pcost , Dcost
(Gharaei and Jolai 2018) 1 C-VRP Dcost , ∑Tj
(Lacomme et al. 2018) 1 C-VRP Dj-Cj Dcost
(Zou et al. 2018) 1 C-VRP Dmax
(Miranda et al. 2019) Lot Sizing MT-C-VRP TW Pcost , Dcost
(Kesen and Bektaş 2019) P Limited C-VRP soft TW ∑Tj , ∑E j
(Marandi and Fatemi Ghomi 2019) HF(P) C-VRP TW Dcost , Cmax
(Tamannaei and Rasti-Barzoki 2019) 1 C-VRP Dcost , ∑w j.Tj
(Tavares-Neto and Nagano 2019) P MT-C-TSP Dmax
(Wang et al. 2019a) P MT-C-VRP TW Dcost , ∑Tj
(Wang et al. 2019c) HF(P) MT-C-TSP Dmax
(Wang et al. 2019b) 1 C-VRP Dcost
(Yağmur and Kesen 2020) F C-TSP Dcost , ∑Tj

(Ganji et al. 2020) 1 Hete C-VRP Dcost , ∑Tj ,
Preference

(Liu and Liu 2020) 1 C-VRP ∑w j.D j
(Liu et al. 2020) 1 C-VRP ∑D j

(Mohammadi et al. 2020) J C-VRP Pcost , Dcost , ∑Tj ,
∑E j

(Robbes et al. 2019) and this paper HF(P) MT-VRP r j ∑Tj

Table 1 Overview of main recent studies on combined production-distribution problem since (Moons
et al. 2017). 1: single machine; P: parallel machine; R: unrelated parallel machine; J: job shop; F: flow
shop; HF(P): hybrid flow shop and parallel machine; Hete: heterogeneous; MT: multi-trip; C: capacity;
TSP: traveling salesman problem; VRP: vehicle routing problem; TW: time windows; D j: delivery time;
r j: release date; S j: production starting time; C j: production completion time; E j: earliness; Tj: tardiness;
w j: weight; Pcost : production costs (setup costs, processing costs, inventory costs); Dcost : distribution Cost
(travel costs with or without vehicle fixed costs)

We now briefly review some papers that deal with a similar problem. Kesen and
Bektaş (2019) tackle an integrated Parallel machine scheduling problem and a vehi-
cle routing problem with Time Windows by proposing two soft time window variants,
depending on whether idle waits are allowed. Both variants are modeled by a mixed
integer model, and the sum of total earliness and total tardiness are minimized. A
limited homogeneous fleet of vehicles of limited capacity ensures the delivery. Wang
et al. (2019a) discuss an integrated production and multi-trip vehicle routing problem
with Time Windows and uncertain travel times. The production environment consists
of Parallel machines with machine-dependent ready times, and deliveries are made
by a fleet of identical vehicles. The objective is to minimize two types of costs: the
travel cost and penalty cost due to tardiness. Wang et al. (2019a) propose a robustness
approach based on the elastic p-robustness to deal with travel time variations and a
memetic algorithm to solve the problem. Computational experiments to evaluate the
proposed approach were conducted on instances with up to 50 jobs. In other work,
Yağmur and Kesen (2020) studied a permutation flow shop and vehicle routing prob-
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Fig. 1 Venn diagram of state of the art for integrated production and distribution state

lem. In a flow shop environment, a set of orders are produced on machines and are de-
livered using a single vehicle. However, orders are produced in batches, and all orders
in a batch are delivered on the same trip. The authors develop a memetic algorithm
with different decoding strategies to solve the problem, thus minimizing the sum of
total trip time and total tardiness. Finally, the study of Mohammadi et al. (2020) is
inspired by a case study of a furniture manufacturing company. The paper discusses a
bi-objective mixed integer model of an integrated flexible job shop scheduling prob-
lem and vehicle routing problem with Time Windows with a heterogeneous fleet.
The two objectives are the total operational costs based on the production cost and
delivery cost, and the weighted sum of delivery earliness and tardiness. The authors
proposed an ε-constraint method and a hybrid particle swarm optimization heuristic.

Figure 2 shows the distribution of the studies listed in Table 1 and that of Moons
et al. (2017) as a function of the most common objective functions to minimize: the
makespan, the maximum delivery time, the total delivery time, the total tardiness, and
the distribution costs (i.e., travel costs with or without vehicle fixed costs). The objec-
tive function most often considered (around 60% of the studies) is the minimization
of distribution costs. The objective function considered herein (minimization of total
tardiness) has been addressed in 12 studies, although it is not overly common in the
literature on the hybrid flow shop scheduling problem (Tosun et al. 2020; Ruiz and
Vázquez-Rodríguez 2010) and on the multi-trip vehicle routing problem, with only
three papers considering this objective function (Liberatore et al. 2011; Shelbourne
et al. 2017; Karoonsoontawong et al. 2020).

The present paper discusses an integrated chemotherapy drug production and de-
livery problem (Robbes et al. 2019) that is based on a real-life case. The collabora-
tion with Tours hospital goes back 15 years now, with a first article published in 2010
(Mazier et al. 2010). A software has been developed and is in use every day since then
(Kergosien et al. 2011). All steps of modeling process, including the assumptions on
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the data made, were carried out in collaboration with the hospital unit (UBCO). Note
that other services such as UBCO have a similar production and distribution envi-
ronment. The problem to solve is original and complex because it integrates several
Operational Research problems which are scheduling and routing. These problems
are generally solved separately, and are already difficult separately. This type of inte-
grated problems are relatively recent in the literature. Moreover few studies consider
the minimization of total tardiness with the multiple trips features. The contribu-
tion of this paper is the proposition of two new solving methods: a bilevel gradi-
ent descent (BGD) and a greedy randomized adaptive search procedure (GRASP)
based on the multilevel heuristic from Robbes et al. (2019). These new methods
provide good solutions within a reasonable time and are destined to be integrated
into a decision-making tool and to serve as an online algorithm every time a new
event occurs (e.g., the arrival of a new production request). One originality in the
method proposed to solve the problem is that it integrates clustering methods and
more traditional algorithms for scheduling and routing problems, within an iterative
method (scheduling-routing-scheduling-routing...). The computational experiments
have been significantly extended to compare all the resolution methods and to show
that the new methods outperform those presented by Robbes et al. (2019).

The remainder of this paper is organized as follows. Section 2 formally defines
the problem and presents the notation. All model assumptions have been validated
by the UBCO. The resolution methods are presented in Section 3, and then Section 4
describes the computational experiments and results. Finally, Section 5 presents the
conclusion and future research directions.
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2 Problem statement and notations

2.1 Production and delivery processes

Chemotherapy injections are manufactured in a regularly cleaned sterile environment
with filtered air and by operators with specialized clothing. The preparation process
is safeguarded by applying several methods that enhance the quality and security of
the chemotherapy treatment (Savelli et al. 2018).

Producing an injectable chemotherapy treatment is done in several stages. First,
the patient receives a medical consultation a few days before the scheduled date of
his or her treatment. After this consultation, the doctor prescribes the treatment to be
administered (type of molecule, dosage, etc.). A production order for the prescribed
medicines is sent to the UBCO service, and another consultation is scheduled with
the doctor a few moments before the onset of treatment. During this second consul-
tation, the doctor checks the patient’s health, validates the previous prescription, and
authorizes the chemotherapy injection. The preparation of the drug by the UBCO
service can start only once this validation is complete. The goal of this procedure is
to avoid loss of medication when the patient’s health precludes receiving the medica-
tion. Figure 3 illustrates this process.

Oncology units UBCO

First Consultation
order

Second Consultation
validation

Production scheduling

Sterilization

Preparation

Control
delivery

Administration

Fig. 3 Chemotherapy treatment process

The chemotherapy production is a three-step process:

1. Sterilization by batch of the baskets containing all the required material to
make the preparations (one basket per chemotherapy drug);

2. Preparation of the drug by a pharmacy technician;
3. Control of a sample of the drug.

The Sterilization and Preparation steps are done by using a machine
called an “isolator.” Each isolator is a sealed unit that protects the operator from
the cytotoxic drugs, which are classified as hazardous to the health and potentially
carcinogenic. The sealed units also protect the drugs from microbiological contami-
nation during production. Several workstations are connected to the sterilizer and are
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supplied with purified air via a configuration specific to the isolator. The production
of a drug can start by sterilizing its basket before the treatment is validated by the
doctor during the second consultation. If the treatment is not validated, the sterilized
products are returned to the storage area because they have not been used and the
sterilization step does not degrade them. Otherwise, the production process contin-
ues. The pharmacy technicians (also called operators) execute the Preparation
step by hand. The duration of this step depends on the type of medication being
prepared. Once the chemotherapy preparation is complete, the Control step is ex-
ecuted to enhance the security and quality of the drugs. Each chemotherapy drug is
intended for a given patient, and all patients are situated in different oncology units
of the hospital.

After production, the drugs are distributed throughout the day by a team com-
posed of a constant number of delivery persons. The size of this team cannot be
changed for political reasons internal to the hospital. The main objective of the UBCO
is to produce and deliver the injectable drugs on time and to continually improve the
quality management system, as required by the ISO 9001 standards. However, this
goal is rarely attainable because of the high workload and because the drugs can-
not be prepared in advance. Thus, the UBCO decided to use total tardiness as one
of its main performance indicators (other indicators related to traceability and safety
are also very important). Note that production costs are constant and the delivery
costs (i.e. travel costs) are relatively unimportant compared with the importance of
the timely delivery of medications.

2.2 Problem definition and notations

We model the chemotherapy production and delivery problem as an integrated schedul-
ing and routing problem composed of a three-stage hybrid flow shop scheduling prob-
lem for the scheduling part, and a variant of the multi-trip vehicle routing problem
with due dates for the routing part. Each chemotherapy drug intended for a single pa-
tient is called a job. In the hybrid flow shop scheduling problem, a set of jobs has to be
processed in a series of production stages, where each stage may have multiple ma-
chines operating in parallel. Once jobs are processed, they must be delivered, which
implies solving a multi-trip vehicle routing problem. This problem consists of finding
a set of routes for each vehicle involved in job delivery. Each route is associated with
a subset of jobs to be delivered and starts and ends at the production site.

We now describe the input parameters. The production site is composed of a
set I of identical parallel isolators. Each isolator Ii ∈ I is characterized by the
sterilizer capacity Qi (i.e., the maximum number of jobs that can be sterilized at a
time), a constant sterilization processing time pS (which does not depend on the job
or the number of jobs in the sterilized batch), and a number mi of operators that
are connected to the isolator Ii and can work at the same time (i.e., the number of
workstations). Figure 4 shows one isolator used by the UBCO: it is composed of a
sterilizer that can sterilize up to twelve baskets simultaneously and two face-to-face
workstations where the operators work using a glovebox system.
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Fig. 4 Isolator picture: operators work outside of the isolator using a glove box system.

The set of chemotherapy drugs to be produced and delivered is represented by the
set J of jobs. All jobs have the same production routing in the manufacturing site.
Each job is assigned to one isolator (first stage of the hybrid flow shop) and to one of
the workstations associated with the isolator (second stage). In stage three, each job is
processed on a control machine. The control step is performed by a single automated
analyzer, and jobs cannot be preempted.

Each job J j ∈J is characterized by a release date r j corresponding to the val-
idation date before which the preparation step cannot begin, a processing time pO

j
corresponding to the time required by the Preparation step, an assigned oncol-
ogy unit u j where it has to be delivered, and a delivery due date d j. The control
processing time, denoted pA, is the same for every job because this operation is the
same for every chemotherapy drug.

The jobs are then grouped in several batches for delivery. Each delivery batch
represents a set of jobs that are delivered on the same trip. Each trip is assigned to a
delivery person who can only leave the production site once all jobs in the delivery
batch are controlled. We denote by tt j, j′ the travel time between units u j and u j′ . Each
delivery person can make several trips and has unlimited capacity. A trip corresponds
to (1) leaving the production site, (2) delivering a set of jobs in several units, and (3)
returning to the production site.

The objective function is the minimization of the total tardiness of delivery, which
is given by

MIN ∑
J j∈J

Tj,

where Tj is the delivery tardiness of job J j and is defined by

Tj = max(0,D j−d j), (1)
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where D j is the delivery date of J j.
We use the following notation:

– CO
j is the completion time of job J j in the preparation step;

– CA
j is the completion time of job J j in the control step.

The problem consists in finding the sequences and composition of the sterilization
batches on each isolator, the production sequences and starting times of the jobs on
each operator and on the analyzer, the composition of each delivery batch, and the
sequences and composition of routes for each delivery person. After returning to the
production site, the delivery person starts her next route as soon as the last job of her
delivery batch is completed. A mathematical formulation of this process is given in
Appendix A.

2.3 Illustration

Figure 5 shows a Gantt chart representing a partial solution to a problem instance
with |I |= 2 isolators, mi = 2 operators, a sterilizer capacity Qi = 4 for each isolator,
and |V |= 2 delivery persons.

As an example, let us follow the process of job J20 from the Sterilization
step to its delivery. First, job J20 is sterilized in the first batch of isolator I1. After
completion of the Sterilization step and of Job J1, and after its release date
r20, job J20 is prepared by operator O1 = 1 . It is then scheduled in position 5 in
the analyzer after job J5. Its control starts after its preparation-completion time CO

20.
Next, job J20 is packed in a delivery batch with jobs J9, J11, and J12, and the batch
is assigned to delivery person 2 and is ready to leave the production site at time
max(CA

9 ,C
A
11,C

A
12,C

A
20).

The delivery trip containing job J20 is the first delivery of delivery person 2, who
leaves the UBCO service after the completion time of the last job of the batch (job J12
in this case) to deliver job J9 to its assigned unit u9, following which she leaves this
unit to deliver jobs J11 and J12 to their assigned unit (u11 = u12). Job J20 is delivered
last at its delivery unit u20. Finally, the delivery person returns to the UBCO site and
is available for the next trip.

3 Resolution methods

This section presents three deterministic heuristic algorithms and a GRASP. The
choice to develop such heuristics is motivated by the goal to have a fast and efficient
resolution method to be integrated into a real-time decision-making tool.

Each deterministic heuristic contains three decision levels: the assignment of jobs
to sterilization batches, the production sequencing and scheduling of jobs, and the
delivery planning.

The first two heuristics are based on those presented by Robbes et al. (2019), and
two new heuristic algorithms are proposed. The first heuristic, called the reference
algorithm (RA), is a simple greedy method that consists of taking decisions level by
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Fig. 5 Illustration of production-delivery problem.
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level (from the assignment of jobs to the sterilization of batches up to the delivery
planning). The idea of the second heuristic, called the multilevel (ML) heuristic, is
to improve the previous heuristic by taking into account the data routing of the first
decision level. The first two heuristics RA and ML have as input a fixed number of
delivery batches. The last two resolution methods are an extension of the ML heuristic
and use a gradient descent procedure to automatically determine the optimal number
of delivery batches. The third heuristic is called bilevel gradient descent (BGD). The
fourth heuristic is the greedy randomized adaptive search procedure (GRASP), which
has the same structure as the bilevel gradient descent plus a diversification phase.

Figure 6 shows the three deterministic heuristics in the form of a flowchart that
presents the main steps of each algorithm according to each level of decision. We
denote by nf the number of final delivery batches used to compute the Final clustering
step; nf also represents the total number of trips assigned to the delivery team. nt is
the number of target or desired delivery batches used to compute the Production
scheduling. The algorithms are now presented in detail.

Reference Algorithm Multilevel Heuristic Bilevel Gradient Descent

Targets
clustering

Cluster
sorting

Targets
clustering

Cluster
sorting

Final clustering Final clustering Final clustering

Sterilization
assignment

Preparation
scheduling

Control
scheduling

Delivery man
assignment

Routing

Sterilization
assignment

Preparation
scheduling

Control
scheduling

Delivery man
assignment

Routing
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assignment
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scheduling
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Delivery man
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Fig. 6 Flowchart of reference algorithm, multilevel heuristic, and bilevel gradient descent.
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3.1 Reference Algorithm

The RA is inspired from the production and delivery process used at the UBCO site.
The decisions are taken naturally based on the following steps: First, the jobs are
assigned to the sterilization batches of an isolator. Next, they are scheduled to one
of the associated operators and on the common control machine. Finally, they are
assigned to a trip executed by a delivery person.

No idle time elapses between two consecutive sterilization batches because the
sterilization of jobs is anticipated before their release dates. Therefore, we assume
that a sterilization batch runs every pS times on each isolator Ii ∈I . The Sterilization
completion time of batch k on isolator Ii (denoted Bi,k) is kpS. The first decision is
to assign each job to a sterilization batch (Sterilization assignment). The following
procedure is used to find the composition of the sterilized batches. First, the jobs are
sorted in increasing order of release dates. Next, each job J j is successively assigned
to a sterilization batch that is not full and according to the following rules:

– If none of the sterilization batches completing before r j are full, job J j is assigned
to a sterilization batch that will complete its sterilization as late as possible but
before the release date r j of J j.

– Otherwise, job J j is assigned to the earliest available sterilization batch complet-
ing after the release date.

– Given that several isolators are available, if there is more than one candidate steril-
ization batch, the selected batch is the batch with the minimum total Preparation
processing time for jobs in the batch (i.e., the batch Bi,k that minimizes ∑

J j∈Bi,k

pO
j ).

The resulting assignment to sterilization batches is the input of the next step,
called Preparation scheduling. Sterilization batch by sterilization batch, jobs are
sorted by increasing release date and are assigned to the first available machine (i.e.,
operator) of the corresponding isolator.

The last scheduling decision is the Control scheduling. The jobs are prepared and
then assigned to the control machine in first-in-first-out order (i.e., by respecting the
Preparation completion time order).

Finally, the last decision level concerns the delivery planning. Each job is first
assigned to a delivery batch by a Final clustering, and each delivery batch is assigned
to a delivery person. Final clustering aims to limit the time that the job has to wait
before delivery and to reduce the trip duration. It is therefore based on the job due
dates, on the job Control completion time, and on the delivery locations.

The clustering algorithm is an agglomerative hierarchical clustering method (Murtagh
and Contreras 2012) and is described by the pseudocode in Alg. 1. This method re-
quires that a distance function be defined between two jobs and between two clusters.
We define the distance distclusters(E,E ′,distf) between clusters E and E ′ [also called a
“complete link” by Murtagh and Contreras (2012)] as the maximum distance between
jobs J j and J j′ , which is denoted distf( j, j′):

distclusters(E,E ′,distf) = max
J j∈E, J j′∈E ′

(distf( j, j′)). (2)
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The distance between jobs J j and J j′ is the three-dimensional Euclidean distance
with time in minutes, where the three dimensions are the travel time tt j, j′ between
oncology unit locations, the due dates d j and d j′ , and the Control completion times
CA

j and CA
j′ . The distance between jobs j and j′ is thus

distf( j, j′) =

√(
d j−d j′

)2
+
(

CA
j −CA

j′

)2
+ tt2

j, j′ . (3)

The desired number nf of clusters should be given as an input to the clustering
algorithm. This important parameter is related to the maximum acceptable distance
between jobs from the same delivery cluster. The batching problem is solved by call-
ing AH_Clustering(J ,nf,distf).

Parameter: set of jobs J , number of delivery batches nf and distance function distf
Let E be a partition of J composed only of singletons
while |E |> nf do

best_dist←+∞

for any E ∈ E do
for any E ′ ∈ E \{E} do

if distclusters(E,E ′,distf)< best_dist then
best_dist← distclusters(E,E ′,distf)
bestE ← E
bestE ′ ← E ′

end if
end for

end for
E ← E \{bestE ,bestE ′}
bestE ← bestE ∪bestE ′
E ← E ∪{bestE}

end while
return E

Algorithm 1: AH_Clustering(J ,nf,distf)

Figure 7 illustrates the agglomerative hierarchical clustering method using a den-
drogram graphic. The length of the vertical lines represents the distance between two
clusters. The dendrogram construction starts from the bottom, where each cluster is
composed of only one job and stops upon reaching nf. The dashed line represents
the cutoff of the dendrogram and determines the resulting clusters of the algorithm:
{J1,J4,J5,J14}, {J9,J11,J12,J20}, and {J2,J3,J6,J8,J16,J18}.

The last steps are the assignment of delivery batches to a delivery person (De-
livery person assignment) and the determination of the Routing of each batch. The
resulting delivery batches are assigned according to the increasing order of their com-
pletion times (i.e., the maximum completion time of all jobs in the batch) to the first
available delivery man. The routes of each delivery person minimize the total tardi-
ness of the jobs (the objective function of the problem) and the length of the routes are
also minimized. This second objective also aims to reduce the total tardiness of jobs
in the forthcoming routes of the same delivery person because the sooner a delivery
person returns to the production site, the sooner he can start his next route. Thus, to
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J1 J4 J5 J14 J9 J11 J12 J20 J2 J3 J6 J8 J16 J18 ...

Fig. 7 Dendrogram diagram of execution of Alg. 2 on the example of Fig. 5.

compute the routes in a short computation time, we use the nearest-neighbor heuristic
(Rosenkrantz et al. 1977) to build the routes of each delivery person.

3.2 Multilevel heuristic algorithm

The ML heuristic uses a clustering algorithm and dispatching rules before scheduling
the jobs on isolators. The main steps are detailed by Robbes et al. (2019). The cluster-
ing method is used to define target delivery batches a priori (i.e., before calculating
the production schedule). This procedure aims to schedule production by taking into
account not only the release dates, as in the previous method, but also the due dates
and locations to which jobs are to be delivered.

The clustering method used to create the target delivery batches is the
AH_Clustering algorithm presented in Alg. 1. We introduce a revised release
date r̃ j = r j + pO

j that corresponds to the earliest possible preparation-completion
time. The problem is solved by calling AH_Clustering(J ,nt,distt) with a new dis-
tance function distt( j, j′) given by

distt( j, j′) =
√(

d j−d j′
)2

+
(
r̃ j− r̃ j′

)2
+ tt2

j, j′ (4)

The purpose of creating the target delivery batches is to provide a more suitable
Job sorting by applying Cluster sorting. Each resulting target delivery batch is asso-
ciated with a due date that is the minimum due date of the jobs in the batch. The target
delivery batches are sorted according to their earliest due date. As before, the number
nt of the desired clusters or target delivery batches should be given as an input of the
clustering algorithm.

The Sterilization assignment of the jobs uses Assign_ster_batches(σ),
where σ is the list of jobs sorted first according to the target delivery batch order. In-
side a batch, the jobs are sorted in increasing order according to their earliest revised
release date. Next, Preparation scheduling and Control scheduling are done in the
same way as in the RA, two batching solutions (i.e., assignment of jobs to delivery
batches) are computed, and the best solution is selected. The first batching solution is
based on the target delivery batches and consists of the same batches as calculated in
the first step. The second batching solution aims to determine new batches using the
Final clustering method and the distf function as the distance between two batches.
The value nf for the Final clustering is set equal to nt, which implies that, in most
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cases, the final batches should be the same as the target batches. Each batching solu-
tion is evaluated by the same Delivery person assignment and Routing methods as in
the RA.

3.3 Bilevel gradient descent

Bilevel gradient descent (BGD) is an improved, self-designed version of the ML
heuristic. Without testing all the values, BGD searches for the couple (nt,nf) that
leads to the best solution. Robbes et al. (2019) presented experiments that demon-
strate that the best solution evolves as a function of the number nt = nf of delivery
batches, which is a curve with a single minimum turning point. A method such as a
gradient descent (Snyman 2005; Ruder 2016) is, therefore, particularly well suited to
find a good number of delivery batches. Further experiments demonstrated that the
exact value of this tipping point depends on the instance and that using two different
values nt and nf may improve the results of the heuristic algorithm. To address this
setting optimization problem, we propose a “bilevel gradient descent heuristic” that
combines two gradient descent algorithms. This heuristic uses a main gradient de-
scent BGD to optimize the number nt of target delivery batches. In addition, for each
value tested of nt, a secondary gradient descent sec_GD is called to optimize the
number nf of final delivery batches. The BGD uses two methods: one for Production
scheduling and one for Delivery planning.

Before presenting the algorithms, we introduce the following definitions:

– Let PS : E 7→ S be the Production scheduling method that returns a produc-
tion schedule S based on the set E of target batches (|E | = nt). The production
schedule defines the sequences and composition of the sterilization batches on
each isolator, the production sequences and starting times of the jobs on each op-
erator and on the analyzer. The PS method consists of successfully applying the
Sterilization assignment, Preparation scheduling, and Control scheduling meth-
ods used in the RA and the ML heuristic.

– Let DP : (S ,nf) 7→ S ′ be the method that builds the Delivery planning S ′

associated with the production schedule S with a number of delivery batches
nf. A delivery planning defines the composition of each delivery batch, and the
sequences and composition of routes of each delivery person. The DP method
consists of successfully applying the Final clustering, Deliver assignment, and
Routing methods.

– Let T T : S ′ 7→ z be a function that computes the total tardiness associated with
delivery planning S ′.

The pseudo codes for BGD and sec_GD are presented in Algs. 2 and 3, respec-
tively.
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Parameter: set of jobs J , distance distt and learning rates αmain and αsec
nt ← 1
E ← AH_clustering(J ,nt ,distt)
Snt ← PS(E )
∇main← sec_GD(Snt ,αsec)
best_value← ∇main
while ∇main ≤ 0 do

E ← AH_clustering(J ,nt +1,distt)
Snt+1← PS(E )
∇main← αmain ·∇main+ sec_GD(Snt+1,αsec)− sec_GD(Snt ,αsec)
best_value←min(best_value, sec_GD(Snt+1,αsec))
nt ← nt +1
Snt ←Snt+1

end while
return best_value

Algorithm 2: BGD(J ,distt,αmain,αsec)

Parameter: production schedule S and learning rate αsec
n f ← |V |
∇sec←−T T (DP(S ,n f ))
best_value← T T (DP(S ,n f ))
while ∇sec ≤ 0 do

∇sec← αsec ·∇sec +T T (DP(S ,n f +1))−T T (DP(S ,n f ))
best_value←min(best_value, T T (DP(S ,n f +1)))
n f ← nf +1

end while
return best_value

Algorithm 3: sec_GD(S ,αsec)
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The BGD algorithm takes four parameters as input: the set J of jobs, the distance
distt used by the clustering method, and two learning rates (one for each gradient de-
scent). The BGD heuristic is based on a classic gradient descent that searches for
the best target number nt for the delivery batch that leads to the best solution to the
problem. The method starts at nt = 1 and moves from nt to nt + 1 as many times as
needed, with a solution computed for each value nt. The stopping criterion depends
on the current solution, the solution computed at the previous iteration, and the learn-
ing rate αmain. For each tested value of nt, a solution is computed in three steps: First,
a set E of nt clusters is identified by using the AH_Clustering algorithm. Next,
the PS method is called to find a production schedule Snt . Finally, the solution is
completed by computing the delivery planning using the secondary gradient descent
sec_GD that searches for the best final number nf of delivery batches and returns the
value of the objective function for the best solution found. The sec_GD algorithm is
also based on a classic gradient descent that starts at nf = |V | (the number of deliv-
ery persons) and continues iterating nf until a stopping criterion is reached. From a
production schedule S and for each tested value nf, the DP method completes the so-
lution by determining the delivery plan. Finally, T T returns the value of the objective
function.

Note that the AH_Clustering algorithm that builds the dendrogram is applied
only one time at the beginning of the execution of the BGD heuristic. The exploration
strategy is thus similar to a “top-down” approach, which consists of starting from the
top of the dendrogram (i.e., a single cluster) and successively reversing each agglom-
erative step.

The learning rates αmain and αsec fall in the range [0,1]. The purpose of a positive
learning rate is to overcome hypothetical local minima, and the purpose of a learning
rate less than unity is to avoid steps that decrease excessively after passing the turning
point.

3.4 Greedy randomized adaptive search procedure

The UBCO strategy is given by an online algorithm that updates the solution approx-
imately every minute. As the computational experiments show, the proposed BGD
runs fast for a full-day schedule, which leaves room for improvement. We thus de-
velop a GRASP (Resende and Ribeiro 2014) based on the BGD to improve the qual-
ity of the solution by using the available computation time to the fullest extent. The
GRASP is based on the following principles: first, a pool of greedy randomized so-
lutions is generated, following which the solutions are improved with a local search,
and then the best solution found is returned. The proposed GRASP consists of in-
jecting some randomness into the Target clustering step and using the BGD as an
improvement phase. To inject randomness into the construction of batches, we use
the new distance function

distrandom(θ , j, j′) = [1+ random(−θ ,θ)]distt, (5)

where θ ∈ [0,1] represents the percent error allowed in the distance computation. The
pseudo code for GRASP is presented in Alg. 4. The initial iteration of the GRASP is



Minimization of total tardiness of chemotherapy drug production and delivery 19

the original BGD (without randomization), the number niter of iterations represents
the number of randomized solutions.

Parameter: set of jobs J , error percentage θ and learning rates αmain
and αsec and the number of iterations niter
best_value← BGD(J ,distt ,αmain,αsec)
k← 1
while k ≤ niter do

best_value←min(best_value, BGD(J ,distrandom,αmain,αsec))
k← k+1

end while
return best_value

Algorithm 4: GRASP(J ,θ ,αmain,αsec,niter)

4 Computational experiments

To test the effectiveness of the methods in a more general context (i.e., in other pro-
duction units of chemotherapy drugs), we evaluate the proposed heuristics by apply-
ing them to two types of instances: one type based on real data from UBCO (called
“UBCO instances”) and one type of random instances (called “random instances”).
The chemotherapy drug production process is essentially the same regardless of the
hospital. However, the number of workstations per isolator, the sterilizer capacity,
and the processing times may change from one unit to another. Moreover, a pro-
duction unit can deliver to more than three hospitals, especially in the case of home
chemotherapy. Table 2 presents the parameter settings used to generate the data sets.
The first rows of the table correspond to the common characteristics (production ca-
pacities). For each instance type, we generate several sets of instances characterized
by a number of chemotherapy drugs and a number of delivery persons. Each set re-
ceives 20 instances, so a total of 480 instances are generated, 240 instances for each
type. Each graphic and table of this section is based on the same 20 instances of
UBCO type or random type.

All experiments were done on a Dell laptop equipped with an Intel(R) Core™
i5-7440HQ CPU (2.80 GHz), 8 GB main memory, and Windows 10. All heuristics
were coded in C++ and executed on a single thread.

4.1 Settings for reference algorithm and multilevel heuristic algorithms

The purpose of this experiment is to determine the “ideal” value of the number nf of
final delivery batches used for the Final clustering, which itself depends on the num-
ber |V | of delivery persons and the number |J | of chemotherapy drugs. To obtain the
best value of the parameter nf, we use the RA and ML heuristic to solve all instances
of each type and for each possible value of nf ∈ {|V |, . . . , |J |} and nt = nf. For each
instance, the minimum number of delivery batches that minimizes the total tardiness
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UBCO instances Random instances
Number of chemotherapy drugs |J | ∈ {120,140,160,180}
Number of delivery persons |V | ∈ {3,4,5}
Control processing time pA = 3 minutes
Sterilization processing time pS = 15 minutes
Due dates horizon d j ∈ [60,600] minutes
Number of isolators |I|= 3
Number of operators per isolator mi = 2 operators for any isolator
Processing times pO

j ∈ {5,10,15} minutes pO
j ∈ [5,20] minutes

Release dates horizon r j ∈ {d j−90,d j−60}
minutes r j ∈ [0,d j−60] minutes

Number of hospitals 3 |J |

Travel times

The UBCO is located in a
hospital, about 15 minutes
from a second hospital and
about 35 minutes from the

third hospital. In each hospital,
between 0 and 5 additional
minutes are needed to reach

the delivery unit.

The delivery points are
distributed in a square

around the production site
that is positioned in the
middle. Each point is

within 40 minutes of the
production unit.

Table 2 Instances characteristics

is retained. Figure 8 shows all the results in the form of boxplots in four different
graphics for the varying instance types and algorithms. Each boxplot corresponds to
the best value for the number nf of delivery batches for each set of 20 instances.

The experimental results shown in Fig. 8 highlight how the number of delivery
persons affects the optimal number of delivery batches. However, the size of the in-
stance (i.e., the number of chemotherapy drugs) does not significantly affect the opti-
mal number of delivery batches. The median best value for nf is also clearly related to
the instance type (UBCO or random). The median best number of delivery batches is
three times greater for the UBCO instances than for the random instances. This result
is explained primarily by the fact that, for UBCO instances, the production unit is lo-
cated at a single hospital. Thus, a third of the total drugs can be delivered to locations
within five minutes of the production site, which favors several short delivery trips.

For the rest of the computational experiments, the number of the final delivery
batches for RA and ML heuristic are fixed as follows:

– nf = 11(|V |−1) for UBCO instances;
– nf = 3(|V |−1) for random instances;
– nt = nf for the ML heuristic.

These values are represented by dotted lines in Fig. 8.

4.2 Evaluation of heuristic algorithms

To compare all the proposed heuristic algorithms for all instances, we use two indi-
cators: the gap and the ranking. For a given heuristic H and a given instance, the gap
is determined by using



Minimization of total tardiness of chemotherapy drug production and delivery 21

Fig. 8 Box plots of best values of nf for RA and the ML heuristic as a function of number |V | of delivery
persons for UBCO and random instances and for different instance sizes. For each value of |V |, the box
plots are sorted from left to right in increasing order of instance size.

Gap(H) = 100
(

z(H)− z∗

z∗

)
, (6)

where z∗ is the value of the objective function of the best solution found by all heuris-
tics: RA, ML, BGD, and GRASP with five iterations and ten iterations, and z(H) is
the value of the objective function for the best solution found by heuristic H.

The ranking indicator gives the ranking between these heuristics for each in-
stance. The rank of 1 is assigned to the heuristic that returns the best solution and
the rank of 5 is assigned to the heuristic that returns the worst solution. Several pre-
liminary experiments were done to obtain the best values for the parameters of the
BGD and the GRASP, with the results listed below:

– the learning rates for the BGD and the GRASP are αmain = αsec = 0.8;
– the percent error for the GRASP is θ = 20%;
– the number of iterations of the GRASP is set to 5 or 10.
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Table 3 shows the average gap for each heuristic on all UBCO instances and
random instances. Note that the best heuristic is clearly the GRASP with five or
ten iterations. Although the BGD heuristic outperforms the RA and ML methods,
it performs worse than the GRASP. Finally, the RA seems to give the worst results of
all heuristics.

Average gap (%)
Heuristic UBCO Random
RA 63.16 26.53
ML 48.80 25.78
BGD 14.17 6.73
GRASP 5 2.74 1.32
GRASP 10 0.26 0.03

Table 3 Average gap per instance type.

Figure 9 shows four boxplot graphics that give the gap values for each heuristic,
depending on the instance type, the number |V | of delivery persons, and the number
of chemotherapy drugs (Size). The gap variation of each heuristic is related to the
size of the boxes. The variation in the gap for the ML and RA heuristics increases
when the instance size or the number of delivery persons decreases, which shows
that the efficiency of these two heuristics varies strongly for small instances. Further-
more, even if the average gap for the ML is less than that for the RA, the average
difference in the gap between the ML and the RA is not significant compared with
the difference in the gap between the ML and the BGD. This is especially true for
random instances: the average difference in the gap between the RA and ML is less
than 1%, and the RA is more efficient than the ML for two instance sets (instance size
{160, 180}, and |V | = 3). Note that the time windows to schedule and deliver jobs
between the release dates and the delivery due dates are larger in the case of random
instances. Therefore random instances provide more flexibility for the scheduling part
and give more importance to the Routing phase for the solution quality. Appendix B
gives detailed results for objective functions in the form of four boxplot graphics that
represent the mean tardiness for each heuristic as a function of number |V | of delivery
persons, instance type, and number of chemotherapy drugs (Size).

To better compare the performance of the methods, we also study the percent
ranking for each method (i.e., the number of times that a method gives the best result,
second-best result, etc.). Figure 10 shows the percent ranks for each method and for
all instances of each type. The same trend appears as in the previous results; namely,
GRASP with ten iterations dominates all others heuristics, GRASP with five itera-
tions dominates BDG heuristics that dominates ML heuristics, and the worst heuristic
is the RA. Given that the distance function [Eq. (4)] was chosen to be effective for
UBCO instances (Robbes et al. 2019), the ML heuristic therefore gives worse results
for the random instances.

Table 4 lists the average computation times of each heuristic according to the in-
stance type. Recall that an objective is to obtain good solutions within a reasonable
computation time to ensure that we have a decision-making tool with an online al-
gorithm that can compute a new solution every time a new event occurs. To respect
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Fig. 9 Box plots of the heuristics gap (%) as a function of instances types and for different instance
sizes and number |V | of delivery persons. For each heuristic, the box plots are sorted from left to right in
increasing order of the instance size or number |V | of delivery persons.

this constraint, we fix the maximum acceptable computation time to one minute. Ap-
pendix C gives detailed results on final values of the objective function in the form
of four boxplot graphics that represent the computation times for each heuristic as
a function of instance type and for different numbers |V | of delivery persons and
numbers of chemotherapy drugs (Size).

Computation time
UBCO Random

Heuristic Average Max. Average Max.
RA 0.18 0.36 0.18 0.37
ML 0.34 0.63 0.35 0.60
BGD 4.69 13.00 3.09 7.22
GRASP 5 28.07 56.98 18.50 35.52
GRASP 10 51.43 106.29 33.89 65.11

Table 4 Average and maximum computation time (s) of each heuristic for different instance types.
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Fig. 10 Histogram of rankings of each heuristic for UBCO and random instances. In the event of a tie, the
minimum rank is retained for both.

All heuristics have an average computation time of less than 1 minute. However,
the maximum computation time of GRASP with ten iterations is almost 2 minutes.
As expected, the RA is the fastest heuristic, and the ML heuristic is the second fastest.
The computation times for the ML heuristic are roughly twice those of the RA. The
time complexity of these two algorithms is mainly due to the AH_Clustering
algorithm, which is used twice in the ML heuristic and only once in the RA. The
execution of BGD algorithm takes less than 5 s, and the computation time of the
GRASP algorithm depends on the number of iterations (it takes 4 to 5 s per iteration).
The next section discusses the compromise between the quality of the best solution
obtained and the number of iterations of the GRASP.

4.3 GRASP efficiency

The results discussed above show that the GRASP with five or ten iterations provides
the best results for both random and UBCO instances. As expected, the number of
iterations affects not only the quality of the best solution but also the computation
time.

Figure 11 shows the gap [computed using Eq. (6)] and the computation time as a
function of the number of iterations. The evolution of the computation times seems
to be proportional to the number of iterations for random and UBCO instances.
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The computation time is around 7 (3) s per iteration for instances with 180 (120)
chemotherapy drugs. The results for the UBCO instances suggest that five iterations
suffice because, in most cases, further iterations do not lead to significant improve-
ment.

Fig. 11 GRASP efficiency as a function of number of iterations and for random and UBCO instances and
different instance sizes. The left-hand plots show the gap and the right-hand plots show the computation
time.

5 Conclusions and future works

This paper presents a study of a real case of chemotherapy production and deliv-
ery and proposes a model that integrates models of the hybrid flow shop scheduling
problem and the multi-trip vehicle routing problem. The objective function is the
minimization of the total tardiness of chemotherapy delivery. To solve the problem
within minimal computation time, several heuristic algorithms are proposed. These
algorithms are then applied to random-real-life instances and random instances and
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the results are compared. The numerical experiments show the efficiency of the meth-
ods that schedule the production of the jobs on the basis of expected delivery batches
defined by a clustering algorithm before determining the delivery planning. The pro-
posed heuristics outperform a reference algorithm that corresponds to the current
planning method and obtains good solutions within reasonable computation times
(less than 1 minute). The proposed heuristics can be applied in other contexts if the
scheduling model is of hybrid-flow-shop type (with necessary changes made for the
number of stages and resources per stage), and the distribution model is a vehicle
routing problem with or without the multi-trip aspect.

Several directions can be considered for future research. A first direction is to im-
prove delivery planning, which currently suffices for the real-life instances but which
can be improved to obtain better solutions for instances with more delivery points.
Using local permutations such as 2-opt or using exact methods for the routing part
also seems to be an interesting research direction. Another direction consists of revis-
ing the clustering method by modifying the distance function between jobs (e.g., us-
ing weights for the dimensions) to improve the performance of the resolution method.
Another direction is to optimize a new objective function based on economic consid-
erations, which can be done by taking into account the use of perishable resources
during the production phase. These perishable resources are mainly the active ingre-
dients used to make chemotherapy drugs and are stored in small vials, where each
vial has a stability time (i.e., lifetime after opening) and a cost that can amount to
thousands of euros. To avoid the high costs induced by the waste of perishable re-
sources, production management should take into account the use of these vials. This
line of research could make a significant economic impact without degrading patient
care or reducing the quality of the treatment of their disease.

Acknowledgements This study is funded by the Région Centre-Val de Loire (France).

References

F. R. Abyaneh and S. Gholami. A comparison of algorithms for minimizing the sum of earliness and
tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-
dependent setup times. Journal of Industrial and Systems Engineering, 8(2):67–85, 2015.

M. Belo-Filho, P. Amorim, and B. Almada-Lobo. An adaptive large neighbourhood search for the opera-
tional integrated production and distribution problem of perishable products. International Journal of
Production Research, 53(20):6040–6058, 2015.

D. Cattaruzza, N. Absi, and D. Feillet. The multi-trip vehicle routing problem with time windows and
release dates. Transportation Science, 50(2):676–693, 2016.

S. Chahed, E. Marcon, E. Sahin, D. Feillet, and Y. Dallery. Exploring new operational research opportuni-
ties within the home care context: the chemotherapy at home. Health Care Management Science, 12
(2):179–191, 2009.

Z. Chekoubi, W. Trabelsi, and N. Sauer. The integrated production-inventory-routing problem in the
context of reverse logistics: The case of collecting and remanufacturing of eol products. In 2018 4th
International Conference on Optimization and Applications (ICOA), pages 1–6. IEEE, 2018.

A. Cheref, C. Artigues, J.-C. Billaut, and S. U. Ngueveu. Integrated production scheduling and delivery
routing: complexity results and column generation. In International Symposium on Combinatorial
Optimization, pages 439–450. Springer, 2016.

P. Devapriya, W. Ferrell, and N. Geismar. Integrated production and distribution scheduling with a perish-
able product. European Journal of Operational Research, 259(3):906–916, 2017.



Minimization of total tardiness of chemotherapy drug production and delivery 27

L.-L. Fu, M. A. Aloulou, and C. Triki. Integrated production scheduling and vehicle routing problem
with job splitting and delivery time windows. International Journal of Production Research, 55(20):
5942–5957, 2017.

M. Ganji, H. Kazemipoor, S. M. H. Molana, and S. M. Sajadi. A green multi-objective integrated schedul-
ing of production and distribution with heterogeneous fleet vehicle routing and time windows. Journal
of Cleaner Production, page 120824, 2020.

A. Gharaei and F. Jolai. A multi-agent approach to the integrated production scheduling and distribution
problem in multi-factory supply chain. Applied Soft Computing, 65:577–589, 2018.

N. Jamili, M. Ranjbar, and M. Salari. A bi-objective model for integrated scheduling of production and
distribution in a supply chain with order release date restrictions. Journal of Manufacturing Systems,
40:105–118, 2016.
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Appendix

A Mathematical formulation

Table 5 lists the input parameters of the problem and Table 6 presents the variables of the mathematical
formulation.

Notation Description
J set of jobs
I set of isolators
K set of Sterilization batches
Mi set of operators connected to isolator Ii
O set of all operators (O =

⋃
Ii∈I Mi)

V set of delivery persons
T set of trips
Qi sterilizer capacity (number of jobs) of isolator Ii
pS Sterilization processing time
pA Control processing time
r j , ∀J j ∈J release date of J j
pO

j , ∀J j ∈J Preparation processing time of J j

d j , ∀J j ∈J due date of J j
u j , ∀J j ∈J oncology unit where job J j has to be delivered
tt j, j′ , ∀J j ∈J ∀J j′ ∈J travel time between u j and u j′

Table 5 Input parameters

Notation and domain Description
Sterilization

xo,k
j ∈ {0,1}, ∀J j ∈J , ∀o ∈ O, ∀k ∈ K xo,k

j = 1 if job J j is sterilized in the kth sterilization batch
associated to the operator o and is prepared by operator o,
0 otherwise.
Preparation

yo
j ∈ {0,1}, ∀J j ∈J , ∀o ∈ O yo

j = 1 if job J j is prepared by the operator o, 0 otherwise.
γ j, j′ ∈ {0,1}, ∀J j ∈J ∀J j′ ∈J γ j, j′ = 1 if job J j is prepared before job J j′ by the same

operator, 0 otherwise.
CO

j ∈ R+, ∀J j ∈J Preparation completion time of J j .
Control

δ j, j′ ∈ {0,1}, ∀J j ∈J , ∀J j′ ∈J δ j, j′ = 1 if job J j is controlled before job J j′ , 0 otherwise.
CA

j ∈ R+, ∀J j ∈J Control completion time of J j

Delivery
zv,t

j ∈ {0,1}, ∀J j ∈J , ∀v ∈V , ∀t ∈ T zv,t
j = 1 if job J j is delivered by the delivery person v during

its tth trip, 0 otherwise.
zv,t ∈ {0,1}, ∀v ∈V , ∀t ∈ T zv,t = 1 the trip t of the delivery person v is not empty and

delivers at least one job, 0 otherwise.
ζ j, j′ ∈ {0,1}, ∀J j ∈J ∀J j′ ∈J ζ j, j′ = 1 if a delivery person travels from unit u j to unit

u j′ , 0 otherwise.
αv,t ∈ R+, ∀v ∈V , ∀t ∈ T Departure date for trip tth of the delivery person v.
D j ∈ R+, ∀J j ∈J Delivery date of J j .
Tj ∈ R+, ∀J j ∈J Tardiness of J j .

Table 6 Decision variables
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The mathematical programming formulation is given below. Note that the formulation is not linear,
although it is possible to linearize the model by using big-M constraints and additional variables. We as-
sume that the distance matrix

(
tt j, j′

)
satisfies the triangle inequality. The objective function is to minimize

the total tardiness of delivery:
MIN ∑

J j∈J
Tj (7)

Sterilization capacity is not exceeded:

∑
o∈Mi

∑
J j∈J

xo,k
j ≤ Qi ∀Ii ∈I , ∀k ∈ K (8)

The job J j is sterilized by the corresponding sterilizer of the operator o:

∑
k∈K

xo,k
j = yo

j ∀J j ∈J , ∀o ∈ O (9)

The Preparation of job J j proceeds after its Sterilization:

kpSxo,k
j + pO

j ≤CO
j ∀J j ∈J , ∀o ∈ O, ∀k ∈ K (10)

Job J j is prepared once:
∑

o∈O
yo

j = 1 ∀J j ∈J (11)

The Preparation of job J j starts after its release date r j:

r j + pO
j ≤CO

j ∀J j ∈J (12)

The disjunctive constraint ensures that no two jobs can be scheduled on the same operator at the same
time:

CO
j γ j, j′ + pO

j′ ≤CO
j′ ∀J j ∈J , ∀J j′ ∈J , and J j 6= J j′ (13)

A precedence constraint exists between two jobs if they are prepared by the same operator:

γ j, j′ + γ j′, j ≥ yo
j + yo

j′ −1 ∀o ∈ O, ∀J j ∈J , ∀J j′ ∈J , and J j 6= J j′ (14)

The Control of job J j begins after its Preparation completion time CO
j :

CO
j + pA ≤CA

j ∀J j ∈J (15)

The precedence of jobs is one-way:

δ j, j′ +δ j′, j = 1 ∀J j ∈J , ∀J j′ ∈J , and J j 6= J j′ (16)

Only one job is analyzed at a time:

CA
j δ j, j′ + pA ≤CA

j′ ∀J j ∈J , ∀J j′ ∈J , and J j 6= J j′ (17)

The starting time of trip t for the delivery person v starts after the Control completion time of each job
in the delivery batch:

CA
j zv,t

j ≤ α
v,t ∀J j ∈J , ∀v ∈V, ∀t ∈ T (18)

Job J j is delivered once:

∑
v∈V

∑
t∈T

zv,t
j = 1 ∀J j ∈J (19)

A noempty trip is composed of at least one job:

∑
J j∈J

zv,t
j ≤ |J |z

v,t ∀v ∈V, ∀t ∈ T (20)
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There is only one departure for each no empty trip:

∑
J j∈J

ζ0, jz
v,t
j = zv,t ∀v ∈V, ∀t ∈ T (21)

The delivery date at each location is bound by the trip starting date:

∑
v∈V

∑
t∈T

α
v,t zv,t

j + tt0, j ≤ D j ∀J j ∈J (22)

Each location is visited only once (input flow constraint):

∑
J j′∈J \{J j}

ζ j′, jz
v,t
j′ +ζ0, jz

v,t
j = zv,t

j ∀J j ∈J , ∀v ∈V, ∀t ∈ T (23)

Each location is left only once (output flow constraint):

∑
J j′∈J \{J j}

ζ j, j′ z
v,t
j′ +ζ j,0zv,t

j = zv,t
j ∀J j ∈J , ∀v ∈V, ∀t ∈ T (24)

The delivery date depends of the trip sequence:

(D j + tt j, j′ )ζ j, j′ ≤ D j′ ∀J j ∈J , ∀J j′ ∈J , and J j 6= J j′ (25)

Each no empty trip terminates at the depot:

∑
J j∈J

ζ j,0zv,t
j = zv,t ∀v ∈V, ∀t ∈ T (26)

A trip can start only after the delivery person returns his or her preceding trip:

(D j + tt j,0)z
v,t′
j ≤ α

v,t ∀J j ∈J , ∀v ∈V, ∀t ∈ T,∀t ′ ∈ {1, ..., t−1} (27)

Tardiness is computed from the delivery date and the due date:

Tj ≥ D j−d j ∀J j ∈J (28)
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B Results of mean tardiness

Fig. 12 Boxplots of mean tardiness ( Tj
|J | ) as a function heuristic and for different instance types, instance

sizes, and numbers of delivery persons. For each heuristic, the boxplots are sorted from left to right in
increasing order of instance size or number |V | of delivery persons.
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C Computation times of heuristics

Fig. 13 Boxplot of computation time as a function of heuristic and for different instance types, instance
sizes, and numbers of delivery persons. For each heuristic, the boxplots are sorted from left to right in
increasing order of instances size or number |V | of delivery persons.


