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ABSTRACT
In most real-world applications, it is seldom the case that a result
appears independently from an environment. In social networks,
users’ behavior results from the people they interact with, news
in their feed, or trending topics. In natural language, the mean-
ing of phrases emerges from the combination of words. In general
medicine, a diagnosis is established on the basis of the interaction
of symptoms. Here, we propose the Interacting Mixed Membership
Stochastic Block Model (IMMSBM), which investigates the role of
interactions between entities (hashtags, words, memes, etc.) and
quantifies their importance within the aforementioned corpora.
We find that in inference tasks, taking them into account leads to
average relative changes with respect to non-interacting models of
up to 150% in the probability of an outcome and greatly improves
the predictions performances. Furthermore, their role greatly im-
proves the predictive power of the model. Our findings suggest
that neglecting interactions when modeling real-world phenomena
might lead to incorrect conclusions being drawn.

CCS CONCEPTS
• Information systems → Social recommendation; Cluster-
ing; •Mathematics of computing→ Probabilistic inference prob-
lems.
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1 INTRODUCTION
With the Internet, people have begun to interact with each other as
never before. Nowadays, social networks such as Facebook, Reddit
or WhatsApp let us share and compare ideas. Modeling the dynam-
ics of these exchanges can help us understanding why and how
various pieces of information (e.g., hashtags, memes, ideas, etc.)
will flow through a community. We refer to these pieces of infor-
mation as entities. Understanding the underlying dynamics at work
provides powerful means to predict and control entities’ spread. Up
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to now, little work has been done on investigating the role of inter-
acting entities in users’ decisions (retweet, share, comment answer,
etc.), or more generally in the probability of outcomes. A number
of previous works on information diffusion theory only consider a
user acting on an isolated piece of information [20, 21]. On some oc-
casions, theoretical frameworks have been developed to investigate
how the presence of concurrent pieces of information affect the ac-
tion a user exerts on them in a network [2]. However, a fundamental
question to be answered is how pieces of information interact in
the informational landscape. Considering a recommender system,
a customer that bought a smartphone might be interested by side
accessories such as headphones or selfies sticks, but a customer
that bought a smartphone and a camera lens extension might be
more interested in buying a professional camera. Another example
considering a disease-symptoms corpus, the diagnosis of a disease
is established from the interaction of several symptoms; the in-
teraction between “running nose” and “headache” symptoms is
likely to lead to a “flu” diagnosis. An approach without interactions
would be less successful here, since each of the products/symptoms
can lead to a number of different recommendations/diagnoses. The
same line of reasoning can be applied to the prediction of retweets
(user exposures to A and B affects its retweet of C), music playlist
building (same as before), detection of controversial posts (what
combinations of words trigger what answers), etc. Beyond the state-
of-the-art guess that a single piece of information is enough to
trigger another one (in music recommendation for instance, a user
might associate “ACDC” → “Metallica”, or “Chopin” → “Mozart”)
[18], we believe that the world is more complex, and that such a
mechanism should not be so simplistic. Our idea in the present
work is to take the interaction of pairs of entities into account
in the prediction of an outcome (“ACDC” + “Metallica” → “Pink
Floyd”). Therefore, throughout the present article we develop a
novel prediction method with multiple entity types.

The remainder of this article is organized as follows. In Sec-
tion 2, we present an overview of the landscape of information
interaction studies for both information spread and recommender
systems. Then in Section 3, we detail our model and its mathemati-
cal derivation and describe an efficient algorithm to apply it. Next,
in Section 4, we assess the model on real-world datasets. Finally, in
Section 5, we quantify the role of interactions in each corpus and
provide insight to analyzing the results from a semantic point of
view.

https://doi.org/10.1145/3460231.3474254
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2 BACKGROUND
2.1 Interaction in information diffusion
Much previous research was aimed at understanding the mech-
anisms of information propagation. Many studies focus on the
importance of the network structure coupled with the intrinsic
contagiousness, or virality, of the spreading entity (that depends
on its nature and content [19, 25]) in the modeling of the spreading
processes [13, 24].

Recent works proposed to model the diffusion of information as
the result of an interaction between information [2, 22]. Following
a similar idea, Myers and Leskovec [18] investigated interactions
between contagions on Twitter. The authors aim to find the inter-
action factors between different tweets in one’s activity feed. Their
findings suggest that interactions between tweets play a determi-
nant role in their retweet. In their work, they assume that there is
an inherent virality for every tweet (that is an inherent probability
to be retweeted) computed from the frequency of retweets, to which
is added a small interaction term.

While this latter work opens paths for studying interactions, it
also presents various limitations that we address here. Firstly, the
method proposed by the authors makes predictions solely based
on tweets that have been observed in the feed of a given user. It
therefore limits the application range of the model uniquely to
systems based on the retweets (or share) concept, where informa-
tion has to appear first in order to be spread. This model is hardly
applicable to systems that are based on exogenous reactions (e.g.,
online forums, playlist building and recommender systems) where
information can appear as a consequence of different entities (“Cap-
ital” + “Netherlands” → “Amsterdam”). We address this problem
by developing a more global framework allowing for outputs that
are different from the inputs in the considered datasets. Secondly,
interaction is defined as a correction to the frequency of retweets
of a given tweet in any context. We argue this can lead to false
conclusions about interactions. Imagine that interactions lead to
a shift of Δ𝑝 on the base probability 𝑝 (virality) of a retweet, and
that this interaction happens in a fraction 𝑓 of all observations of a
given tweet being retweeted. The virality as defined in [18] then
equals 𝑝 (1− 𝑓 ) + (𝑝 +Δ𝑝) 𝑓 = 𝑝 + 𝑓 Δ𝑝 , which is by construct larger
than the actual probability of a retweet in the absence of interaction.
Therefore, defining interaction according to this quantity is wrong
(for instance it results in adding an interaction term 𝑓 Δ𝑝 when
there is in fact no interaction). Virality needs to be inferred by the
model at the same time as the contribution of interactions to be
properly defined, which is part of what we propose to do here.

2.2 A recommender system approach
Research in recommender systems applied to multiple pieces of
information is motivated by numerous descriptive studies on mul-
timodal networks structure [11, 23, 27, 29]. Typically in [29], the
authors study interaction between multiple entity types via a het-
erogeneous network representation and define clusters of entities
based on structural properties of the resulting graph. However, as
pointed out by the authors, this method is heavily influenced by the
structural clustering method used –in this case a meta-path-based
clustering [28]. Moreover, defining edge weights in heterogeneous
graphs is subjective and requires additional learning algorithms.

A more direct representation of real-world systems is based on
collaborative filtering techniques, that directly mines clusters from
pieces of information interaction patterns and generates a weighted
interaction graph between entities from unit independent observa-
tions. Typically, a widely used method in commercial applications
is based on a Matrix Factorization approach [14]. This method con-
siders a large number of user-item pairs and identifies regularities
to model them in a lower dimensional space (e.g., it groups regular-
ities into clusters). It has been shown that this algorithm is in fact
a particular case of a wider model family: the Mixed Membership
Stochastic Block Model (MMSBM) [4, 16]. Another particular case
of this family is the single membership Stochastic Block Model
(SBM) [30], whose use in the discovery of underlying interaction
dynamics has been suggested in recent years [8].

More recently, in [6] the authors develop an extension of the
MMSBM considering bipartite graphs. This formulation generalizes
MF models into a more global framework based on the MMSBM.
In this approach, entities of different type (e.g. users and items in
the case of online shopping recommendation) are grouped into
distinct clusters whose interaction result in an outcome (e.g. buy
or not buy). This model is optimized via a scalable EM algorithm; it
outperforms state-of-the-art models such as SBM [8, 30], MF [14]
and Mixed-Membership MF [17] both in performing predictions
and in scalability.

However, none of the cited works consider the interaction be-
tween pieces of information of the same nature in the prediction of
an outcome. A drug might interact with another one, but the joint
interaction of two drugs on a third one cannot be investigated [8].
A user on Netflix is predicted to like a given movie because she is
partially part of the group that liked the movie A and partially part
of the group that disliked movie B, but all the user groups are inde-
pendent from one another [6, 14]. Friendship between individuals
is determined on the basis of the independent groups of friends
they belong to, but not on the basis of the joint belonging to various
groups [4, 12, 16]. Typically in [6], embedding pieces of information
of same nature in a bipartite graph seems irrelevant: taking the
example of a online purchase recommendation system, a product
should not interact differently with an other (or belong to different
clusters) because it is on the left or the right side of a bipartite
graph. Instead, we want to enforce a symmetrical interaction and
thus a single clustering for pieces of information that interact in
this way.

Relaxing the independence assumption and looking at the proba-
bility of an outcome due to the joint membership to more than one
group (while also allowing for outcomes resulting that do not result
from any interaction) provides a better assumption for modeling
the subtle interaction process. Taking back the previous example of
medical diagnosis: a disease can seldom be diagnosed on the basis
of a single symptom (e.g. without interaction between symptoms),
but rather on a symmetric combination of symptoms (e.g. with
interaction).

2.3 Contributions
• We develop a scalable model that accounts for interactions
between entities: the InteractingMixedMembership Stochastic
BlockModel (IMMSBM).
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• We show by comparing our results with non-interacting
MMSBM [6] that taking interaction into account leads to a
more accurate recommendations in real-world situations on
4 different datasets.

• We provide a proper way to infer virality, which allows to
correctly define and compute interaction terms.

• We quantify the role of interactions in various corpus and
highlight the necessity of taking them into account when
dealing with real-world spreading or recommendation prob-
lems.

3 THE IMMSBMMODEL
In this section, we develop the IMMSBM model. We propose an
approach based on standard Mixed Membership Stochastic Block
Modeling [4, 6], which we modify in order to take interactions into
account. Building our model on the MMSBM allows to assume that
each entity does not have only one membership, which is in line
with the real situation. The IMMSBM requires no prior information
on the system and its numerical implementation is possible via a
scalable Expectation-Maximization algorithm of linear complex-
ity with the size of the dataset. In addition to the state-of-the-art
problems which our method answers, it also offers better predictive
power than non-interacting baselines.

The goal of the model is to predict the most likely result of an
interaction between two entities (i and j in Fig.1). In recommender
systems, it would recommend the song the most likely to fit user’s
tastes given previous songs they listened to, or the product the most
likely to be bought given a user’s purchase history. Another example
about assisted medical diagnosis: observing the words “fatigue” and
“cough” in a medical report is more likely to imply the observation
of “flu” than “anemia”, despite “anemia” being often associated with
the “fatigue” symptom. The model will group data into clusters
(membership matrix \ Fig.1) that interact symmetrically with each
other (interactions tensor p), resulting in a probability over the
possible outputs to appear (histograms Fig.1-top). We have no prior
knowledge of the content of the groups, and we only need to set
the number of clusters T.

3.1 Interacting MMSBM
We refer to the interacting entities as input entities (𝑖, 𝑗) ∈ 𝐼2, and
aim to predict an output entity 𝑥 ∈ 𝑂 . 𝐼 is the input space (the enti-
ties that interact: products, symptoms or songs for instance) and 𝑂
is the output space (the entities resulting from the interaction in an
answer, diagnosed diseases for instance). We illustrate in Figure 1-
top how the input space and output space are related according
to our model: input entities are clustered, and the interaction be-
tween those clusters give rise to probability distributions over the
output entities. Note that 𝐼 and 𝑂 can be identical or radically dif-
ferent according to what we want to model. In the case of musical
recommendation, 𝐼 accounts for observed artists in a user’s feed,
and 𝑂 for recommended artists –that do not necessarily appears in
the user’s feed, unlike [18]. In the case of medical diagnosis, 𝐼 ac-
counts for symptoms (fever, cough, anemia, etc.) and𝑂 for diseases
(Alzheimer, hepatitis, etc.). If one wants to predict named entities
in the answer to a Reddit post based on interacting named entities
in the original post, then 𝐼 = 𝑂 since the predicted vocabulary can

T

T

Output probabilities

Figure 1: Illustration of the model – (Top) Schema of
IMMSBM for a single pair of entities (𝑖, 𝑗) (which could be
“fever” and “cough” for instance). Input entities are grouped
into T clusters in different proportions; the proportion to
which they belong to each cluster is quantified by a \ matrix
(dimension [𝐼 × 𝑇 ] where 𝐼 is the input space). The clusters
then interact to generate a probability distribution over the
output entities defined by the interactions tensor p (dimen-
sion [𝑇×𝑇×𝑂] where𝑂 is the output space). (Bottom)Alterna-
tive representation of the IMMSBM as a graphical model. To
generate each output, for each observation (𝑖, 𝑗 , 𝑥) in the set
𝑅◦, a cluster (𝑘 and 𝑙) is drawn for each input entity (𝑖, 𝑗) from
a distribution encoded in thematrix \ . The generated output
𝑥 is drawn from a multinomial distribution conditioned by
the previously drawn clusters k and l encoded in ®𝑝.
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also be used as an input (e.g., the named entity “Sun” can either
be an input that interacts with other inputs, or an output). As an
alternative visualization, we present the graphical generative model
of the IMMSBM in Figure 1-bottom. The observed data then takes
the form of triplets (𝑖 , 𝑗 , 𝑥) signifying that the combined presence
of input entities i and j leads to the output entity x. A given triplet
can obviously occur several times in the same dataset.

We assume there are regularities in the studied dataset, so that
given inputs interact with each other in the same way. Their classi-
fication into clusters would therefore be relevant. For the medical
dataset example, this means that symptoms such as “fever” and
“pallor” often come in pairs and therefore are considered as similar
regarding the diagnosis; they would belong to the same cluster. We
define the membership matrix \ associating each input entity with
clusters in different proportions, such that \𝑖 is a [1 × 𝑇 ] vector
with

∑𝑇
𝑡 \𝑖,𝑡 = 1. Note that unlike in single membership stochastic

block models an entity does not have to belong to only one group
[5]. Given the possible semantic variation of entities (polysemy of
words in natural languages -e.g. “like”, “swallow”-, symptoms with
various causes in medicine -“headache”, “fever”-, etc.), an approach
via a mixed-membership clustering seems more relevant.

We then define the cluster interactions tensor 𝑝𝑘,𝑙 (𝑋𝑘,𝑙 = 𝑥)
of dimensions [𝑇 ×𝑇 ×𝑂] as the probability that the interaction
between clusters 𝑘 ∈ 𝑇 and 𝑙 ∈ 𝑇 gives rise to the output 𝑥 ∈ 𝑂 . A
property of this definition is that

∑
𝑥 𝑝𝑘,𝑙 (𝑋𝑘,𝑙 = 𝑥) = 1 ∀𝑘, 𝑙 . The

role of those two quantities is schematized in Fig.1.
We choose to consider only one membership matrix \ for all

of the inputs, instead of one per input entry as in [6]. It implies
the assumption that interactions to be symmetric, which means
that an observation (𝑖 , 𝑗 , 𝑥) is equivalent to ( 𝑗 , 𝑖 , 𝑥). This follows
the idea of [2] where it is assumed that the interaction between
two viruses is symmetric, meaning the interaction influences both
viruses with the same magnitude. Therefore, there is no need to
consider a different clustering for inputs i and j, which motivates
the use of a single membership matrix \ .

We nowpropose to define the entities interactions tensor 𝑃𝑖, 𝑗 (𝑋𝑖, 𝑗 =
𝑥), representing the probability that the interaction between inputs
i and j implies the output x as:

𝑃𝑖, 𝑗 (𝑋𝑖, 𝑗 = 𝑥) =
∑
𝑘,𝑙

\𝑖,𝑘\ 𝑗,𝑙𝑝𝑘,𝑙 (𝑋𝑘,𝑙 = 𝑥) (1)

For the sake of brevity, from now on we will refer to 𝑝𝑘,𝑙 (𝑋𝑘,𝑙 = 𝑥)
as 𝑝𝑘,𝑙 (𝑥). We define the likelihood of the observations given the
parameters as:

𝑃 (𝑅◦ |\, 𝑝) =
∏

(𝑖, 𝑗,𝑥) ∈𝑅◦

∑
𝑘,𝑙

\𝑖,𝑘\ 𝑗,𝑙𝑝𝑘,𝑙 (𝑥) (2)

where 𝑅◦ denotes the set of triplets in the training set (input, input,
output). Note that the remaining triplets 𝑅 \ 𝑅◦ are used as test set.

Importantly, this formulation differs from related work in that
the model presented here considers a symmetric interaction be-
tween pieces of information in the prediction of an outcome in-
stead of their asymmetric combination [6]. Considering a musics
recommender system for instance, clustering the same songs using
two independent membership matrices (which is the formulation
introduced in [6]) would make few sense and might eventually
lead to incorrect results. Indeed, since the convergence towards a

global optimum is not guaranteed, such algorithm might assign
different memberships to a song depending on whether it is on the
left or right side of a triplet. Put differently, we would have different
output probabilities for (𝑖, 𝑗, 𝑥) and ( 𝑗, 𝑖, 𝑥), which is something we
avoid here. In our formulation, only the outputs can be of different
nature than the inputs.

3.2 Inference of the parameters
We are now looking at inferring the model parameters, namely the
components of the interactions tensor 𝑃𝑖, 𝑗 (𝑋𝑖, 𝑗 = 𝑥). As stated in
the previous section, we decomposed this tensor into an algebraic
combination of the matrix \ and the tensor 𝑝 . In this section, we
introduce a method to infer them via an Expectation-Maximization
(EM) algorithm. EM is a 2-step iterative algorithm. The first step
consists of computing the expectation of the likelihood with respect
to the latent variables, denoted 𝜔𝑖, 𝑗,𝑥 (𝑘, 𝑙), with parameters \ , p set
as constant. The second step consists of maximizing this expectation
of the likelihood with respect to the parameters \ , p. Iterating this
process guarantees that the likelihood converges towards a local
maximum.

3.2.1 Expectation step. Taking the logarithm of the likelihood as
defined in Eq.2, denoted ℓ , we have:

ℓ =
∑

(𝑖, 𝑗,𝑥) ∈𝑅◦
ln

∑
𝑘,𝑙

\𝑖,𝑘\ 𝑗,𝑙𝑝𝑘,𝑙 (𝑥)

=
∑

(𝑖, 𝑗,𝑥) ∈𝑅◦
ln

∑
𝑘,𝑙

𝜔𝑖, 𝑗,𝑥 (𝑘, 𝑙)
\𝑖,𝑘\ 𝑗,𝑙𝑝𝑘,𝑙 (𝑥)
𝜔𝑖, 𝑗,𝑥 (𝑘, 𝑙)

≥
∑

(𝑖, 𝑗,𝑥) ∈𝑅◦

∑
𝑘,𝑙

𝜔𝑖, 𝑗,𝑥 (𝑘, 𝑙) ln
\𝑖,𝑘\ 𝑗,𝑙𝑝𝑘,𝑙 (𝑥)
𝜔𝑖, 𝑗,𝑥 (𝑘, 𝑙)

(3)

We used Jensen’s inequality to go from the 2nd to 3rd line. The
inequality in Eq.3 becomes an equality for:

𝜔𝑖, 𝑗,𝑥 (𝑘, 𝑙) =
\𝑖,𝑘\ 𝑗,𝑙𝑝𝑘,𝑙 (𝑥)∑

𝑘′,𝑙 ′ \𝑖,𝑘′\ 𝑗,𝑘′𝑝𝑘′,𝑙 ′ (𝑥)
(4)

where 𝜔𝑖, 𝑗,𝑥 (𝑘, 𝑙) is interpreted as the probability that the observa-
tion (𝑖, 𝑗, 𝑥) is due to i belonging to the group 𝑘 and j to 𝑙 , that is the
expectation of the likelihood of the observation (𝑖, 𝑗, 𝑥) with respect
to the latent variables 𝑘 and 𝑙 . Therefore, Eq.4 is the formula for the
expectation step of the EM algorithm. An alternative derivation of
the expectation step formula is discussed in [3].

3.2.2 Maximization step. This step consists in maximizing the like-
lihood using the parameters of the model \ and p, independently
of the latent variables. In order to take into account the normaliza-
tion constraints, we introduce the Lagrange multipliers 𝜙 and 𝜓 .
Following this, the constrained log-likelihood reads:

ℓ𝑐 = ℓ −
∑
𝑖

(𝜙𝑖
∑
𝑡

\𝑖,𝑡 − 1) −
∑
𝑘,𝑙

(𝜓𝑘,𝑙
∑
𝑥

𝑝𝑘,𝑙 (𝑥) − 1) (5)
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We first maximize ℓ𝑐 with respect to each entry \𝑚𝑛 .
𝜕ℓ𝑐

𝜕\𝑚𝑛
=

𝜕ℓ

𝜕\𝑚𝑛
− 𝜙𝑚 = 0

=
∑
𝜕𝑚

(∑
𝑙

𝜔𝑚,𝑗,𝑥 (𝑛, 𝑙)
\𝑚𝑛

+
∑
𝑘

𝜔 𝑗,𝑚,𝑥 (𝑘, 𝑛)
\𝑚𝑛

)
− 𝜙𝑚

=
1

\𝑚𝑛

∑
𝜕𝑚

(∑
𝑡

𝜔𝑚,𝑗,𝑥 (𝑛, 𝑡) + 𝜔 𝑗,𝑚,𝑥 (𝑡, 𝑛)
)
− 𝜙𝑚

⇔ \𝑚𝑛 =
1
𝜙𝑚

∑
𝜕𝑚

∑
𝑡

𝜔𝑚,𝑗,𝑥 (𝑛, 𝑡) + 𝜔 𝑗,𝑚,𝑥 (𝑡, 𝑛)

(6)

where 𝜕𝑚 stands for the set of observations in which the entry m
appears {( 𝑗, 𝑥) | (𝑚, 𝑗, 𝑥) ∈ 𝑅◦}. Note that summing over this set in
line 2 of Eq.6 implies that the relation between two inputs entities
is symmetric –if (𝑖, 𝑗, 𝑥) ∈ 𝑅◦ implies ( 𝑗, 𝑖, 𝑥) ∈ 𝑅◦. Summing the
last line of Eq.6 over 𝑛 ∈ 𝑇 then multiplying it by 𝜙𝑚 , we get an
expression for 𝜙𝑚 :

𝜙𝑚

∑
𝑛

\𝑚𝑛 = 𝜙𝑚 =
∑
𝜕𝑚

∑
𝑡,𝑛

𝜔𝑚,𝑗,𝑥 (𝑛, 𝑡)+𝜔𝑖,𝑚,𝑥 (𝑡, 𝑛) =
∑
𝜕𝑚

2 = 2·𝑛𝑚

(7)
Where 𝑛𝑚 is the total number of times that m appears as an input
in 𝑅◦. Finally, plugging back this result in Eq.6, we get:

\𝑚𝑛 =

∑
𝜕𝑚

(∑
𝑡 𝜔𝑚,𝑗,𝑥 (𝑛, 𝑡) + 𝜔𝑖,𝑚,𝑥 (𝑡, 𝑛)

)
2.𝑛𝑚

(8)

Following the same line of reasoning for p, we get:

𝑝𝑟,𝑠 (𝑙) =
∑

𝜕𝑙 𝜔𝑖, 𝑗,𝑙 (𝑟, 𝑠)∑
(𝑖, 𝑗,𝑙 ′) ∈𝑅◦ 𝜔𝑖, 𝑗,𝑙 ′ (𝑟, 𝑠)

(9)

The set of Equations 8 and 9 constitutes themaximization step of the
EM algorithm. They hold only if the input entities interactions are
symmetric (e.g. when {( 𝑗, 𝑥) | (𝑚, 𝑗, 𝑥) ∈ 𝑅◦} = {(𝑖, 𝑥) | (𝑖,𝑚, 𝑥) ∈
𝑅◦}), which is what we aimed to do. It is worth noting that the
proposed algorithm offers linear complexity with the size of the
dataset O(|𝑅◦ |) provided the number of clusters is constant, while
guaranteeing convergence to a local maximum.

4 EXPERIMENTS
4.1 Datasets and evaluation protocol
We test the performance of our model on 4 different datasets. The
first dataset (PubMed dataset) is built with 15,809,271 medical re-
ports collected from the PubMed database as a good approximation
for human-disease network [31]. This dataset is not explicitly about
recommender systems, but provides an intuitive way to understand
how our recommendation approach works by suggesting likely dis-
eases given a collection of symptoms. The second (Twitter dataset)
with 139,098 retweets gathered in october 2010 associated with
the 3 last tweets in the feed preceding each retweet [10]. The task
is to infer tweets a user is the most likely to retweet. A possible
application would be a personnalized recommendation of such
tweets in the “Trends for you” Twitter section. The third (Reddit
dataset) with the entirety of posts in the subreddit r/news in May
2019 (225,485 message-answer relationships in total). We aim at
predicting the content of the answer given the incoming message.
A possible application would be similar as what Gmail does when
suggesting automated answers to an email given keywords present

in the message. Finally, the last (Spotify dataset) is built with 2,000
music playlists associated with keywords “english” and “rock” of
random Spotify users. We predict the next song a user will add to a
playlist given this user’s history. A RS application would suggest a
ranked list of songs to the user is likely to add to a playlist. Each
dataset is formed by associating every pair of inputs in a message
(i.e. a list of symptoms, a user’s feed, a Reddit post, and a playlist’s
last artists) with an answer (i.e. a disease, a retweet, a Reddit an-
swer, an artist added to a playlist). The building process of datasets
is further described in SI, Section 1, together with direct links to
access them for possible replication studies 1.

From the raw datasets, we form the test set by randomly sam-
pling 10% of the coupled structures (message→answer). The 90%
coupled structures left are used as a training set. The number of
clusters is determined using the elbow method. For each corpus:
30 for PubMed, 15 for Twitter, 30 for Reddit, and 15 for Spotify.
We perform 100 independent runs, each with independent random
initialization of the parameters \ and 𝑝 . The EM loop stops once
the relative variation of the likelihood between two iterations is
less than 0.001%.

4.2 Baselines
4.2.1 Naive baseline. The naive baseline is simply the frequency
of the outputs in the test set. This naive classifier predicts the value
of every output independently of the inputs.

4.2.2 MMSBM. We use the classical MMSBM as a second base-
line. In this formulation interactions are not taken into account
and is identical to state-of-the-art work done in recommender sys-
tems [4, 6, 16]. Instead of considering triplets (input, input, output),
we instead here apply the classical MMSBM on pairs (input, out-
put). This baseline is exactly the same as the model introduced
in [4]. We then train our baseline whose log-likelihood is defined
as ℓ𝐵𝐿 =

∑
(𝑖,𝑥) ∈𝑅◦ ln

∑
𝑘 \𝑖𝑘𝑝𝑘 (𝑥) on the same datasets as in the

main experiments. We infer the parameters via an Expectation-
Maximization algorithm similar to the one described in Section 3.
The number of clusters being the only parameter to be tuned. It
is chosen in the same way as it is for the IMMSBM –by minimiz-
ing the AIC criterion [1]. We see further in the experiments that
this criterion matches with the elbow of the various metrics. We
make 100 independent runs with random initialization and dis-
cuss here the results of the highest-likelihood run. This baseline
provides an alternative way to quantify the importance of inter-
actions by comparison with the case where these are taken into
account. We expect the baseline model to find results that are equiv-
alent to the diagonal probabilities of the main model (i.e. similar to
𝑃𝑖,𝑖 (𝑥) =

∑
𝑘,𝑙 \𝑖,𝑘\𝑖,𝑙𝑝𝑘,𝑙 (𝑥)). This is because the diagonal 𝑃𝑖,𝑖 (𝑥) is

supposed to account for the apparition of x given only the presence
of i, which is what this baseline computes. Furthermore, this model
will provide insight to the generalization of the assumption made in
Myers and Leskovec [18], stating that the probability of an output is
greatly dominated by a prior quantity unrelated to any interaction
(known as virality, see Section 2).

1To ease eventual replication studies, we provide the Python implementation of
the IMMSBM and of the baseline model used in this article in a Git repository at
https://github.com/GaelPouxMedard/IMMSBM.
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Figure 2: Performance variations on all themetrics for every dataset considered. Dashed blue line: upper limit to performances
; blue line: IMMSBM ; yellow dashed line: MMSBM ; red line: naive baseline. Top left: PubMed ; top right: Spotify ; bottom left:
Twitter ; bottom right: Reddit. The vertical green line shows the selected number of clusters; it is chosenusing theAIC criterion,
which matches with the elbow of the various metrics considered.

4.2.3 Perfect modeling - Upper limit to prediction. We also compare
our results to a mathematical upper limit to our predictions. While
in some systems the predictions could theoretically be perfect, in
most situations the dataset simply does not allow it. Consider as
an example a case where the test set contains twice the triplet
(“fever”, “pallor”, “influenza”) and once the triplet (“fever”, “pallor”,
“anemia”): the model cannot make a prediction better than 66%.
In SI, Section 2, we develop a general method to derive such an
upper limit to predictions for a given dataset. This upper limit is
mathematically the best performance any model can do given a
dataset structure.

4.3 Results
The metrics we use to assess the performance of our model are the
max-F1 score, the area under the receiver operating characteristic
curve (ROC) curve and the precision@10. For all of these quantities,
the closer to 1 they are, the better the performance.

For evaluation, we adopt a guessing process as follows. For every
pair of inputs, we compute the probability vector for the presence
of every possible output. Then we predict all of the probabilities

larger than a given threshold to be “present”, and all the others to
be “absent”. Comparing those predictions with the observations in
the test set, we get the confusion matrix for the given threshold.
We then lower the threshold and repeat the process to compute the
various metrics.

We recall that we do not compare our approach to [18] because
its formulation does not allow to make prediction on exogenous
output, that is when the output is not part of the input pair. The
more general model presented here is needed in order to consider
the effect of interactions on the probability of exogenous outputs.

In Table 1, we show the performances of our model compared
with the baselines introduced in Section 4.2. We see that IMMSBM
outperforms all of the baselines in most cases. A remarkable feature
is the good P@10 of our model, primordial in many applications
such as diseases diagnosis or in recommender systems. As expected,
taking interactions between entities into account leads to an im-
proved accuracy on the prediction of the missing data. This corre-
lates to the conclusions drawn in Myers and Leskovec, stating the
importance of interactions in real-world phenomenon modeling



Information Interactions in Outcome Prediction RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Table 1: Experimental results for the four metrics considered, from each model applied to each corpus. We see that our model
outperforms the proposed baselines in every dataset for almost every evaluation metric – the error bars overlap for the AUC
(ROC) on the PubMed corpus. The given error corresponds to the standard deviation over the 10 runs. The naive baseline and
upper limit results are constant over the runs and therefore have no variance.

P@10 Max-F1 AUC (ROC)

Pu
bM

ed

Naive 0.212 0.160 0.863
MMSBM 0.627 ± 0.002 0.393 ± 0.002 0.911 ± 0.000
IMMSBM 0.656 ± 0.001 0.411 ± 0.001 0.911 ± 0.002
Up.lim. 0.668 0.450 0.936

Tw
it
te
r Naive 0.462 0.147 0.554

MMSBM 0.529 ± 0.005 0.254 ± 0.005 0.741 ± 0.004
IMMSBM 0.610 ± 0.004 0.349 ± 0.006 0.800 ± 0.001
Up.lim. 0.737 0.748 0.959

R
ed

di
t Naive 0.488 0.164 0.660

MMSBM 0.495 ± 0.000 0.177 ± 0.000 0.686 ± 0.000
IMMSBM 0.499 ± 0.000 0.181 ± 0.000 0.687 ± 0.000
Up.lim. 0.558 0.582 0.933

Sp
ot
if
y Naive 0.355 0.088 0.573

MMSBM 0.426 ± 0.006 0.167 ± 0.003 0.707 ± 0.002
IMMSBM 0.502 ± 0.006 0.228 ± 0.005 0.723 ± 0.002
Up.lim. 0.570 0.607 0.944

[18]. Overall, our model performs better in many different applica-
tions for most of the corpora considered. It systematically yields a
better P@10 and F1 score, making it of use in recommender systems
applications. The AUC (ROC) score can be interpreted as the quality
of classification of low-probability events. Overall, little improve-
ment is observed on this aspect compared to the non-interacting
baseline.

We notice however that accounting for interactions did not lead
to a significant improvement in performance over the two base-
lines on the Reddit corpus. Given the obvious fact that language is
partially formed by interacting named entities, this result may look
surprising. We attribute the lack of improvement when considering
interactions to the dataset provided. Indeed the dataset contains
few observations for every possible pair, due to the wide range
of available vocabulary of natural language [15]. It is likely that
we did not train the model with enough data for it to learn actual
regularities in pair interactions. This can also be seen during the
building of the test set: approximately one half of its pairs have
never been observed in the training set. Therefore, we suppose
that the model simply lacks enough data to identify generalities. In
future work, it might be interesting to answer this problem by con-
sidering a corpus of pre-clustered entities instead of independent
named entities, hence reducing the vocabulary range and adding
to the regularity of the dataset.

5 DISCUSSION
5.1 Relative importance of interactions
5.1.1 Global importance of interactions. We recall the argument
exposed in the introduction that interactions have to be inferred
along with the virality of a piece of information, which cannot be
calculated heuristically. Imagine that interactions lead to a shift of
Δ𝑝 on the base probability 𝑝 (virality) of a retweet, and that this

interaction happens in a fraction 𝑓 of all observations of a given
tweet being retweeted. The virality as defined in [18] then equals
𝑝 (1 − 𝑓 ) + (𝑝 + Δ𝑝) 𝑓 = 𝑝 + 𝑓 Δ𝑝 , which is by construct larger than
the actual probability of a retweet in the absence of interaction.
Therefore, defining interaction according to this quantity is wrong
(for instance it results in adding an interaction term 𝑓 Δ𝑝 when
there is in fact no interaction). Virality needs to be inferred by the
model at the same time as the contribution of interactions to be
properly defined.

Our model infers virality along with interaction terms and yield
better results than state-of-the-art methods (see Table 1), which
provides solid ground for analyzing the effect of information interac-
tion. Close analysis of interactions between pieces of informations
has been little considered in literature –what lexical fields, groups
of symptoms, musical genres, kind of tweets interact with each
other. We can evaluate the importance of interactions between en-
tities on the basis of inferred virality. We consider two quantities
within each corpus: the overall relative impact of the interactions
on the probability of an outcome and the contribution of each pair
of groups in the modification of outcome probabilities.

To evaluate the global impact of taking the interactions into
account, we compute the relative change of probability according
to the virality for each triplet and average this quantity over all the
triplets in the corpus. We note this quantity 𝑉 :

𝑉 =
1

|𝑅◦ |
∑

(𝑖, 𝑗,𝑥) ∈𝑅◦

|𝑃𝑖,𝑖 (𝑥) − 𝑃𝑖, 𝑗 (𝑥) |
𝑃𝑖,𝑖 (𝑥)

where 𝑃𝑖, 𝑗 (𝑥) =
∑
𝑘,𝑙 \𝑖,𝑘\ 𝑗,𝑙𝑝𝑘,𝑙 (𝑥) denotes the probability of out-

come 𝑥 given the entities 𝑖 and 𝑗 ; as shown in the previous section,
the diagonal elements 𝑃𝑖,𝑖 (𝑥) account for the virality of 𝑖 on 𝑥 . The
results are shown Fig.3. It results that for every corpus, interaction
between entities exerts a non-negligible influence on the proba-
bility of an output. Those results confirm previous work done on
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Figure 3: Importance of interactions - Contribution of each pair of clusters 𝑉𝑘,𝑙 (heatmap) and average impact of the interac-
tions 𝑉 (on the right) in outcome probabilities for each corpus. Clusters typically interact with a limited number of others;
these interactions still play a significant role in outcomes probabilities. The cluster have been annotated manually.

interactions modeling, stating the importance of taking interactions
into account when analyzing real-world datasets [18]. Interactions
increase the virality of an output by a factor by 2.58 in the PubMed
corpus, 2.78 in the Twitter corpus, 1.73 in the Spotify corpus and
1.57 in the Reddit corpus. Interactions have a greater effect on out-
put probabilities for PubMed and Twitter corpora, and a lesser role
for the Spotify and Reddit ones. Besides, our model applied to a
dataset where interactions do not play any role (𝑉 = 0) reduces to
the non-interacting MMSBM baseline. This metric therefore allows
to assert the importance of the interactions in a given corpus.

5.1.2 Which clusters interact. To evaluate the role of each pair of
groups plays in the modification of output probability, we consider
the following quantity:

𝑉𝑘,𝑙 =

∑
(𝑖, 𝑗,𝑥) ∈𝑅◦ \𝑖,𝑘\ 𝑗,𝑙 (𝑝𝑘,𝑙 (𝑥) − 𝑃𝑖,𝑖 (𝑥))∑

(𝑖, 𝑗,𝑥) ∈𝑅◦ \𝑖,𝑘\ 𝑗,𝑙

where \ , 𝑝 and 𝑃𝑖,𝑖 (𝑥) are defined as before. This quantity is the
weighted average of the change in output probability with respect
to virality due the interaction between every pair of clusters (𝑘, 𝑙)
to which belong entities (𝑖, 𝑗) in a proportion (\𝑖𝑘 ,\ 𝑗𝑙 ). The results
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are shown in the heatmaps Fig3. Note that the clusters have been
manually given a name on the basis of their composition; labeling
is subjective.

We see that most of the clusters do not interact with each other;
the interactions essentially take place between a limited number of
clusters. Typically, a cluster interacts significantly with only one or
two other clusters in every corpus (“Vertigo” and “Speech disorder”
in PubMed, “Students” and “Schools” in Reddit, etc.). We also notice
that in each corpus, the model forms some non-interacting cluster
with low values of 𝑉𝑘,𝑙 (“Neuropsychatry” in PubMed, “Recent
pop” in Spotify, etc.); for those, the probability of an output is
essentially equal to the virality of this output. We also notice that
the diagonal of the𝑉𝑘,𝑙 matrices have low values; this expresses that
the interaction of a group with itself leads to an output probability
close to its virality. To picture how this makes sense, we can imagine
diagnosing a disease on the basis of two ear-related symptoms
(“earache” and “hearing disorders”): the diagnosis is likely to be
related to the ear as we would have guessed with only one symptom
(its probability equals virality). Now imagine two symptoms of
different kind (“earache” and “speech disorder”): the diagnosis is
then likely to be related to the brain and less to the ear, so the
interaction lowers the base probability (virality) of the “ear disease”
output and increases the one of the brain disease.

Being able to see in details the extent to which interactions
exert an influence in a corpus and between which categories they
take place open new perspectives in research. Understanding and
explaining underlying mechanisms ruling corpora is a desirable
property of AI models in social sciences for instance [7, 9, 26]. As
we demonstrated, the present work follows this line by developing
an explainable model for investigating interactions.

5.2 Entropy of membership
Another interesting quantity to look at when considering the results
is the membership entropy of the entities. This quantity measures
how entities are spread over all the clusters; when this value is low,
it means that the model finds strong regularities in the corpus, and
the clusters are likely to be readily interpretable. Therefore, we use
the normalized Shannon entropy of memberships of user i, 𝑆 (𝑚)

𝑖
,

whose formula is:

𝑆
(𝑚)
𝑖

=
1

log2
1
𝑇

𝑇∑
𝑡

\𝑖,𝑡 log2 \𝑖,𝑡 (10)

Here the lowest entropy reachable is 0, which corresponds to an
entity belonging to only one group ; the largest is 1 corresponding
to belonging to every cluster evenly (with probability 1

𝑇
).

Overall, the entropy of memberships is low. The average entropy
values per corpus are: 0.320 for PubMed (equivalent to belonging
on average to 2-3 clusters), 0.324 for Twitter (2 clusters), 0.561 for
Reddit (6-7 clusters) and 0.364 for Spotify (2-3 clusters). The low
number of entities spread among clusters means that the clustering
done by our model is easy to interpret –which eased the manual
annotation of the clusters presented in the previous section.

6 CONCLUSION
In most previous approaches to information spreading, the effect
of interactions between diffusing entities has been neglected. Here,

we proposed a modified MMSBM that allows for investigating the
role of interactions and quantifying them. By design, it also allows
assessment of the importance of interactions compared with the
virality of single pieces of information (i.e. their intrinsic ability
to spread on their own). On this basis, we show that the effect
of interactions on information spread is not trivial and that tak-
ing them into account increases predictive performance in several
real-world applications. Following this observation, we proposed
an implementation via a scalable EM algorithm allowing for its
application on large datasets.

However, a major limitation to our model is that it only accounts
for pair interactions. While our conclusions state their importance
in some real-world systems, it might not be sufficient for a number
of others. For instance, a disease is seldom diagnosed on the basis of
a single pair of symptoms; a model accounting for the interaction
between n entities might be more relevant in this case. The same
line of reasoning can be applied to gene and protein interactions
[31], bacteria symbiosis or even species co-evolution networks. We
are currently working on a generalization of our model that will
hopefully provide a better description of interacting processes at
work everywhere in nature.
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