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ASYMPTOTIC DEVIATION BOUNDS FOR CUMULATIVE PROCESSES

PATRICK CATTIAUX , LAETITIA COLOMBANI , AND MANON COSTA

Université de Toulouse

Abstract. The aim of this paper is to get asymptotic deviation bounds via a Large Devi-
ation Principle (LDP) for cumulative processes also known as compound renewal processes
or renewal-reward processes. These processes cumulate independent random variables oc-
curring in time interval given by a renewal process. Our result extends the one obtained
in [14] in the sense that we impose no specific dependency between the cumulated random
variables and the renewal process and the proof uses [15]. In the companion paper [6] we
apply this principle to Hawkes processes with inhibition. Under some assumptions Hawkes
processes are indeed cumulative processes, but they do not enter the framework of [14].
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MSC 2010 : 60F10, 60K15 .

1. Introduction.

1.1. Cumulative processes. Cumulative processes have been introduced by Smith [16]
and are applied in many purposes, such as finance where they are called compound-renewal
processes or renewal-reward processes. Indeed these continuous time processes cumulate
independent random variables occurring in time interval given by a renewal process. To be
more specific a real valued process (Zt)t≥0 is called a cumulative process if the following
properties are satisfied:

(1) Z0 = 0,
(2) there exists a renewal process (Si)i≥0 such that for any i, (ZSi+t − ZSi

)t≥0 is inde-
pendent of S0, ...Si and (Zs)s<Si

,
(3) the distribution of (ZSi+t − ZSi

)t≥0 is independent of i.

To study such processes, we write for all t ≥ 0

Zt = W0(t) +W1 + ...+WMt
+ rt,

where W0(t) = Zt∧S0
, (Wi)i≥1 are i.i.d. random variables defined by Wi = ZSi

− ZSi−1
, and

rt is the remaining part rt = Zt − ZMt
where Mt is the integer defined by

Mt = sup {i ≥ 0, Si ≤ t} .
We denote by (τi)i≥1 the waiting times associated to the renewal process τi = Si − Si−1. It
is worth noticing that τi and Wi can be dependent.
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In the sequel we suppress the subscript iwhen dealing with the distribution (and all associated
quantities like expectation, variance ...) of (τi,Wi) and simply use (τ,W ).

A simple example of cumulative process is Zt =
∫ t

0 f(Xs)ds where (Xt)t≥0 is a regenerative
process with i.i.d. cycles [11]. Markov additive processes are other classical examples of
cumulative process. In [7] the authors exhibited a renewal structure for some Hawkes pro-
cesses. This description is extensively used in our companion paper [6] in order to describe
such processes as cumulative processes, and to study their asymptotic behaviour.

For R-valued cumulative processes, the law of large numbers (assuming that E[|W |] and E[τ ]
are not infinite)

Zt

t
a.s.−→

t→∞

E[W ]

E[τ ]
if and only if E

(
max

S0≤t<S1

|rt|
)
< ∞ ,

and the central limit theorem (assuming Var(W ) < ∞ and Var(τ) < ∞)
(
Zt − tE[W ]

E[τ ]

)

√
t

−→
t→∞

N
(
0, σ2

)
where σ2 =

1

E(τ)
Var

(
W − E[W ]

E[τ ]
τ

)

can be found in Asmussen [1], theorem 3.1 and theorem 3.2.
Brown and Ross [5] have proved an equivalent of Blackwell’s theorem and of the key renewal
theorem for a subclass of cumulative processes, since cumulative processes are a general-
ization of renewal processes. Glynn and Whitt have focused in [11] on cumulative processes
associated to a regenerative process and have proved law of large numbers (strong and weak),
law of the iterated logarithm, central limit theorem and functional generalizations of these
properties.

The aim of this work is to obtain asymptotic bounds in order to build confidence intervals.
To this end we are looking at a large deviation principle (LDP) for cumulative processes.
Some works have already been done. For instance, Duffy and Metcalfe [10] have considered
the estimation of a rate function for a cumulative process (if it admits a LDP).

In a series of papers, Borovkov and Mogulskii ([2], [3], [4]) have studied the LDP (they
use the term compound-renewal process), under some Cramer type assumptions. Actually,
some points in their approach are not clear for us. After the submission of the present paper,
Zamparo posted on ArXiv a preprint, now published in [18], that extends Borovkov-Mogulskii
approach, and is based on Cramer’s theory. The same author had previously studied in [19]
the case of a discrete valued τ .

Another possible approach based on a higher level LDP, namely at the level of empirical
measures, was developed by Lefevere, Mariani and Zambotti [14]. In this work they study
specific cumulative processes where Wi = F (τi) for some deterministic function F which is
assumed to be non-negative, bounded and continuous. In a first version of this paper, we
have extended their method to general pairs (τ,W ) in R

+ × R. As suggested by the referee,
our intricate proof can be simplified by using the Sanov type theorem obtained by Mariani
and Zambotti in [15], what we shall do in the present work. Actually the proofs in [15] greatly
simplifies and extends the corresponding result for the empirical measure in[14] (as well as
our previous proof of this result).

In this paper, we look at a LDP for Zt/t in the case rt = 0 and S0 = 0. This assumption
can be relaxed if rt/t tends to 0 quickly enough, as it will be the case for the application to
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Hawkes process (see [6]), we shall briefly recall. For example, if for all δ > 0

lim sup
t→∞

1

t
logP

( |rt|
t
> δ

)
= −∞,

then Zt/t and (Zt −rt)/t are exponentially equivalent. They then admit the same asymptotic
deviation bounds.

1.2. Motivation: Application to Hawkes processes. A Hawkes process is a point pro-
cess on the real line R characterized by its intensity process t 7→ Λ(t). We consider an
appropriate filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual assumptions.

Definition 1.1. Let λ > 0 and h : (0,+∞) → R a signed measurable function. Let N0 a
locally finite point process on (−∞, 0] with law m.
The point process Nh on R is a Hawkes process on (0,+∞), with initial condition N0 and
reproduction measure µ(dt) = h(t)dt if:

• Nh |(−∞,0]= N0,

• the conditional intensity measure of Nh |(0,+∞) with respect to (Ft)t≥0 is absolutely
continuous w.r.t the Lebesgue measure and has density:

Λh : t ∈ (0,+∞) 7→ f

(
λ+

∫

(−∞,t)
h(t − u)Nh(du)

)
. (1.1)

for some non-negative function f .

Hawkes processes have been introduced by Hawkes [12]. Most of the literature concerned with
the large time behaviour of Nh

t = Nh([0, t]) is dedicated to the case h ≥ 0 (self excitation).
This behaviour is studied in details in [6] when h is a signed (the negative part modelling self
inhibition) compactly supported function, and the function f (called the jump rate function)
is given by

f(u) = max(0, u) .

In this situation one gets a description of Nh
t as a cumulative process (see [6] subsection

2.3) with few information on the joint law of (τ,W ). This was the initial motivation for
the present work. In particular, controlling the asymptotic deviation from the mean, in this
framework with unbounded Wi’s, can lead to asymptotic confidence intervals. We refer to
Corollary 2.13 [6] for a more complete overview and explicit results in this situation. We
shall discuss this situation later.

2. Notations and main result

2.1. First notations.

We consider (τi,Wi)i≥1 an i.i.d. sequence of pairs of random variables built on some prob-
ability space (Ω,F ,P) with values in [0,+∞] × R. Actually we are mainly interested in the
case where W takes non-negative values which is the case for Hawkes processes.
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The law of (τi,Wi) is an arbitrary probability measure ψ on (0,+∞) × R. We denote this
by: (τi,Wi) ∼ ψ. In the sequel we generically use the notation (τ,W ) for a pair with the
same distribution as (τi,Wi). Notice that we thus assume that

ψ(τ = 0) = ψ(τ = +∞) = 0

which is Assumption (A1) in [15], implying in in particular that E(τ) > 0.

We denote by M1(X ) the space of probability measure on some measurable space (X ,G).

We consider the renewal process associated with (τi)i≥1 :

S0 = 0, Sn =
n∑

i=1

τi,

Mt = sup {n ≥ 0, Sn ≤ t} .
We will study the quantity:

Zt =
Mt∑

i=1

Wi, (2.1)

where as usual an empty sum is equal to 0.

The first main goal of this paper is to prove a Large Deviation Principle for the process
(Zt/t)t≥0. Let us recall some basic definitions in large deviation theory (we refer to [9]).

A family of probability measures (ηt)t≥0 on a topological space (X , TX ) equipped with its
Borel σ-field, satisfies the Large Deviations Principle (LDP) with rate function J(.) and speed
γ(t) = t if J is lower semi-continuous from X to [0,+∞], and the following holds

− inf
x∈O

J(x) ≤ lim inf
t→+∞

1

t
log ηt(O) for all open subset O, (2.2)

and

− inf
x∈C

J(x) ≥ lim sup
t→+∞

1

t
log ηt(C) for all closed subset C. (2.3)

We shall say that (ηt)t≥0 satisfies the full LDP when (2.2) and (2.3) are satisfied, while we will
use weak LDP when C closed is replaced by C compact in (2.3). When ηt is the distribution
of some random variable Yt (for instance Zt/t) we shall say that the family (Yt)t≥0 satisfies
a LDP.

Since J is lower semi-continuous the level sets {x ∈ X , J(x) ≤ a} are closed. If in addition
they are compact, then J is said to be a good rate function.

In this paper we only consider the speed function γ(t) = t so that we will no more refer to
it.

A particularly important notion for our purpose is the notion of exponentially good approxi-
mation.

Definition 2.1. Assume that (X , d) is a metric space. A family of random variables
{(Yn,t)t≥0}n∈N is an exponentially good approximation of (Yt)t≥0 (all these variables being
defined on the same probability space (Ω,P)), if for all δ > 0 it holds

lim
n→∞

lim sup
t→∞

1

t
logP(d(Yn,t, Yt) > δ) = −∞ .

The key result is then
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Theorem 2.2. In the framework of definition 2.1, assume that {(Yn,t)t≥0}n∈N is an expo-
nentially good approximation of (Yt)t≥0. Then the following statements hold true.

(1) If {(Yn,t)t≥0}n∈N satisfies a full LDP with rate function Jn then (Yt)t≥0 satisfies a
weak LDP with rate function

J(x) = sup
δ>0

lim inf
n→∞

inf
d(y,x)<δ

Jn(y) .

(2) If X is locally compact, then the same conclusion is true when {(Yn,t)t≥0}n∈N satisfies
only a weak LDP.

(3) If J (defined above) is a good rate function such that for any closed set F ,

inf
y∈F

J(y) ≤ lim sup
n→∞

inf
y∈F

Jn(y) ,

then (Yt)t≥0 satisfies a full LDP with rate function J .

The first and last points in the previous Theorem are contained in [9] Theorem 4.2.16. The
second one is a consequence of the fact that closed balls are compact sets. Usually, the
Theorem is sufficient to prove a full LDP. Nevertheless, it some cases, the study of the rate
function J is difficult. The lemma below gives an alternative, using exponential tightness
which is easy to obtain with our assumptions.

Lemma 2.3. If (Yt)t≥0 satisfies a weak LDP with a rate function I and is exponentially
tight, i.e. for all α > 0, there exists a compact set Kα such that

lim sup
t→∞

1

t
logP (Yt /∈ Kc

α) < −α,

then (Yt)t≥0 satisfies a full LDP and I is a good rate function.

This Lemma is a consequence of the Lemma 1.2.18 in [9].

2.2. Main results. Introduce the following quantities

θ0 := sup
θ≥0

{E[eθτ ] < ∞} , (2.4)

and
η0 := sup

η≥0
{E[eη|W |] < ∞} . (2.5)

Also introduce the classical Cramer transform, for (a, b) ∈ R
2,

Λ∗(a, b) = sup
(x,y)∈R2

{ax+ by − logE(exτ+yW )} . (2.6)

We finally define, for (m,β, x, y) ∈ R
4,

Λ(m,β, x, y) = x+my − β logE
(
exτ+yW

)
(2.7)

and the rate function J for any m ∈ R,

J(m) = inf
β>0

β Λ∗
(

1

β
,
m

β

)
,

= inf
β>0

sup
x,y

Λ(m,β, x, y) . (2.8)

We then may state
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Theorem 2.4. Assume that η0 > 0 and θ0 > 0. Let J given by (2.8) and J̄ defined as

J̄(m) = J(m) for m 6= 0,

J̄(0) = min(J(0), θ0) .

• If η0 = +∞ (in particular if W is bounded) then (Zt/t)t≥0 satisfies a full LDP with

good rate function J̄ .
• If η0 < +∞, denoting m = E(W )/E(τ) we have for all a > 0 and κ ∈ (0, 1)

lim sup
t→∞

1

t
log P

(
Zt

t
≥ m+ a

)
≤ − min

[
inf

z≥m+κa
J̄(z) ,

η0a(1 − κ)

4

]
, (2.9)

and similarly

lim sup
t→∞

1

t
log P

(
Zt

t
≤ m− a

)
≤ − min

[
inf

z≤m−κa
J̄(z) ,

η0a(1 − κ)

4

]
. (2.10)

Remark 2.5. A short discussion. As we said in [6], the direct Cramer’s approach in e.g.
[18] furnishes more general results but with a much less explicit rate function.

In particular, contrary to [18], when η0 < +∞ we do not provide a LDP principle but
asymptotic deviation bounds. These bounds are actually what is useful from a statistical
point of view, since they allow to build confidence intervals around the asymptotic mean.

Due to the fact that we are using the results in [15], the method we will develop here extends
immediately to W taking its values in R

k or even in a general infinite dimensional normed
vector space, provided θ0 = +∞ in the latter case. Actually, most of the work in the present
paper is about understanding the rate function, and giving a tractable form for it. ♦

3. Large Deviations for the empirical measure.

Following [15], we introduce the empirical measure

µt :=
1

t

∫

[0,t)
δ(τMs+1,WMs+1) ds , (3.1)

so that, considering

ϕ(u,w) =
w

u
one has

µt(ϕ) :=

∫
ϕdµt =

1

t

∫ t

0

WMs+1

τMs+1
ds

=
1

t

Mt∑

i=1

∫ Si

Si−1

Wi

τi
ds+

1

t

∫ t

SMt

WMt+1

τMt+1
ds

=
Zt

t
+
t− SMt

t

WMt+1

τMt+1
, (3.2)

if the latter makes sense.

We will thus deduce a LDP for (Zt/t)t≥0 from a LDP for (µt)t≥0 and the contraction principle
([9] Theorem 4.2.1). The LDP for (µt)t≥0 is precisely the aim of the work by Mariani and
Zambotti [15]. We have to introduce some more notations.



ASYMPTOTIC DEVIATION BOUNDS FOR CUMULATIVE PROCESSES 7

First, for the sake of simplicity we still assume that X = (0,+∞) × R so that Assumption
(A4) (i.e. X locally compact) in [15] is satisfied. The generic point in X is denoted by
x = (u,w). The application denoted by τ in [15] is thus simply (u,w) 7→ u in our setting.

This immediately implies that Assumption (A2) in [15] is satisfied, since for all x = (u,w) ∈
(0,+∞) × R it holds

ζ(x) = inf
δ>0

sup

{
c ≥ 0 :

∫

B((u,w),δ)
ecu′

ψ(du′, dw′) < +∞
}

= +∞ .

Assumption (A3) therein is equivalent to θ0 = +∞ and we shall not use it.

The set of non-negative Radon measures on X with total mass less than or equal to 1 is
denoted by M̄1(X ). The main advantage of considering this set is that it is compact and
Polish for the vague topology i.e. the weakest topology such that for any continuous and
compactly supported f , the map ν 7→ ∫

f dν := ν(f) is continuous. Recall that if f is
continuous, bounded and goes to 0 at infinity (i.e. sup|x|>R |f(x)| → 0 as R → ∞), then the

application ν 7→ ν(f) is continuous on M̄1(X ).
We denote by M1(X ) the set of probability measures on X . In [14] to ν ∈ M̄1(X ) is
associated the probability measure

ν̃(dx) = ν(dx) + (1 − ν(X ))δ∂

where X ∪ ∂ denotes the one point compactification of X .

In both papers the authors then introduce, provided 0 < ν(1/u) :=
∫ 1

u ν(du, dw) < +∞,

ν̄(dx) = ν̄(du, dw) :=
1

ν(1/u)

1

u
ν(du, dw) . (3.3)

Finally recall that if π and π′ are probability measures on X , the relative entropy of π w.r.t.
π′ is defined as

H(π|π′) =






∫
log

(
dπ

dπ′

)
dπ if π is absolutely continuous w.r.t. π′

+∞ otherwise.

Since Assumptions (A1), (A2) and (A4) are satisfied, Proposition 1.5 and Theorem 1.6 in
[15] then imply in our framework

Theorem 3.1. Define I : M̄1(X ) → [0,+∞] as

I(ν) =






ν(1/u)H(ν̄|ψ) + (1 − ν(X ))θ0 , if 0 < ν(1/u) < +∞
θ0 , if ν is the null measure

+ ∞, otherwise.

(3.4)

Then I is convex, is a good rate function and the family (Pt)t≥0 of the probability distributions
of (µt)t≥0 satisfies a full LDP with rate function I and speed t.

The specific case where ν is the null measure will play a special role. Notice that under our
hypotheses the null measure is the only one such that ν(1/u) = 0.

An immediate corollary can then be obtained using the contraction principle in a specific
case.
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Corollary 3.2. Assume in addition that there exists positive constants K and ε < 1 such
that ψ(|w| ≤ K and u ≥ ε) = 1. Then, (µt(ϕ))t≥0 satisfies a full LDP with the convex good
rate function

J̄(m) = inf {I(ν) , ν ∈ M̄1(X ) : ν(ϕ) = m} , (3.5)

where as usual the infimum on an empty set is +∞.

Proof. Let ηK be a continuous function such that 1|w|≤K ≤ ηK(w) ≤ 1|w|≤2K. Introduce

ϕK,ε(u,w) =
w

u ∨ ε
ηK(w) .

First remark that under our assumptions on ψ, µt(ϕ) = µt(ϕK,ε) almost surely. Since ϕK,ε

is continuous, bounded and goes to 0 at infinity, ν 7→ ν(ϕK,ε) is continuous. One can thus
apply the contraction principle, yielding a full LDP with good rate function

J̄K,ε(m) = inf {I(ν) , ν ∈ M̄1(X ) : ν(ϕK,ε) = m} .
If one of J̄ or J̄K,ε is finite then ν is necessarily absolutely continuous w.r.t. ψ (including
the case of the null measure) so that |W | ≤ K and τ ≥ ε, ν almost everywhere. Accordingly
ν(ϕ) = ν(ϕK,ε) and J̄ = J̄K,ε. �

To obtain our main result, it remains to relax the boundedness assumptions on τ and W
and to compare J̄ and J defined in (3.5) and (2.8). The next result is a first step in this
direction, removing the assumption on τ .

Proposition 3.3. Assume that there exists a positive constant K such that ψ(|w| ≤ K) = 1.
Then for m 6= 0, J̄(m) = J(m) while for m = 0, J̄(0) = min(J(0), θ0), where J is defined in
(2.8).

Proof. The proof is inspired by the proof of Lemma 5.1 in [14].

First remark that if ν ∈ M̄1(X ), introducing the normalized ν1 = ν/ν(X ) (except if ν = 0),
one has on the one hand ν̄1 = ν̄ and on the other hand

I(ν) = ν(X ) ν1(1/u)H(ν̄1|ψ) + (1 − ν(X )) θ0 ,

provided ν(1/u) < +∞.

Since for a non null ν, ν(X ) can be any α ∈]0, 1], we deduce that, defining

J̄1(m) = inf {α ν1(1/u)H(ν̄1|ψ) + (1 − α)θ0 ;

α ∈]0, 1], ν1 ∈ M1(X ), ν1(1/u) < +∞, ν1(ϕ) =
m

α

}
,

one has

J̄(m) = J̄1(m) for m 6= 0 ; J̄(0) = min(J̄1(0), θ0) ,

since for m = 0 one has to also consider the null measure.

Since ν̄(w) = ν(ϕ)/ν(1/u) and ν(1/u) = 1/ν̄(u), it is elementary to see that

J̄1(m) = inf
α∈]0,1] ,γ>0 ,ν′∈M1(X )

{(α/γ)H(ν ′|ψ) + (1 − α)θ0; ν ′(u) = γ, ν ′(w) = γ m/α} , (3.6)

the correspondence being ν ′ = ν̄1 i.e ν1 = (1/ν ′(u))u ν ′.

Now we can mimic what is done in [14].
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Let p(a, b) = inf{H(ν ′|ψ) ; ν ′ ∈ M1(X ), ν ′(u) = a, ν ′(w) = b}. We have

p∗(x, y) = sup
a,b∈R2

(ax+ by − p(a, b))

= sup
a,b∈R2,ν′∈M1(X )

{ax+ by −H(ν ′|ψ); ν ′(u) = a, ν ′(w) = b}

= sup
ν′∈M1(X )

{ν ′(xu+ yw) −H(ν ′|ψ)} = logψ(exτ+yW )

= Λ(x, y)

thanks to the variational definition of the relative entropy. Since p is lower semi continuous
and convex we have p = (p∗)∗ = Λ∗.

We thus deduce that

J̄1(m) = inf

{
α

γ
Λ∗
(
γ,
mγ

α

)
+ (1 − α)θ0 ;α ∈]0, 1], γ > 0

}
.

But

α

γ
Λ∗
(
γ,
mγ

α

)
= βΛ∗

(
α

β
,
m

β

)
where β =

α

γ
.

Thus

J̄1(m) = inf

{
βΛ∗

(
α

β
,
m

β

)
+ (1 − α)θ0 ;α ∈]0, 1], β > 0

}
.

We will show that, for any β > 0

inf
α∈]0,1]

{
βΛ∗

(
α

β
,
m

β

)
+ (1 − α)θ0

}
= βΛ∗

(
1

β
,
m

β

)
.

Taking α = 1, we see that the left hand side is less than or equal to the right hand side. To
show the converse inequality, let us pick α ∈]0, 1]:

βΛ∗
(
α

β
,
m

β

)
+ (1 − α)θ0 = sup

x,y∈R2

{αx+ (1 − α)θ0 +my − βΛ(x, y)}

≥ sup
x,y∈R2

{x ∧ θ0 +my − βΛ(x, y)}.

Since W is bounded, eyW ≥ C(y) > 0 for all y, so that we have for all x > θ0 and all y,

ψ(exτ+yW ) ≥ C(y)ψ(exτ ) = +∞ .

This shows that Λ(x, y) = +∞, for all x > θ0 and for all y. Hence, the supremum on x can
be restricted to the supremum on {x ≤ θ0}:

βΛ∗
(
α

β
,
m

β

)
+ (1 − α)θ0 ≥ sup

x,y∈R2

{x ∧ θ0 +my − βΛ(x, y)}

= sup
x≤θ0,y∈R

{x+my − βΛ(x, y)}

= βΛ∗
(

1

β
,
m

β

)

and the desired inequality is proved. �
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Remark 3.4. Let us remark on a simple example that the rate function J defined in (2.8) is
not lower semi continuous. If W = 1, one has Zt = Mt and one easily sees that (recall (2.7))
supx,y∈R2 Λ(m,β, x, y) = +∞ except for β = m yielding J(m) = supx{x − m logE (exτ )}
as expected. Notice that J(0) = +∞ since β > 0. In particular if τ has an exponential
distribution with parameter 1, θ0 = 1, Zt is the standard Poisson process and J(m) =
1 − m + m logm for m > 0 while J(m) = +∞ if m ≤ 0. Accordingly J is not lower semi
continuous at m = 0, and J̄ is precisely the lower semi continuous envelope of J .

We did not check correctly this point in the previous version of the paper and the same minor
mistake is made in Lemma 5.1 of [14]. ♦

One can ask about whether the infimum defining J1 is achieved or not, hence is a minimum.
This question is briefly studied in Lemma 5.1 of [14], where the argument p.22, showing that
πn therein is tight, sounds strange. Let us give a complete proof.

Proposition 3.5. Under the assumptions of Proposition 3.3, for m 6= 0, the infimum in
(3.5) is a minimum, provided it is finite.

Proof. We use the expression (3.6) in order to prove the proposition. Assume that m 6= 0. If
J̄1(m) < +∞ consider a minimizing sequence (γn, αn, ν

′
n)n≥0. First, H(ν ′

n|ψ) < +∞ (at least
for large n’s), so that ν ′

n is absolutely continuous with respect to ψ, and so ν ′
n(|w| ≤ K) = 1.

It follows that γn/αn ≤ K/|m| hence γn ≤ K/|m|.
Since αn ∈]0, 1] and γn is bounded, one can find a subsequence still denoted (αn, γn)n≥0

converging to (α, γ) ∈ [0, 1] × [−K/|m|,K/|m|]. In addition, for n large enough,

(αn/γn)H(ν ′
n|ψ) ≤ J̄1(m) + 1 := C

so that

H(ν ′
n|ψ) ≤ C (γn/αn) ≤ C (K/|m|) .

Since the entropy is bounded, the sequence (ν ′
n)n≥0 is tight and one can thus also find a

subsequence weakly converging to ν ′
∞ which satisfies H(ν ′

∞|ψ) ≤ lim infnH(ν ′
n|ψ) < +∞

thanks to the lower semi continuity of the entropy w.r.t. the first variable.

Recall that γn = ν ′
n(u). For all M > 0, we have that γn ≥ ν ′

n(u ∧ M) and taking the limit
in n, we deduce that ν ′

∞(u ∧ M) = limn ν
′
n(u ∧ M) ≤ γ and finally using the monotone

convergence ν ′
∞(u) = γ′ ≤ γ. We deduce in particular that γ > 0 since ν ′

∞(u = 0) = 0
because the measure ν ′

∞ is absolutely continuous w.r.t. ψ and ψ(u = 0) = 0 by assumption.
Moreover, since K ≥ γn|m|/αn and γn →n→∞ γ > 0, we also have that α = limn→∞ αn > 0.
In addition, from the absolute continuity of ν ′

n and ν ′
∞ w.r.t. ψ, we deduce that ν ′

∞(|w| ≤
K) = 1 and

mγ/α = lim
n
ν ′

n(w) = lim
n
ν ′

n(w 1|w|≤K) = ν ′
∞(w 1|w|≤K) = ν ′

∞(w) .

Introduce νn = (1/γn)u ν ′
n. νn is a sequence of probability measures that vaguely converges

to ν∞ satisfying ν∞(X ) = γ′/γ, ν∞(1/u) = 1/γ and ν∞(ϕ) = m/α. Of course ν̄∞ = ν ′
∞.

According to Lemma 2.3 and Lemma 2.2 in [14] (based on the variational formula for the
entropy)

lim inf
n

1

γ n

H(ν ′
n|ψ) ≥ (γ′/γ)

1

γ
H(ν ′

∞|ψ) + (1 − (γ′/γ))θ0 .



ASYMPTOTIC DEVIATION BOUNDS FOR CUMULATIVE PROCESSES 11

Finally define µ∞ = αν∞ so that µ∞(X ) = α(γ′/γ) ≤ 1 and µ∞ ∈ M̄1(X ). From what
precedes we deduce

J̄1(m) = lim inf
n

(
(αn/γn)H(ν ′

n|ψ) + (1 − αn)θ0
)

≥ µ∞(1/u)H(µ̄∞|ψ) + ((1 − α) + α(1 − (γ′/γ))θ0

= µ∞(1/u)H(µ̄∞|ψ) + (1 − µ∞(X ))θ0

and in addition µ∞(ϕ) = m. Hence the infimum for J̄(m) is achieved at µ∞. �

4. Large deviations for the cumulative process when W is bounded.

In this section, we shall deduce a LDP for (Zt/t)t≥0 starting with (3.2). We still assume that
W is a bounded random variable, therefore it consists in relaxing the assumption on τ in
corollary 3.2.

To this end, for ε > 0, introduce τ ε = τ + ε and ψǫ the distribution of (τ ε,W ). We then
define Iε as in (3.4), replacing ψ by ψε, and J̄ε as in (3.5) replacing I by Iε.

Theorem 4.1. Assume that there exists a positive constant K such that ψ(|w| ≤ K) = 1.
Then, (Zt/t)t≥0 satisfies a full LDP with the good convex rate function J̄ .

Proof. The proof will be done in several steps.

Step1. We shall first prove the

Lemma 4.2. Assume that there exists a positive constant K such that ψ−almost surely,
|W | ≤ K. Then, (Zt/t)t≥0 satisfies a weak LDP with the convex rate function

J̃(m) = sup
δ>0

lim inf
ε→0

inf
|z−m|<δ

J̄ε(z) . (4.1)

Proof of the lemma. Following the same lines as in (3.2)

µε
t (ϕ) =

1

t

Mε
t∑

i=1

Wi +
(t − Sε

Mε
t

)WMε
t

+1

t τ ε
Mε

t
+1

.

Since τ ε ≥ τ , we deduce that M ε
t ≤ Mt. Accordingly

∣∣∣∣∣µ
ε
t (ϕ) − 1

t

Mt∑

i=1

Wi

∣∣∣∣∣ ≤ 1

t

∣∣∣∣∣∣

Mt∑

i=Mε
t

+1

Wi

∣∣∣∣∣∣
+

∣∣∣∣∣
(t− Sε

Mε
t

)WMε
t

+1

t τ ε
Mε

t
+1

∣∣∣∣∣

≤ K

t
((Mt −M ε

t ) + 1) .

Using Theorem 2.2, it is then sufficient to prove that (M ε
t /t)ε is an exponentially good

approximation of Mt/t , i.e. that

lim
ε→0

lim sup
t→∞

1

t
logP(|Mt −M ε

t | > δ t) = −∞ .

The proof is similar to the one of [14] Lemma 5.4 where a different approximation is used.
Denote as usual by ⌊x⌋ the integer part of x ∈ R. Recall that M ε

t ≤ Mt and Sε
n = Sn + nε.
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Choose some δ > 0 and A > 0. Then

P(Mt − M ε
t > tδ) ≤

⌊At⌋∑

n=1

P(Mt − M ε
t > tδ ; Mt = n) + P(Mt > ⌊At⌋)

=

⌊At⌋∑

n=1

P(M ε
t < n− tδ ; Mt = n) + P(S⌊At⌋ ≤ t)

≤
⌊At⌋∑

n=1

P(Sε
⌊n−tδ⌋ ≥ t; Mt = n) + P(S⌊At⌋ ≤ t)

≤
⌊At⌋∑

n=1

P(S⌊n−tδ⌋ ≥ t− (n− tδ)ε; Sn = t) + P(S⌊At⌋ ≤ t)

≤
⌊At⌋∑

n=1

P(Sn − S⌊n−tδ⌋ ≤ (n− tδ)ε) + P(S⌊At⌋ ≤ t)

≤ AtP(S⌊tδ⌋ ≤ Atε) + P(S⌊At⌋ ≤ t) ,

where we have used that the distribution of Sj −Sk is the one of Sj−k for any positive integers
j ≥ k.

According to Markov inequality

P(S⌊tδ⌋ ≤ Atε) = P(e−S⌊tδ⌋/ε ≥ e−At) ≤ exp(At + ⌊tδ⌋ logE(e−τ/ε)) .

Thus

lim sup
t→∞

1

t
log(AtP(S⌊tδ⌋ ≤ Atε)) = A+ δ logE(e−τ/ε) .

Since logE(e−τ/ε) →ε→0 −∞, we have

lim
ε→0

lim sup
t→∞

1

t
log(AtP(S⌊tδ⌋ ≤ Atε)) = −∞ .

Similarly
P(S⌊At⌋ ≤ t) ≤ exp(t+ ⌊At⌋ logE(e−τ )) ,

so that choosing A large enough, we can make 1
t log P(S⌊At⌋ ≤ t) as small as we want i.e. less

than −B for any given B > 0. It is then enough to let ε go to 0 and then B go to infinity to
obtain the result. �

In particular we know from Theorem 2.2 that J̃ is lower semi-continuous so that its level sets
are closed.

Step 2. We shall now identify J̃ with J̄ . Recall that for all m 6= 0, J̄(m) = J(m) =
infβ>0 supx,y∈R2 Λ(m,β, x, y), where Λ is defined in (2.7).

Lemma 4.3. Under the assumptions of Lemma 4.2, J̃ ≥ J̄ .

Proof of the Lemma. Since τ > 0 almost surely, one can find xτ < 0 such that E(exτ τ ) = e−1

so that
sup
x,y

Λ(m,β, x, y) ≥ sup
x

Λ(m,β, x, 0) ≥ xτ + β .

In particular if J(m) < +∞ the infimum in β has to be taken for β ≤ J(m) − xτ = βτ .
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From now we assume that J̃ < +∞, indeed if J̃(m) = +∞, the inequality J̄(m) ≤ J̃(m)
clearly holds. The key remark is the following equality

Λε(m,β, x, y) = Λ(m,β, x, y) − xβε . (4.2)

If θ0 < +∞ it immediately follows from (4.2) and the fact that according to the proof of
Proposition 3.3 the supremum in J̄ can be restricted to {x ≤ θ0} that

J̄(m) ≤ J̄ε(m) + βτ ε θ0 ,

for the case m = 0 just remark in addition that θ0 ≤ θ0(1 + βτε).

One can find a sequence (mn, εn)n≥0 going to (m, 0) such that J̃(m) = lim infn→∞ J̄εn(mn).
Since J̄ is lower semi continuous,

J̄(m) ≤ lim inf
n→∞

J̄(mn) ≤ lim inf
n→∞

(J̄εn(mn) + θ0βτ εn) = J̃(m) .

If θ0 = +∞ consider the previous sequence (mn, εn)n≥0. One can in addition find a sequence
(βn)n≥0 and some sequence (ηn)n≥0 going to 0 such that for all (x, y),

Λ(mn, βn, x, y) − xβnεn ≤ J̃(m) + ηn .

Since βn ∈ [0, βτ ], we may assume that βn → β up to considering a subsequence. β has to
be positive, otherwise, taking limits as n → ∞ we would get that for all (x, y)

Λ(m, 0, x, y) = x+my ≤ J̃(m) < +∞

which is impossible. Hence β > 0 and taking limits again, we obtain Λ(m,β, x, y) ≤ J̃(m)

for some β > 0 and all (x, y) so that J̄(m) ≤ J̃(m). �

We turn to the converse inequality

Lemma 4.4. Under the assumptions of Lemma 4.2, J̃ ≤ J̄ .

Proof. It is enough this time to assume that J̄(m) and thus J(m) is finite. Notice furthermore

than if m = 0 and J̄(0) = θ0 there is nothing to prove since J̃(0) ≤ lim infε→0 J̄
ε(0) ≤ θ0. As

a consequence if m = 0 we may assume in addition that J(0) < θ0.

Recall that J̄ is defined in (3.5). Let µk be a minimizing sequence of J̄(m) in M̄1(X ), i.e.
I(µk) ≤ J̄(m) + ηk with ηk →k→∞ 0 and µk(ϕ) = m. From the definition of I, we have in
particular µk(1/u) < +∞. Let us introduce µε

k the push forward of µk by the application
tε : (u,w) 7→ (u+ ε,w) (i.e. if (τ,W ) is distributed according to µk, µε

k is the distribution of
(τ + ε,W )). Of course µε

k(X ) →ε→0 µk(X ) and µε
k(1/u) →ε→0 µk(1/u) thanks to Lebesgue’s

bounded convergence theorem, and finally, since W is bounded for all considered measures,
the same theorem shows that

µε
k(ϕ) = mε

k → m = µk(ϕ) as ε → 0.

Since the minimizing measure is not the null measure, we may assume that µk(X ) ≥ χ > 0
for all k, so that H(µ̄k|ψ) < +∞.
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In addition, we have for any bounded continuous function f
∫
f(u,w) µ̄ε

k(du, dw) =

∫
f(u,w)

1

µε
k(1/u)

1

u
µε

k(du, dw)

=

∫
f(u+ ε,w)

1

µk(1/(u + ε))

1

u+ ε
µk(du, dw)

=

∫
f(u+ ε,w)

µk(1/u)

µk(1/(u + ε))

u

u+ ε
µ̄k(du, dw)

Since 1/(u + ε) ≤ 1/u which is µk integrable and u/u + ε ≤ 1, it is thus immediately seen,
thanks to Lebesgue’s convergence theorem, that µ̄ε

k → µ̄k (and of course ψε → ψ) weakly as
ε → 0.

Since H(µ̄k|ψ) < +∞, µ̄k is absolutely continuous w.r.t. ψ with a density denoted by gk. It
follows that µ̄ε

k is absolutely continuous w.r.t. ψε with a density given by

gε
k(u,w) =

µk(1/u)

µk(1/(u + ε))

u− ε

u
gk(u− ε,w) = Cε u− ε

u
gk(u− ε,w) ,

recall that ψε(u > ε) = 1 so that we only need to consider such u’s.

We thus have

H(µ̄ε
k|ψε) =

∫
gε

k log gε
k dψ

ε =

∫
log

(
Cε u

u+ ε
gk(u,w)

)
Cε u

u+ ε
gk(u,w)ψ(du, dw) .

Notice that, for ε ≤ 1, Cε u
u+ε gk(u,w) ≤ C1 gk(u,w) so that

∣∣∣∣log

(
Cε u

u+ ε
gk(u,w)

)
Cε u

u+ ε
gk(u,w)

∣∣∣∣ ≤ max
(
e−1 ; log(C1 gk(u,w))C1 gk(u,w)

)

which is ψ integrable since H(µ̄k|ψ) < +∞. It follows, using again Lebesgue’s theorem, that
limε→0 H(µ̄ε

k|ψε) = H(µ̄k|ψ).

For a given δ > 0, we thus have

lim inf
ε→0

inf
|z−m|<δ

J̄ε(z) ≤ lim inf
ε→0

J̄ε(mε
k) ≤ J(m) + ηk .

The upper bound does not depend on δ and it remains to make ηk → 0 to get the result. �

Step 3. In oder to get the full LDP we need to check condition (3) in Theorem 2.2 i.e. that
for all closed set F ,

inf
z∈F

J̄(z) ≤ lim sup
ε→0

inf
z∈F

J̄ε(z) .

We may of course assume that the right hand side is finite. For θ0 < +∞ it is an immediate
consequence of J̄(m) ≤ J̄ε(m) + βτθ0 ε.

If θ0 = +∞, remark that for β < βτ

sup
x,y

Λ(m,β, x, y) ≥ Λ(m,β, 0, 1) = m− β logE(eW ) ≥ m− βK ≥ m− βτK ,

and similarly

sup
x,y

Λ(m,β, x, y) ≥ Λ(m,β, 0,−1) = −m− β logE(e−W ) ≥ −m− βτK .

It follows Jε(m) ≥ |m| − βτK for all ε (including ε = 0), so that the level sets J̄ε ≤ M are
all included in the ball |m| ≤ M + βτK.
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For a closed set F, one can thus find a sequence εn, zn with ε →n→∞ 0 such that J̄εn(zn) ≤
infz′∈F J

εn(z′)+1/n and zn ∈ F ∩{|m| ≤ C} for some C large enough. Taking a subsequence
if necessary, we may assume that zn → z ∈ F since F is closed. We have J̄εn(z) ≥ J̄εn(zn) −
(1/n). We can thus argue as in the proof of Lemma 4.3 to show that

lim sup
n

inf
z′∈F

Jεn(z′) = lim sup
n

J̄εn(z) ≥ J̄(z) ≥ inf
z′∈F

J̄(z′) .

�

5. Deviations for the cumulative process in the general case. Proof of

Theorem 2.4.

We will now try to relax the boundedness assumption on W . We thus introduce W n =
W ∨ (−n) ∧ n, ψn the distribution of (τ,W n), In, J̄n and Jn are defined accordingly. It is
thus natural to look at

J̃(m) = sup
δ>0

lim inf
n→+∞

inf
|z−m|<δ

J̄n(z) . (5.1)

We shall this time first compare J̃ and J̄ .

Lemma 5.1. It holds J̄ ≤ J̃ .

Proof. As in the proof of Lemma 4.3, supx,y Λn(m,β, x, y) ≥ xτ + β so that if Jn(m) < +∞
the infimum in β has to be taken for for β ≤ Jn(m) − xτ .

If J̃(m) < +∞ one can find a sequence (mn, βn)n≥0 such that mn → m, βn ∈ (0, βτ ] where

βτ ≤ J̃(m) + 1 − xτ and for n large enough and all (x, y),

x+mny − βn logE(exτ+yW n

) ≤ J̃(m) + 1/n .

Taking a subsequence if necessary we may assume that βn → β∞.

We want to pass to the limit in the previous inequality. We may assume that E(exτ ) < +∞,
otherwise, for all β > 0,

x+my − β logE(exτ+yW ) = −∞ .

Since exτ+yW n

1yW n≤0 = exτ+yW n

1yW ≤0 is dominated by exτ 1yW ≤0, which is assumed to be

integrable, we may apply the bounded convergence theorem and get limn E(exτ+yW n

1yW n≤0) =

E(exτ+yW 1yW ≤0). The other part, limn E(exτ+yW n

1yW n>0) = E(exτ+yW 1yW >0) is a conse-
quence of the monotone convergence theorem.

We may thus conclude that for all (x, y),

x+my − β∞ logE(exτ+yW ) ≤ J̃(m) ,

hence J(m) ≤ J̃(m), provided β∞ > 0. If β∞ = 0 we have obtained that for all x such that

E(exτ ) < +∞, x + my ≤ J̃(m) which is impossible if m 6= 0, or if m = 0 and J̃(0) < θ0.

Since J̄(0) ≤ θ0, the case J̃(0) ≥ θ0 is immediate. �

For the converse

Lemma 5.2. It holds J̄ ≥ J̃ .
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Proof. We shall follow the same route as for the proof of Lemma 4.4. We may similarly
assume that J(m) is finite and J(0) < θ0, so that the minimizing measure is not the null
measure. We then consider a sequence µk such that I(µk) ≤ J̄(m) + ηk, and we may assume
again that µk(X ) ≥ χ > 0 for all k so that supk H(µ̄k|ψ) < +∞.

We may decompose ψn as

ψn(du, dw) = 1|w|<nψ(du, dw) + γn
+(du, dw) + γn

−(du, dw)

where γn
+ is the joint law of (τ, n1W ≥n) and γn

− is the joint law of (τ,−n1W ≤−n). Of course
ψn weakly converges towards ψ.

We now introduce µn
k = 1|w|<n µk so that

µ̄n
k =

µk(1/u)

µk(1|w|<n (1/u))
ψ(|w| < n)

dµ̄k

dψ
1|w|<n ψ

n .

It is then easily seen that µn
k weakly converges to µk, that µn

k(ϕ) = mn
k converges to µk(ϕ) = m

and finally since 1|w|<n ψ
n = 1|w|<n ψ, denoting by

cn
k =

µk(1/u)

µk(1|w|<n (1/u))
ψ(|w| < n)

that

H(µ̄n
k |ψn) =

∫
cn

k log

(
cn

k

dµ̄k

dψ

)
1|w|<n dµ̄k

goes to H(µ̄k|ψ) as n goes to infinity. We may thus conclude as in the proof of Lemma
4.4. �

In order to get an LDP result for (Zt/t)t≥0 it remains to study the approximation of (Zt/t)t≥0

by {(Zn
t /t)t≥0}n∈N. We may decompose

|Zt − Zn
t | =

Mt∑

i=1

(Wi − n)+ +
Mt∑

i=1

(Wi + n)− , (5.2)

where u+ = max(u, 0) and u− = max(−u, 0). We then have

Lemma 5.3. Assume that θ0 > 0 and η0 > 0. For all δ > 0,

lim
n→∞

lim sup
t→∞

1

t
logP

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ > 2δ

)
≤ − η0 δ

2
.

In particular if η0 = +∞, {(Zn
t /t)t≥0}n∈N is an exponentially good approximation of (Zt/t)t≥0.

Proof. Since η0 and θ0 are positive, E(τ) and E(|W |) are both finite.

From (5.2), we deduce that

P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ > 2δ

)
≤ P

(
Mt∑

i=1

(Wi − n)− > δt

)
+ P

(
Mt∑

i=1

(Wi − n)+ > δt

)

Note that using the elementary log(a+ b) ≤ max(log(2a), log(2b)) it is enough to look at

P

(
Mt∑

i=1

(Wi − n)+ > δt

)
,

since the other term can be treated similarly.
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Using that the (Wi)i≥1’s are i.i.d. we may write for δ > 0 and c > 0, (as usual an empty sum
is equal to 0 by convention)

P

(
Mt∑

i=1

(Wi − n)+ > δt

)

≤ P




⌊ct⌋∑

i=1

(Wi − n)+ >
δt

2


+ P




Mt∑

i=⌊ct⌋+1

(Wi − n)+ >
δt

2




≤ P




⌊ct⌋∑

i=1

(Wi − n)+ >
δt

2


+ P








Mt∑

i=⌊ct⌋+1

(Wi − n)+ >
δt

2



 ∩ {1 + ⌊ct⌋ ≤ Mt < 2⌊ct⌋}




+ P









Mt∑

i=⌊ct⌋+1

(Wi − n)+ >
δt

2



 ∩ {Mt ≥ 2⌊ct⌋}





≤ 2P




⌊ct⌋∑

j=1

(Wj − n)+ >
δt

2


+ P (Mt ≥ 2⌊ct⌋)

Study of P (Mt ≥ 2⌊ct⌋) . Start with the second term in the sum above. According to
theorem 2.3 in [17], we know that Mt/t satisfies a LDP with rate function Jτ given by

Jτ (u) =

{
supλ∈R{λ− u logE(eλτ )} if u ≥ 0 ,
∞ if u < 0 .

Notice that Jτ (u) = uΛ∗(1/u, 0) for u > 0. In addition (see Lemma 2.6 in [17]) the supremum
is achieved for λ ≤ 0 if u ∈ (1/E(τ) , +∞) and Jτ is non-decreasing on this interval.

It follows that for 2c > 1/E(τ),

lim sup
t→∞

1

t
logP (Mt ≥ 2⌊ct⌋) ≤ −Jτ (⌊ct⌋) . (5.3)

In order to get limn→∞ lim supt→+∞
1
t log P (Mt ≥ 2⌊ct⌋) ≤ −∞ for some sequence cn (to be

chosen later) it remains to show that

Jτ (u) −→
u→∞

+∞.

Recall that xτ satisfies E(exτ τ ) = e−1, so that for u ≥ 0,

Jτ (u) = sup
λ∈R

{λ− u logE(eλτ )} ≥ xτ − u logE(exτ τ ) ≥ u+ xτ

yielding the desired result.

Study of P

(∑⌊ct⌋
j=1(Wj − n)+ > δt

2

)
. We handle this term with Cramer’s theorem. Defining

Ψn(λ) = logE
[
eλ(W −n)+

]
,

Ψ∗
n(x) = sup

λ∈R

{λx− Ψn(λ)} ,



18 P. CATTIAUX, L. COLOMBANI, AND M. COSTA

we have

lim sup
t→∞

1

t
log P




⌊ct⌋∑

j=1

(Wj − n)+ > δt/2


 = lim sup

t→∞

c

⌊ct⌋ logP




⌊ct⌋∑

j=1

(Wj − n)+ > δt/2




≤ lim sup
t→∞

c

⌊ct⌋ logP




⌊ct⌋∑

j=1

(Wj − n)+ > δ⌊ct⌋/2c



≤ − c inf
x∈[δ/2c,+∞)

Ψ∗
n(x).

As the function x 7→ Ψ∗
n(x) is non-decreasing on [E((W − n)+),+∞), we have

lim sup
t→∞

1

t
logP




⌊ct⌋∑

j=1

(Wj − n)+ > δt/2



 ≤ − cΨ∗
n(δ/2c) ,

provided δ/2c ≥ E((W − n)+). Notice that for λ < η0,

cΨ∗
n(δ/2c) ≥ λδ

2
− c log

(
1 + E

[
(eλ(W −n) − 1)1W >n

])
,

Since both E((W − n)+) and log
(
1 + E

[
(eλ(W −n) − 1)1W >n

])
are going to 0 as n → ∞, it

is always possible to choose cn growing to infinity such that as n → ∞

cn E((W − n)+) → 0 and cn log
(
1 + E

[
(eλ(W −n) − 1)1W >n

])
→ 0 ,

We get

lim
n→∞

lim sup
t→∞

1

t
log P




⌊ct⌋∑

j=1

(Wj − n)+ > δt/2



 ≤ − λδ

2
.

We may optimize in λ and plug the same sequence cn in (5.3) completing the proof. �

We will use the previous lemma to deduce

Corollary 5.4. Under the assumptions of Lemma 5.3, (Zt/t)t≥0 is exponentially tight, i.e.
for all α > 0, there exists a compact set Kα such that

lim sup
t→∞

1

t
logP

(
Zt

t
/∈ Kc

α

)
< −α.

Proof. Since Zn
t /t is an approximation of Zt/t and satisfies a full LDP according to Theorem

4.1, we can decompose the probability as following: for each n, and for all δ:

P

(
Zt

t
/∈ [−A,A]

)
≤ P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ > δ

)
+ P

(
Zn

t

t
/∈ [−A+ δ,A − δ]

)

≤ P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ > δ

)
+ P

(
Zn

t

t
< −A+ δ

)
+ P

(
Zn

t

t
> A− δ

)
.

≤ 3 max

(
P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ > δ

)
,P

(
Zn

t

t
< −A+ δ

)
,P

(
Zn

t

t
> A− δ

))
.

(5.4)
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By Lemma 5.3, Zn
t /t and Zt/t satisfies

∀δ > 0, lim
n→∞

lim sup
t→∞

1

t
log P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ > δ

)
= −η0δ

4
,

i.e.

∀α > 0,∀δ > 2α

η0
,∃n(α, δ),∀n > n(α, δ), lim sup

t→∞

1

t
log P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ > δ

)
≤ −α. (5.5)

We just have to study P

(
Zn

t

t > A− δ
)

and the symmetric case. We know from Theorem 4.1

that:

lim sup
t→∞

1

t
log P

(
Zn

t

t
> B

)
≤ − inf

m>B
J̄n(m).

Since J̄n has compact level sets, for all α > 0 one can choose a level Bα such that ∀m >
Bα, J

n(m) > α. The result follows by choosing A = Bα + δ. �

Proof of Theorem 2.4. In the case where η0 = +∞, using the approximation W n, Lemma
5.1 and Lemma 5.2 allow to obtain the weak LDP. The full LDP derives from Corollary 5.4
combined with Lemma 2.3.

If η0 < +∞ we only obtain asymptotic deviation bounds. Recall that m = E(W )/E(τ) is
the limit of Zt/t as t → +∞.For all κ ∈ (0, 1) and a > 0, it holds

P

(
Zt

t
≥ m+ a

)
≤ P

(
Zn

t

t
≥ m+ κa

)
+ P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ ≥ (1 − κ)a

)
,

so that, for all n ≥ 0,

lim sup
t→∞

logP

(
Zt

t
≥ m+ a

)

≤ max

[
lim sup
t→+∞

logP

(
Zn

t

t
≥ m+ κa

)
; lim sup

t→∞
log P

(∣∣∣∣
Zt

t
− Zn

t

t

∣∣∣∣ ≥ (1 − κ)a

)]
.

Taking the lim inf in n we deduce

lim sup
t→∞

logP

(
Zt

t
≥ m+ a

)
≤ max

[
lim inf
n→∞

(− inf
z≥m+κa

J̄n(z)) ; − η0 (1 − κa)

4

]

≤ − min

[
lim sup

n→∞
( inf
z≥m+κa

J̄n(z)) ;
η0 (1 − κa)

4

]
.

To complete the proof of the Theorem it is enough to prove

Lemma 5.5. Assume η0 > ∞, then for any z0 ∈ R,

lim sup
n→∞

( inf
z≥z0

J̄n(z)) ≥ inf
z≥z0

J̄(z) .

Proof. The proof is close to the one of Lemma 5.1. We may of course assume that the
left hand side is finite, denoted by C(z0). As usual, for a fixed ε > 0, we may find a
sequence (zn)n≥0 such that for any n ∈ N, zn ≥ z0 and infz≥z0

J̄n(z) + ε ≥ J̄n(zn), so that
lim supn→∞ J̄n(zn) ≤ C(z0) + ε.
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We want to show that the sequence (zn)n≥0 is bounded. The key point is to remark that,
taking the sign of y into account

x+ zy − β logE
(
exτ+yW n

)
≥ x+ zy − β logE

(
exτ+|y||W n|

)

≥ x+ zy − β logE
(
exτ+|y||W |

)

so that for all n,

J̄n(z) ≥ J |.|(z) := inf
β>0

sup
x∈R,y≥0

{
x+ |z|y − β logE

(
exτ+y|W |

)}
.

As before, taking y = 0 we see that the infimum in β has to be taken for β ≤ βτ =
C(z0) + 1 − xτ , at least for n large enough.

Taking x = 0 we see that J |.|(z) ≤ C(z0) + ε implies

|z|(η0/2) ≤ C(z0) + βτ logE
(
e(η0/2)|W |

)
,

i.e |z| ≤ A for some positive A that does not depend on n. This shows that (zn)n≥0 is
bounded, so that taking a subsequence if necessary zn → zlim ≥ z0.

Consider J̄(zlim). We may now mimic the proof of Lemma 5.1 replacing mn by zn and m by
zlim, so that

inf
z≥z0

J̄(z) ≤ J̄(zlim) ≤ C(z0) + ε .

It remains to let ε go to 0. �

6. Application to Hawkes processes. Corrigendum.

In [6] Theorem 2.12 and Corollary 2.13, we gave an application to Hawkes processes of our
main results, with a wrong bound.
As we have seen the correct one in Theorem 2.12 is (1−κ)θ0a/4 (θ0 there is η0 in the present
paper), the factor 1/4 is missing in [6]. The correct term in Corollary 2.13 is also (1−κ)θ0a/4.

Indeed according to equation (2.9) therein, Nh
t = N̂h

t + Rh
t with 0 ≤ Rh

t ≤ WMh
t

+1. If W is

bounded we may thus write Nh
t = µε

t(ϕ) + Aε
t where Aε

t ≤ K
t ((Mt − M ε

t ) + 2), so that the

proof of Theorem 4.1 remains valid replacing Zt/t by Nh
t /t.

Also remark that we have to replace J by J̄ , i.e. take care of the case z = 0, even if here
m > 0 since W ≥ 0 and W 6= 0.
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