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A Normality Test for Multivariate Dependent Samples

Sara ElBouch and Olivier Michel and Pierre Comon

aUniv. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Grenoble Campus,
BP.46, Grenoble, 38000, France

Abstract

Most normality tests in the literature are performed for scalar and in-
dependent samples. Thus, they become unreliable when applied to colored
processes, hampering their use in realistic scenarios. We focus on Mardia’s
multivariate kurtosis, derive closed-form expressions of its asymptotic dis-
tribution for statistically dependent samples, under the null hypothesis of
normality and a mixing condition. The calculus is long and tedious but the
final result is simple and is implemented with a low computational burden.
The proposed expression of the test power exhibits good properties on various
scenarios; this is illustrated by computer experiments by means of copulas.

Keywords: Multivariate normality test, kurtosis, colored process, copula

1. Introduction

The interest in techniques involving higher order statistics has grown con-
siderably during the past decades [1, 2, 3, 4]. Actually, first and second order
statistics allow an exhaustive characterization of Gaussian processes and lin-
ear systems. Despite the practical importance of the Gaussian distribution,
thanks to the central limit theorem, and the prevalence of linear dynami-
cal systems in small fluctuations models, many situations do not resort to
these assumptions. As a consequence, detecting departure from Gaussianity
arose as a means to detect and characterize non linear behavior, detection of
changes in dynamical regimes [5], etc. Higher-Order Statistics (HOS) were
also shown to carry valuable information for blind identification problems,
source separation and in measuring information theoretic quantities [4], to
name a few applications.

The present growth of interest in sensor networks and our ability to si-
multaneously record time series representing the fluctuations of numerous
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physical quantities, naturally leads to consider p-dimensional processes. Sur-
prisingly enough, normality tests for such p-dimensional stochastic processes
were not so much investigated. To be more precise, very few results con-
cern both the multivariate nature of the time series and the fact that the
p-dimensional time samples cannot in general be considered as being i.i.d.
This will be referred to as the non independent identically distributed (n.i.d.)
property. The difficulty in testing the Gaussian nature of p-dimensional
stochastic processes arises from the necessity for the test to tackle both the
joint Gaussianity of the p components and the time dependence of successive
p-dimensional samples. To make this framework clear, the following notation
is introduced: Let x(n) = [x1(n), . . . , xp(n)]T be a real p-variate stochastic
process, of which a sample of finite size, N , is observed. Hereafter, the
stochastic processes under study will be assumed stationary and zero-mean
with covariance matrices for delay τ defined by

S(τ) = E{x(n)x(n− τ)T}. (1)

Let Sab(τ) denote the entries of matrix S(τ), (a, b) ∈ {1, . . . , p}. The
n.i.d. nature of the time samples corresponds to have Sab(τ) 6= 0 in gen-
eral for τ 6= 0. Thus, the process X(n) enjoys both spatial and temporal
dependancies (temporal refers to dependence w.r.t. τ and spatial w.r.t. to
(a, b) ∈ {1, . . . , p}). The normality test without alternative can be formulated
as follows:

Problem P1: Given a finite sample of size N , X
def
=

{x(1), . . . ,x(N)}:

H : X is Gaussian versus H̄ (2)

where variables x(n) ∈ Rp are identically distributed, but not
statistically independent.

Solving this problem requires (i) to define a test variable, and (ii) to determine
its asymptotic distribution (often itself normal) in order to assess the power
of the test, that is, the probability to decide H whereas H is true.

For the scalar case (p = 1), since the so-called Chi-squared test proposed
by Fisher and improved in [6], the most popular test is probably the om-
nibus test based on skewness and kurtosis [7]. The omnibus test combines
estimated skewness and kurtosis weighted by the inverse of their respective
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asymptotic variance, evaluated under the assumption that the samples are
Gaussian i.i.d.; see also [8], [9]. The asymptotic distribution of the test is
χ2

2 when samples are i.i.d normal. However, as pointed out by [10], the
Chi-square test is very sensitive to the dependence between samples; the
process color yields a loss in apparent normality [11]. Actually, most of the
tests proposed in the literature assume that observations are i.i.d., see [12]
or [13]. This is also true for multivariate tests [14, 15]; see the survey of
[16]. Only very few authors address the case of n.i.d samples, or so-called
colored processes. One can mention Hinich’s bispectrum-based linearity test
[17], or Brillinger’s trispectrum [18]. These multispectra (Fourier transform
of 3rd and 4th order cumulant multicorrelations evaluated under stationar-
ity assumption) induce in general an important computational load and have
important estimation variance even for large values of N . An appealing al-
ternative was proposed in [19] where non linear transforms of the samples
allow to go beyond monomials of degree 3 or 4. For instance, some tests are
based on the characteristic function [20, 19] and others on entropy [21]. These
tests remain however complex to implement in practice and may hardly be
executable in real time on a light processor when samples are colored (i.e.
statistically time dependant).

Contribution. Taking an opposite direction, the purpose of this paper
is to propose a normality test that is simple to implement, even for colored
(time correlated) p-dimensional processes, eventually at the expense of quite
complicated and lengthy calculus to derive the exact form of the test. For
this reason, we shall focus on the multivariate kurtosis proposed by Mardia
in [14], and derive its mean and variance when samples are assumed to be
statistically n.i.d. Although the results presented apply easily in practice
to a very wide class of applications, the process is assumed to satisfy sta-
tistical mixing properties. Within this framework, a general procedure is
proposed to compute the asymptotic mean and variance of Mardia’s multi-
variate kurtosis when applied to colored processes, and is shown to converge
in O(1/

√
N), thus fully characterizing the asymptotic normal distribution of

the test statistic. The complete derivation is given for p = 2, which allows to
test joint normality of arbitrary 2-dimensional projections, thus generalizing
the tests proposed in [14, 22, 23] based on 1D projections and i.i.d samples.
The benefits of using 2D is clear, as the resulting tests are subsequently
shown to outperform 1D projection-based tests, via computer experiments.
The importance of joint normality and the performance of our test is illus-
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trated on n.i.d. copulas, i.e. with colored Gaussian marginals. Additionally,
the particular case where p-dimensional observations are constructed by time
embedding, thus mixing time and space dependencies, is developed.

This article is organized as follows. Section 2 contains the definition
of the test statistic. The tools necessary to conduct the calculations are
introduced in Section 3. The moments involved in the derivation of both the
mean and variance of the test statistic are given in Sections 4-5, for arbitrary
dimension p. Their expression in closed form for p = 1 and p = 2, and for
the case where the multivariate process arises from a time embedding, are
given in Sections 6-8. Section 9 reports some computer experiments. The
expressions of moments and details of calculation are deferred to appendices
in Section 11.

2. Mardia’s Multivariate kurtosis

The test proposed by Mardia in [14] takes the form:

βp = E{(xTS−1x)2}. (3)

For x ∼ Np(0,S), one can show that βp = p(p + 2). Its sample counterpart
for a sample of size N is:

Bp(N) =
1

N

N∑
n=1

(x(n)TS−1x(n))2 (4)

It is worth noticing that S being the exact covariance matrix, all random
realizations involved in the latter equation are standardized (remind that we
assume zero-mean processes). Thus, the advantage of this test variable is
that it is invariant with respect to linear transformations, i.e., y = Ax. In
practice, the covariance matrix S is unknown and is replaced by its sample
estimate, Ŝ, so that we end up with the following test variable:

B̂p(N) =
1

N

N∑
n=1

(
x(n)T Ŝ

−1
x(n)

)2
(5)

with

Ŝ =
1

N

N∑
k=1

x(k)x(k)T .
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The multivariate normality test can be formulated in terms of the multivari-
ate Kurtosis: the variable x is said to be normal if |B̂p(N)−E{B̂p(N)|H0}| ≤
η, where η is a threshold to be determined as a function of the power of the
test. The fact that B̂p(N) is a good estimate of βp or not is relevant; what
is important is to have a sufficiently accurate estimation of the power of the
test. In order to do that, we need to assess the mean and variance of B̂p(N)
under H. Under the assumption that x(n) are i.i.d. realizations of variable
x, the mean and variance of B̂p(N) have been calculated:

Theorem 1. [14] Let {x(n)}1≤n≤N be i.i.d. of dimension p. Then under the

null hypothesis H0, B̂p(N) is asymptotically normal, with mean p(p+ 2)N−1
N+1

and variance 8p(p+2)
N

+ o( 1
N

).

Note that the result above makes use of Landau notation o( 1
N

), to precise
that the absolute approximation error is dominated by 1

N
. Landau notation

O(h(N)) will also be often used, when the absolute approximation error will
be of the order of h(N). Both will be extensively used in the rest of this
paper.

Our purpose is now to state a similar theorem when {x(n)} are not
independent. Since this involves heavy calculations, we need to introduce
some tools to make them possible.

3. Statistical and combinatorial tools

In this section, partial useful results are established. Each is associated
with a lemma, and represents a step towards the derivation of the exact
expression of the statistics of B̂p(N) defined in (5) for multivariate colored
processes:

-Lemma 3 proves that ∆ = Ŝ − S varies as O(1/
√
N).

-Lemma 4 uses the preceding result in order to express the sample pre-
cision matrix Ĝ = (S + ∆)−1 as a function of the exact precision matrix G
and of the approximation matrix ∆, up to order O(‖∆‖3).

-Finally, lemma 5 allows to derive the approximate expression of B̂p(N)
to order N−1 in o(1/N).

From now on, we assume the following condition upon x(n), necessary to
relax the i.i.d. property while maintaining convergence of various terms:

Assumption 2 (Mixing).
∑∞

τ=0 |Sab(τ)|2 converges to a finite limit Ωab,
∀(a, b) ∈ {1, . . . , p}2, where Sab denote the entries of matrix S.
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3.1. Lemmas

The estimated multivariate kurtosis (5) is a rational function of degree
4. Since we wish to calculate its asymptotic first and second order moments,
when N tends to infinity, we may expand this rational function about its
mean. The first step is to expand the estimated covariance Ŝ. Let Ŝ = S+∆,
where ∆ is small compared to S; in fact :

Lemma 3. The entries of matrix ∆ are of order O(1/
√
N).

Proof. Under Hypothesis H, the covariance of entries ∆ab take the form
below :

Cov(∆ab,∆cd) =
1

N2

N∑
n=1

N∑
m=1

E{xa(n)xb(n)xc(m)xd(m)} − SabScd

and letting τ = n − m, and Ωabcd = SacSbd + SadSbc we have after some
manipulation:

Cov(∆ab,∆cd) =
1

N
Ωabcd +

2

N

N−1∑
τ=1

(1− τ

N
) {Sac(τ)Sbd(τ) + Sad(τ)Sbc(τ)}

≤ 1

N
Ωabcd +

2

N

∑
τ

{|Sac(τ)| |Sbd(τ)|+ |Sad(τ)| |Sbc(τ)|} .

Next, using the inequalities |
∑

i uivi| ≤
∑

i |ui||vi| ≤
1
2

∑
i(u

2
i +v2

i ), we have:

|Cov(∆ab,∆cd)| ≤
|Ωabcd|
N

+
1

N

∑
τ

|Sac(τ)|2 + |Sbd(τ)|2 + |Sad(τ)|2 + |Sbc(τ)|2.

Now using the mixing condition,
∑∞

τ=0 |Sij(τ)|2 ≤ Ωij, we eventually obtain:

|Cov(∆ab,∆cd)| ≤
|Ωabcd|
N

+
1

N
(Ωac + Ωbd + Ωad + Ωbc) (6)

which shows that Cov(∆ab,∆cd) = O(1/N). �

Lemma 4. The inverse Ĝ of Ŝ can be approximated by

Ĝ = G−G∆G + G∆G∆G + o(1/N). (7)
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Proof. Notice that positive definite sample covariance matrix may be
reexpressed as

Ŝ = S + ∆ = S1/2IS1/2 + S1/2S−1/2∆S−1/2S1/2

Let E be the symmetric matrix E = −S−1/2∆S−1/2. Then with this
definition,

Ĝ = S−1/2(I + E)−1S−1/2

As for any matrix E with spectral radius smaller than 1, the series
∑∞

k=0 E
k

converges to (I −E)−1. If we plug this series in the expression of Ĝ, for N
large enough to warrant that the spectral radius of Eis less than 1, we get
Ĝ = S−1/2 ∑K

k=0 E
k S−1/2 + o(‖E‖K). Replacing E by its definition and

taking K = 3 eventually yields (7). Note that the precise approximation
order is O(N−3/2), but only o(1/N) will be useful in what follows. �

Now it is desirable to express Ĝ as a function of Ŝ. If we replace ∆ by
Ŝ − S in (7), we obtain:

Ĝ = 3G− 3GŜG + GŜGŜG + o(1/N). (8)

With this approximation, Ĝ is now a polynomial function of Ŝ of degree 2,
and hence of degree 4 in x. We shall show that the mean of B̂p(N) involves
moments of x up to order 8, whereas its variance involves moments up to
order 16.

Lemma 5. Denote Aij = x(i)TS−1x(j). Then:

B̂p(N) =
6

N

N∑
n=1

A2
nn −

8

N2

N∑
n=1

Ann

N∑
i=1

A2
ni +

1

N3

∑
n=1

(
N∑
i=1

A2
ni)(

N∑
j=1

A2
nj)

+
2

N3

N∑
n=1

N∑
j=1

N∑
k=1

AnnAnjAjkAkn + o(1/N)

(9)

Proof. First inject (7) in the expression B̂p(N) =

1
N

∑N
n=1

(
x(n)T Ĝx(n)

)2

, and keep terms up to order O(‖∆‖2); this

yields:

B̂p(N) =
1

N

∑
n

[
A2
nn − 2Ann x(n)TG∆Gx(n) +

(
x(n)TG∆Gx(n)

)2

+2Ann x(n)TG∆G∆Gx(n)
]

+ o(‖∆‖2).
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Then replace ∆ by Ŝ − S. This leads to

B̂p(N) =
1

N

∑
n

[
6A2

nn − 8Ann
(
x(n)TGŜGx(n)

)
+
(
x(n)TGŜGx(n)

)2
+ 2Ann

(
x(n)TGŜGŜGx(n)

)]
+ o(‖∆‖2).

Equation (9) is eventually obtained after replacing Ŝ by 1
N

∑
k x(k)x(k)T

and all terms of the form x(q)TGx(r) by Aqr. �

3.2. Additional notations and calculus issues

When computing the mean and variance of B̂p(N) given in (9), higher
order moments of the multivariate random variable x will arise. Under the
normal (null) hypothesis, these moments are expressed as functions of second
order moments only. To keep notations reasonably concise, it is proposed to
use McCullagh’s bracket notation [24], briefly reminded in Appendix 11.1.
Furthermore, for all moments of order higher than p, some components ap-
pear multiple times; counting the number of identical terms in the expansion
of the higher moments is a tedious task. All the moment expansions that
are necessary for the derivations presented in this paper are developed in
Appendix 11.3.

In order to keep notations as explicit and concise as possible, while keep-
ing explicit the role of both coordinate (or space) indices and time indices,
let the moments of x(t), whose p components are xa(t), 1 ≤ a ≤ p be noted

µtuab = E{xa(t)xb(u)}, µtuvabc = E{xa(t)xb(u)xc(v)} (10)

and so forth for higher orders. It shall be emphasized that different time and
coordinate indices appear here as the components are assumed to be colored
(time correlated) and dependent to each others (spatially correlated).

Computation of the mean and variance of B̂p defined by equation (9)
involves the computation of moments of order noted 2L whose generic ex-
pression is

E{
L∏
l=1

Aαlβl} =

p∑
r1...rL,c1...cL=1

(
L∏
i=1

Gri,ci

)
E{xr1(α1)xc1(β1) . . . xrL(αL)xcL(βL)}

or equivalently
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E{
L∏
l=1

Aαlβl} =

p∑
r1...rL,c1...cL=1

(
L∏
i=1

Gri,ci

)
µα1...αLβ1...βL
r1...rLc1...cL

(11)

In the above equation, the 2L-order moment µα1...αLβ1...βL
r1...rLc1...cL

has superscripts
indicating the time indices involved, whereas the subscripts indicate the co-
ordinate (or space) indices.

While being general, the above formulation may take simpler, or more
explicit forms in practice. The detailed methodology for computing the ex-
pressions of the mean and variance of B̂p as functions of second order mo-
ments is deferred to Appendix 11.2. The resulting expressions of Mardia’s
statistics are given and discussed in the sections to come.

4. Expression of the mean of B̂p(N)

According to Equation (9), we have four types of terms. The goal of this
section is to provide the expectation of each of these terms. In the proposi-
tions below, all terms are developed as being sums and products of second
order moments, as it is reminded that under H the process is Gaussian.
Notice also that under the latter assumption, all higher-order moments of
any order are finite. For sake of simplicity, Landau’s approximation order
O(h(n)) is omitted in most equations.

Lemma 6. With the definition of Aij given in Lemma 5, we have:

E{A2
nn} =

p∑
a,b,c,d=1

GabGcd µ
nnnn
abcd (12)

E{AnnA2
ni} =

p∑
a,b,c,d=1

p∑
e,f=1

GabGcdGef µ
nnnnii
abcedf (13)

E{A2
niA

2
nj} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

GabGcdGefGgh µ
nnnniijj
acegbdfh (14)

E{AnnAnjAjkAkn} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

GabGcdGefGgh µ
nnnnjjkk
abchdefg (15)
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Proposition 7. Using expressions of moments given in Appendix 11.3, the
expectations of the four terms defined in Lemma 6 take the form below

E{A2
nn} =

p∑
k`qr=1

Gk`Grq

{
[3]µnnk` µ

nn
qr

}
(16)

E{AnnA2
ni} =

p∑
k`qrst=1

Gk`GqrGst

{
[12]µnikrµ

ni
`tµ

nn
qs + [3]µnnk` µ

nn
qs µ

ii
rt

}
(17)

E{A2
niA

2
nj} =

∑
k,`,q,r

∑
s,t,u,v

Gk`GqrGstGuv

{
[3]µnnkq µ

nn
suµ

ii
`rµ

jj
tv

+[6]µnnkq µ
nn
suµ

ij
`tµ

ij
rv + [12]µnnkq µ

ni
s`µ

ni
urµ

jj
tv + [24]µnjktµ

nj
qvµ

in
`sµ

ni
ur

+[48]µnik`µ
ij
rtµ

nj
qvµ

nn
su + [12]µnnkq µ

jn
ts µ

nj
uvµ

ii
r`

}
(18)

E{AnnAnjAjkAkn} =
∑
m,`,q,r

∑
s,t,u,v

Gm`GqrGstGuv

{
[3]µnnm`µ

nn
qv µ

jj
srµ

kk
tu

+[6]µnnm`µ
nn
qv µ

jk
rtµ

jk
su + [12]µnnm`µ

nj
qrµ

nj
vsµ

kk
tu + [24]µnkmvµ

nk
`uµ

nj
qrµ

nj
vs

+[48]µnjmrµ
jk
stµ

nk
`uµ

nn
qv + [12]µnnk` µ

nk
qt µ

nk
vuµ

jj
rs

}
(19)

The mean of B̂p(N) then follows from (9).

5. Expression of the variance of B̂p(N)

From Lemma 5, we can also state what moments of Aij will be required
in the expression of the variance of Bp(N).

Lemma 8. By raising (9) to the second power and using the definition of
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Aij given in Lemma 5, we can check that the following moments are required:

E{A2
nnA

2
ii} =

p∑
a,b,c,d,e,f,g,h=1

GabGcdGefGgh µ
nnnniiii
abcdefgh (20)

E{A2
nnA

2
ijAii} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`=1

GabGcdGefGgh

Gm` µ
nnnniiiijj
abcdegm`fh (21)

E{AnnAkkA2
niA

2
kj} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

GabGcdGefGghGm`

Gqr µ
nnnnkkkkiijj
abegcdmqfh`r (22)

E{A2
kkA

2
niA

2
nj} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

GabGcdGefGghGm`

Gqr µ
kkkknnnniijj
abcdegmqfh`r (23)

E{A2
nnAiiAijAjkAki} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

GabGcdGefGghGm`

Gqr µ
nnnniiiijjkk
abcdefgrhm`q (24)

E{A2
niA

2
njA

2
ktAkk} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

p∑
s,u=1

GabGcdGefGghGm`

GqrGsu µ
nnnnkkkkiijjtt
acegmqsubdfh`r (25)
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E{AiiA2
itAnnAnjAjkAkn} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

p∑
s,u=1

GabGcdGefGghGm`

GqrGsu µ
iiiinnnnjjkktt
abceghmu`qrsdf (26)

E{A2
niA

2
ktA

2
njA

2
ku} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

p∑
s,v,w,z=1

GabGcdGefGghGm`

GqrGsvGwz µ
nnnnkkkkiijjttuu
acmqegswbd`rfhvz (27)

E{AnnAnjAjkAknAiiAitAtuAui} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

p∑
s,v,w,z=1

GabGcdGefGghGm`

GqrGsvGwz µ
nnnniiiijjkkttuu
abchm`qzdefgrsvw (28)

E{AnnAnjAjkAknA2
itA

2
iu} =

p∑
a,b,c,d=1

p∑
e,f,g,h=1

p∑
m,`,q,r=1

p∑
s,v,w,z=1

GabGcdGefGghGm`

GqrGsvGwz µ
nnnniiiijjkkttuu
abchmqswdefg`rvz (29)

Then, as in Proposition 7, by using the results of Appendix 11.3, the mo-
ments µ∗∗ could be in turn expressed as a function of second order moments.
For readability, we do not substitute here these values.

Proposition 9.

V ar{B̂p} =
36

N2

∑
n

∑
i

E{A2
nnA

2
ii} −

96

N3

∑
j

∑
n,i

E{A2
nnA

2
ijAii}

+
64

N4

∑
n,i

∑
j,k

E{AnnAkkA2
niA

2
kj}+

12

N4

∑
n,i,j,k

E{A2
kkA

2
niA

2
nj}

+
24

N4

∑
n,i,j,k

E{A2
nnAiiAijAjkAki} −

16

N5

∑
n,i

∑
j,k,t

E{A2
niA

2
njA

2
ktAkk}

− 32

N5

∑
i,t

∑
n,j,k

E{AiiA2
itAnnAnjAjkAkn}+

1

N6

∑
n,i,j

∑
k,t,u

E{A2
niA

2
ktA

2
njA

2
ku}

+
4

N6

∑
n,j,k

∑
i,t,u

E{AnnAnjAjkAknAiiAitAtuAui}

+
4

N6

∑
n,j,k

∑
i,t,u

E{AnnAnjAjkAknA2
itA

2
iu} − (E{B̂p})2 (30)
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6. Mean and variance of B̂1(N) in the scalar case (p = 1)

The complicated expressions obtained in the previous sections simplify
drastically in the scalar case, and we get the results below.

E{B̂1} = 3− 6

N
− 12

N2

N−1∑
τ=1

(N − τ)
S(τ)2

S2
+ o(

1

N
) (31)

V ar{B̂1} =
24

N

[
1 +

2

N

N−1∑
τ=1

(N − τ)
S(τ)4

S4

]
+ o(

1

N
) (32)

In particular in the i.i.d. case, S(τ) = 0 for τ 6= 0, and we get the well-known
result [8] [25]:

E{B̂1} ≈ 3− 6

N
, and V ar{B̂1} ≈

24

N
.

The expressions of mean and variance above are identical to those given in
Theorem 1, the difference being that here the ratio N−1

N+1
is replaced by its

approximation of order N−1, i.e. N−1
N+1

= 1− 2
N

+ o(1/N).

7. Mean and variance of B̂2(N) in the bivariate case (p = 2)

In the bivariate case, expressions become immediately more complicated,
but we can still write them explicitly, as reported below. We remind that
µijab = Sab(i− j).

E{B̂2} = 8− 16

N
− 4

N2

N−1∑
τ=1

(N − τ)Q1(τ)

(S11S22 − S2
12)2

+ o(
1

N
) (33)

with

Q1(τ) = S11S22

[
(S12(τ) + S21(τ))2 − 4S11(τ)S22(τ)

]
+S2

12

[
2(S12(τ) + S21(τ))2 + 4S22(τ)S11(τ)

]
−6S22S12

(
S11(τ)(S12(τ) + S21(τ))

)
−6S11S12

(
S22(τ)(S12(τ) + S21(τ)

)
+6S2

11S
2
22(τ) + 6S2

22S
2
11(τ). (34)
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V ar{B̂2} =
64

N
+

16

N2

N−1∑
τ=1

(N − τ)Q2(τ)

(S11S22 − S2
12)4

+ o(
1

N
) (35)

with

Q2(τ) =
[
2S2

11(τ)S2
22(τ)− 16S11(τ)S22(τ)S12(τ)S21(τ)

+3(S2
21(τ) + S2

12(τ))2 + 12S11(τ)S22(τ)(S12(τ) + S21(τ))2

−4S2
12(τ)S2

21(τ)
]
S2

11S
2
22

+2S2
11S

2
12

[
8S11(τ)S22(τ) + 3(5S11(τ)S22(τ) + S21(τ)S12(τ))

(S21(τ) + S12(τ))2 − 4S21(τ)S12(τ)
(
S2

22(τ) + S21(τ)S12(τ)
)]

+2S2
22S

2
12

[
8S22(τ)S11(τ) + 3(5S11(τ)S22(τ)) + S21(τ)S12(τ)

(S21(τ) + S12(τ))2 − 4S21(τ)S12(τ)
(
S2

11(τ) + S21(τ)S12(τ)
)]

+3S4
11S

4
22(τ) + 3S4

22S
4
11(τ)

+8S4
12

[
S2

11(τ)S2
22(τ) + 4S11(τ)S22(τ)S12(τ)S12(τ) + S2

21(τ)S2
12(τ)

]
−12S11S12 S22(τ)(S12(τ) + S21(τ)

[
(2S11(τ)S22(τ) + S2

21(τ) + S2
12(τ))

S11S22 + 2(S11(τ)S22(τ) + S12(τ)S21(τ))S2
12

]
−12S22S12 S11(τ)(S12(τ) + S21(τ)

[
(2S11(τ)S22(τ) + S2

21(τ) + S2
12(τ))

S11S22 + 2
(
S11(τ)S22(τ) + S12(τ)S21(τ)

)
S2

12

]
. (36)

Note that the latter expressions are complicated, but easy to implement as
demonstrated in the remaining sections. Again for this case where p = 2,
the approximation N−1

N+1
= 1− 2

N
+ o(1/N) was used in the expressions of the

mean and variance of B̂2.

8. Particular case: multidimensional embedding of a scalar process

In this section, we consider the particular case where the multivariate
process consists of the embedding of a scalar process. More precisely, we
assume that

14



x(n) =

 x1(n)
. . .
xp(n)

 =

 y(nδ + 1)
. . .

y(nδ + p)

 .

where y(k) is a scalar wide-sense stationary process of correlation function
C(τ) = E{y(k)y(k−τ)} = S11(τ/δ). Note that now, because of the particular
form of x(n), we can exploit the translation invariance by remarking that
Sab(τ) = E{xa(nδ)xb(nδ−τδ)} implies Sab(τ) = C(τδ+a−b), for 1 ≤ a, b ≤ p.

To keep results as concise as possible, we assume the notation γi(τ) =
C(τδ + i), and the shortcut Cj = C(j). The main goal targeted by defining
these multiple notations is to obtain more compact expressions.

8.1. Bivariate embedding
The bivariate case is more difficult but the expressions still have a simple

form:

E{B̂2} ≈ 8− 16

N
− 4

N2

N−1∑
τ=1

(N − τ)q1(τ)

(C2
0 − C2

1)2
(37)

V ar{B̂2} ≈
64

N
+

16

N2

N−1∑
τ=1

(N − h)q2(τ)

(C2
0 − C2

1)4
(38)

with q1(τ) and q2(τ) defined below, where γi stands for γi(τ):

q1(τ) =
[
(γ1 + γ−1)2 + 8γ2

0

]
C2

0 − 12C0C1 γ0(γ1 + γ−1)

+
[
2(γ1 + γ−1)2 + 4γ2

0

]
C2

1 ,
(39)

q2(τ) =
[
8(γ2

0 − γ1γ−1)2 + 3(γ2
1 − γ2

−1)2 + 12γ2
0(γ1 + γ−1)2

]
C4

0

+ 4
[
8γ4

0 + 3 (5γ2
0 + γ1γ−1)(γ1 + γ−1)2 − 4γ1γ−1(γ2

0 + γ1γ−1)
]
C2

0C
2
1+

8
[
γ4

0 + 4γ2
0γ1γ−1 + γ2

1γ
2
−1

]
C4

1 − 24C0C1 γ0(γ1 + γ−1)
[
(2γ2

0 + γ2
1 + γ2

−1)C2
0

+2(γ2
0 + γ1γ−1)C2

1

]
.

(40)

The exact computation for the trivariate embedding case have also been
conducted; but because of their lengthy expressions (especially that of the
variance), they are not detailed here and can be given as supplementary
material upon request.
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9. Computer experiments

In this section, the preceding results are illustrated on dedicated com-
puter experiments. To emphasize the importance of the univariate and the
bivariate normality tests on colored random process, we simulate correlated
bivariate random processes with Gaussian marginals. The generation pro-
cedure is briefly described in the next section. Then tests are performed
to detect non Gaussian nature of the joint distribution while the marginals
remain Gaussian.

Remark 10. Up to now, we have derived the mean and variance of a test
variable B̂p. In order to compute the power of the test, we need its distribu-

tion. First, B̂p is shown in [14] to converge to Bp in probability. Next, Bp

is a sum of n.i.d. random variables enjoying the mixing Property 2; for this
reason Bp converges to a normal variable thanks to the Law of Large Numbers

[26, ch.IV]. This guarantees that (B̂p − E{B̂p})/
√
V AR{B̂p} is asymptoti-

cally N (0, 1).

9.1. Gaussian Marginals under H̄

Copulas are a classical framework, which is simple to implement for
defining multivariate distributions with controlled joint distribution func-
tion. It is known that there is a unique copula – called the Gaussian copula
CR – that produces the bivariate Gaussian distribution, fully specified by
the correlation matrix R:

CR(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1−R2
12)1/2

exp
{s2 − 2R12st+ t2

2(1−R2
12)

}
ds dt

(41)
where Φ−1 is the inverse of the cumulative distribution function of the stan-
dard normal distribution. As Sklar’s theorem (cf. Appendix 11.6) guarantees
the uniqueness of the copula generating a given bivariate distribution, non
Gaussian distributions can easily be obtained by using other types of copulas.
Namely here, Clayton and Gumbel bivariate copulas are used as examples:

Clayton: Cθ(u, v) = max{u−θ + v−θ − 1; 0}, θ ∈ [−1,∞)\{0} (42)

Gumbel: Cθ(u, v) = exp
{
− (−log(u)θ +−log(v)θ)

1
θ

}
, θ ∈ [1,∞) (43)
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Since Sklar’s theorem does not impose independence of any variate u or v
of Cθ(u, v), we need to propose the following algorithm to generate a bivariate
copula with colored Gaussian marginals.

• Generate two i.i.d centered normalized Gaussian variables: η1, η2 ∼
i.i.d

N (0, 1)

• Make the previous variables correlated in time by a first-order auto-
regressive filter:

y1(n) = 0.8y1(n− 1) + η1(n)

y2(n) = 0.8y2(n− 1) + η2(n)

Thus E{y1(n)y1(n− k)} = 0.8|k|, for all k ∈ Z.

• Transform y1 and y2 as:

u = Φ(y1) (44)

v = Φ(y2) (45)

Note that u and v are uniformly distributed on [0, 1]. Thus, we can
generate new samples u′, v′ coupled by a given copula Cθ. For more
details about efficient sampling of copula see the (Marshall and Olkin
1988 algorithm) cited in [27].

• Transform u′ and v′ to obtain Gaussian standard marginals: x =
(x1(n), x2(n))T :

x1(n) = Φ−1
(
u(n)

)
x2(n) = Φ−1

(
v(n)

)
Simulation study

For a given copula C, we perform M = 2000 realizations of x(n) =
(x1(n), x2(n))T of total length N = 1000. First, the p-values of the two-sided
tests are computed based on:

t =
B̂(.) − E{B̂(.)}√

Var{B̂(.)}
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Recall that this statistic is standard normal. Then p-value = 2(1−Φ(|t|)) is
compared to pre-specified significance levels α. For any p smaller than α, it
is considered heuristically that the test rejected H. The empirical rejection
rates, defined by Number of rejections

M
for each statistic B̂1,i.i.d, B̂1 and B̂2 are

reported in Table 1.

Test
statistic

Gaussian R12 = 0.8 Clayton θ = 2 Gumbel θ = 5
α = 5% α = 10% α = 5% α = 10% α = 5% α = 10%

B̂1,i.i.d

B̂1

B̂2

0.1660
0.0450
0.0480

0.2460
0.0730
0.0801

0.1011
0.1060
0.9890

0.1651
0.1701
0.9920

0.1189
0.0390
0.9920

0.1930
0.0860
0.9960

Table 1: Empirical Rejection rate at two significance levels : α = 5%, 10%

Mardia’s test

• B̂1,i.i.d: Under the null hypothesis H, the rejection rate surpasses the nom-

inal level. That B̂1,i.i.d over-rejects H is due to the one-dimensional marginal
being time -correlated. Such observation was already formulated by [10] and
[11] who showed that the correlation among samples is confounded with lack
of Normality.
•B̂1,i.i.d and B̂1 test one-dimensional marginals only, therefore they are al-
ways conservative.
•B̂2: The rejection rates do not differ substantially from the nominal level

when data is distributed according to bivariate Gaussian. Under H̄, this
test has very high rejection rates, which confirms the necessity of taking into
account the full dimension to design a powerful test.

9.2. Detection of a time-series embedded in Gaussian noise

In this simulation, the detection of an additive corruption in a Gaussian
process is considered:

y(n) = x(n) + kb(n) (46)

where x(n) is a first order auto-regressive process AR(1): x(n) = 0.8x(n −
1) + η(n) and where η ∼

iid
N (0, S); b(n) = 0.8b(n − 1) − 0.5b(n − 2) + ε(n),

where ε follows a double-exponential distribution with unit scale parameter.
We perform 500 replications of {y(n)} of total length Ntot = ndrop + N ,
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(a) Gaussian Copula R12 = .8 (b) Clayton θ = 2

(c) Gumbel θ = 5

Figure 1: Examples of non-Gaussian process whose marginals are standard normal
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the first ndrop = 1000 observations at the beginning of the sample are dis-
carded to alleviate side effects and reduce the dependence on initial values:
x(1) = η(1) and b(1) = ε(1). For each data record, the covariance function
γa,b(i) is estimated once for a fixed dimension p for all the test statistics.
Testing the normality of the process y(n) can be accomplished by standard
scalar tests. By exploiting the results in Section 8, we propose to test the
joint normality of its successive values: x(n) = (y(2n+ 1), y(2n+ 2))T ; Note
that here δ = 2.
The normality test can be reformulated in terms of the detection of an un-
known non-Gaussian signal embedded in Gaussian noise. The ability of the

test to detect the presence of b(n) for different SNR = k2 E{b(n)2}
E{x(n)2}

is reported

in Figure 2.

Figure 2: Empirical rejection rate at α = 5% (in red dashed horizontal line) for 300 SNR
values in logarithmic scale (dB)

As SNR increases, statistic B̂2 is the first to detect the presence of an
additive non-Gaussian process, followed by B̂1 and B̂1,i.i.d whose behaviors
do not differ substantially.
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10. Concluding remarks

Mardia’s multivariate kurtosis, B̂p, is intended to test the joint normality
when statistically independent realizations are available. Without assuming
the latter independence, we derive in this paper the asymptotic distribution
of the multivariate kurtosis under the null hypothesis. Limited by the length
of the expressions for p > 3, the exact expressions are reported only in the
bivariate case.

There are many ways to construct non-Gaussian processes with Gaussian
marginals, as illustrated by copulas, and scalar tests often lead to misdetec-
tions, whereas our test continues to be powerful. Our test also proves to
be useful for scalar processes, for example by testing the joint normality of
successive values of a time-series.
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(ANR-19-P3IA-0003).
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11. Appendices

11.1. McCullagh’s bracket notation and expression of the higher moments
under the null hypothesis

McCullagh’s bracket notation [24] allows to write into a compact form a
sum of terms that can be deduced from each other by generating all possible
partitions of the same type. For instance, we have the following expression
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for fourth order moments Mabcd of a zero-mean multivariate normal variable
with covariance S:

Mabcd = SabScd + SacSbd + SadSbc = [3]SabScd (47)

Moments of higher order can be found easily:

order 6: Mabcdef = [15]SabScdSef (48)

order 8: Mabcdefgh = [105]SabScdSefSgh (49)

order 10: Mabcdefghij = [945]SabScdSefSghSij (50)

order 12: Mabcdefghijk` = [10395]SabScdSefSghSijSk` (51)

order 14: Mabcdefghijk`mn = [135135]SabScdSefSghSijSk`Smn (52)

order 16: Mabcdefghijk`mnpq = [2027025]SabScdSefSghSijSk`SmnSpq (53)

since it is well known that there are [ 2r!
2r r!

] terms in the moment of order 2r.

11.2. Calculation methodology

Remind that, as introduced in Lemma 5, Aαlβl = x(αl)
TGx(βl), where

G stands for the true precision matrix of the process whose terms are Gr,c,
and where (r, c) ∈ {1, . . . , p}2.

Referring to the expression of B̂p or B̂2
p as derived from equation (9), it ap-

pears that the indices (αl, βl) take values on a restricted set S = {i, j, k, . . .},
and |S| � N . The following compact notation is therefore introduced

µα1...αLβ1...βL
r1...rLc1...cL

= Miηijηj kηk .... (54)

where

ηi =
L∑
l=1

(
I[αl=i] + I[βl=i]

)
,∀i ∈ S

Note that the subscripts r1, ...c1... are skipped here for sake of readability,
though any permutation of the superscripts in equation (10) requests the
corresponding permutation of the subscripts. It is easier to describe the
general methodology by the typical example below.

Example

Consider the moment E{AnnAnjAjkAkn}. According to equation (11) it
will be expanded as a sum of moments of order 8 (i.e. L = 4); using the
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compact notation from equation (54), we get

E{AnnAnjAjkAkn} =

p∑
((ri,ci)i=1...4)=1

Gr1c1Gr2c2Gr3c3Gr4c4µ
nnnjjkkn
r1c1r2c2r3c3r4c4

=

p∑
((ri,ci)i=1...4)=1

Gr1c1Gr2c2Gr3c3Gr4c4Mn4j2k2 (55)

The sum involves 22L = 64 terms. It is reminded that the coefficients ri or ci
indicate the coordinate of the vector process (or space coordinate, thus taking
values on {1, . . . , p}) , whereas time indices n, j, k tale values on{1, . . . , N}.
Following McCullagh’s notations, under the assumption (H0) that the p-
dimensional process is centered and jointly Gaussian, for this particular 8-th
order moment

Mabcdefgh = [105]SabScdSefSgh

which expresses that under H0, higher even order moments (odd-
order moments are zero) may be expanded as sums of prod-
ucts of second order moments. It must be reminded that here,
a, b, c, d, e, f, g, h stand for ’meta-indices’ defined in the present example
by (n, r1), (n, c1), (n, r2), (n, c4), (j, c2), (j, r3), (k, c3), (k, r4) respectively, as it
appears in equation (55). Plugging the above expansion in equation (55)
leads to summing over 64 × 105 terms! However, in most cases of interest
many terms may be grouped together and highlight the behavior of equation
(11). The case p = 1 is briefly sketched below as an illustration.

The case p = 1 implies that ri = ci = 1 ∀i ∈ {1, . . . , (L = 4)}; the
particular 8-th order moment in equation (55) may be simply written as
Mn4j2k2 , whose expansion into sum of products of second order moments will
involve the following products : (as there is no ambiguity in this case, we set

Mij
nota.
= Sij),

SnnSnnSjjSkk appearing 3 times

SnnSnnSjkSjk appearing 6 times

SnnSnjSnjSkk appearing 12 times

SnkSnkSnjSnj appearing 24 times

SnjSjkSnkSnn appearing 48 times

SnnSnkSnkSjj appearing 12 times
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For example the number of occurences of the term of type SnkSnkSnjSnj
is given by

(4× 2× 3× 1)/2× (2× 2× 1× 1)/2 = 24

where 4 × 2 stand for the number of possible choices for index i (one out
of 4) times the number of possible choices for index k (one out of 2); then
3×1 stand for the number of remaining possibilities to select index i times the
remaining choices for k; Division by 2 accounts for the fact that permutations
of terms Sik were counted twice. All other occurence calculations follow the
same guidelines. Finally, one gets for the case p = 1

Mn4jjkk = 3S2
nnSjjSkk + 6S2

nnSjkSjk + 12SnnS
2
ijSkk + 24S2

nkS
2
nj + ....

48SnjSjkSnkSnn + 12SnnS
2
nkSjj

which can be directly plugged into equation (55). Note that the sum of all
coefficient is actually 105, as expected for an 8-th order moment.

The cases p ≥ 2 turns out to be a bit more complicated, as one has
to deal with the ’meta-indices’ directly. However counting the number of
configurations involving the same time indices follows the same lines as in
the case p = 1. Going back to the example introduced above for p = 2, one
gets

E{AnnAnjAjkAkn} =

p∑
((ri,ci)i=1...4)=1

Gr1c1Gr2c2Gr3c3Gr4c4 { [3]µnnr1c1µ
nn
r2c4

µjjc2r3µ
kk
c3r4

+

[6]µnnr1c1µ
nn
r2c4

µjkc2c3µ
jk
r3r4

+ [12]µnnr1c1µ
nj
r2c2

µnjc4r3µ
kk
c3r4

+ [24]µnkr1c3µ
nk
c1r4

µnjr2c2µ
nj
c4r3

+

[48]µnjr1c2µ
jk
r3c3

µnkc1r4µ
nn
r2c4

+ [12]µnnr1c1µ
nk
r2c3

µnkc4r4µ
jj
c2r3
}

where we have used notations µαβrc to emphasize that the permutations
(whose number is indicated using McCullagh’s brakets) are applied on the
’meta-indices’ and grouped such that they share the same ’time structure’;
This allow to get the same values as in the case p = 1, though replacing the
scalar coefficients by McCullagh’s brakets.

11.3. Multivariate moments up to order 12

In this section, we give all moments of a zero-mean multivariate normal
variable of even order. Most of these expressions have not been reported
in the literature. In addition, for the sake of readability, when an index
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is repeated more than three times, we assume an alternative notation, for
instance at order 10:

Miiiiijjjjk = Mi5j4k

Furthermore, we use notation introduced in (54) involving meta-indices; more
precisely, since each subscript is always associated with a superscript, we may
omit the subscript. In order to lighten notation, especially when terms need
to be raised to a power, we put the latter superscript in subscript. For
instance in (56), M iiij

abcd is replaced by Miiij. In the list below, moments are
sorted by increasing D, where D denotes the number of distinct indices.

Order 4, D=2.

Miiij = [3]µiiabµ
ij
cd (56)

Miijj = [2]µijabµ
ij
cd + µiiabµ

jj
cd (57)

Order 4, D=3.

Miijk = µiiabµ
jk
cd + [2]µijabµ

ik
cd (58)

Order 6, D=2.

Mi5j = [15]µiiabµ
ii
cdµ

ij
ef (59)

Mi4jj = [12]µijaeµ
ij
bfµ

ii
cd + [3]µiiabµ

ii
cdµ

jj
ef (60)

Miiijjj = [6]µijadµ
ij
beµ

ij
df + [9]µiiabµ

ij
cdµ

jj
ef (61)

Order 6, D=3.

Mi4jk = [3]µiiabµ
ii
cdµ

jk
ef + [12]µijaeµ

ik
bfµ

ii
cd (62)

Miiijjk = [6]µijadµ
ij
beµ

ik
cf + [6]µijadµ

ii
bcµ

jk
ef + [3]µiiabµ

jj
deµ

ik
cf (63)

Miijjkk = µiiabµ
jj
cdµ

kk
ef + [2]µiiabµ

jk
ceµ

jk
bf + [2]µjjcdµ

ik
aeµ

ik
bf + [2]µkkefµ

ij
acµ

ij
bd

+[8]µijacµ
jk
deµ

ik
bf (64)

Order 8, D=2.

Mi7j = [105]µiiabµ
ii
cdµ

ii
efµ

ij
gh (65)

Mi6jj = [90]µijagµ
ij
bhµ

ii
cdµ

ii
ef + [15]µiiabµ

ii
cdµ

ii
efµ

jj
gh (66)

Mi5jjj = [60]µijafµ
ij
bgµ

ij
chµ

ii
de + [45]µiiabµ

ii
cdµ

ij
efµ

jj
gh (67)

Mi4j4 = [9]µiiabµ
ii
cdµ

jj
efµ

jj
gh + [72]µiiabµ

ij
ceµ

ij
dfµ

jj
gh + [24]µijaeµ

ij
bfµ

ij
cgµ

ij
dh (68)
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Order 8, D=3.

Mi6jk = [15]µiiabµ
ii
cdµ

ii
efµ

jk
gh + [90]µiiabµ

ii
cdµ

ij
egµ

ik
fg (69)

Mi5jjk = [30]µiiabµ
ii
cdµ

ij
efµ

jk
gh + [60]µijafµ

ii
bcµ

ik
dh + [15]µiiabµ

ii
cdµ

jj
fgµ

ik
eh (70)

Mi4jjjk = [9]µiiabµ
ii
cdµ

jj
efµ

jk
gh + [36]µjjefµ

ij
agµ

ik
bhµ

ii
cd

+[24]µijaeµ
ij
bfµ

ij
cgµ

ik
dh + [36]µiiabµ

ij
ceµ

ij
dfµ

jk
gh (71)

Mi4jjkk = [3]µiiabµ
ii
cdµ

jj
efµ

kk
gh + [6]µiiabµ

ii
cdµ

jk
egµ

jk
fh + [12]µiiabµ

ij
ceµ

ij
dfµ

kk
gh

+[24]µikagµ
ik
bgµ

ij
ceµ

ij
df + [48]µijaeµ

jk
fgµ

ik
bhµ

ii
cd

+[12]µiiabµ
ik
bgµ

ik
chµ

jj
ef (72)

Miiijjjkk = [9]µiiabµ
ij
cdµ

jj
efµ

kk
gh + [18]µiiabµ

ij
cdµ

jk
egµ

jk
fh + [6]µijadµ

ij
beµ

ij
cfµ

kk
gh

+[18]µikagµ
ik
bhµ

ij
cdµ

jj
ef + [36]µijadµ

ij
beµ

ik
cgµ

jk
fh

+[18]µikagµ
jk
dhµ

ii
bcµ

jj
ef (73)

Order 10, D=2.

Mi9j = [945]µiiabµ
ii
cdµ

ii
efµ

ii
ghµ

ij
m` (74)

Mi8jj = [105]µiiabµ
ii
cdµ

ii
efµ

ii
ghµ

jj
m` + [840]µiiabµ

ii
cdµ

ii
efµ

ij
gmµ

ij
h` (75)

Mi7jjj = [315]µiiabµ
ii
cdµ

ii
efµ

ij
ghµ

jj
m` + [630]µijahµ

ij
bmµ

ij
c`µ

ii
deµ

ii
fg (76)

Mi6j4 = [45]µiiabµ
ii
cdµ

ii
efµ

jj
ghµ

jj
m` + [360]µijagµ

ij
bhµ

ij
cmµ

ij
d`µ

ii
ef

+[540]µiiabµ
ii
cdµ

ij
egµ

ij
fhµ

jj
ml (77)

Mi5j5 = [120]µijafµ
ij
bgµ

ij
chµ

ij
dmµ

ij
e`

+[225]µiiabµ
ii
cdµ

ij
efµ

jj
ghµ

jj
m` + [600]µjjfgµ

ij
ahµ

ij
bmµ

ij
c`µ

ii
de (78)
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Order 10, D=3.

Mi8jk = [105]µiiabµ
ii
cdµ

ii
efµ

ii
ghµ

jk
m` + [840]µiiabµ

ii
cdµ

ii
efµ

ij
gmµ

ik
h` (79)

Mi7jjk = [210]µiiabµ
ii
cdµ

ii
efµ

ij
ghµ

jk
m` + [630]µiiabµ

ii
cdµ

ij
ehµ

ij
fmµ

ik
h`

+[105]µiiabµ
ii
cdµ

ii
efµ

jj
hmµ

ik
g` (80)

Mi6jjjk = [45]µiiabµ
ii
cdµ

ii
efµ

jj
ghµ

jk
m` + [270]µiiabµ

ii
cdµ

ij
egµ

ij
fhµ

jk
m`

+[360]µijagµ
ij
bhµ

ij
cmµ

ik
d`µ

ii
ef + [270]µika`µ

jj
ghµ

ij
b`µ

ii
cdµ

ii
ef (81)

Mi6jjkk = [15]µiiabµ
ii
cdµ

ii
efµghjjµ

kk
m` + [30]µiiabµ

ii
cdµ

ii
efµ

jk
gmµ

jk
h`

+[90]µiiabµ
ii
cdµ

ij
egµ

ij
fhµ

kk
m` + [90]µiiabµ

ii
cdµ

ik
emµ

ik
f`µ

jj
gh

+[360]µiiabµ
ij
cgµ

ij
dhµ

ik
emµ

ik
f` + [360]µiiabµ

ii
cdµ

ij
egµ

ik
fmµ

jk
h` (82)

Mi5j4k = [45]µiiabµ
ii
cdµ

jj
fgµ

jj
hmµ

ik
e` + [360]µiiabµ

ij
cfµdgµ

jj
hmµ

ik
e`

+[120]µijagµ
ij
bfµ

ij
cgµ

ij
dhµ

ik
e` + [180]µiiabµ

ii
cdµ

ij
efµ

jj
ghµ

jk
m`

+[240]µiiabµ
ij
cfµ

ij
dgµ

ij
ehµ

jk
m` (83)

Mi5jjjkk = [45]µiiabµ
ii
cdµ

ij
efµ

jj
ghµm`kk + [60]µiiabµ

ij
cfµ

ij
dgµ

ij
ehµ

kk
m`

+[90]µiiabµ
ii
cdµ

ij
efµ

jk
gmµ

jk
h` + 360µiiabµ

ij
cfµ

ij
dgµ

ik
emµ

jk
h`

+[90]µiiabµ
jj
fgµ

ik
cmµ

jk
h` + [180]µiiabµ

ij
cfµ

jj
ghµ

ik
dmµ

ik
e`

+[120]µijafµ
ij
bgµ

ij
chµ

ik
dmµ

ik
e` (84)

Mi4jjjkkk = [27]µiiabµ
ii
cdµ

jj
efµ

jk
ghµ

kk
m` + [18]µiiabµ

ii
cdµ

jk
ehµ

jk
fmµ

ij
g`

+[108]µiiabµ
ij
ceµ

ij
dfµ

jk
ghµ

kk
m` + [108]µiiabµ

jj
efµ

jk
ghµ

ik
cmµ

ik
d`

+[108]µiiabµ
jj
efµ

ij
cgµ

ik
dhµ

kk
m` + [216]µiiabµ

ij
ceµ

ik
dhµ

jk
fmµ

jk
g`

+[72]µijaeµ
ij
bfµ

ij
cgµ

ik
dhµ

kk
m` + [216]µikahµ

ik
bmµ

ij
ceµ

ij
dfµ

jk
g`

+[72]µikahµ
ik
bmµ

ik
c`µ

ij
deµ

jj
fg (85)

Mi4j4kk = [9]µiiabµ
ii
cdµ

jj
efµ

jj
ghµ

kk
m` + [72]µiiabµ

ij
ceµ

ij
dfµ

jj
ghµ

kk
m`

+[24]µijaeµ
ij
bfµ

ij
cgµ

ij
dhµ

kk
m` + [36]µiiabµ

jj
efµ

jk
gmµ

jk
h`

+[144]µiiabµ
ij
ceµ

ij
dfµ

jk
gmµ

jk
h` + [36]µiiabµ

jj
efµ

jj
ghµ

ik
cmµ

ik
d`

+[144]µijaeµ
ij
bfµ

jj
ghµ

ik
cmµ

ik
d` + [288]µiiabµ

jj
efµ

ij
cgµ

ik
dmµ

jk
h`

+[192]µijaeµ
ij
bfµ

ij
cgµ

ik
dmµ

jk
h` (86)
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11.4. Particular results when p = 1
Here we remind that µij11 = Sij.

Order 12, p=1, D=2.

Mi11j = 10395S5
iiSij + 9450S4

iiS
2
ij (87)

Mi9jjj = 2835S4
iiSijSjj + 7560S3

iiS
3
ij (88)

Mi8j4 = 5040S4
ijS

2
ii + 315S4

iiS
2
jj + 5040S3

iiS
2
ijSjj (89)

Mi7j5 = 1575S3
iiSijS

2
jj + 6300S2

iiS
3
ijSjj + 2520SiiS

5
ij (90)

Mi6j6 = 720S6
ij + 225S3

iiS
3
jj + 5400SiiS

4
ijSjj + 4050S2

iiS
2
ijS

2
jj (91)

Order 12, p=1, D=3.

Mi10jk = 945S5
iiSjk + 9450SikSijS

4
ii (92)

Mijjk = 945S4
iiSjjSik + 7560S3

iiS
2
ijSik + 1890S4

iiSijSjk (93)

Mi8jjjk = 315S4
iiSjjSjk + 2520S3

iiSijSjjSik + 2520S3
iiS

2
ijSjk

+5040S2
iiS

3
ijSik (94)

Mi7j4k = 315S3
iiS

2
jjSik + 3780S2

iiS
2
ijSik + 1260SiiS

4
ijSik + 1260S3

iiSijSjjSjk

+3780S2
iiS

3
ijSjk (95)

Mi8jjkk = 105S4
iiSjjSkk + 210S4

iiS
2
jk + 840S3

iiS
2
ijSkk + 840S3

iiS
2
ikSjj

+5040S2
iiS

2
ijS

2
ik + 3360S3

iiSikSijSjk (96)

Order 12, p=1, D=4.

Mi4j4kk`` = 3S2
ii[3S

2
jjSkkS`` + 6S2

jjS
2
k` + 12SjjS

2
jkS`` + 24S2

j`S
2
jk

+48SjkSk`Sj`Sjj + 12SjjS
2
j`Skk] + 3S2

jj[12SiiS
2
ikS``

+24S2
ilS

2
ik + 48SikSk`Si`Sii + 12SiiS

2
i`Skk]

+24S4
ijSkkS`` + 48S4

ijS
2
k` + 96S3

ij[2SikSjkS`` + 2Si`Sj`Skk

+4SikSj`Sk` + 4Si`SjkS`k] + 72S2
ij[4S

2
ikS

2
j` + 4S2

jkS
2
i`

+16SikSi`SjkSj` + SiiSjjSkkS`` + 2SiiSjjS
2
k`] + 12S2

ik[12S2
ji

×SjjS`` + 48SijSi`Sj`Sjj + 12SjjS
2
j`Sii + 12S2

i`[12S2
jiSjjSkk

+48SijSikSjkSjj + 12SjjS
2
jkSii] + 12S2

j`[12S2
ijSiiSkk

+48SijSjkSikSii] + 12S2
jk[12S2

ijSiiS`` + 48SijSj`Si`Sii]

+576Sii[SikSi`SjjSjkSj` + SikSijSjjSj`Sk`

+SikSijSjjSjkS`` + SilSijSjjSjkS`k

+Si`SijSjjSj`Skk + SikSijSjjS`kSj`] (97)
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11.5. Computation of the mean of B̂p(N)

The first step is to unfold McCullagh’s bracket notation to have the ex-
plicit summation terms. For instance:

E{A2
nn} =

p∑
a,b=1

p∑
c,d=1

GabGcd(SabScd + SacSbd + SadSbc) (98)

For p=1.

E{A2
nn} = 3 (99)

E{AnnA2
ni} = 3 + 12

S(n− i)2

S2
(100)

E{A2
niA

2
nj} = 3 + 6

S(i− j)2

S2
+ 12

S(n− i)2

S2
+ 12

S(n− j)2

S2

+24
S(n− i)2S11(n− j)2

S4
+ 48

S(n− i)S(n− j)S(i− j)
S3

E{AnnAnjAjkAkn} = 3 + 6
S(j − k)2

S2
+ 12

S(n− k)2

S2
+ 12

S(n− j)2

S2

+24
S(n− k)2S(n− j)2

S4
+ 48

S(n− k)S(j − k)S(n− j)
S3

(101)

The exact computation of E{B̂1} yields the following result:

E{B̂1} = 3− 6

N2

∑
n,i

S(n− i)2

S2
+

72

N3

∑
n,i,j

S(n− j)2S(n− i)2

S4

+
144

N3

∑
n,i,j

S(n− i)S(i− j)S(n− j)
S3

(102)

Based on the results in [28, p. 346-347], it can be shown that
1
N3

∑
n,i,j

S(n−j)2S(n−i)2
S4 and 1

N3

∑
n,i,j

S(n−i)S(i−j)S(n−j)
S3 will contribute quan-

tities of order lower than N−1.
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For p=2.

E{A2
nn} = 8 (103)

E{AnnA2
ni} = 8 +

1

(S11S22 − S2
12)2

[
S11S22

[
2S2

12(n− i) + 2S2
12(n− i)

+12S21(n− i)S12(n− i) + 12S22(n− i)S11(n− i)
]

+S2
12

[
12S2

12(n− i) + 12S21(n− i)S12(n− i)
+12S2

21(n− i) + 16S11(n− i)S22(n− i)
]

−28S12S11

[
S22(n− i)S12(n− i) + S22(n− i)S12(n− i)

]
−28S12S22

[
S11(n− i)S12(n− i) + S11(n− i)S12(n− i)

]
+14S2

11S
2
22(n− i) + 14S2

22S
2
11(n− i)

]
(104)

Bivariate embedding.

E{AnnA2
ni} = 8 +

1

(C2
0 − C2

1)2
× [C2

0 × [2(γ1(n− i) + γ−1(n− i))2

+8γ−1(n− i)γ1(n− i) + 40γ0(n− i)2] + C2
1

×[12(γ1(n− i) + γ−1(n− i))2 − 8γ−1(n− i)γ1(n− i) + 16γ0(n− i)2]

−C0C1 × [56γ0(n− i)(γ1(n− i) + γ−1(n− i))]] (105)

E{A2
niA

2
nj} = 8 +

1

(C2
0 − C2

1)2
× [C2

0 × [2(γ1(i− j) + γ−1(i− j))2

+2(γ1(n− i) + γ−1(n− i))2 + 2(γ1(n− j) + γ−1(n− j))2

+8γ−1(n− i)γ1(n− i) + 8γ−1(n− j)γ1(n− j) + 16γ0(i− j)2

+40γ0(n− j)2 + 40γ0(n− i)2] + C2
1 × [4(γ1(i− j) + γ−1(i− j))2

+12(γ1(n− j) + γ−1(n− j))2 + 12(γ1(n− i) + γ−1(n− i))2

−8γ−1(n− i)γ1(n− i)− 8γ−1(n− j)γ1(n− j) + 8γ0(i− j)2

+16γ0(n− j)2 + 16γ0(n− i)2]− C0C1 × [24γ0(i− j)
×(γ1(i− j) + γ−1(i− j)) + 56γ0(n− i)(γ1(n− i) + γ−1(n− i))
+56γ0(n− j)(γ1(n− j) + γ−1(n− j))] (106)

Following the same pattern as the mean, but with more moments involved,
the computation of the variance may be conducted [[29]].

11.6. Sklar’s theorem

Theorem 11. (Sklar’s theorem 1959)

FX1,X2(x1, x2) = Pr(X1 ≤ x1, X2 ≤ x2) = C(F (x1), G(x2)) (107)
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where FX1,X2 is the joint cumulative distribution function (cdf) of (X1, X2),
and F (resp. G) is the cdf of X1 (resp. X2). If F , G are continuous, then C
is unique, and is defined by:

C(u1, u2) = FX1,X2(F
−1(u1), G−1(u2)). (108)
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