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Abstract

This study presents insights into the discrimination
of two consonants presented in vowel-consonant-vowel
(VCV) words embedded in speech-shaped noise (SSN)
by adopting an auditory model that uses a modulation
filter bank front-end followed by either of two speech
back-end decision modules from the literature. These
decision modules have been validated in the past for the
discrimination of sentences in closed- and open-sets. Our
analysis is focused on the discrimination cues available
to the model, evaluating whether these cues might be
further used to simulate listener-dependent performance.
For that purpose we will rely on a reverse correlation ap-
proach by comparing the noise representations that lead
to the choice of one or the other consonant.

Introduction

The method of Auditory Classification Images (ACIs)
is an experimental paradigm developed to estimate the
time-frequency (T-F) cues that different listeners use to
discriminate between two phonemes [1]. The method re-
lies on a reverse-correlation approach comparing the pre-
cise noise realisations that lead to correct and incorrect
responses during the experimental sessions. The method
has proven to be a reliable tool to characterise the listen-
ing strategies of a participant.

With the goal of gaining more insights into the T-F cues
related to the different listening strategies, we adopted
an auditory model to simulate ACIs. We chose the
modulation-filter-bank (MFB) model [2], which roughly
approximates the hearing processing from the outer ear
up to the inferior colliculus [3]. This was our first attempt
in deriving ACIs from simulated phoneme discrimination
data, for which either of two decision back-end modules
were attached to the model. With this approach, we sim-
ulated the performance of an average human listener that
could use one of two possible decision strategies.

Methods: Experiment

In this study we present new data collected from two par-
ticipants for the discrimination of the words /aba/ and
/ada/, that are aligned on syllable onsets, having a to-
tal duration of 0.84 s (including initial and final silent
sections of 0.075 s), and uttered by a female speaker as
in [1], but embedded in SSNs, i.e., using Gaussian noises
that have a long-term averaged spectrum matched to the
spectrum of a female speaker. The experiment consisted
in 5000 presentations of /aba/ or /ada/ (2500 each),
where each trial consisted of one speech-in-noise interval

to which the participants had to indicate one of two pos-
sible answers (/aba/ or /ada/). This means that the task
is implemented as a one-interval two-alternative forced-
choice (1-I, 2-AFC) experiment. In the experiment, the
level of the noises was fixed at 65 dB SPL and the signal-
to-noise ratio (SNR) was adjusted on a trial-by-trial ba-
sis to track the speech level at which the participants
reached a 70.7%-correct score using a weighted one-up
one-down method [4] with unequal step sizes (2.41 and
1 dB for the up- and down-steps, respectively). Hence,
the level of the speech samples was 65 dB SPL for an
SNR=0 dB, or lower for lower SNRs. All the noises were
stored in the test computer together with the correspond-
ing participants’ responses for a later processing using
the ACI method. The sounds were presented to the par-
ticipants using headphones. To avoid the participants’
fatigue, the experiments were organised in 12 sessions of
400 trials and a last session of 200 trials. This experi-
ment is implemented in the speechACI varnet2013 script
of the fastACI toolbox [5].

Methods: Auditory model

The paradigm described in the previous section was also
used in the simulations. The only difference is the use of
an artificial listener, meaning that the sounds were de-
livered monaurally to the auditory model (osses2021.m
routine from the AMT Toolbox [6]). The internal repre-
sentations correspond to the three-dimensional outputs
(time, frequency, modulation frequency) of the MFB
model (Stage 5 from [2]), expressed in model units (MU),
that were used as input to two decision back-ends (de-
tails below). In both decision schemes, two templates
were derived, one for each word, and no internal noise
was employed. The model conducted the simulations in
thirteen sessions (as in the experiments), and a new pair
of templates was derived at the beginning of each session.

Template derivation: For each of the sounds (/aba/ or
/ada/) the next steps were followed. Ten noises were ran-
domly generated, and were added to the corresponding
speech sample at 59 dB (SNR of −6 dB). The 10 sim-
ulated internal representations were arithmetically aver-
aged and used as “a template,” i.e., an expected internal
representation that should lead the artificial listener to
a correct discrimination. For convenience the template
of the words /aba/ and /ada/ are labelled as T1 and T2,
respectively. Finally, the templates were scaled to jointly
meet the condition of unit energy (Eq. 2 in [2]).

Decision back-end 1 (from Osses & Kohlrausch [2]):
The internal representation of the current interval Rc is
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compared with T1 and T2, where the artificial listener,
i.e., the model, performs the cross-correlation at lag 0.
The artificial listener indicates the option /aba/ if Rc ·
T1 ≥ Rc·T2+K or the option /ada/ if Rc·T1 < Rc·T2+K.
More formally:

response=

{
/aba/ if Rc · T1 −Rc · T2 ≥ K
/ada/ if Rc · T1 −Rc · T2 < K

(1)

where K is a constant that can be used to bias the model
choice from /aba/ towards /ada/. K = 0 represents the
exact decision as used in [2]. Different values of K were
used in our simulations.

Decision back-end 2 (from Relaño-Iborra et al. [7]):
The representation Rc is correlated with T1 and T2 us-
ing the two-dimensional Pearson correlation (function
corr2 from Matlab) across the dimensions of time and
frequency and hence assuming an independent process-
ing for each of the (up to) 12 modulation filters in the
model. The correlation values r are obtained in time win-
dows defined by the centre frequencies of the modulation
filters mfc (windowlength=1/mfc), where first the nega-
tive r values are set to zero and then are arithmetically
averaged for each filter. The obtained twelve r values
are again arithmetically averaged resulting in one sin-
gle Pearson correlation for each template comparison [7].
For the comparisons between Rc and T1 and T2 we adopt
the nomenclature of r1 and r2 for the corresponding ob-
tained correlation value. The artificial listener indicates
the option /aba/ if r1 ≥ r2 and /ada/ otherwise.

Methods: Assessment of ACIs

The ACIs were obtained using the fastACI getACI script
of the fastACI toolbox that requires as input the exper-
iment information, the set of noises used by each (hu-
man or artificial) listener, and the collected listener’s re-
sponses. In line with the original method (e.g., [1]), only
the waveforms of the background noises were used to ob-
tain the ACIs. But in contrast to previous work, the T-F
representations were obtained using the toolbox option
TF type=‘gammatone’ which decomposes the noise rep-
resentations into frequency bands using the same Gam-
matone filter bank and simplified inner-hair-cell enve-
lope extractor as in the auditory model (osses2021.m
with only Stages 2 and 3 being enabled), but adopting a
frequency spacing of 0.5 Equivalent Rectangular Band-
widths (ERB) between 40 and 8000 Hz, resulting in 64
frequency bands. The outputs of the envelope extrac-
tor that have a default sampling frequency of 16 kHz
are “downsampled” by taking average amplitudes within
1-ms windows for each frequency channel, obtaining a
representation sampled at 1000 Hz. The resulting T-F
representation for each 0.84-s long sound is a 64×84 ma-
trix (64 bands times 84 time bins). The 5000 T-F noise
representations (5000 × 64 × 84 matrix) of each partici-
pant are then used as input to a generalised linear model
(GLM) to fit that matrix to the corresponding partici-
pant responses (5000 × 1 matrix). For this purpose the
fastACI toolbox with the option glmfct=‘lasso’ is used.
This option uses the regularisation function lasso.m from

Matlab, that looks for the fit that minimises the cross-
validation deviance with respect to the input data. The
Lasso function receives the T-F representations after a
Laplacian Pyramid decomposition, to provide an a-priori
smooth weighting across the time and frequency dimen-
sions of the input matrix (e.g., [8]). Finally, the recon-
structed 64 × 84 matrix of weights providing the best
fit between the input (T-F representation of the noise)
and output (vector of participant’s response) is selected
as the final ACI. We used the same procedure for the
human and artificial listeners.

Results

Experimental results: The experimental results for
participants S01 and S02 are shown in Fig. 1.
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Figure 1: (Colour online) ACIs for the two human listeners
S01 (left panel) and S02 (right panel). The red and blue
coloured areas represent the T-F regions where the presence
of noise dominantly biased the participant’s responses towards
/aba/ or /ada/, respectively. The green areas represent the
regions that were not weighted by the participants. The grey
continuous and black dashed lines represent the fundamental
frequency and the first four formants for the vowels in /aba/
and /ada/, respectively.

Participant S01 (Fig. 1, left panel) provided more weight-
ing to T-F bins located around the offset of the first /a/
(t ≈ 0.16 s) using the information just above the sec-
ond format to favour the choice of /ada/ (blue area) and
just below the formant to favour /aba/ (red area). In
contrast, participant S02 (Fig. 1, right panel) weighted
more the T-F bins located near the onset of the second
/a/ (t ≈ 0.25 s) with cues around the first and second
formants to favour the choice of /ada/ (blue areas) and
around the second formant to favour /aba/ (smaller red
area at t=0.28 s). There are several other small T-F re-
gions that seem to be relevant for both participants above
5000 Hz and also at times later than 0.35 s, but it is pos-
sible that these weightings would disappear if more trials
were to be collected.

Simulations using decision 1: The simulations using
the decision back-end 1 are shown in Fig. 2, where we
first obtained the ACI for K=0 (as used in [2]). Due
to the bias of the model for this K value (median of
24%, Fig. 4, “0 MU”), favouring the choice of /ada/ (76%
of the times), ACIs using several other K values were
obtained, as shown in Fig. 2.
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(a) K = −1.55MU
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(b) K=0MU
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(c) K=0.39MU
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(d) K=0.78MU

Figure 2: (Colour online) ACIs for the artificial listener using
the decision device 1 for different values of K. The colour
codes and axis legends are as in Fig. 1.

From these simulations, the model using K=0.39 yielded
the lowest response bias (median of 59%, Fig. 4(b), “0.39
MU”), also getting the lowest simulated discrimination
threshold (SNR=−16.9 dB, Fig. 4(a)). That ACI is
therefore used for the remaining of our analyses and is
replotted in the left panel of Fig. 3.

Simulations using decision 2: The simulations using
the decision back-end 2 are shown in the right panel of
Fig. 3. In contrast to the simulations with the previous
detector, the model was nearly unbiased with a 46% of
the times choosing /aba/ (Fig. 4(b)) and a simulated
threshold SNR=−17.5 dB (Fig. 4(a)).
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Figure 3: (Colour online) ACIs for the artificial listeners,
i.e., the auditory model using the decision device 1 with
K=0.39 MU (left panel) and using the decision device 2 (right
panel). The colour codes and axis legends are as in Fig. 1.

Discussion and further work

Comparison between ACIs: Consistent with previous
results in white noise [1], the simulated ACIs (Figs. 3) re-
vealed the presence of prominent T-F cues in the region
of the second formant (both decision devices) and in the
region of the first formant (prominent weight for decision
1, milder for decision 2), but this was only found around
the onset of the second /a/. Such region was relevant for
participant S02 (Fig. 1, right), but not for participant
S01 (Fig. 1, left). It is also interesting to point out that
while for the artificial listener the cues were arranged
horizontally, i.e., with sequential blue and red regions,
for participants S01 and S02, the coloured regions were
arranged more vertically. This means that the formant
frequency at the onset is more relevant for real partici-
pants, and the formant timing is more relevant for the
artificial listener.

S01 S02 -1.55 MU 0 MU 0.39 MU 0.78 MU Dec2

Listener ID

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

D
is

c
ri
m

in
a
ti
o
n
 t
h
re

s
h
o
ld

S
N

R
 (

d
B

)

(a)
Exp. Decision 1 Dec. 2

S01 S02 -1.55 MU 0 MU 0.39 MU 0.78 MU Dec2

Listener ID

 10

20

30

40

50

60

70

80

90

R
e
s
p
o
n
s
e
 b

ia
s

to
w

a
rd

s
 /
a
b
a
/ 
(%

)

(b)
Exp. Decision 1 Dec. 2

Figure 4: (a) Discrimination thresholds for each human or
artificial listener expressed as an SNR (lower is better perfor-
mance). (b) Listener’s bias indicating the number of times (in
percentage) a participant chose the option /aba/. A 50% bias
(red dashed curve) would indicate no response bias. In both
panels, the black markers indicate median and interquartiles
across the 13 sessions, and the grey markers indicate the in-
dividual values of each test session.

Decision 1, changing the model bias: With the use
of different K values we attempted to simulate how the
ACIs change for artificial listeners that tended to choose
more often one of the two speech samples (/aba/ more
often than /ada/ or vice versa). The ACIs for different
values of K (Fig. 2, panels b–d) did not change signif-
icantly, if we consider that the coloured regions in the
plots stayed at the same T-F region. The only exception
was for the artificial listener with K=−1.55 MU, that
lead to a bias of 21% (i.e., /ada/ was chosen 79% of the
times), meaning that the artificial listener was primar-
ily weighting the information in /ada/ and not the one
related to /aba/, resulting in an ACI with some blue re-
gions but without red ones.

Use of different decision back-ends: the use of a dif-
ferent decision back-end implies that the same listener
–here the auditory model– may adopt different strate-
gies to solve a specific task. Due to the simplicity of
our speech task, with only two possible choices, we also
tried to reduce the number of potential strategies avail-
able to the (human or artificial) listeners. We assume
that in this task with two contextless words, cognitive
(top-down) processes would play a much less important
role in contrast to what it would happen when conduct-
ing a sentence-in-noise test. The current method can
thus be seen as a way to assess the listening strategies
of a listener under a very particular comparison condi-
tion, which should be cue-based, or more focused on the
bottom-up information available in the sound represen-
tations. One problem that remains open is how to con-
trol the potential bias in the participant’s responses and
how this interacts with the high chance level of this task
(chance level=50%, for two options).

Further use of auditory models: In this short con-
tribution we derived ACIs from simulated discrimination
data using an auditory model (osses2021.m [3, 6]), in a
first attempt to understand how much of the T-F cues
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measured in human participants for the comparison of
two speech sounds (words /aba/ and /ada/) could be ex-
plained using this auditory model. The auditory model
approximates the signal processing of a normal-hearing
listener and has been used previously to simulate a num-
ber of psychoacoustic tasks. From the two adopted deci-
sion back-ends, Decision 2 (based on [7]) was previously
validated in the evaluation of sentences in noise (using the
Clue and the Dantale II Danish speech corpora) but
adopting an auditory model with a non-linear cochlear
processing [7]. The study in [7] built upon and extended
the work presented in [9], evaluated with the same set
of speech materials. On the contrary, Decision 1 was
recently used in a similarity comparison between piano
sounds, a task that was simulated using two templates,
and shares some resemblance with the speech processor
originally described in [10]. Although we did not pose
major efforts in individualising the parameters of the au-
ditory model, such a parameter customisation would rep-
resent one of the natural further steps in our research. We
foresee to do this in two ways: (1) Adopting a memory-
like internal noise to switch the focus from later to earlier
segments of the speech sounds, and (2) to apply cus-
tomised settings for the peripheral model to account for
aspects such as elevated hearing thresholds. Regarding
the first point, the use of a backward-increasing additive
noise, such as that suggested in [11], may help to get
a model cue-weighting towards the first vowel-consonant
transition, as we observed for S02. On the other hand,
the use of customised peripheral parameters may help to
understand how much shift in the ACIs can be expected
if extra information about the participants (e.g., hearing
thresholds) is used as input to the model.

To conclude this contribution, we would like to sum-
marise our observations and further steps:

• The ACI methodology can be used to assess the listen-
ing strategy of both human (as also previously shown,
e.g., in [1]) and artificial listeners in speech shaped
noises (new in this study).

• Similar to human participants, the artificial listener
was able to find relevant (and stable) discrimination
cues for the discrimination of two VCV words in the
transition of the consonant with the second vowel, at
around the first (Decision 1) and second formant (De-
cisions 1 and 2).

• The artificial listener was not able to find any T-F cue
in the transition of the first vowel and the consonant
as we observed for participant S01. The understand-
ing of this different listening strategy remains a major
challenge for future modelling work. We suggested one
possible workaround for this, using an “additive mem-
ory noise” in future simulations.

• Changing the model bias (K) in Decision 1 did not
change significantly the simulated ACIs (Fig. 2).

• We adopted two decision back-ends that do not include
strong assumptions about the potential top-down pro-
cessing of participants. However, an implicit assump-

tion of using a template-matching approach is that par-
ticipants can extract the speech information from the
speech-in-noise representations.

• We did not adopt customised auditory model configu-
rations, meaning that we did not focus in the individ-
ualisation of our simulations. This represents one of
our further steps.
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