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1 Datasets

We provide details on the way datasets have been built from raw data. For each
of the real-world datasets, we choose to consider only the order of apparition
of the various entities instead of their absolute appearance times. This implies
setting the time separating two successive exposures as constant, that we note
δt. This choice is supported by state-of-the-art works [4] and we observed in
our own experiments that it is more relevant than considering absolute times.
Besides, we do not consider the first 10 pieces of information of any sequence
to avoid boundary effects (the first 5 steps for the PD dataset): the history of
exposures is incomplete in this case and could lead to biased results. For each
dataset entities list, the number before the entity name is the key used in Fig.4
of the main article. The entities subsets have been chosen by computing the
co-occurrence matrix of all the entities, and then select the ones that are part
of a cluster using a K-mean algorithm. The datasets are:

– Twitter [3]: it consists in a collection of all the tweets containing URLs that
have been posted on Twitter during October 2010, with the associated fol-
lowers networks. A tweet read by a user in her feed is an exposition, and its
possible retweet is a contagion. We consider only the URLs associated with
the following URL shortening websites, the same as in [6]: {0: migre.me, 1:
bit.ly, 2: tinyurl, 3: t.co}. The final dataset is made of 104,349 sequences of
average length 53.5 steps (1 step = ts), for 1,276,670,965 observed interac-
tions.

– Prisoner’s dilemma dataset (PD) [5, 1]: contains ordered sequences of re-
peated Prisoner’s dilemma game between two players. From the dataset in-
troduced in [5], we consider the sub-dataset noted BR-risk 0 (first entry
of Tab.2 in the reference); we choose this subset in order to have decisions
made in an homogeneous context, where players struggle in a dilemma that
is hard to solve (which depends on the combination of the parameters T,
R, S and P discussed further). Within each round, the players can either
defect of cooperate. Each duel is made of 10 rounds. If both cooperate, the
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reward R is high, if they both defect, the reward P is low, if one player co-
operates while the other defects, this one gets a penalty S, while the other
gets a reward T. To make the game a Prisoner dilemma, the variables have
to obey T>R>P>S. We refer to the combination of players’ actions (”the
user cooperated and the opponent defected at time t”) as exposures, and to
the defect actions of the player in the following round as a contagion. We
defined the action of cooperating as a non-contagion. We therefore have 4
possible situations ({0: Player cooperated and opponent defected, 1: Both
players defected, 2: Both players cooperated, 3: Player defected and oppo-
nent cooperated}) and 2 possible outcomes (Player cooperates or defects).
The final dataset is made of 2,337 sequences of average length 10.0 steps, for
189,297 observed interactions.

– Taobao dataset (Ads): contains all ads exposures for 1,140,000 randomly
sampled users from the website of Taobao for 8 days (5/6/2017-5/13/2017)
[2]. Taobao is one of the largest e-commerce websites, and is owned by Al-
ibaba. To each exposure is associated the corresponding timestamp and the
action of the user (click on the ad or not). A click is considered as a conta-
gion. The subset of ads we consider is: {0: 4520, 1: 4280, 2: 1665, 3: 4282}.
The resulting dataset is made 87,500 sequences of average length 23.9 steps,
for 240,932,401 observed interactions.

2 Implementation of Clash of the Contagions

In this appendix, we provide technical details on the way the Clash of Contagions
baseline is implemented. Following the directions given in the reference article [4],
we implemented a Stochastic Gradient Descent (SGD) method for parameters
inference. Given the small number of entities considered in the experiments, each
iteration of the SGD is computed using the full dataset instead of slicing it into
mini-batches.

Setup For each corpus, we run the SGD algorithm 100 times, from which we
save the parameters maximizing the likelihood the most. At the beginning of
each run, parameters M and ∆ are randomly initialized. The stopping condition
makes the algorithm ends when the relative variation of the likelihood according
to the last iteration is been lesser than 10−6 for more than 30 times in a row;
those numbers have been chosen empirically to maximize the performances of
the algorithm. The hyper-parameters have been set to: T=5 (number of clusters)
and K=20 (number of considered time steps).

Update rule In each iteration, we update the parameters in the direction of
the gradient descent (noted G). However, a major problem when dealing with
SGD is to choose the line step length η (the amplitude of the variation of the
parameters in the direction of the gradient G). After each iteration, we compare
several update rules, and we select the one maximizing the likelihood. Those
rules are as follows:
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– AdaGrad: ηAG ×G
– AdaDelta: ηAD ×G
– Line search in the direction of the gradient: ηLS ×G
– Line search in the direction of AdaDelta: ηLS × ηAD ×G

The line search snippets consider 50 values of ηLS logarithmically distributed in
the interval [10−6; 103].

Constraints on the parameters The membership vectors entries Mi,t (mem-
bership of i to cluster t) must be positive and sum to 1 over all the clusters
(
∑
tMi,t = 1). In order to enforce this constraint, we consider the following

variable change: Mi,t →
φ2
i,t∑

t′ φ
2
i,t′

. This transformation guarantees the member-

ship vector properties with no need for penalty methods in the implementation.
Besides, as stated in [4], it can happen that a probability is larger then 1 or

lesser than 0. In the absence of complementary details in the main paper, we
implemented our own method to force the probabilities to stay within reason-
able bounds. Here it is impossible to make a simple variable change to enforce
this constraint, since the probability results of a non-linear combination of the
model’s parameters. We added to the likelihood an exponential penalty term.
Let P denote a quantity we want to constrain between 0 and 1. The penalty
term equals e−λP + eλ(P−1). λ here is a parameter that tunes the intensity of
the penalty, and is empirically set to λ = 75. This penalty function has the form
of a well with very steep walls in x=0 and x=1. In this way, it seldom happens
that probabilities are larger than 1 or lesser than 0, as said in the main article.
When such cases happen, we simply set it back to the closest bound for methods
comparisons.
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3 Experimental results with standard deviation

The numerical results along with the associated standard deviation are presented
Table 1.

Table 1. Experimental results with associated standard deviation

RSS JS div. BCF1 MSEβ

S
y
n
th

-2
0 IR-RBF 18.42(25) 0.002 284(45) 0.9188(1) 0.005 03(4)

ICIR 139.59(77) 0.009 980(49) 0.8271(16) 0.015 88(0)
Naive 145.51(75) 0.010 379(59) 0.8221(2)
CoC 123.06(75) 0.009 384(70) 0.8220(15)
IMMSBM 222.06(139) 0.017 288(51) 0.7265(7)

S
y
n
th

-5

IR-RBF 0.117(4) 0.000 217(6) 0.9742(4) 0.005 30(3)
ICIR 8.266(36) 0.008 117(38) 0.8499(11) 0.019 21(1)
Naive 10.026(48) 0.009 956(48) 0.8214(17)
CoC 0.115(23) 0.000 197(31) 0.9763(10)
IMMSBM 11.694(274) 0.013 622(489) 0.7693(50)

T
w
it
te

r

IR-RBF 0.0015(4) 0.000 058(8) 0.9832(8)
IR-EXP 0.0011(2) 0.000 049(5) 0.9862(6)
ICIR 0.0137(8) 0.000 629(48) 0.9614(12)
Naive 0.0161(9) 0.000 725(60) 0.9379(38)
CoC 0.0017(2) 0.000 067(4) 0.9572(263)
IMMSBM 0.0147(13) 0.000 683(73) 0.9543(29)

P
D

IR-RBF 1.13(18) 0.007 583(470) 0.9789(27)
IR-EXP 1.55(31) 0.008 669(1137) 0.9661(22)
ICIR 3.54(31) 0.018 225(1286) 0.9381(47)
Naive 3.65(43) 0.019 147(1538) 0.9455(23)
CoC 1.24(28) 0.008 088(1266) 0.9736(56)
IMMSBM 20.38(297) 0.087 010(12172) 0.7672(204)

A
d
s

IR-RBF 0.0043(6) 0.000 043(6) 0.9814(19)
IR-EXP 0.0030(3) 0.000 030(2) 0.9852(7)
ICIR 0.0983(70) 0.000 848(63) 0.9659(11)
Naive 0.1453(106) 0.001 263(95) 0.9126(59)
CoC 0.0045(2) 0.000 045(2) 0.9741(40)
IMMSBM 0.0155(18) 0.000 153(15) 0.9543(16)
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