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Relaxation limit for a damped one-velocity Baer-Nunziato model to a
Kappila model

Burtea Cosmin, Crin-Barat Timothée, Tan Jin

Abstract

In this paper we study a singular limit problem in the context of partially dissipative first order
quasilinear systems. This problem arises in multiphase fluid mechanics. More precisely, taking into
account dissipative effects for the velocity, we show that the so-called Kapilla system is obtained as a
relaxation limit from the Baer-Nunziato (BN) system and derive the convergence rate of this process.
The main problem we encounter is that the (BN)-system does not verify the celebrated (SK) condition
due to Shizuta and Kawashima. It turns out that we can rewrite the (BN)-system in terms of new
variables such as to highlight a subsystem for which the linearized does verify the (SK) condition
which is coupled through lower-order terms with a transport equation. We construct an appropriate
weighted energy-functional which allows us to tackle the lack of symmetry of the system, provides decay
information and allows us to close the estimate uniformly with respect to the relaxation parameter.

1 Introduction

1.1 Motivations

Multiphase flows are ubiquitous in real world applications ranging from engineering to biological systems.
The term multiphase includes flows that are topologically very different. As it is explained in [27], we
distinguish mixtures with separated phases flows (film flows, jet flows), mixed or transitional phase flows
(gas pockets in liquids) and dispersed phase flows (bubbly flows, sprays). Understanding the mathematical
qualitative properties of the different governing models is important, for instance, in order to construct
more pertinent numerical schemes which would increase the predictive power of these models.

In order to describe dispersed two-phase flows, besides the classical variables like densities, velocities
and state laws, one need to introduce two extra ones called volume fractions, measuring how much space
does one phase occupy at a given position in space. It goes without saying that in order to have a closed
system, besides the equations expressing conservation of mass and momentum, two extra equations are
needed.

In [I], Baer and Nunziato proposed a model for which the volume fractions verify

Oy +vy - Vag = (1.1)

where € can be seen as a time relaxation parameter and, in practice, is chosen to be very small. The
unknown vy is interpreted as an interface velocity which depends on the densities, volumes fractions and
phase velocities. In [I], the interface velocity coincides with one of the phase velocities but different
choices have also been used in the literature, see for instance [26] and [35].

From the Baer-Nunziato model, Kapilla et al. [2§] proposed the following equations

ay +a_ =1,
{ P =P (1.2)

Of course, one might wonder what is the link between (LI and (LZ). First of all, from (L] one
immediately infers that
O (ar +a_)+vr-Viay +a-)=0.



Hence
oy +a_=1

is recovered provided it is true initially. Moreover, one expects to obtain the second equation of (L2) in
the limit ¢ — 0.

The same closure equations are obtained using the so-called averaging methods [27] or variational
methods [21, [I1]. In this framework, one can interpret the Baer-Nunziato model as a relaxation model
for the Kapilla model.

Let us mention that in the mathematical community [8, [6], equations (LI]) are refereed to as PDEs
closure laws while (LZ) are called algebraic closure laws.

Multiphase models received a lot of attention from the mathematical community recently. In the
context of weak solutions we mention the results of Novotny [30], Novotny and Pokorny [31], Bresch,
Mucha and Zatorska [10], Vasseur, Wen and Yu [37]. About applications in biology see Gwiazda et al [32]
and Debiec et al [I§]. We shall bring up that in all the above papers, viscosity plays a crucial role.

In [5], constructing upon previous works [9, [§, [7], the authors showed that it is possible to obtain a
viscous Baer-Nunziato system following a homogenization procedure. The basic assumption is that if we
zoom in the mixture, we arrive at a mesoscale where the two phases are separated. Assuming that each
phase verifies the Navier-Stokes equations in their own domain, the authors were able to write a closed
system for the mixture. When going back to the macroscopic scale, loosely speaking, the density of a fluid
mixture is assumed to wildly oscillate between two reference densities. The propagation of oscillations
is quantified through Young measures and it is shown that if these measures are convex combinations of
Dirac masses at initial time, then this structure is preserved for later times. At this point, it is important
to note that in these papers, the authors obtained equations for the volume fractions ax of the form (L))
while the relaxation time € is proportional to the mean viscosity of the two phases.

In this paper, we justify rigorously that the solutions of a one-velocity Baer-Nunziato model tend, when
the relaxation parameter € goes to 0, to solutions of a multiphase fluid system with algebraic closure laws
(I2). Moreover, we derive an explicit convergence rate of the relaxation process.

1.2 Presentation of the models and main results

We consider a mixture of two compressible fluids filling the ambient space R¢ with d > 2. The charac-
teristic state function of the two phases will be denoted separately by +, —. We suppose that the flow of
the mixture is animated by a single velocity vector field:

uw: Ry xR — RY,
We denote the two mass densities of the phases £ by
p+ Ry xRT 5 Ry
and we introduce the volume fractions of the fluid +
az Ry x R = [0, 1].

The multidimensional version of the system obtained in [5] reads:

;;jf L (P (p4) = P- (p-)).
O (axps) +div (axpru) =0,

O¢(pu) + div(pu ® u) — Ay zu + VP + npu = 0,
p=apprta_p,

P =aiP; (p4) +a-P-(p-)

ooy +u-Vay =+




where we added a damping term in the equation of the velocity with a parameter n > 1. This terms
models elastic-type drag forces slowing down the fluid and it is a crucial in our mathematical analysis
since it allows to use techniques coming from the theory of partially dissipative hyperbolic systems. The
relevant model with common pressure is obtained in [7]. Above, A, ) stands for the Lamé operator:

At = pAu+ (p+ A) Vdivu
with p, A given constants verifying
>0 A4+p>0 and v=A+2p<1.

The functions Py and P- model the internal barotropic pressures for each fluid. We will assume that
they take the following explicit form

Py (s)=Ays7*  forall s >0, (1.3)
where v+ > 1, AL > 0 are given constants. Moreover, without loss of generality, we will suppose that
V4 > - (1.4)
The density and pressure of the mixture are denoted by
p=aipr+a_p- and P=ayPy(py)+a_P_(p-).
We are concerned with solutions that satisfy
ay (t,x) = ax, pt(t,x) = py, u(t,z) — Oga as |x| — oo, (1.5)
where 0 < a4 < 1,0 < py are given constants and
o+ +a_ =1, (1.6)
We denote by (ag, p+o, uo) the initial condition:
ax(t,x)|i=0 = axo, p+(t,x)|t=0 = pxo, u(t,x)|t=0 =up, =z € R, (1.7)
Notice that when v := 2u + X tends to 0, System formally converges to the following system:

oy +a_ =1,

O (axps) + div (arpru) =0,

O(pu) + div(pu @ u) + VP 4+ npu = 0, (K)
p=aiprta_p,

P =P (py) =P-(p-).

Our main goal is to justify the relaxation/inviscid limit on a solid mathematical background, at least
when the initial data (4, p+0,uo) are close to the constant equilibrium (@, ps,0). Inasmuch as we
expect the limiting pressures to agree in the vanishing viscosity limit, and in order to avoid initial time
layers, we will suppose that the pressures are at equilibrium at infinity:

P, (py)=P_(p-)"Z P (1.8)

Throughout the paper, C' stands for a “harmless” constant. We are now in the position of stating our
main results. First we state our uniform (with respect to p and ) global existence result for the System

BN).



Theorem 1.1 Let d > 2 and assume that the parameters satisfy p > 0, A+ pu>0,v <1 andn > 1. Let
constants ax € (0,1),px > 0 satisfy (1.6)) and (1.8). There exists a constant ¢c; > 0 independent of the
viscosity coefficients p, A such that for any initial data (c4o, —o, p+0, P—0, Uo) VeTifying

(a0 = @, pxo = pas wo)ll a1y <1,

then System (BN|) admits a unique global-in-time solution (a4, a_, py,p—,u) such that
(s — G, pe — P, ) € Co(Ry; B2 71N B2HY),

P — P (p
+(p;) oY (p-) € L' R,;B:'NB?) and uwe L'(R,;B:nB:H).
I

Moreover, the following estimate holds true uniformly with respect to the viscosity coefficients p and A:

l(ox = &z, pa - pi’u)HL"O(R+;B%*1mB%+1) * HuHLl(R+;B%nB%+1)
1
- <
5P (00 = P ()l gty < Con

with a universal constant C > 0.

Remark 1.1 The same result is valid for the quasilinear first order system associated to (BNY|), in other
words, the viscosity plays no role in the mathematical analysis, the same result is valid if A, » = 0.

As a consequence of relaxation limit arguments, we obtain the following theorem regarding System
().

Theorem 1.2 Let d > 2 and n > 1. Let constants ax € (0,1),p+ > 0 satisfy (1.6) and (1.8). There
exists a constant ca > 0 depending on n, v+, A+ and d such that for any initial data (40, —g, p+0, P—0, U0)
verifying

| (o0 — O, p+o — P+ o) 2,

HB%AOB%H <
then System admits a unique global-in-time solution (o, a—, p4+, p—,u) such that

(ax — G, px — pi,u) € Cp(Ry, B2 1N BEHY),
ps —pr € LYRy; B2 and  we LY(Ry; B2 N B2t
It turns out that we can further obtain a convergence rate of solutions of System (BN|) towards
solutions of System .

Theorem 1.3 Let d > 3 and assume the same hypothesis on the parameters as in Theorem [1.1 Let
(@, o, p4, p u?) (resp. (aq,a—,py,p—,u)) be the solution to the Cauchy problem (BNJ), associated

with the initial data (ag, % o, po, P, uby), from Theorem[1.1] (resp. (K)-(L7) from Theorem [1.3) such
that

aV py «a

+0P+0 +0P+0

S~ » PYo = Po, ug — o)l
QL oPto T 0p_ply  Qp0p+0 + 0P

Yl PY

Py, —
+ 1P Yyl PY +y_of P¥

(PYo—P%y) — Piol| a3

Then there exists a constant C > 0 independent of v such that (o, o, p4, p,u”) converges toward
(g, —, pt, p—,u) in the following sense

+[[u” =

< V.

Remark 1.2 The rather strange condition on the difference of initial data is due to a technical limitation
on the composition arguments, see Proposition [2.3 for more details. In Section 6, we state a more
comprehensive theorem concerning stability between the two systems, which immediately implies Theorem

3

v 174 v v v
ok — o, p3 — paes P2 —p—su” =) gy + 0% — ol 5 g3, Lisd-1



1.3 A short review of recent results concerning partially dissipative systems

Since we are interested in the inviscid limit, our approach will use techniques from partially dissipative
first order quasilinear systems, that is, systems of the following general form:

d
o+ 320,70 20

. 0
2 with  Q(w) <q(w)> ,e>0 (1.9)
where w € R™ and € > 0 is a given parameter. These types of models govern the dynamic of physical
systems out of thermodynamic equilibrium which is typically the case in gas dynamics. The constant &
can be seen as a relaxation time and in practice is very small. Observe that, a priori, the dissipative effect
does not concern all the components of the unknown w € R™. In order to obtain global existence results,
for initial data close to equilibria, one aims at recovering such an effect for all the components of w. And
as observed in [12], using the Chapman-Enskog expansion, one can deduce a more accurate correction for

the limiting system which has the general form

Q).

d d
Opw + > 0 Fj(w) —e > 0;(Bij(w)d;w) = -

j=1 1,j=1

(1.10)

A first approach in order to obtain global-in-time existence results for initial data around a constant
equilibria is restricted to systems verifying the so called (SK) condition which was established by Shizuta
and Kawashima in [36]. This is an explicit linear stability criterion which ensures that all the components
of w decay as t — +o00. In order to extend these results to more general quasilinear systems, a second
condition was put forward by Yong in [39]: the existence of an entropy that provides a symmetrisation
compatible with the dissipation @) appearing in system (L.9)).

In a situation close to the one we consider here, Qu and Wang in [33] established a global existence
result for quasilinear hyperbolic systems such that one and only one of the eigen-family violates the (SK)
condition. The (BN)-system satisfies this condition but it doesn’t satisfy all the conditions necessary
to directly apply their result and more importantly, we need to obtain uniform estimates to tackle the
relaxation problem.

The study of relaxation problems associated to systems of conservation laws can be tracked back to
the work of Chen and al [12]. More recently, Giovangigli and Yong in [24], 25] studied a relaxation-limit
problem arising in the dynamics of perfect gases out of thermodynamical-equilibrium. At a mathematical
level, they dealt with dissipative and diffusive systems of conservation laws of the form (LI0). Roughly
speaking, assuming the existence of an entropy compatible with the diffusion and dissipation operators,
they proved the local existence of solutions for the Cauchy problem as well as error estimates between
solutions at fixed € and the solution of the limit system. We mention that as their results hold only
locally in time, the (SK) condition is not relevant in their work (the dissipative term being responsible
for the large-time behaviour of the solution). We also mention some previous work by Giovangigli and
Matuszewski [23] 22] where they study chemically-reactive multicomponent flows.

Recently, Danchin and the second author in [I4] [I3] studied partially dissipative hyperbolic systems
satisfying both the (SK) and a symmetrisation condition (which is weaker than the one imposed by Yong in
[39] )EI in the framework of critical homogeneous Besov spaces. In particular, this includes the compressible
Euler system with damping in the velocity equation which has been studied in several papers [20 38, 29].
In some sense, this is the functional analysis framework which uses the optimal regularity that one has to
impose on the initial data in order to obtain global well-posedness results. They combined two ideas in
order to obtain these results. On the one hand, inspired by the work of Beauchard and Zuazua [3] they

They consider non-conservative partially dissipative hyperbolic systems that are Friedrichs-symmetrizable



constructed a Lyapunov functional implying that, close to equilibrium, the low frequencies of the solutions
of the non-linear system (LL9) behave, qualitatively, like a heat equation. And on the other hand, they
highlighted a damped mode which enjoys better decay properties in low frequencies and deduced from it
crucial regularity enhancement in order to close the a priori estimates.

It turns out that this method is flexible enough to be adapted for the systems and if we
want to obtain a well posedness result. However, the estimates that one would obtain by adapting the
results from [I4} [13] would not uniform with respect to the parameters p and A, thus they cannot be used
directly in order to justify this vanishing viscosity limit.

1.4 Strategy of proof

Our problem is not covered by the papers mentioned above and it is not completely clear if and how the
general theories from [3, 13} 24} 25] 23] 22] could be adapted to study (BN]) and the associated relaxation
limit. The first obvious reason is that (BN]) is not a system of conservation laws because the equations
of the volume fractions cannot be put in conservative form. The second reason is that the entropy that is
naturally associated with this system is not positive definite since it is linear with respect to the volume
fractions. Concerning global existence results, we remark that the associated quasilinear system does
not satisfy the (SK) condition as it admits the eigenvalue 0. It turns out that the situation is not too
degenerate in the sense that the eigenspace associated to the eigenvalue 0 is of dimension 1 and that,
roughly speaking, the non-degenerate part (i.e. the part associated to non-zero eigenvalues) fulfils the
(SK) condition. Thus we will be able to isolate the undamped mode, and rewrite the remaining system
as a partially dissipative quasilinear system satisfying the (SK) condition while the undamped mode will
be seen as a parameter and always appears in nonlinear terms as a prefactor of a function of the damped
variable.

More precisely, after observing that there exist four main unknowns in the system, namely, a4, p+, p—
and v we consider a change of variables that leaves the velocity u invariant:

(y7wa T) = (Oé+, p+7:0*)

where the variable w is proportional to P, — P_ and r is like an effective pressure. The system verified
by the new variables is of the form

Oy +u-Vy =0,
dw+u-Vw+ (H + Hi(w,r,y)) divu+ (Hz + He(w,r, y))% =0,

_ . _ w? (1.11)
at'r +u- Vr + (H3 + _E[g(u},?"7 y)) divu = (H4 + H4(U),T,y))7

1 1 1
Ou+u-Vu— ;AM,)\U—F?TLL—F ;Vr+ (74 —7-) ;Vw =0,

where v = 2+ )\, H; and H; (i = 1,2,3,4) stands for constant part and perturbation part, respectively.
The very specific form of the nonlinear part appearing in the above system is crucial to close our estimates.
Obviously there is no hope to recover time decay properties for y and in fact we only need L7 integrability
on y, therefore we will treat this transport equation separately. Considering the system satisfied by the
three unknowns (w, r,u) and by adapting similar ideas developed in [3] 14, [13] to this sub-system, we will
obtain the necessary integrability on all the components of the solution, which will allow us to obtain
uniform a priori estimates with respect to A and pu.

The main difference with the papers by Danchin and the second author is that we cannot perform
a rescaling to keep track of the coefficients as what they did, because we are not able to treat the low
frequencies in B%?2 as p lacks of time integrability since the complex form of the pressure.

It is important to point out that system does not verify the (SK) condition and it is not
symmetric. However, the subsystem formed by the last three equations of satisfies the (SK)



condition and the coupling with the first equation is achieved via lower-order terms. In order to deal with
the lack of symmetry, we construct a nonlinear energy-functional in order to derive a priori estimates.

Another technical difficulty that we encounter is that we cannot recover uniform dissipation with
respect to 1/v for w at the higher energy level (i.e. d/2 4 1). We can recover such a strong decay
effect only for the d/2—energy level. This renders delicate the estimation of nonlinear terms which are
proportional with 1/v. Thus, the quadratic form of the nonlinearity appearing in the equation of r turns
out to be crucial.

Moving on to the justification of the relaxation limit, the fact that the solutions to the Kapilla system
are obtained as limits of the system is a consequence of the uniform estimates and classical
weak-compactness arguments. In order to obtain a convergence rate, we estimates the difference of the
solutions of the two systems. Since we are not able to a obtain decay rate for 0;(P}Y — P¥) in any space,
we define a new unknown to avoid treating this term as a source term. Under a smallness assumption
depending on v and on the difference of the initial data we are able to obtain decay rate of /v in
L>~(B i-3nB %_%) which allows us to recover decay rate for the source terms involving the unknown ov.
But still, it seems hard to control ar in the spaces L!(B*) for any s, to our knowledge, this is the reason
why we end up with a convergence rate equal to /v.

The rest of the paper unfolds as follows.

The next section is devoted to Littlewood-Paley theory and Besov spaces with some of its useful properties.
In Section 3, we rewrite the original (BN)-system into good unknowns and give a theorem for the refor-
mulated system, that is Theorem

In Section 4 we derive a priori estimates uniform with respect to the viscosity parameters for a mixed
linear partially dissipative hyperbolic system and prove Theorem

The fifth section is devoted to the stability estimates between (BN)-system and (K)-system, which implies
Theorem [1.3]

Finally in the Appendix, we show some basic estimates for several classical linear problem.

2 A primer on Besov spaces and Littlewood-Paley theory

At this stage, we need to introduce a few notations and the main functional spaces that we will use in
our paper. First, throughout the paper, we fix a homogeneous Littlewood-Paley decomposition (Aj);cz
that is defined by ' 4
Aj £ (277 D)
where ¢ stands for a smooth function supported in C = {¢ € R%, 5/6 < |¢| < 12/5} such that
ng(QﬁE) =1 for £ #0.
qEZL

Following [2], we introduce the homogeneous Besov semi-norms:

[ullps 2 “QjSHAjUHLQ(Rd)Hzl(z)'

Notice that, since we will only work with homogeneous Besov spaces with second index equal to 2 and
third index equal to 1, we omitted those index in the definition of the norm. Then define the homogeneous
Besov spaces B (for any s € R and (p,r) € [1,00]%) to be the subset of u in S), such that |u||gs is finite.

To any element u of S} , we associate the low and high frequency of its Besov norms through E| if r < o0

e . . h y
lulfy: £ 32 |Asu] , - andulfy £ 37 27
Jj<0 j=>-1

Al

2For technical reasons, we need a small overlap between low and high frequencies.



We define

ut = E Aju, and u =u — b
j<—1

We will frequently use that
4 4 h h
[u*lBs < Cllullps and [[u"|Bs < Clul|ps.
For any Banach space X, index p in [1, 00] and time T' € [0, oo], we use the notation
h h
ol ) 2 Il ooz 2 Tl ey 2 el oo

and similarly, with £ instead of h, for the low frequencies. If T' = +o0, then we just write || ||u| || £o(x)-
Finally, in the case where u has n components z; in X, we slightly abusively keep the notation ||u|| to mean
> jefi ny lujllx. Moreover, for our computations, we need to introduce the following Chemin-Lerner
norms:

ol z s 5 2 122180l oz

Those spaces are link to the classical one through the Minkowski inequality, indeed we have:
itr > ullzy s ) < Nulga,) and 7 <o, Jullzp g, ) > lullog g,
We now state some classical results that can be found in [2]. First, we introduce product laws.

Proposition 2.1 Let s €]0,00[. Then, B* N L™ is an algebra and we have
luvllgs < C(llullellvlis + llullps 0]l ) (2.1)
If, furthermore, —d/2 < s < d/2, then the following inequality holds:
[uvllps < Cllull g [[0] s (2.2)
and if (s1,s2) €] —d/2,d/2[ such that sy + s2 > 0, then

[uv]] ¢ < Cllullp=tv]| - (2.3)

le+52—
Then, we state a result concerning commutator estimates.

Proposition 2.2 Consider s € ]—% -1, g] . The following inequalities hold true:

2D |, Aglel 2 < Cez[Vull g o]l (24)

Finally we present a proposition related to composition operator that can be found in [34] p.387-388.

Proposition 2.3 Let m € N and s > 0. Let G be a function in C*°(R™) such that G(0,..,0) = 0.
Then for every real-valued functions fi, .., fm in B* N L, the function G(f1,.., fm) belongs to B* N L>
and we have

IG(f1s o fm)lBs < N(f1s e f)lBs (14 C[(fillzoe + o+ [1fm) [ o)) -

We give classical estimates concerning the damped transport equation and the Lamé system in the
Appendix.



3 A reformulation of the System (B/N| and sketch of the proof

The first part of this section will concern the reformulation of the System (BN so it is in the range of
application of recent developments about partially dissipative hyperbolic system. Then we state a global
existence result which contains the statement of Theorem [Tl

3.1 Change of unknowns

Here, we propose new unknowns that are more appropriate to obtain uniform a priori estimates. First,
observe that by adding the equations of o and a_ together we get

Di(ar+a-) =0,
where D, is the material derivative defined by

D=0 +u-V. (3.1)
Thus, at least formally, if the initial data considered satisfies

aot+ao=1,

then this property remains true for latter times. Thus, the number of independent unknowns for system

(BN)) is reduced to four: a, py, p— and u.
We now consider the change of unknowns from (a, p4+, p—) to (w, R,Y") given by

(0, R,Y) := @ (at, pt, p-) = (P1 (4, pys p—) s P2 (g, pt, p—) , P3 (s pys p-)) (3.2)
with P (ps) — P (p_)
p+) — P (p-
¢y (a-i-vp-i-vp—) === fyﬁ_ = )
ay + a_
P, (py) — P_(p-
B (a4, 94 p-) = Ay Py (p3) + a-P- (p_) — (g —y-) 2L =L (02) (33)
" o e
O3 (g, pypo) = —— .
( ) atp+ +a—p-
We see its equilibrium state (w, R,Y’) will be (0, P, ﬁ).
The differential of the transformation computed at (a4, py, p—) is
0 Py (p+) —P (p-)
Ty = NLINE
o Aey DAL
_ _ PL (p+ _ _ — (p—
0 ay Py (P+)—(’Y+—%)£T a-PL (P7)+(V+—77)H ’
o o oy o L Ot a_
P+P— a4 p— _apa_py
P p* P

such that the Jacobian of the transformation computed at (a4, p4,p—) is

0.0 P (p )P (p_
Jow PP P (py) Jp)>0
[(a4,p+,P-) Pz 7i+7;

O_é+ a_

Thus, owing to the Inverse Function Theorem there exists constants d1,d2 and a function

v B52(w’R’Y) - B51(6‘+7ﬁ+’ﬁ—)



(w) R’Y) = (oz_,.,p_,., P—)

such that ¥ is one-to-one and V is the inverse of the restriction of ® to the ball By, (a4, p+, p—). Thus,
U is smooth on the ball Bs,(w, R,Y) C R3. An extension theorem in the book of Evans [19] (p. 254)
enables us to assume that ¥ is smooth in R3 without loss of generality, this extension of ¥ will be useful
later to use a composition lemma.

Consider (w, R,Y,u) (0, z) such that

3 a4 Py
R,Y,u)(0,:)—(0,P, ————.,0 < 3.4
H(w7 ) 7“’)( ) ) ( ’ ’@+ﬁ++07—/3_’ )HB%—lmB%+1 =cC ( )
where c is chosen such that ¢ < %2. Furthermore, define
B Q4 Py
_ . ) — <
Tinax = sup {T >0: H(w,R,Y,u)(t, ) (07Pa aspr + d,ﬁ,’O)HB%_lﬁB%-H = 26} : (35>

Obviously, owing to the embedding B slnpetl o [0

t,x»

it is clear that (w, R,Y,u)(t, x) lies in a ball
centered in (0, P, ﬁ%, 0) with radius depending on d2, on the time interval [0, Tyyax). Theorem (3.1
in the next subsection shows that for ¢ chosen sufficiently small then T1,,x = +00, and thus (a4, p4+, p—) =
U(w, R,Y) for all time.

Let us now derive the equations of (w, R,Y,u). We observe from the first and the second equations of

System (BN that
. L O
s (Dhps + divipru) = FLE (P (py) = P-(p-)).

Since we work with the power laws Py (p+) = A1pl* (which we simply represent by Py), by multiplying
the two equations above by P} respectively, we obtain that

P
DyPs + 7+ Py divu = :F'“O‘%i(m —P).
Taking into consideration the equations of a., we get that
) oo
DP+ (yroy Py +y-a P)divu+ ———(Py — P_)((y+ = 1) Py — (v — 1) P_) =0, (3.6)

which we further put under the form

a4 a4

DiP+(viap Pr+y_a_P_)divu+(y4+ — 1) (Py —P_ )4 (vy — ) (Py—P_)P_=0. (3.7)

Next, observe that

P _P_ aja_
Dy (Py — PO) + (74 Py — v P_)divu 4 (Bt 4 =22y 2F
o4 o v

(Py — P_) =0, (3.8)

which we further put under the form

Dy (Py — P_)+ (4o Py —y_P_) divu+ '”VO‘* (P, — P+ (Zf + Z) O‘*yo‘* (P, — P_)P_ =0. (3.9)
+ —

Notice that we chose to define the effective pressure R by:

P, —-P_ Yoy p o AR

R=P— (74 —7-) — = VW —
o e -y V+0— + -0y

10



to cancel the coupling between P, — P_ and P_ in (3.7]), and the choice of

w:P+—P,: oo (P.—P)
4T o tyay

enables us to rewrite the pressure in a simple form: P = R + (74 — 7—)w. The unknown w can be
comprehended as the damped part of the pressure. A straightforward computation yields

D(% 7—)1 402 —y-afw

+
o o Yo + Yoy Vv
and
P+ = R + Pyiw
=R- 7—7w
o
Then the equation of w reads
. w
Dyw + Fidivu + Fo— =0 (3.10)
v
with ) )
P (v+ — %)aJrOZ—R 4 re- + o
V+Q— + -0t ( V4 +Y—2 ( 2),2
— =)
Fy = (yp0- +7-as)R — Tlos ~ (- =7 S,
a4
and the equation of R reads
2
DiR + Fydivu = Fy— (3.11)
v
with i
Fy:=—F" (R4 (v; —y_)w),
3 ’]Y+04 o ( v+ —7-) )
Fy = (1- (7+04 +7-ay)).
()é+04_
Moreover, we have
ay =V (w,R,Y), a-=1-T(w,R,Y). (3.12)
Next, as
Yy — 04+P+’
P
we observe that
DY =0. (3.13)
We denote the perturbations of Y and R by
QP+ a—p—

We see that there exists a function Gy of the unknowns (w,r,y) such that

1 1 _ _ 1
P aypyta_po aipt +a_p-

11



Gathering the equations (3.10]), (3.11)), (3.13]) and the equation of u together, we obtain the following
system in terms of the unknowns (y, w,r, u):

Dty = 07

Dyw + (Fy + Gy)divu + (Fy + Go) = =0,
) w? v (3.15)
Dyr + (Fg + Gg)divu = Fy—,

_ 1% _ _
Diu — (Fo + Go)A%)\u + nu + (Fo + GQ)VT + (’y+ — ’y_) (Fo + Go)V’w =0

where _
o= (7+__ 7‘)0“[0“15 > 0,
B Y- Y-y
Fy = (yra_ +y-_ay)P >0, (3.16)
= T+7—= P '
F3 = ——P > 07
V+Q- + -0y

Gi(wara y) :=F;,— F; for each ¢=1,---,3.
Note that by virtue of (3.12)) and (3.14), the G; (for i = 0,1,2,3) can be written as smooth functions of

the unknowns (w,r,y) which vanish at origin.

3.2 Elements of proof for Theorem

Let us observe that the first equation is a pure transport equation, and there is a linear coupling between
the second to fourth equations. As we are considering viscosity vanishing limit, we need to get appropriate
estimates independent of 4, v, in other words we should hardly use the smoothing effect of operator A, ,.
This fact motives us to study the following mixed linear system:

ow+v-Vw+ (hl + Hl)divu + (hg + HQ)% = 5y,
&yr +v - Vr+ (hs + Hs)divu = Ss, (3.17)
ou+v-Vu— (h4 + H4).AM7)\’LL + nu + (h5 + H5)V7“ + (h6 + H6)Vw =Sy

where S, S3,S4 and Hy, Ha,- -, Hg are given functions of (¢,z), and hq,--- , hg are given positive con-
stants.

Inspired by the work of Beauchard and Zuazua in [3], the work of Danchin in [I6] and following the
work of Danchin and the second author in [I3] [14], we expect that System behaves like the heat
equation in the low frequencies regime while we expect a damping effect for the high frequencies under if
Hy,---, Hg are small enough. Moreover we expect to recover better integrability properties for w and u
in the low frequency regime because they undergo direct damping.

Precisely, we obtain the following a priori estimates uniformly with respect to u, A, v.

Proposition 3.1 Let d > 2 and let parameters satisfy p, A+ pu >0, v=2u+ A <1 andn > 1. Assume
that

Hy, Hy, -, Hg,v € C'(Ry; S(RY)), |Hillge, < shi,  i=1,2,---6. (3.18)

1
2
Let —% <85 < % —1 and s1 < sg—1< s+ 1. Let (w,r,u) be a solution of system (3.17) on the time
interval [0,T). There exists a positive constant cy independent of p, A such that if

6
> il oo g g1 p g4y < €00 (3.19)
=1

then the following estimate holds on [0,T) :

12



¢ ¢
10, ey + 10,70 gy 45 (10,7, 0) [ sy + 0 ) )

t w w t
+/0 (1@ew, —) e +\|(8tw7y)||%s2—1)+/0 (1O, 7, Opr) | o sr + 11Oty 7, ) ||y )

t
+ / (llpAu, (1 + N Vdivul| oy 1 + [[nda, (g + X Vdiv |, 1)
0

t
< exp (0 + V) (w00, ) lsrs + [ 18285, s ). (320
0
t 6
where V (t) := /0 HU(T)”B%mB%“ , H(t) := Z H@tHi(t)HB% and K is a constant defined by (4.26)).
=1

1
Remark 3.1 [t turns out that we have to choose ¢y << min{n, —}, therefore we are not able to take into

account the case when n — oo in the same time as the relaxzation parameter v — 0. This is due to the
overdamping phenomena that described in e.g. [{0].

We will now state a global-in-time existence result for (3.15). First, let us introduce the functional
spaces which appear in the global existence theorem and the rest of the paper :

E™ £ {(y,w,r,u) € Go([0,T], B 0 B*),  (w,r,w)" € LY([0,T), B), " e L'((0,T], B**?),
(%,atw)f e LY([0,T), B*), (%,Otw)h e LY([0,T), B27Y), (nu,dsr,dpu) € L*([0,T), B 1)

(nu, dyr, o) € LY([0,T], B27Y), (pAu, (u+ A\)Vdivu)® e LH([0,T], B!

and (NAU> (,U + )\)Vdivu)h c Ll([(), T]’ Bsz—l}'
(3.21)

We define || - ||E;1a52 as the norm associated to E;"** and if T = +oo, we use the notation E**2 and
replace the interval [0,7] by R..
We have the following theorem.

Theorem 3.1 Let d > 2 and assume that the parameters satisfy p > 0,A+pu>0,0<v <1 andn>1.

Let the constants ax € (0,1), p+ > 0 satisfying (1.6) and (1.8). There exists a constant ¢ > 0 independent
of the viscosity coefficients pu, A such that for any initial data such that

||(y07 Wo, To, UO)HB%7103%+1 S Cc
then System (3.15)) admit a unique global-in-time solution (y,w,r,u) in the space E5—L5+ Moreover,
the following estimate holds true uniformly w.r.t. the viscosity coefficients p and \:

w
0,710 ) e, + 15 g+l g <Ce (322

( (B3 1nB% )

For d > 3, using Proposition |2.3| related to composition operator, Theorem directly implies Theo-
rem In the two-dimensional setting, however, the Proposition [2.3] fails to work as the regularity index
is equal to 0 and therefore one must be careful when trying to recover the regularity properties for the
original unknowns. Let us explain how to proceed to this issue. For example, concerning ay — &, we have

ay —a=V(w,RY)—¥(0,P, %) Using the decomposition

appy +a—p-

LOO(B%_lﬂB%'H)

\Ijl(wa R7 Y) - \111(0, pa #
aypy +a_p-

13



= 04 P+ 1 = 04 Py 2
= aw\lll O,P, - + G ’lU,T,y w —‘r 83\111 O,P —_—— —‘r G w,r, y
( ( a+p++a,p,) ( ))w + ( ( 7. oo p,) ( ))r

Q4P+ 3
+ (Oy¥4(0, P, — + G°(w,r,y))y,
+ ( ( Gipn ol p_) ( )

where G!, G?, G® are smooth functions vanishing at (0,0,0). We get, thanks to product law (2.2]) that
lay = atllpo <C+(GY,G? G?)(w,r,y)p)|[w, 7yl po

And by Proposition we see ||(GY, G2%,G3)(w,r,y)|p: is under control, thus we can recover estimate
for oy — @ in the space Cp(R; BY). Doing similar arguments for a_, p, and p_, one can finally deduce
Theorem [L.T] and also Theorem [[.2in the case d = 2.

4 Analysis of the linear system (3.17)

This section is devoted to the proof of Proposition E 3.1| for the linear system (|3 . We first localize
in frequencies thanks to the Littlewood-Paley decomposition, then use a renormahzed energy method to
estimate each dyadic block. In the following computations, assume that we are given a smooth solution
(y,w,r,u) of on [0,T) x R%. And (¢j) jcz is a generic sequence such that

<1.

H (95) jez 0(z)

We will consider the following energy functional,

\//Rd 2+ r2+|uj|2+26guj Vrj) for 7<0

and

he + Hg w2 h5—|-H52 9 .
%en2-2u; - V ) for >0
\//Rd h1+H1 +h3+H + |uj|? + 2, uj - Vr; or j

where ¢, ¢; > 0 are constants that will be fixed later on such that

L5 () ~ Nl (ws, 5, u7) (D172 (4.1)

The next two steps will explain how we constructed those two functionals to derive a priori estimates
in low and high frequencies, respectively.

4.1 Low frequencies analysis

Throughout this part, we shall suppose that j < 0. Using spectral localization properties, that is

12 . 12
19750122 < 52 rlae < e,

} then is satisfied in the following way

5hs
we easily obtain that as soon as e < min{ ——— 5hs’ 24

02
jll(wwrj»uj')(t)ﬂiz < L3(t) < ACT | (wy, 7, ui) ()17, (4.2)

14



h@ h5

he h
where C = mm{ 1} Cy = max{h—ﬁ, hj’ 1} and note that
1 h3

he h
C < 8 h5 1< Co. (4.3)
3

In the sequel we will use C; and C5 frequently. Indeed, one has

h h
,C?:/ ( 6 2'+f5Tj2-+’Uj’2+26gu]'-VTj>

hq hs
> o hs 12
”w]HL2 + ||T]||L2 + ||uj||2 - 5@(”2@”%2 + ||1"j||%2)
. he h5 1 012 )
> min{;", 2o SHIwg )z = S (s, wg) 172
and
he hs 12
£3 < plhesllze + 5o lnilEe + a1 + F-eelluslZe + limsllZe)
he 3h5 3
< max {h 2h 2}”(’11)],7"],11,])”LQ <4C2”(’UJJ,TJ,UJ)HL2

Applying the operator Aj to the three equations of (3.17)) yields

Gtwj +v- ij' —I—hldivuj + hgﬂ = ASQ - K
Oyrj +v-Vrj + hydivu; = A 53 (4.4)
Opuj + v - Vu; — hgy Ay yuj +nuj + h5Vrj + heVwj = AjSy —

where K Jl, K]z, K;’ will act as source terms
. . 1.
Kl = [Aj, U]Vw + Aj(Hl divu) + *A]‘(HQ w)
v

K2 [A;,v]Vr + Aj(Hz divu),
Kf (A}, v]Vu — Aj(Hy A, yu) + Aj(Hs Vr) + Aj(Hg Vw).

hg hs
Multiplying the first equation of ( with I —wj, the second equation with s —7j, the last one with

uj, respectively, we get

Lhe d . hohe |lwill32 _ he A
s+ o [ wjdivag + P20 < RO 48l -+ 112

h6

L 122 lldiv o] Lo,

1hs d

hs )
3 hs dt||7"a||L2 + h5/ rjdivu; < H%HLZ(HA S3llr2 + ||K2||L2) h*||7"j||%2||d1VUHL°°
R 3

and

1d . .
sl 72 + ha (| Vgl 72 + (u+ M lldivag[[72) +nllug |72 — / rjdivu; — ha/ wj div u;
th Rd Rd

<lluwjll 2 (1A;Sullz2 + [1EF 1l z2) + w72l div v e

15



Summing up the resulting inequalities together, we obtain

1d hahg ijH%2 2 : 2 2
31 il 2 s B + g I) + P22 R b a3 + Gt N)diva ) + g2

SC2HUJ;’||L2(HA]'52IIL2 1K [122) + Collrill 2 (145 S5l 22 + 155 1 2)
+ llugll 2 (1A5Sall 2 + 155 1| 12) + Call (wy, 75, wg) || 72 [|div o] o (4.5)
We observe that the left-hand side of (4.5)) does not provide any decay information for r. Recovering such

information is our objective in the following lines. Taking the gradient of the second equation in (4.4]),
one find that Vr; verifies

0iVrj + hyVdivu; = =V (v - Vrj) + V(4,53 - Kﬂg)'

Multiplying this equation with u;, testing the equation of u; from ([4) with Vr; and summing up the
results we end up with

d
G | 59 + hall Vi

< halldiv |72 + [ldivug] g2 llo - Vil 22 + hall Apawg [ 2] Vs 2
+lluill2Vrjllez + hell Vwsl 21Vl 2 + v - Vg [ 2] Vgl 2
+ lldive 2 (18530 22 + 165 1122) + V75l 22 (1458 all 2 + (155 ] 2)- (4.6)

Recall definition of £;, by combining (4.5) and (4.6) one has

liﬁg h2h6 HwJHL?
2dt 7 h1
SCszjHLz(HAjSﬂIm + 1K 122) + Collrjllce + eelldiva ]| 2) (1453 2 + [1KF | 2)
+ (gl 2 + el Vil 2) (1A Sall 2 + [ K5 (| 2) + Coll(wy, 5, ui) |72 [|div ol| L

+ hseel Vrjll7e + nllull7e + ha(ul Vgl 72 + (o + Alldivey]|7.)

+ eo(Ralldiv us 25 + hallAur w2 197501 22 + g 2195 2 + Ve 29750 .2
+ eallldiv gl gallo - Vrlza + 9551l galo - Vg 2) (47)

At this stage, we are ready to estimate the right-hand side of (4.7)). Using (4.2) and C; <1 < Oy, we
have

Collwjllz2 (1882l 2 + 1K 1z2) + Callrillz2 (14 Ssll 2 + 1155 1122) + sl 22 (145 Sall 2 + 155 1 22)
<Coll(wj, rj,uy)llz2 (A9, A;Ss, AjSu, Kj, K, K2
20,

<ok 1(A;S2, AjSs, AjSs, K}, K2, K3)| 2.

Since gy < j <0, we have

24’

C26eHdivujHLz(HA'S3HL2 + 1K 2) + el Vrjll 2 (1A Sall 2 + 155 2)

C
<Coer H<uj,rj>HL2(A Ss. AjSy, K3, K3)|| 2 < 525 1(A;S3, A;Sy, K2, K3)|| 2.
Obviously, using again (4.2) we obtain
4Cs
Oall(wj,rj, uz) 72| div ez < 07152 [div | oo
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Owing to the fact that 5 < 0, we use the following inequalities
12 12 12
IVelze < o llusllze, 19l < lrilzes [ 9wgllze < 5 lwlze, (1)
and Young’s inequality to write

_ 12
echsl|divug 7. < 5eh3(g)2||uj||%2 < 6 haegl|u;]|72,
2

8n
emllugll 2| Vrill e < —eellull72 +

5 2
- eV 3,

8

8h2 hs
eche||Vw; || 2| Vrjl 12 < 6@HV%HL2 +3 —eg||Vr;ll3-

- 48hg

5 2
e — el Vrjllze-

eollwjlfe +

Using once more and g < 2 1>, We arrive at

5
5 L5 |lvll =,

. 12
eelldivusllza o - Vrjllze < co( ) lulzzlirslizallvle= < =
1

12 )
eI Vrjllpzllo - Va2 < Ez(g)QIIUjIILZ||7°jHL2HU||L°° < @4? [o]| o~
1
Similar arguments lead to the following estimate:

12 12 ,
My ujllze < =l Vuglze + =+ Alldive]| 2,

)
then, using the fact that 0 < max{u, u + A} < v, we readily have
My wjl7e < 120 (0l V|72 + (0 + Nlldivag]|7e),
and thus

eehal| Ay ujl| 2 [Vrjll e < Ee(h Rl Ap s 72 + ||VT]HL2)

96h2v - s
< h54 eo(ull V)32 + (p+ N[ divug||7.) + g@”ﬁ'”%?'

Inserting above estimates into (4.7) we are led to

1d hohg  48h2  |lwil?.  hs 8n?
5 dtﬁf ( o h56V€z) ]V L~ + =& Vrjll72 + (n — 6hse, — }756@)“%‘”%2
96 hiv .
+(ha — h;‘ ee) (V|72 + (p+ X [[divug|72)
302 1402 .
<G Lill(A;S2, A;S3, A;Sy, K KﬁKﬂhﬂ—CQ~memm+mmq. (4.9)

Let us choose €4 > 0 such that

S5hs 5
24h3’ 24}
hohg _ hahy 483
2h1 — M hs

g¢ < min{—

VEy,
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1 81
T < 6hagy — -
5 S 6hsey hs <0
ha 96h2
o< —
2 4 hs Vet
for example one may take
1 hs hoh h h
£p = 7m{ 1, 25’ 57727 5}.
192 hs’ hihgv’ hshs +n*" hgv

Under the consideration of such ey, we further define

1 hohe hohg h
K *Inll’l{ , hseg, n} (> mln{ 276 5—66(§)2, i
4 hiv 2 °6 2

). (4.10)

S . A
Combining the fact that 6 27|l 22 < |VrjllLz2, the fact that for all j <0, 2%[|(wj, u;)|[22 < |[(wj, uj)|3e,

and (4.2), one is able to rewrite (4.9) as

1d 2 25 p2
72 J
2dt£3 * 402 £
302 1402 .
<G Li|[(A;Sa, AjSs, AjSy, K, K7, K|l + yea £2 ([ div ol g + [|v]| o). (4.11)

Owing to Proposition [2.1| we know that the product is continuous from (notice that s; € (—%, 4 — 1])

B: x B to B® and B: !x Bl to B% (4.12)

Then, using the commutator estimate (2.4)) and (4.12), we obtain that (notice that s; < sy — 1)

. X 1
1K, < CQ—Squ(HVvHB% V| gor—1 + || H divul| g + ;HHQMHBSI)
< C273g5 (ol yg. ol + 1l g Nl o + 1l g 115 )
1832 < €279, (V0] g Vs + | Ha dived )

< 27135 (lell gy Il sos + 1l g el ).

The term Aj(Hg, Vr) appearing in K 33 deserves some particular attention. Using (4.12) we observe
that the product maps

d
Bitltsi—s:  ps2=1 ., pa (note that 5t I4+s1—s2< 5)7

and we infer that
14(Hs V1) 2 < C279g; (1| Hs V1l + | Hs V")
< Co74g; (| H3ll g L IIVr g+ IHs g |97 e )
< 02*%(HH5||B%,1\|7~|1351+2 + HH5||BgH+SI,52 Il ). (4.13)
In conclusion, using once more the commutator estimate and ( -, we obtain

13022 < 027253, (ol g o llmer + Nl g 1A xell s + 1ol g [0 e
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o s gl a + I g1y g 7))
Define Ef = 2517 L;. Recall assumption and by interpolation, we write (notice that v < 1)
2| (K3, KL K312
SC%’(HVUHBg [(w, 7, )|l B2 + CO(II%HBH +wl s + Jull a4+ [Apx ull o + Il 2 + H?“H%sa))
<CE Vol g £5 + ClIVoll g (g5ll(w,r.w) [ pe1 — KLY)
+ Ceoqs (15 1z + 1w, 0) | poror + [ Aunullzes + 1l ersa + s )

where K is a positive large constant to be fixed later.
Applying Lemma from the Appendix, we get

t
4 27 0

<eso(“ETv ) {400 + / " 07) (15255, 50(7)

1
+ IV g (5 1,7 ) (D)l 51 = KLA(T) )

t w w ¢ h
[ (1 + 1 s + s + Al + e + )

Note that [,g(t) may be replaced by supy 4 E; (1) on the left-hand side of above inequality. Thanks to
(4.2) and after summation on j < 0, we conclude that
I

l
H(wvra u) % (Bs1) Tk ||(w7 Ty u)||Lt1(le+2)

<exp( Sor2v ) {Hwn ol + [ 1965 (1w rea) Ol = K'Y £5()

J<0

t w
+ /0 (182, S5, 8Dl ze1 + co( =l + Nwsw)ll o er + [ Aunulles + ez + lrlles) ) }-
(4.14)

4.2 High frequencies analysis

Throughout this part, we shall suppose that j > 0. First of all, recall the definitions of C, Cs from (4.3))
and notice that the assumptions (3.18)), (3.19) ensure that

1
§hz§hZ+H2§th 1=1,---,6, (4.15)
& hg he + Hg 3hg & hs hs + Hsy 3hs
2L 6 6T 6 26 g DL D TS 0 230, 4.16
3 " 3h " hi+H — h — % 3 T 3hs ~ hg+Hsz — hsg — 2 ( )
and
h6+H6) hs + Hjy h1+ hg hs + hs
eI v(i) o <6 6 < Cseo, 4.17
1V (G ess + 19 (G2 ) less, < 6 e < Caeo (4.17)

he + H, hs + H, hi+h hs +h
190 (g ) Ol 100 (25 ) Ol < (67557 46257 ) (91, 0, H 0, Hs, 0, Ho) (1) | 1
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< C3H(t) (4.18)

hi+h hs +h
1 _ 6, 15 _ 3
. h1 . ch3 .
Using spectral localization properties, we have

with C3:=6

s 12 . 24
27%||Vr]| 2 < 32 Hrillpe < gHTjHL%

5hs

144hs’ 48} ([4.1) is satisfied in the following way

thus we easily obtain that as soon as e, < min{——

02
jlll(wj',rj,w)ﬂiz < L3(t) < ACT | (wy, 7, ui) ()| (4.19)

Indeed, one has

2=

2 2o+ [P + 2642 ;- V)

/ <h6+H6w2 hs + Hs 2
ra Nh1 + Hy h3+H
+ enlllugllzz + llrjliz2)

hs 1 C?
Gh Gy’ 6}H(wg,rg,ug)llm> 9 L[ (wj, rj,uj)|)72

2 2
Z 3, ”w]HL2+ 3hs ™ lrjll32 + lusI*

>m1{

and

3h6 3hs

[2< 28
J hs

24
H wjllze + 5= lrilge + llug? + g&‘z(HUjHE +lril72) < 403 (wj, vy, uz)l[7e-

Slightly different from (4.4]), after applying the operator Aj to the three equations of (3.17)), page 12,
we write that
3twj+v-ij+(h1+H1)divu] (hg-l—Hg)y —A52+T,
8,57']' + v 'VT‘]' + (h3+H3) divuj = Ang-l-Tj, (4'20)
3tu]‘ +v- VUj — (h4 + H4).Au7>\uj +nu; + (h5 + H5)VT]' + (h6 + Hﬁ)V'[Uj = AJ’S4 + T]3,

where le, Tf, T3 are commutators defined by

T} = [v, Aj]Vw + [Hy, Aj] divu + ~ [HQ, Ajlw
T7 = v, AjIVr + [Hs, Aj] divu,
TP = [v, Aj]Vu — [Ha, A Ay au+ [Hs, Aj]Vr + [He, Aj]Vw.

he + Hg hs + Hs

Now, multiplying the first equation of ith —————w; and the second equation with ————r
W, plying q (E20) w ol q with o T

we get from (4.15))-(4.18)) that

1d [ he+Hs 5 hohgllwjl?s / .
el 2 h H d .
2 dt R4 hl + Hl w‘j 6h1 1% + Rd( 6 + G)w] v UJ

1 h H, h H, h H, . h H,
§2/ {wfat( 6+ 6)+ 6+ 6w d1vv+w v - V( 6+ 6>+2(Ang+Tj1)ij}
Rd

hi + H; hi+ Hy hi+ H; c1+ Hy
he + Hg he + Hg . he + Hg
<l {0 (5o ) + g i ol + 9 Gz )| ot}
<[lw;llz2 1 ||9 ;A s Lo ldivllze + h o, Ll
he + Hg ;
tlwlze| g | (1452l 22 + 1T 22)

20



<|lw; 72 (CzH(t) +3Cy|div o~ + C3CoHvHL°°) + 30wl 22 (18582 2 + 1T ] 2)

and

1d hs + Hs / .
S T Ml he 4+ H:)rs divs
2dt Jpa h3+H3rj + Rd( 5+ Hs)rj dive,

zl/d {r?8t<h5+H5) + s +H5r2-divv+r?v-V(h5 +H5> +2(Aj53+T2)h5 1 }
R

2 hs + Hs hs + Hg / hs + Hjs J hg—l—ngJ
hs + Hj hs + Hs . hs + Hs
<lrs e {0 G ) e+ D I el + 9 G2 | el
—HTJHL2 t h3+H3 00 + h3+H3 LooH IVUHL + v h3+H3 LooHUHL
hs + Hsy

+ 2 | GIAsSallz + 1T22)

hs + Hs
<12 (C3H () + 8Calldiv vll g + Cheollollz ) +3Callr (14,8512 + 12112).

Multiplying the velocity equation with u; and observing that

— /]Rd<h4 + H4)AM7,\UJ' CU; = M/I:gd VUj : V(<h4 + H4)u]') + (,u + )\) /I‘{d diV’LLj div ((h4 + H4)Uj)

ha
2
= (Wl Vaullze + (o4 Alldivagl| 2) [lug || 22 [[V Hal Lo,

hy .
> 2l Ty 32 + S+ ) div e 3
we get that

ha

5 (1 + A Idivug |72 + 0 lluill72

hy
5@”“3‘”%2 + EMHVUJ'H%? +

- / (he + He)w; divu; + (hs + Hs)r; divu;
R4
S/ {‘Uj‘Q divo + (A]’S4 + Tf’)u] + w; Uj - VH(; + T;uj; - VH5}
Rd

+ (I Vuglipz + (o + M divug || p2)][wl] 2 [V Ha | 2o
<[l 7 1div vl o + gl 22 (128 2 + 1772 + llw; 22|V He | oo + 175 221V Hs || )

+ (I Vuglirz + (o + M divug || p2) ][]l 22 [V Ha | 2o
<o 3 lidiv oll o + collugll g2 (12 + gl z2 + pll Vet 2 + (o + V) ldiv gl

+ sl 2 (1884 22 + 1T | 2)-

Summing up the resulting inequalities together, we obtain

+1 gl

1d he + Hs 5 hs+ Hs o ' 2) hohg ijuiz
2dt Rd(h1+H1wj h3+H3rj+’uj’ + 6h1 v

ha
2
<||(wj, 75, u5)ll72 (C3H(t) + 3C:||divol| L~ + CzhoH“HLoo) + 3Cs||lwjll 2 (1| AjSall 2 + 1T} |1 £2)

+ 3Ca Iyl (14 Sall s + T2 c2) + g2 (1A Sall 2 + 1T z2)
+ collugllze (lhagllze + Irsllze + Va2 + (u+ Vlidivallz2). (4.21)

ha )
+ ?MHVUJ‘”%? + = (p+ )| divu]|7.

Observe that the left-hand side of (4.21)) does not encode any decay properties for r. For this, take
into account that Vr; verifies

Oy Vrj +V (v Vry) + V ((hs + Hs) divu;) = V(A;S5 + T7). (4.22)
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Hence multiplying this equation with u;, testing the equation of w; from ([@20) with Vr; and summing
up the results we end up with

d
G |9+ hall s

:/ {v -Vrjdivu; + (hs + H3) |divuj]2 — (v~ Vuj) -Vrj + (hg + H4)A“7>\uj -Vr;j
R4

—nuj; - VT‘]‘ - (hﬁ + Hﬁ)ij . VT‘]‘ - (Ang + TJQ) divu]‘ + (AjS4 + Tjg) . V?”j — H5|V7“j‘2}
<2[[v)| oo [ V7l 2| div gl 2 + (hs + | Hslloe) | div ul[72 + (ha + [ Halloo) [ A x|l 22 V75l 2
+ 0 [ugll 2 V75l 2 + (he + [ Hl| oo ) Vawj | 221975 22 + (14585122 + 177 22) div ug]] 2

. hs
+ (14;Sall 2 + 1T} Nl 22) 1Vl 2 + 3”V7"jlliz- (4.23)

Using the spectral localization of 7j,u; and g, < we have

48’
—2j . 12 2

en2 2|oll e [Vl p2lldivugll 2 < 2en (=) lJvlloollrjll 2 lus]l o2

< lollze(llrilZ2 + llujliz2)-

Using Young’s inequality and (4.15)), we have

12 ,3h
en2” ¥ (hy + || Hs | po) [ div |72 < en( 5 )? 3|| ujl|z2 < Ohsen|ujl|7s,
o _ 3
en2 ™ (he + || Holl ) [ Vwjll 2| V7s 12 < en2 2j7‘|ij||L2||V7ﬂj”L2
- 16 ,3he 4
< en2 2( o IVrillee + 5~ I (- [ Vwjll7)

) h2
< 232727 T 12+ 2568 2 |y 2
16 hs

Moreover, taking into account that max{u, u + A} < v we obtain that

12 (ha + || Hall o)l Ay sl 2 V75 2

3hy 12 .
<en2 JTgmnwjuLa + (et Mlldiv e 2Vl
_ 6 3hy 12 .
<en2 I % e Cgt Rl Vg + oo+ Vv )

h h2
<2~ % 5€hHV7“g||L2 + 512—V5h(MHVU3HL2 + (4 A)ldivu]72).

As j > —1, we use the following rough inequalities:
en2” I |luyll 2| Vrjll e < ep27% ( H wjll72 + ||VT]||L2)
hs 64772
—92 2 2
<2 ]T6€h||vrj|‘L2 + T55h||uj||L27
o ) .12
en2 (1483l 2 + 1 T7) | 22) ldiv w2 < en2 2”323(\\Aj53||m T 22wl 2
24 .
< Fenllwgllz2 (14 8sll 2 + 1T7) ] 22),

12
en2 P (18;8ull 2 + T 2)1Vrsll 2 < en2” ZJ*QJ(M Sallze + 1T z2) 75l 2
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24 .
< Zenllmillza (145 Sallz2 + 11T7) 1 2)-
Inserting the above estimates into (4.23)), one has
rd h
_9 5 2
w22 (5 [ V) + 200 1)

2 2

h 64n
<lollzee (llrslize + luslize) + 256]7?6/1”%\@2 + (Ohaen + = en)lus72

24 . 24 .
+ penllugllzz (14 S5l 2 + IT3)l2) + & enllrillz2 (125l 2 + IT7)11z2)

h? .
+ 512 wen (ullVaslz2 + (1 + N div s Z2). (4.24)

Remembering the definition of £;, summing up (4.21) and (4.24) and keeping in mind that ¢ < %,
we obtain

1d .,  hohg hZ w7, 0 h5 647> )
5@ j + ( 6hy — 256h5 ) + 274 = h”VTJHLz + (7] 9hszep, — ngh)HujHLQ
hy h3
+(5 - 512h—ush)(uuwj\|p + (u+ )\)||d1vu]||L2)

< l(ws, g, 43) 122 (CsH(8) + 3Cslldiv vl e + (Caco + 1) o]l

+ collugllze (gl ze + lrsllze + I VosglLze + G+ N)ldiv g .2
+3Cal| (g, gy 0) 211852, Ay S5, Ay, T T2, T2 (4.25)

Let us choose €, > 0 such that

. . bhs b
< - -
en < min{ s T8 b
hohg _ hohg hZ
< — 256—=>
12h; — 6c¢ hs Veh:
1 647°
— < n—9hzep, —
5 = n 3€h hs Eh,
hy  hy h?
— < = 12—
155 ) Ve,
for example one may take
c 1 . {h5 h2h5 h5’l7 h5 }
——min
" 3072 hs' " hihev’ hshs +12 hav

Comparing to £, which has been defined in the previous part, we see that 1—165g < ep, < gg. Thus, one has
2_2j%shHV7’jH%Q > 25654”7”] 132. We now update the definition of  in (4.10) by

1 . h2h6 . h2h6 h5
- = h > —_— — ). 4.26
556 min{ W 5¢¢, N} (> min{ ) €0, }) ( )

12h; v’ 256
Then using (4.19) we are able to rewrite (4.25)) as

1d 9 :
5 dtcﬁ + Fﬁf gﬁcg (CgH(t) + 3C,||div ||z + (Cseo + 1)\\UHLOO)
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3ho
Cr
L 3G
e

Lj (ijHL2 + [l p2 4+ pl Vgl 2 + (o + )‘)HdivujHLQ)
Z=L 1A 82, AjSs, AjSy, T T, TP)| 2. (4.27)

Now, we start to estimate le, sz, Tf, which require some particular attention. For example, the term
[Hs, Aj]Vr in T?. We write
[H5, Aj]V’F = [Hg,, AJ]VTJZ + [H5, Aj]Vrh
and by Proposition [2.2] we have
2% |[[Hs, Aj] Vil 12 < Cql| VHs || g V7"l o1 < OV Hs|| g lI7 (52,

2% ||[Hs, Aj) Vit 12 < 2607 ||[Hs, Aj]Vr!| 2
< CqlIVHs|| g V]l g < CailVH|| g ll7l e 42

Above, the conditions that
d
s1 + 2, So9 < 5 +1

are crucial. The other terms can be estimated using similar argument, we thus obtain
1T} < 029, (V0] g Vel peas + [VEL] g lldiv ullgeas + [Vl g (1 Weren + 12 )
gL = J BY B#2 Iy B2 AL CE e L 121 )
1722 < C27*7g5 (I Voll g V7]l s + IV Ha g v ] ear)
and
- l h
T} 2 <C27% (IIVUII dIVullpea-1 + IVHa|| g | Apsul pea-1 + IVHs|| g (7l e +2 + [I7[1552)
+ IV Hll g V] oo ).
Thanks to smallness assumption (3.19)), we gather that
2521 (T, 72, T5) | .
h
< Ogjl[ Vol g [(w,r, )] B +CCO%<H(w u)||B=2 + ||( w, Al goa—1 + (7] o2 + IITHBsz))
< O[5l g + 1Tl (0l — K20,
W Win ¢ h
+ Ceo g (Wl + 1 Aur vl s + (1 lern + 1 Wey) + (U lerss + )

Define E;-L = 252/, and use Gronwall’s Lemma which implies that

h
402/£

2ttt + V) + V)

< exp(c
{£h0) + /0 ) (1082850l + 190 g (45 1m0 e — KL )

t
w e W h ¢ h
+/0 co([l(w, w)[|B=2 + | Aux vl a1 + (I e er + 11 Wea—1) + (7l a2 + H?"I!Bsz))}-
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Note that E?(t) may be replaced by sup ,C?(T) on the left-hand side of above inequality. Thanks
to (4.19)), we conclude after summation over j > —1, that

H(w,r,u)H%m (B52) + K ”(’Uj, T, u)H}LL%(B%)
<o CEE (un + Vi) + V)

1

{110, 7o, w0) s + / (12,80, S0P e + IV g (1w )7~ K Y £20)))

Jj=-1

t
we Wih ¢ h
+ o /0 (w2 + MAup tllers + (s + 15 1) + (rlfeiea + i) ) }-
(4.28)

We are now going to show that inequalities (4.14]) and (4.28]) entails a decay for w and u. In fact, one

finds from and (4.19) that
[ 190 (@l - &S £500) + [ 19004 (1 rad)s - & Y 240)
J<0

j=-1

1K , )
/ Vo(r)]| 4 ||(w7731&)(T)||1_L351m.ﬁzs2 - (Z 259 | (wy, iy, ug) | p2 + Y 282]||(wjvrjvuj)”L2)

B2 3
<0 j>-1

< [190i 54 H(wmu)(f)HBsmm—ClﬁK(H(me(T)HBsm+H(wmu)(7)HBsz)SO

12
when we choose K = o Thus, we conclude from summing up and - ) that
1

10,7, W gy + 100 0 5 (10 0y )+ 107, )2 )

<exp ( CCCQ’QZ (C3H(t) + max{Cs, 1}V(t))>

1

t
S S [ A (A TG Pt
0

t
w ¢ h
+ o /0 (IS st + IAun ull s + 1@, W) o iippes + (rlfeiea + i) ) }-
(4.29)

4.3 The damping effects and estimation for time derivatives

We will now recover uniform estimates concerning the decay and time derivatives of our solutions. We
have the following lemma.

Lemma 4.1 Under the hypotheses in Proposition [3.1] then

t w w t
/O(H(atw7l/)H£BSI +H(5twyy)\|}§521)+/0 (11 (Dsut, vy mut, D) |41 + | (D, s, Dyr) |1 )
t
+ /D (H,LLA’U,, (:u + )‘)VdiVUH%S1+1 + HMAU, (M + /\)VdiVUH%wfl)

t t
C(H(woﬂ’o,uo)HBﬂrwBsz +/ 10, Vo)l ¢ [l (w, 7, w)|[ Borrpe2 +/ 1(S2, 83, 54) | Bs1nB=>
0 0

[ Urln + ). (@30
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Proof. Let us first look at the equation of w in System (3.17]), which reads

h 1
8tw+v-Vw+72w:—;ng—(hl—i—Hl)divu—i—Sg.

We infer from Proposition (take 71 = s1,72 = s9 — 1) that
()l ger + 2 / [w(P)ller < o llpes +C / [o() g 0]

+ / (I Ho wlfer + 10hn + ) divefn + 1150541
0

and
h t t
h 2 h h
0 / fo (g < [0l + C / 1901y ol
v -Jo 0

t 1 ]
+ /0 (1= Hz wleps + (s + Hy) divull g + 1Sl ear )

By assumption (3.19) and s; < so — 1, one has

1 , _C Co
Sz wlps < | Hall g wlps < — “Z(wlfer + lw]e,-),
I(hy + H1)div ul|gs < C(hy + [l @) l[ull porer,s

Cey
*I\szllm 1 < *I!Hzll gllwlpsr < — —(lwlfsr + lwle1),

(h1 + Hy)divul g1 < Cha + [[Ha g)llull 5.
Assuming that ¢y < ;%, we conclude that

@l + 10O + 22 [ s+ ) )

t
< Jlwoller + [lwolles 1 +C/O (Ioll y¢ lwll gorer + IVl g lwll goa-1)

t t
e /0 (el or s + ulle2) + C /0 (1Salltes + 1Salar) . (4.31)

The estimate of the time derivative comes readily from the equation of w, we have
! l h
| ool + 0w rmn

t
w .
< / (llv - Vw||ga + [|(he + H2);H£BS1 +[|(h1 4 Hi)div By + [|S2]| 5o
0
h Wik S h
10 Ty s+ 2+ F) 2 s+ s+ v ey o+ 12l

<C t E 4 S l S. h

¢ 1l g 1wl psirinpss + (Il [zs + = ||BSQ 1) + llullpsiinpse + (152l 51 + [152]52-1) ) -
This combined with (4.31]) implies that

ha

¢
ha
lw(t) | Be + l[w(t) ey + 4V/0 (o (@B + lw(r)ey-1) +

22 [ Wl + 1wl
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t
< Jwollfer + [lwoll e + C/O ([oll yg lwllBs1npe2 + [[Vol g l[w]p2-1)

t
+C /0 (el gersnee + (12l + 1520500))

which further gives

@ t

ha [t
w , (1w (7)1 + 1w (7))

10 (10pw]3e1 + [[Bewl| ey )

¢
¢ h
< [lwol[s1 + [[woll =2 +C/O [(0, VO)ll g lwllBornpe

t
0 h
+C [ (Iulgasanpes + (ISalf + 1Sallyras)) . (@432
Next, we consider the equation of u in System (3.17)) and we write that

Ou+v - Vu — hgpAu — hy(X + p)Vdivu + nu
=H uAu + H4()\ + M)Vdivu — (h5 + H5)V7' — (hﬁ + HG)Vw + S4.

Applying Proposition (take 71 = s1 + 1,79 = s9 — 1) to above equation gives that

t
h
()| geren + ()| e—1 + M/O (IVul ey s2 + [Vl bes)

t t
. : ¢ h
+(A+/~t)/0 (Ildiv e, +2 + ||d1vu\|§§52)+n/0 (lullgsy+2 + llullgss-1)

t t
J4 h
S Wolfpn + ol eams + | (0l g slellpeipeas + 1ol g Il ssemes) + | 1Slesss +14l
t
b [ (s O ) AV s+ s+ )T e + (e + Ho) Vol
0
t
[ (s O ) iV s + s+ H) 97+ [+ Ho) V1
0

Then we use the low and high frequencies decomposition, and product law (2.2)) to estimate (notice that
s9—1<s1+1)

pll Hadu| oy < (| Hadw ||y o0 + [ HaAu"| gy 1)
< CpllHl g (1Yl a2 + [V Jpez)-
Similarly, we have
A+ ) [ HyVdivully, oo < OO+ )| Ha
1(hs + Hs)Vr| ey 41 < Clhs + || Hs|
1(he + Ho)Vuwl|e, 41 < Clhe + || H|

g ([ div a] oy 2 + [[divul|he),
l h
YTl g+ + 7l B2 ),
)

l h
(lwllgsr+2 + lwllEs2)-

B

d
B2
d
B2

For terms of high frequencies part, using product law (2.2 and low and high frequencies decomposition,
and the fact that so — 1 < s1 + 1 again, we have

W H Ay s < Ol HaAG s + [ HiAd [l 1)

< Ol Hall g (IVull gey2 + [Vl Bs2)

d
2
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and similarly

A+ )| HaVdiv a1 < C(A+ )| Hal|
(ks + Hs)Vr|es—1 < C(hs + || Hs|

g (Idiv ey +2 + divul|Es),
¢ h

s psrez + lI7l[Be2),
)

(e + Ho) Va1 < Clhg + 1 Holl ) (leolfpessa + 0l )

B

Choosing ¢g small enough, we see that

t
14 h ¢ h
[u(®)[[gsr+1 + [[u(@) [ gy +/~L/0 (IVullgsy+2 + [[Vul[ps:)
t t
. ¢ . h J4 h
+(A+u)/0 (ldivul[ s +2 + ||d1quBS2)+77/O (lullgsi e + llullgoz 1)

t
¢ h
< C(lluollgsr+1 + lluollgsr-1) +C/O Vol ygllullpsrtrnpea—r + [0l Lg [ullB=2)

¢ ¢
l h l h
+C [ ISl +18ila) +C [ (107 eren + o).
The estimates of the time derivative dyu will be obtained through the equation of u. Notice that

llv- VUHstlH <|lv- VUKH%sﬁl + v vuhHgsrl

0 h
< Clloll g (lullgsr+1 + llullgs) < Clloll g lull por+1npe
and
h
[0 Vul[gs, -1 < Cllvll g [lullp=:.

Then one immediately has

t t
/0(Il(atu,nu)l%s1+1+||(3tu777U)||’]§sz1)+/0(HMA%(u+/\)VdiVUIIEBsﬁ1+||MAu,(M+>\)VdiVUI|%sz1)

¢
L h
SC(IIUollBsﬁHrIIUOHBSQ1)+C/0 (IVoll gllull parernpee—t + llvll g llull o1 ps2)

t t
+C [ Uil + 1Sila) +C [ (U0 risn + N00)lea) . (433)
At last, we show estimates of the time derivative of r. Recall that r satisfies
or = —v-Vr+ (hg + Hg)divu + S3,

thus we have (note that s —1 < s1+ 1)
! h ! h h h
L0t aes < [ (1 Vs + 10+ Ha)iv el + 151

t t
l h h
<C [ (1ol g lens + s+ 1l )l + ) + [ 100

and

t t
L 10t < [ (1 Fllres + 103+ o)l + 15000
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t
<C [ (1ol g rlrea + rla) + G+ [l )l 2+ Nel))

t
4 /O 1950y

Combine , and above two inequalities, keep in mind that n > 1, we conclude that is
satisfied. m

Completion of the proof of Proposition Multiplying by a small constant (far less than
k) and adding it to . Then by applying Gronwall’s lemma and taking c¢g small enough, we are able
to obtain (3.20]). The proof of Proposition is completed. W

5 Proof of Theorem [3.1

Here we expose the main arguments one has to use to obtain the existence of a unique global-in-time
solution for System . We follow the scheme explained in details in [I7]. As we mentioned in the
Remark we are not able to consider the case n — oo. For simplicity, we take n = 1 in the sequel of
the paper. In this section we set the value of the regularity indexes s; = % — 1 and s9 = g + 1, it’s the
only setting in which we can derive our global existence result. Note that the couple (s1, s2) satisfies the
conditions in Theorem [3.1]

5.1 Existence scheme

Here we expose a classical iterative method to build a solution.

5.1.1 Iterative existence scheme

We consider the sequence (Z")pen = (y™, w™, 7™, u™)peny with smoothed out initial data

(5 wg, 76 ug) = (Snyo, Snwo, Suro, Sno)
where S, f = ngn Ajfj and define the first term of the sequence Z° = (0,0,0,0). Then, assuming that

Z™ is smooth and globally well defined, we choose Z"*! as the solution of the following linear system (the
existence and uniqueness of solutions for such system can be found in e.g. [4])

atynJrl Ry vyn+1 — 0’

D!+ un - V! 4+ (Fy 4 GY)diver ™! + (Fy + Gy) =
n\2

O™t yn Vet 4 (Fg + Gg)div T (w”) ,

_ 14 _ _
O™ " - VT 4 (Fy + GVt 4 (v — 42 (Fo + GE) V™ = (Fy + GB) Ay u !

n+1

=0,

<yn+1, w”“, 7,n+17 UnJrl)t:o _ (yg+17 w(r)z—i-l’ Tg-i-l’ u8+1)

(5.1)
where G £ G;(w™,r™,u™) for i € 0,3. In the next part, we prove uniform estimates for Z" in E5L5+
First step: uniform estimates
We shall use the following classical inductive argument:

We claim that there exists constants ¢ and N, such that if we assume that ”ZO||B%_1HB%+1 < ¢ then for
all n € N, we have
||ZnHE%—1,%+1 < Nec. (52)

29



This is obviously true for n = 0, let’s assume that it is true for some fixed n € N and prove it for n + 1.
First, looking at the equation of y"*! and applying proposition with a =0 and f =0, we get

t T
n+1 n+1 n
I gt + [ 100 07 < ol g 50 (€ [ 1 (5007
Then, using ([5.2)), we get

t
Hyn+1 (T)"L$(B%7103%+1) +/O H@tyn-f'l(T)HB% dr S CeNc' (53)

Then, to recover some estimates for (w™*!, 7"+ 4" *+1) we need to apply Proposition [3.1|to (5.1]) without
the equation of 4™, to do so, we have to show that for all i € 0,3, we have

G |Lge(zy < CNe. (5.4)
To that matter, expressing p as a function of r, w,y and using (5.2)), we get

o™l 7o <o~ +[lw"l- + 1yl

LOO(Bif—lmBif+1 Lm(Bf_lﬂBTH L“B?_IQB?ZH))
< CNec. (5.5)

Bf_lmBT"l)

Next, as the G; are smooth functions vanishing at origin, we can apply the composition Lemma and,
for all 7 € 1,3, obtain

1Gi (" w™, g™ < O™ w™, v+ < CNe. (5.6)

d d d
LOO(B*‘%B?“) Lge(B2 'nB21) —

This combined with the inductive hypothesis (5.2)) tells us that (5.4) is satisfied.
Therefore, applying Propositions to (.1) and adding the resulting inequality to (/5.3]), we obtain
1 1 1 1 ! 1 1 1
IOl e+ [Ny dr

t t
Bé - d7+/0 H“nH(T)HB% dr +/0 ||(6Tyn+1’87wn+1’6trn+178tun+1)(r)||3% dr

t
CNc n n
< Ce 4 exp(CV (1) (I, w01yt + [ I

(w")?

ICOPRRIYa ]

where V" (¢ —/ ZHath g+‘|vn(7)|’

we need to control the right hand side terms using an inductive argument. Defining G} := Fj — Fy, thanks

o (5.6) and (5.2)), we have

d_ 4 ) dr. Then, in order to obtain the desired estimate,
B2nBzt!

o () i o
I g < CEIGE, g))|\w”HLOO(Bg_1mBg+1)||7||L1T(Bg)
< COHIGH i IZ" g g
< CN?&.

¢
Concerning V"™, it is clear that / |v" (7')||Bd dr < Cec. Thus we are left with controlling the terms
0

d
2nBzT!

with time-derivative. For all ¢ € 0,3, we have

w_ 0GL, o, 0GY oG
a6} =5 SO+ L (5.7)
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Using that the G are smooth functions and (5.2)), we obtain

t 3
/Ozlmta?(t)nB% < ONe

Gathering all those estimates, we obtain

t
12 g g+ [

Thus, choosing ¢ small enough and a suitable N, the inductive hypothesis is fulfilled for n 4+ 1, and thus
for all n € N.

wn+1

t
C
Iyt gt + | Il < O+ N2,

Second step: Existence of a solution

Here we show that the sequence (Z"),en converges in D'(R; x RY) to a solution Z of ([3.15) which has
the desired regularity properties. The following lemma will imply that (Z"),en is a Cauchy sequence in
a suitable space and also the uniqueness of the solution.

Lemma 5.1 Let U = (y1,w1,r1,u1) and V = (ya,wa,re,u2) be two solutions of (3.15)) having, respec-

d_q.d -
twely, Uy and Vg as initial data and such that U,V € E7 batl We set V. =U —V, it satisfies
HVHETg_l,g < C(IVoll jg-1 e + R(T)HVHE;%_L%) (5.8)
ith R(T) = ||V ! ! 2 1% !

with R(T) = VIl oo pgornpgry + o lwilly pg) + PLLLI N WV o 58 -1mp S0 w2l g
Proof. Let first consider the case d > 3. Observe that V is a solution of

8152} + ug - Vg = ﬂv_y% B

O + uq - VW + (Fl + Gl(wl,T‘l,yl))dinL + B =R+ Ri(U) — R (V), (5.9)

O + w1 - V7 + (F3 + Ga(wi,m1,91))diva = Ra + Ro(U) — Ra(V),
ot +uy - Vi — (Fo + GoJ)AM,)\fL + nu + (F() + G()J)Vf + ('y+ — ")/_) (F() + G071)VU~) =TR3

where

Ri1 = —uVwy — (Gi(w,r1,y1) — G1(wa, T2, y2))div ug,
Ro = aVry — (Gz(wi,r1,y1) — G3(wa, 72, y2))div ug,
Rg = —uVug — (Go,l — G072) (—AH)\UQ + Vry + (74 —v—)Vws),

w2

w
Ri(U) = —GQ(wl,Tlayl)jl and Ry(U) = —F4(w1,7‘1,y1)71-

From similar arguments as for system ([5.1]), we can apply Proposition to the three last equations
d
of (5.9) and Proposition |A.2| for the equation of § in the case r| = 5~ 1 and ro = 20 e obtain

~ t ~
Wlgas < (€ [ V) (100050, 0

t
+/0 [(@Vy2, R1, R1(U) — R1(V), R, R2(U) — R2(V)’R3)”B%—1m3%)
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where V(¢ Zuat (wrrr )l g + lall g

(5.7), it is clear that there exists a C' such that

/0 Vi) <
w2

w1 w w1
R(U) — R (V) = —Ga(wy, 11, yl)* + Gz(w2,7“2,y2)71 - Gz(w27T27@/2)* + Go(wa,72,y2) — >

Bdpdi Again, using from the smoothness of the G}' and

Concerning the source terms, since

and similarly for Ry, using composition Lemma [2.3] for i = 1,2, we obtain

1 ~ 1
IR0) ~ RVl g S lhwnll g 171+ g1V g

d
B2

1 ~ 1, .
2 ol g1V + g o, w2) g IV g
Similarly

1
17:(U) = Ri(V)] S *leH gVl g ;H Wl eIVl

377 Bff

+;Hw1H;%HVHBg4 + ;H@HBgH(whW)H ¢Vl -

Using composition Lemma Corollary 2.66 from [2] and product law we obtain

T
| IR AR AR g+ g 17U 1ty Vs

Gathering those estimates, we obtain

71 go0g < CUTl g g + ROV 1)

Which is the desired estimate in the case d > 3. The above proof fails for d = 2 as some right-hand
side terms have to be estimated in Besov spaces with a regularity index equal to zero (such as e.g.
Ga(wa,re,y2) — Go(wy,71,41)). To overcome this difficulty one must adapt the proof to Chemin-Lerner
spaces with third index 7 = oo and to estimate the difference of solutions with logarithmic interpolation
inequality. For more details you may refer to [2] p. 445-447. m

Applying Lemma with U = Z" and V = Z"*! and using that thanks to the uniform bounds (5.2)

the right hand side of (5.8) can be absorbed by its left hand side, we infer that (Z"),cn is a Cauchy

. d_qd
sequence in B2 bat!

Ed1+1

and therefore there exists a Z such that (Z") converges strongly toward Z in

We are now left with proving that Z is a solution of (3.15)) and indeed satisfies the stated regularity
properties. The proof of such results are quite classical, we would like to omit details here, and advice
the reader to the lecture [I7] and the paper [15] about the study of Navier-Stokes equation.

Third step: Uniqueness

As a direct consequence of Lemma [5.1] the following result implies the uniqueness of our solution.

32



d_q1.d
Lemma 5.2 Let U andV be two solutions of (3.15)) with the same initial data such that U,V € E} batt

There exists a constant K > 0 such that if

<K (5.10)

HVHL%O(B%*lmB%H) =
then U = V.
Proof. Let V =U — V', since Uy = Vp, lemma implies that

5-15
ET

IVl 4oy <CRDIVI 4,
ET

with R(T) = ||V||

As we have

1 1
+ l(ws,ws)

d 3

d d d d. .
LL(B2) L¥(B27'NB2) LL(B2)

1
+
v LL(B

lim SUPT—>O+R(T) < CHV||L%Q(B%+lmB%—1)7

choosing K such that CK < 1 we deduce that ||V| ¢_1,¢ = 0for aT > 0 small enough. Therefore,
EZ

U=V on [0,T]. Then, a classical bootstrap argument allows to show that it is also true for T'= +oc. m

6 Relaxation limit

In this section we assume d > 3 as they are some limitations for d = 2 due to negative regularity indexes.

6.1 Recovering a solution for the Kapilla system

Here we establish the strong convergence locally in space of system to system , which proves
Theorem First of all, with the solution (a.,a—, p4,p—,u) described in we will derive the
equation of a4 from System by following an idea of Bresch and Hillairet in [§]. In System (KJ), the
second equation also reads:

at(Opt+ +u-Vpi + prdivu) + pi(Greg +u- Vay) = 0.
Multiplying this last equation by P} (p4) (notice that py Pl (py) = v+ Pr(p+)) we get,
a+(8tP+ +u- VP+ + ’y+P+divu) + ’)/+P+(8t(l+ +u- Va+) = 0. (61)

Proceeding similarly with a_ p_ and subtracting the obtained equation multiplied respectively by a_ and
a4, we obtain:

(v —=-)ata-
V+0— + V-0
Taking this equation back to (6.1]), one finds that System 1D is equivalent to the following system

ooy +u-Vay = —

oy +oa_ =1,

Oy +u-Vay =— (O = 7-)ava- div u,
’Y+047ﬁ|; V-t
OGP +u-VP=—— =0 giv,
Yo Y-y (6.2)

p(Ou+u - Vu) + VP + pu =0,
p=aipyta_p,

P =P, (ps)=P-(p-),
(a+,a_,P+,P_,u)\t:0 = (a+0,a_0,P0,P0,u0).

\
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For simplicity, we use PY to represent P4 (p% ) respectively. Since the solution (o', o, p%, p',u”) is
regular enough, the following equations for PY can be obtained rigorously like in Section 3, we have

v PV
QP! +u” - VPY + 7. PY dive? = 15 E- = (pr _ pv)
and thus
ala? ala? )
~ (PY —PY) = T AT P ol P (8,:(Pjﬁ—PE)+u"-V(Pjﬁ—PE)+(7+PJZ—7_PE)d1v u”). (6.3)

Substituting equation (6.3]) to the equation of o/, P{, we have
af +a? =1,

v U PY — ~_ PV
ata1+u'f-va1_rl(at(Pz—Pz)+uV-V(Pg—Pz))—‘”a‘('” P G,

Yol PY 4 ~y_af PY

Y4y-PY P .
QP! +u¥ - VPV =T (at(Pz —PY) +u¥ - V(PY - Pz)) S o div
Y4y P{PY :
8PZ+u”-VP£:F—1(8 Pr— pv +u”'VP”fPZ)f divu?,
; (T2 = 1) (9(PY ) (PY ) R Ry

p¥ (Opu” +u” - Vu’) + VPY 4 pYu?’ = A, \u”,

p’ =l ph +a’p”,

PY = o PY 4+ a” P?,

\ (ai,ai,Pi,Pf,u”)|t:0 = (O‘-V&-Ovazmpiovpymug)

where

ala” ' yyal PY
Iy

Fl =

Ty a” PY 4~ af PY’ T i’ PV y_al PV

Here and next, I'; are some regular functions of variables (o ,a”, P¥, P) and T; := I';(ay, a_, P, P).
Thus by Proposition 2.3 we have

|T; — Iy < C|(a¥ — ay,a” —a_, Py — P,P" — P)| <CM;. (6.5)

LOO(B%_lﬁB%'H) - Lw(B%—lmB%“) -

1
From the bounds (6.14), we see that —(P¥ — P") is uniformly bounded in L'(B %) Therefore, 0;(PY —
v

d d
PY) converges to zero when v goes to zero in the sense of distributions, and the product law B2 "' x B2 —
Bi! yields

[u” - V(PY = PO | pay < Cllu”]]

174 1%
i HP+—P_HL1(B¢ —0, as v—0.

)
In particular, this implies that the first terms in the right-hand sides of equations of o, P{, P” converge
to zero respectively in the sense of distributions, since it is easy to find that I';,T's € L (R, x R%).

At this stage, with the uniform bounds and in hand, one may perform the classical weak
compactness method to show that there exists a function (o&, al | Pﬂ, PY %) such that

L(B%)

(0% —ay,a® —a_,P? — Py, P° — P_u%) € C(R*; B2~ n B5HY),

(o, a2, Py, P’ u") — (O¢+,a_,P£,P9,u0) in L (Ry xRY) as v —0.

Moreover, with this strong convergence one can further show that (agr,a(l,Pﬂ,Pg,uo) is a solution

to the Cauchy problem (6.2). In virtue of the uniqueness result in Theorem [I.1} we conclude that
(@%,a%, PY, PV u0) = (ay,a, Py, P_,u).
However, the rate of convergence is not very clear, and we shall work on this direction in the sequel.
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6.2 Convergence rate
6.2.1 Presentation of the problem and strategy
To tackle this problem, let us first define the difference of two solutions by
(0o, da_,6p4, 0p—, du):= (ol —ay, o’ —a_, p§ —py, p —p—, u”’ —u).

We have to admit that it seems hard to obtain decay rate for the terms with 0;(PY — P¥) in the system
, to avoid this problem we will replace the equation of P{ by the equation of Q% := PY —I'y(P{ —P").
Moreover we see that in the equation of day there will be a linear higher-order term of du (i.e. divdu),
so instead of the equation of dary, we will consider the equation of Y and Y, . In other words, we will
consider the following differences

14 v
0Vy =P Wlr 50— PV Ty(PY — PY) - Py, (6.6)
afpl +alpl  oqpyrtap-

so that we have the obvious relationships

v oo’ po apa”
Sy = oy, L L L LA, P,
PypP— PyP— Py pP—

§P_ =P — P_=6Q, + (I —1)(PY — P¥),
§P:= P" — P =§Q, + (Ty — a”)(PY — PY).

Notice that we also have
5OZ+ +da_ = O,

1 a1
Spxr = (A7 PY) ™+ — (77 P<)*, (6.8)
dp = (p — p”)day + aydpy +a_dop_.
Using System ((6.2) and System (/6.4)), we obtain the following system for (§Y,,0Q+, du)
8155Y+ +u¥ - V(5Y+ = (551,

016Q 1 +u” - V6Q + (Ts + (T3 — T's)) div du = 65,

1 1 1 (6.9)
8,5(5'& +u” - Véu + ou + (j + (7 - j))V5Q+ = (5S3,
popr P
((5Y+, (5Q+, 571,)’75:() = (0, 0, 0)
where
Iy = Y+ Y-P{ P~ . Y+ P{ —~y- P~
-y Py 4y ol PY’ C ol PY 4y o PY
and
58y = —6u - VY.,
58y = —6u- VP, — (PY — PY)(OTy +u” - VIy) — — = (5Q, +Tyda)divu

Y+ + -0y
1 VP, 1
88 = —du- Vu+ S A u’ + —2 bp - ;v((m —a”)(Py - PY)).

At this moment, one may find that the advantages of our choice of (0Y,,0Q+ ) is that all the differences
can be represented by the quantities (6Y,,6Q,0u) and P{ — P” which will be proven to have convergence
rate of at least /v. Moreover, the first equation in System is a transport equation, while the coupling
between the second and the third equation is covered by Proposition [3.1| or more precisely, by eliminating
all the "w” factors one can obtain the following reliable proposition:
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Proposition 6.1 Given functions Eq, Eo, B3, By and positive constants ey, ea such that

Ey,--- B4, vE Cl(R-i- X S(Rd>)7 HEz‘”Loo(o,T;Rd) < 56 i=1,2.

N

Let —% <51 < % —1 and s; < s9 — 1 < 51+ 1. Suppose that (q,u) is a solution of the following linear
System (6.10) on time interval [0,T)

oq+v-Vg+ (e1 + Er)divu = Es,
ou+v-Vu+u-+ (62+E2)Vq:E4, (6.10)
(g, u)]i=0 = (qo0, uo).

There exists a positive constant ey depends only on ey, es and dimension d such that if

1B B2l o, < €0

then the following estimate holds on [0,T)
s ooy + 110 ) oeny + gl sy + Nl gy + 100y

< exp(CE(®)) (I1(aos o)l + 11 (o0, u0) 52 + (B, Ba) | s e )

where E(t) :/0 (||(8tE1,(9tE2)(T)||B% + o)l e a )

B2nB2T!

We are now in the position of stating our convergence result.

Theorem 6.1 Let d > 3. Let v € (0,1] and assume that (L.5) are (1.8)) are satisfied. Given any
T € (0,00], suppose that (o ,a”, PY,P¥ u”) (resp. (a4,o_, Py, P_,u)) is the solution to the Cauchy

problem (6.4)) (resp. (6.2])) that satisfies

H((SYJFO, 5Q+0, P:ZO — Pio, ug — UQ)H % S C\/; (611)

where §Y4o, 6Q 4o are the initial data of the differences 0Yy and 0Q+ defined in ,

~ v = v = v = 14 Q_ d
(a—yi- — 0, — X, 0y — P4, 0 — P U ) € C([OaT);B;Q ! N €2+1)a (612)
(O[+ — 04,0 — Q—, Py — P4, p— — ﬁ_,U) € C([O’T)a Biil N B§+1))
and that there exist positive constants My, My independent of v such that
”(O‘;Vt - @ﬂ:api - ﬁ)HZ%O(B%AOB%H) + H(O‘:t — O, P+ — [))HE%O(B%*IQB%H) < Mo, (6'13)
1 124 14 v 14 14
5P = POV, sty Al i+ IPE = P2, (6.14)

+H(atai7 atpiv vuya vua)” < M.

~ d d
Le(B2 'nB2Th) —

e, )l

ZlT(B%*mB%
Then there exists a constant C' such that we have the following estimate for all t € [0,T),

104,00 0" =)l g3 pg-b + H5Q+H21T(B

h
+ H5Q+HL%(B

a
2

ey

+

NI

1
2

)

d
2

| S Vv exp(CMy).

,%)

Above, the constants My, My and C depend only on &+, p+, P and the dimension d.
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Remark 6.1 We shall suppose that My is small (say My < 1 without loss of generality), however My is
not necessarily to be small.

Remark 6.2 The assumption (6.11)) can be lowered to O(vY) with v > 0 but then we would end up with
a convergence rate equal to v® with 8 = min{%,v}.

The rest of this section is devoted to the proof of above Theorem.

Now, it is clear that the System can be looked as a linear system with given convection velocity
u” and coefficients that fall in the range of application of Proposition Indeed, under condition (|6.13))
with small enough M, the assumptions presented in Proposition [6.1| are satisfied. Thus one only needs to
find the appropriate regularity indexes in low and high frequencies so that all source terms are bounded
and "have decay” appropriately. This is the purpose of the following lines.

Notice that by interpolation inequality and Young’s inequality we have

A |

1 1
piet S M2 a2,

1 1
SV A2 g lAu)2
B2 B2
<V (Il g + 1l g.):
Then the uniform bounds (6.14)) imply that

Mun el pg-y) < VPV (HA,M Wty T HUV”D(B%H)) < M/, (6.15)

and

1 1
Ml g < a2 g A2,

B
1 1
SV A7y AR,

<V (Al g+ ).

2

Then the uniform bounds (6.14)) imply that

43y SV (IMan @l gy + 1071, ) < M. (6.16)

v
HA/I/,)\U H Ll(Bj

L\(B

Remark 6.3 In fact, for any 0 € (0,1) we have

A ]l ’

v|0 vil—

< (vIawl, ) Tl
- ppEn) 1 4

LY(B2)
<

C(6)M; 0.

0 0 —0
<V g a1

Li(Bzth (B2)
So this means that we could get a better decay rate for this term, like 1° with 6 € [%, 1). However, the
terms with o will have a decay rate bounded by \/v so it is not relevant to use this idea until decay rate
for the volume fraction is improved.

v _ pv
From the bounds (6.14) we know that ||P¥ P*HLl(B%*mB%)
convergence rates in the L°-in-time based spaces are not clear. We have to emphasis that this kind of
convergence rates are very important, since when handling the source term (P} — P”)0;I's lying in 65,

one could only get &;,I's € L' (B 1B %) from the bounds (6.14)), therefore obtaining convergence rate
in L*-in-time for PY — P” is necessary. In fact we have such a result in Chemin-Lerner type spaces.

converges to zero at rate v, but the
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Proposition 6.2 Let (P, P”) satisfying the condition of Theorem we have
1 < Cy. (6.17)

17 17
Py — P—llzm(Bg_gnt_Q)

Proof. It is easy to check that
lvsa? PY -0t P = (6Pt y-au Pl g < Cll(@4 = avia” —a PL = PP =P g

< CM,
is small enough. So we can apply Proposition to (6.3)) with s € [% — %, % — %], one has
1PY = P¥ [ ) SCIIPYo — Pyl
+ OV (Il (P = P)lzagpey + 104 PY = 4= PY) dive | agpey ). (6.18)

Notice that thanks to (6.11) and the fact that Py = P_g, we have ||[P{,—P”;||ps < C'\/v. Now, recalling

bounds (6.13) and (6.14)), using product law

d_3 d_3
B% x Bi"3 <3 B2 (6.19)
and interpolation inequalities we have
v 14 14 v 14 v
I P = POy o, < Ol g 9 CPE = P gy,

1 1 3
< YII- PY — P¥|2 PY — PY||2 < OMZM?
<O g IP5 = PAIE, g IPE= PRy, < OMG My

and
(v Py = -PYydivat| g g,
<l (PL = Pydiva |, g g+ -1 = Pydive’ll, g g
Pl gty + i +72)P) v, gy

(e )P ldivar gy

< (P - >||ZWB2)+W Iy -
P,

<C WMy + P v|2 <C )My + P) M.
<O +7-)Mo+ PN, g 712y < O +7-) (Mo + P) My

Once again, using the following product law

1 d 1
B x Bi~% <s B33 (6.20)
and interpolation inequalities we have
12 . 1% _ v ~ < 1% ~ v v _
I - FPE = Pl g3, < Ol g IV CPE = POl gy
1 1 1 3
< vl v _ pr|2 v _ pU|2 < 2 2
< Clu ||L°<>(B%)HP+ P—Hzl(B%+1)||P+ P2 (B = CMg My

and
[P = 7=P) div el gy
P)diva||, pa g +7-I(PL = Pydive|lz, gy,
+ O +7)P) lldivell gy,

<y4lI(PY — + (O + =) Plldiveliy, peoy,
<C (v~ =Pl oty * - Py - >\|ZW(B2
<C _)(My + P) ||u” : Y12 <C ) (Mo + P) M.
<C(v4 +7-)(Mo + P) [|lu”[2 1(B7+1 [ HLOO(Bd) (v+ +7-)(Mo + P) M,

Plugging the last four inequalities into , one gets the desired inequality. m
In conclusion, from this preliminary analysis it seems that the couple s; = % — % and so = g —

good choice when applying Proposition to the System .

is a

N[ =
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6.2.2 Derivation of the convergence rate

Applying Proposition to the equations of 6@+ and du in with s1 = g — 2 and So = g %,
Proposition to the equation of §Y; and summing the resulting estimates together we obtain
) h ¢ ¢
0V 0Qus B0 -4ty 16QBWI, gy 5 10Qu, gy + 16l gy
<exp(CE()) <H(5Y+075Q+075U0)||Bg_gmBg_; + ”(551’5S2’5S3)”Lg(33—%m%—%)> :
(6.21)
1 1 y
where E(t) = (H(at(rg—rg) 815(; 5))H g Tl g gan) -
(t

From the bounds (6.13) and (6.14), E(t) is clearly uniformly bounded and from the hypothesis (6.11),
we have H ((SY_H), 5Q+0, 5u0)”B%7%

and 053 in the spaces L%(Bgfﬁﬁ
frequencies.

41 < Cy/v. Let us now check that the source terms lie in 657, 659

w

7%) To do so, we have to split the analysis for the low and high

Low regularity estimates

Here we us repeatedly the product law Proposition Concerning 057, we have

16u- VYol g g <Cloull gy IV(¥e =Yl g

2

< CH(SU,H 41 HY+ —Y_|_H d < CM()”&UH 1. (6.22)

For §55 and 053, we have

[6u- VP g g <Cloull g 4 IV(P: = P 4,
< Cloull ygy 1P+ = Pll g < CMolldull gy, (6.24)
16w - Vull La 3 < Clloull jg 1 IVull jg—y < Clloull jg 1 [lull 4, (6.25)
B2~ 2 B2~ 2 B2 B2
and
|(PY — P)@Ts +u - VL) g g <CIPY P 4 4 [0Tall 4, (6.26)

+CIPY = P2l gyl FTal] g

Thanks to the estimate (6.17) and bounds (6.14), by product law (6.20) the last inequality can be

written
12 1% v
[(PY = PZ)(0: Ly +u” - V)| a3
< CVv My [0l gy + I1PY = P2l gy T2 = Lol g llu”ll 4. (6.27)
Before estimating the last term in §.52, we need the following lemma.

Lemma 6.1 Letd > 3. Fors suchthatf—f<s<f—%, we have

|Gas, da—, dps, dp—, 6p,0P)Ipe < C(My+1) (I(0Y4,0Q4) s + 1P = PZllpe).  (6.28)
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Proof. Thanks to the relations in (6.7]), by product law (6.20)) we have

1(0Py, 0P )llps < Cll6Q+llss + C (T2 — FzHLm g 1P = PXlpe + T2 ||PY = PY|5:)

Using relations in and a decomposition argument similar to (6.29) yields

[Sevs |5 < C(Mo +1) | (8Yy, 5p-, 5p-) | - (6.30)

1
Define f(z) = (im)”. We are now going to control dp; by §P4 but the composition Proposition
cannot be applied readily since f’(0) # 0. Still, we can rewrite dp; as

5 Py @) () [T Py —pp)2) [ 4y ap
pe=(fa+ Py =g P)| " (FP)e)|) = (fat P = (P[4 f(P)oP,
then, since s > g—5 > 0 as d > 3, we can apply the composition Proposition to the first quantity of

right-hand side and obtaln

16p+11Bs < f'(P)6P+||ps + C|(PY = P, Py = P)||ps[[0P4 | =
< C(Mo + 1)|[0P | .

Proceeding similarly with dp_, combining with (6.30) we conclude that (6.28]) is satisfied. m
Now, we are ready to use product laws (6.19)), (6.20) and composition lemma to write

T+7- :
||m(5Q+ + Tyday) leU”Bg_g
7+7- T+7- ; ;
< —
*<H7+a_ toar At an HB? + 1) <H5Q+ dlquB%% + [|T4 6a+dlvu||B%7%)

<C(Mo+ 1) (18Q+ | yg—y Idivul g, +ITa = Tall g, l6asdivul 4

d_1
22

+F4\|5a+divu||3%7%)
<C(Mo + D) (10Qu ]l gy Idivull g, + Mo Syl yy_y idivell yy + Dalldar | gy ldival )

<O+ 1 (1@ gy + 150+l gy )0l g

Combining this with (6.28]), we obtain

Y+7- :
HM((SQ-F +Taday)dival ¢ s
<C(Mo + 1 (16Y4, Q) yg—y + IPY = P2 gy )l g g (6.31)
Using a product law and (6.16)), we have
1 1% 14 14
1 oAl g g OIS = Sl g M w’ll g g + CllA "l g g
<Cv(Mo+ 1)l ya,y < Cv(Mo+1) (HUVH2 + HUVH2 ) (6.32)
and by (6.28)),
VP,
| 7 0pll g—3 <CIV(Py = P)] 7_1H 5P|| e %
1 1
SCHP-F_P”B%(H%_?HB% )H5PH Bi-1
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<CMo(Mo + 1)|16pll g,

<CMo(Mo + D) (110Y1,6Q) gy +IPL = PYl 1y )- (6.33)
We estimate the last term of §.53 in the following way
Hiv(@z oI - POl 43
( =l 45 ) N2 = a) (P = POy
C(Mo+ 1> 2 =Tl g + [l =@y + Lo+ a )|PY = Py,
C(Mo+ 17| Py = P g (6.34)

BS-'np%"

Summing up (6.22)-(6.27)) and (6.31)-(6.34) together, integrating over [0,¢] on the both sides of the
resulting inequality, we conclude that (without loss of generality assume that My < 1)

[(0571,052,053)|l

(B89
t
<CMO/ 16u(r)|| a1 +C/O loull ,g g +16Y3, 6Q) (D)l gy " (D g g
t
+OMF [ IOTA g + Ay + 1P = Py )
t
<CcM, / lou(mll 4y +C / 13ul g5 + 16Y4,8Q )@ g )l g g,

where we used that H@J‘QHB ¢, < My which can be directly obtained from writing the equation verified
by 8t1“2.

High regularity estimates

d
2

We will now show how to control the same terms in LL.(B _%) Concerning .51, we have

16w - VY| gy < Clloull gy V(s = Yi)| g

< Clldull yg_y IYVe = Yill jgp0 < CMolldull gy (6.36)

1
2

Similarly as before, we have

16u-VP| gy < CMollbull 4

: (6.37)

(S

10w~ ull Lg 3 < Cllou]l gy lull g (6.38)

2

and
I(PY = PZ)(0: Ly +u” - V)| gy <C|PL = PZ|| g 1 [0 a g + CIPY = PZ|| g y[lu” - V|| g
Thanks to the estimate (6.17)) and bounds (6.14)), by a product law the last inequality can be written

[(PY — PY)(@Ts +u” - VDo) g,
< OV ML O1T sl g + 1P = P gy T2 = Dall g ] 4. (6:39)
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We have,

V+7- .
— (6 T'46 d
H7+Oé—+’y—a+( Q+ + Taday)divull g s

T+ T+ :
<( — )(5 divu + [Ty davdivu )
(e~ e o st 1) (19 dival gy + T dadival] gy
<C(Mo + 1) (16Q+1| gy Idivul g + s = Tl g [dasdivall 4y +Talldasdivul 4 ;)
o+ Lalldors [ gy vl g )

<C(My + 1)(\\5@4\3%,% vl g + Mo el gy vl g +
<O(Mo+ 1 (10Q+ gy + 190l gy )0l g

Combining with (6.28)) gives that

T+ :
— (0 ryo d
Hwa, +%a+( Q+ + Faday)divull g 1
<C(Mo + 1 (1104, 8Q) gy +I1PY = P21 gy el g (6.40)
Using a product law and (6.15)) yields
1 » 1 1 y y
|5 A gy S OI5 = Sl g Al gy + O Al gy
<Cv(Mo+ 1)l ja_ it (6.41)
and by (6.28)),
VP, _ 1
=00l 43 <CIT (P = Pl gl -80l 5
_ 1 1 1
<CIPs = Pl gl = 5l g + 52601
<CMo(Mo + 1)|opll g1
<CMo(M + D) (110Y1,6Q) | gy +IPY = PYl g )- (6.42)
For the last term in 453 we estimate in the following way
1
59 (02 = 0t ) (P = Pl g
<’ L L r Py — P
< (”E ~Slpg+ ) (T2 — ) ( Mgy
(6.43)

< C(Mo+ 1Py = P/l g a.y-

Using interpolation inequality we have

1 1
v Vi 2 v V|2
IPY —PYI Py = P22,

IN

IPL = P2l g
1

< M|PY - P||?

< Py -P3,

Summing up (6.36)-(6.39) and (6.40)-(6.43)) together, integrating over [0,¢] on the both sides of the

resulting inequality, we conclude that (without loss of generality assume that My < 1)

(651,65, 553)\|L%(Bg_%)
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B -2

t
<Oy [ 100y +C [ (104 +16Y2:0Q0(0)]

t
+OM} [ IO g + v @y + IPE =PI, )

t
<My [ outr)l gy +C / 0ull gy + 106Y4.0Q) @Iy )OI g o
+ C M3} Mo/v. (6.44)

where we used again that ||0,I's]] 4 odn <M
Finally, gathering (6.35)) and 6.44: , We obtain

t
ity < OMo [ el +C [ 10053 s 190 e

+c/0 10Y4,0Q ) gy 11l g g

||(551,552,553)||Lt1 g

Therefore, using (6.45) and (6.11)) in (6.21)) and Gronwall’s lemma yields

1065, 0Q+, du) ()]

B 2

t
3 167260000l + [ 1504y + [ l60uly
t
+/ H(SUHBg,% < Vv exp(CMY).
0

Thus the proof of Theorem [6.1]is completed. W

A Some basic linear problems
Proposition A.1 Let s € (—4¢ 55 2} and Hy € C(]0,T);S). Let w be a solution of the following damped

equation with variable coefficient on [0,T),

{ Ouw -+ (ha + Ha) & = f. D)

w(t, x)|i=0 = wp.

There exists a positive constant ho such that if

~ hy
HHzHE%O(Bg) <hs <,
then the following estimate holds on [0,T),
1 1 1 1
S0l ey + 5700z < ol max(5 7=, 4h) 1
Proof. We first rewrite the equation into the form
1 11 w f
_ 11 - = .
Uos s e "0 2 T i
Applying the operator Aj to it, we get
1 w; 1 1 : f
—ow,; + — = —-A;((~——— ——)0 Ai(——).
Ry T, G~ 72 + &G )
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Taking L? inner product with d;w; leads to

1 1 . f

1d
Y AW A(—L

o el + 19 < A

)22 [|0¢w; | La-

On the right-hand side we use Young’s inequality, it becomes

1d . 1 1 .
Sls B+ 0wy 3 < ahal Ay — )0 + ahall Ay

iz + 55— ||3thHL2
Integrating on time interval [0, ¢] for any ¢ € [0,T"), and using Young’s inequality again, we readily obtain
! L 0 4 A L 0
Ty Ol + =00y 13002 < Vwmmﬁ-¢rr(h+H )0) 222
+4v/ha | A ( > +H — )22
Multiplying both sides by 2/ and summing up in j € Z, we get

1
+ 4/ ha ||( h2)atw‘|fg(]3s)

00073 -

< l|wo || B
f
+ 4/ he || ——

1 1
- oo s _l’_ -
ﬁ”w”Lt (B*) /7h2’
ho +H 1250

The product law B® x B % < B® and composition lemma entail that we have

4v/ha |(

2)3tw\|zg(35) < AVhy CllHz 7y g 10ellz 5

1
< ~
Gt i +H < o 19z

whenever hy < . Handling the other right hand side term in a similar manner completes the proof

2
of the proposition. m

Recall that the constant coefficient transport-damping equation reads:

{8tw+v-Vw+aw:f, (A1)

w(t, x)|t=0 = wp.
We are going to prove the following proposition.

Proposition A.2 Let i € (—%,%],ry € (—%,% + 1] Assume that a > 0. Then there ezists a universal
constant C' such that

t t t
Jaos +a [ Nl < ool +C [ 190l ol + [ 171 (A2)
and
l ! l l ! ¢ l
s +a [ ol < Jaollpes +C [ ol gl + [ 171 (A.3)

Proof. Applying Aj to (A.1) yields
Owj +v-Vw;+aw = —[Aj,v]Vw + Ajf.

Taking the L? inner product with w; then by integration by parts, one has

1d 1 , . .
el allwle =5 [ dvolu = [ w8y, 00w+ [ g dyf
Rd Rd Rd
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< |l div ol pee w72 + llwjll 2 (1[4, 0] Vwll 2 + 14 £l 2)-
As —g <ryg < % + 1, by Proposition one has

1A, v]Vwllzz < C279724;([ Vo g lwllpr.
Thus by embedding B 5 L, we obtain

t t t
IIU)j(t)HL2+a/O Jwj ()l L2 < [Jw;(0)]| 2 +C2_”TQQj/O Vo)l ¢ w5 +/0 1A ()l 2 -

Multiplying the factor 2/"2 on both sides, summing up over j > —1, we get (A.2)

For the low frequencies estimate (A.3)), one needs to take v- Vw as a source term, and use the product

law [[v- Vg < Cllv] g [Vwlpn, forry € (=5,5].

Recall that the constant coefficient Lamé system reads:

{ ou~+v-Vu — pAu— (A + p)Vdivu +nu = g,

u(t, ) |t=0 = ug. (A-4)

We are going to prove the following proposition.

Proposition A.3 Letry,ro € (—%, g] Assume that u > 0 and p+ A\, n > 0. Then there exists a universal

constant C' such that

t
/ h Y/ h
la®) s + ()]s + 0 /0 IVl 1 + [Vl rg)
¢ ¢ h t / h
L) /O (vl s + divallpes) + 1 /0 (lallrs + lrulle)

t t
0 h 4 h
< Clluallys + k) +C [ (1901 gl + 1ol g Tl o) +€ [ gl +lalls):

Proof. Applying Aj to equation (A.4)) yields
duj — pAuj — (A + p)Vdivuj +nu; = —[A;,0]Vu —v - Vu; + Ajg. (A.5)
Taking the L? inner product with u; then integrate by parts. One gets (note that A + u > 0)

1d 10 . .
§@HWH%2 + pl V|7 + nllujllze < 2/ div v [u]? —/ u; [Amv]VH/ u; Ajg
Rd R4 R4
< ||divol|zee lujllzz + llujll 2 (1[Az, 0]Vu) |2 + 1A gl 12)-
By Proposition [2.2]
1A, v]Vu)| g2 < CTT”’%HVUHBg [ullBrs.

Using that we have |[Vu;{|2, > (527||u;|2)? > 32%||uj|| 122, we thus get

t t
M .
sz + 52 [ sl +0 [ )l

t t
< Jluy (0)ll2 + C27"g, / 19l g llullsr + / 1&gl
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Multiplying the factor 272/ on both sides, summing up over j > —1, we further get

t t
h H h h
([w(t)]Era +2/0 (7)1 grae +n/0 [w(T) I

t t
h h
< luolls +C [ 190l g lelers + [ ol (A.6)
Similarly, we have
)l + / TCa / Ju(r)
l V4
< Jluolfyn +C /O 190y lullsm + /O gl (A7)

Now, we focus only on the ”compressible part” of u that is A~!'divu. Applying the localization of 0-th
order pseudo-differential operator A~'div to (A.4) and find that

QA (AN diva) — (2p + N)AA M divug) + (A~ divy,) = —A;A7Ndiv (v - Vu) + A;A " divg.
We notice that above equation is similar to (A.5)), and following the derivation of (A.6)) we have

L1 2u+A) [* 1 .
A vl + 2 A v u e o 1A (o) e

t
h h
< [uol[Br. +/0 (v - Vul g2 + llgllE:) -

Using product law |[v - Vul|gr2 < CHU”B%HVUHBW, for 7o € (—4%, 2] and notice that A~ divuls,, o >

L lldival|%,, 1. We further obtain that

Cu+A) [t . ¢
5, [ divu(r) || Brysr < [luolhrs + C ; (loll y¢ IVul B + llgllrs) - (A.8)

Similarly, we have
(2H+ A) ¢ ' ¢
Hdlvu g+ < lluollsm +C (HvHBgHVUHBm + llgllBr) -

This combined with ( -, and (A.8]) completes the proof [

Lemma A.1 Let X : [0,T] — Ry be a continuous function such that X? is differentiable. We assume
that there exists a constant B > 0 and a measurable function A :[0,T] — Ry such that

1d
——X?4+BX?<AX a.e on [0,T].

pdt
Then, for all t € [0,T], we have
Xt)+B/tX§XO+/tA.
0 0
Proof. We set X, £ (X2 +&2)1/2 for € > 0, and observe that
1d

2dt
Dividing both sides by the positive function X, yields

— X2 4+ BX? < AX. + B&2

iX +BX. <A+B i

dat” ° - X.
Then, integrating in time, using the fact that €2/X. < ¢, and taking the limit as e tends to 0 completes
the proof. m
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