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LARGE DEVIATION PRINCIPLES FOR CUMULATIVE PROCESSES
AND APPLICATIONS

PATRICK CATTIAUX , LAETITIA COLOMBANI , AND MANON COSTA

Université de Toulouse

Abstract. The aim of this paper is to prove a Large Deviation Principle (LDP) for cu-
mulative processes also known as coumpound renewal processes. These processes cumulate
independent random variables occuring in time interval given by a renewal process. Our
result extends the one obtained in [13] in the sense that we impose no specific dependency
between the cumulated random variables and the renewal process. The proof is inspired
from [13] but deals with additional difficulties due to the general framework that is con-
sidered here. In the companion paper [6] we apply this principle to Hawkes processes with
inhibition. Under some assumptions Hawkes processes are indeed cumulative processes, but
they do not enter the framework of [13].

Key words : Cumulative processes, large deviation, deviation inequalities, Hawkes processes

MSC 2010 : 60F10, 60K15 .

1. Introduction.

1.1. Cumulative processes. Cumulative processes have been introduced by Smith [14]
and are applied in many purposes, such as finance where they are called compound-renewal
processes or compound Markov renewal processes. Indeed these continuous time processes
cumulate independent random variables occurring in time interval given by a renewal process.
To be more specific a real valued process (Zt)t≥0 is called a cumulative process if the following
properties are satisfied:

(1) Z0 = 0,
(2) there exists a renewal process (Sn)n such that for any n, (ZSn+t − ZSn)t≥0 is inde-

pendent of S0, ...Sn and (Zs)s<Sn ,
(3) the distribution of (ZSn+t − ZSn)t≥0 is independent of n.

To study such processes, we write for all t ≥ 0
Zt = W0(t) +W1 + ...+WMt + rt

where W0(t) = Zt∧S0 , Wn = ZSn − ZSn−1 , rt = Zt − ZMt , where Mt is defined by
Mt = sup {n ≥ 0, Sn ≤ t} .

The (Wk)k≥1’s are thus i.i.d.
We denote by (τi)i the times associated to the renewal process τn = Sn − Sn−1 and τ0 = 0.
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2 P. CATTIAUX, L. COLOMBANI, AND M. COSTA

It is worth noticing that τi and Wi can be dependent.
In the sequel we suppress the subscript i when dealing with the distribution (and all associated
quantities like expectation, variance ...) of (τi,Wi) and simply use (τ,W ).

A simple example of cumulative process is Zt =
∫ t

0 f(Xs)ds where (Xt)t is a regenerative
process with i.i.d. cycles [11]. Markov additive processes are other classical examples of
cumulative process.
In [7] the authors exhibited a renewal structure for some Hawkes processes. This description is
extensively used in our companion paper [6] in order to describe such processes as cumulative
processes, and to study their asymptotic behaviour.

For cumulative processes, the law of large numbers (assuming that E[|W |] and E[τ ] are not
infinite)

Zt
t

a.s.−→
t→∞

E[W ]
E[τ ] if and only if E

(
max

S0≤t<S1
|rt|
)
<∞ ,

and the central limit theorem (assuming Var(W ) <∞ and Var(τ) <∞)(
Zt − tE[W ]

E[τ ]

)
√
t

−→
t→∞

N
(
0, σ2

)
where σ2 = 1

E(τ)Var
(
W − E[W ]

E[τ ] τ
)

can be found in Asmussen [1], theorem 3.1 and theorem 3.2.
Brown and Ross [5] have proved equivalent of the Blackwell theorem and of the key renewal
theorem for a subclass of cumulative processes, since cumulative processes are a general-
ization of renewal processes. Glynn and Whitt have focused in [11] on cumulative processes
associated to a regenerative process and have proved law of large numbers (strong and weak),
law of the iterated logarithm, central limit theorem and functional generalizations of these
properties.

The aim of this work is to establish a large deviation principle (LDP) for cumulative processes.
Some works have already been done. Duffy and Metcalfe [10] have considered the estimation
of a rate function for a cumulative process (if it admits a LDP). In a series of papers,
Borovkov and Mogulskii ([2], [3], [4]) have studied the (LDP) (they use the term compound-
renewal theorem), under some assumptions of comparison between the values (θ1, θ2) for
which E

(
eθ1τ+θ2W

)
is finite and the value θ for which E

(
eθτ
)

is finite (a comparison between
the joint distribution of (τ,W ) and the law of τ). Actually, some points in their approach
are not clear for us.

Lefevere, Mariani and Zambotti [13] worked on specific cumulative process where Wi =
F (τi) for some deterministic function F which is assumed to be non-negative, bounded and
continuous. We choose to follow their approach. Our proof of the LDP has the same skeleton,
but in a general framework for the pair (τ,W ).
In this paper, we show a LDP for Zt/t in the case rt = 0. This assumption can be relaxed if
rt/t tends to 0 quickly enough, as it will be the case for the application to Hawkes process
(see [6]). For example, if for all δ > 0

lim sup
t→∞

1
t

lnP
( |rt|
t
> δ

)
= −∞,
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then Zt/t and (Zt−rt)/t are exponentially equivalent and satisfy the same LDP (if (Zt−rt)/t
have one) and have the same rate function.

1.2. Hawkes processes. A Hawkes process is a point process on the real line R characterized
by its intensity process t 7→ Λ(t). We consider an appropriate filtered probability space
(Ω,F , (Ft)t≥0,P) satisfying the usual assumptions.

Definition 1.1. Let λ > 0 and h : (0,+∞) → R a signed measurable function. Let N0 a
locally finite point process on (−∞, 0] with law m.
The point process Nh on R is a Hawkes process on (0,+∞), with initial condition N0 and
reproduction measure µ(dt) = h(t)dt if:

• Nh |(−∞,0]= N0,
• the conditional intensity measure of Nh |(0,+∞) with respect to (Ft)t≥0 is absolutely

continuous w.r.t the Lebesgue measure and has density:

Λh : t ∈ (0,+∞) 7→ f

(
λ+

∫
(−∞,t)

h(t− u)Nh(du)
)
. (1.1)

for some non-negative function f .

Hawkes processes have been introduced by Hawkes [12]. Most of the literature concerned with
the large time behaviour of Nh

t = Nh([0, t]) is dedicated to the case h ≥ 0 (self excitation).
This behaviour is studied in details in [6] when h is a signed (the negative part modelling self
inhibition) compactly supported function, and the function f (called the jump rate function)
is given by

f(u) = max(0, u) .
In this situation one gets a description of Nh

t as a cumulative process (see [6] subsection
2.3) with few information on the joint law of (τ,W ). This was the initial motivation for
the present work. We refer to [6] for a more complete overview and explicit results in this
situation. In the remaining part of the paper we will come back to more general cumulative
processes.

2. Notations and main result

2.1. First notations.

We consider (τ1,W1), (τ2,W2), ... an i.i.d. sequence of pairs of random variables built on some
probability space (Ω,P). The law of (τi,Wi) is an arbitrary probability ψ on (0,+∞)×R. We
denote this by: (τi,Wi) ∼ ψ. In the sequel we generically use the notation (τ,W ) for a pair
with the same distribution as (τi,Wi). Notice that we assume in particular that E(τ) > 0.
We denote by M1(X ) the space of probability measure on some measurable space X .

We consider the renewal process associated with (τi)i≥1 :

S0 = 0, Sn =
n∑
k=1

τk,

Mt = sup {n ≥ 0, Sn ≤ t} .
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We will study the quantity:

Zt =
Mt∑
i=1

Wi. (2.1)

The main goal of this paper is to prove a Large Deviation Principle for the process Zt/t. Let
us recall some basic definitions in large deviation theory (we refer to [9]).
A family of probability measures (ηt)t∈R+ on a topological space (X , TX ) satisfies the Large
Deviations Principle (LDP) with rate function J(.) and speed γ(t) = t if J is lower semi-
continuous from X to [0,+∞], and the following holds

− inf
x∈O

J(x) ≤ lim inf
t→+∞

1
t

ln ηt(O) for all open subset O, (2.2)

and
− inf
x∈C

J(x) ≥ lim sup
t→+∞

1
t

ln ηt(C) for all closed subset C. (2.3)

We shall sometimes say that (ηt)t∈R+ satisfies the full LDP when (2.2) and (2.3) are satisfied,
while we will use weak LDP when C closed is replaced by C compact in (2.3). When ηt is the
distribution of some random variable Yt (for instance Zt/t) we shall say that the family (Yt)t
satisfies a LDP.
Since J is lower semi-continuous the level sets {X, J(x) ≤ a} are closed. If in addition they
are compact, then J is said to be a good rate function.
In this paper we only consider the speed function γ(t) = t so that we will no more refer to
it.

A particularly important notion for our purpose is the notion of exponentially good approxi-
mation.

Definition 2.1. Assume that (X , d) is a metric space. A family of random variables Yn,t
(n ∈ N) is an exponentially good approximation of Yt (all these variables being defined on
the same probability space (Ω,P)), if for all δ > 0 it holds

lim
n→∞

lim sup
t→∞

1
t

lnP(d(Yn,t, Yt) > δ) = −∞ .

The key result is then

Theorem 2.2. In the framework of definition 2.1, assume that Yn,t is an exponentially good
approximation of Yt. Then the following statements hold true.

(1) If Yn,t satisfies a full LDP with rate function Jn then Yt satisfies a weak LDP with
rate function

J(x) = sup
δ>0

lim inf
n→∞

inf
d(y,x)<δ

Jn(y) .

(2) If X = Rk equipped with any norm, then the same conclusion is true when Yn,t
satisfies only a weak LDP.

(3) If J (defined above) is a good rate function such that for any closed set F ,
inf
y∈F

J(y) ≤ lim sup
n→∞

inf
y∈F

Jn(y)

then Yt satisfies a full LDP with rate function J .
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The first and last points in the previous Theorem are contained in [9] Theorem 4.2.16. The
second one is a consequence of the fact that closed balls are compact sets in Rk. Usually, the
Theorem is sufficient to prove a full LDP. Nevertheless, it some cases, the study of the rate
function J is difficult. The lemma below gives an alternative, using exponential tightness
which is easy to obtain with our assumptions.

Lemma 2.3. If Yt satisfies a weak LDP with a rate function I and is exponentially tight,
i.e. for all α > 0, there exists a compact set Kα such that

lim sup
t→+∞

1
t

logP (Yt /∈ Kc
α) < −α,

then Yt satisfies a full LDP and I is a good rate function.

This Lemma is a consequence of the Lemma 1.2.18 in [9].
Theorem 2.2 as well as Lemma 2.3 will be used at the end of the article, in the section 9
which proves the main Theorem 2.5.

2.2. Main results.

Assumption 2.4. We will make the following set of assumptions:
i) ∃θ0 ∈ (0,+∞] such that E[eθτ ] <∞ for θ < θ0,
ii) ∃β0 ∈ (0,+∞] such that E[eβ|W |] <∞, for β < β0,
iii) for all interval I such that P(W ∈ I) > 0, it holds

P(τ > t , W ∈ I) > 0 for all t ≥ 0 .

We will introduce the classical Cramer transforms, for (a, b) ∈ R2,

Λ∗(a, b) = sup
x,y
{ax+ by − lnE(exτ+yW )} (2.4)

Λ∗n(a, b) = sup
x,y

{
ax+ by − lnE

(
exτ+yWn

)}
, (2.5)

where Wn is a well-chosen reduction of W . We finally introduce the rate functions

Jn(m) = inf
β>0

β Λ∗n
( 1
β
,
m

β

)
, J(m) = inf

β>0
β Λ∗

( 1
β
,
m

β

)
, (2.6)

and
J̃ = sup

δ>0
lim inf
n→∞

inf
|m−z|<δ

Jn(z) . (2.7)

We then may state

Theorem 2.5. Assume that Assumption 2.4 is fulfilled. Let J given by (2.6).
• If β0 = +∞ (in particular if W is bounded) then Zt/t satisfies a full LDP with good

rate function J̃ . We also have the following inequalities

P
(
Zt
t
≥ m+ a

)
≤ − inf

z≥m+a
J(z), (2.8)

P
(
Zt
t
≤ m− a

)
≤ − inf

z≤m−a
J(z). (2.9)
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• If β0 < +∞, denoting m = E(W )/E(τ) we have for all a > 0

lim sup
t→+∞

1
t

lnP
(
Zt
t
≥ m+ a

)
≤ − min

[
inf

z≥m+(a/2)
J(z) , β0a/4

]
, (2.10)

and

lim sup
t→+∞

1
t

lnP
(
Zt
t
≤ m− a

)
≤ − min

[
inf

z≥m−(a/2)
J(z) , β0a/4

]
. (2.11)

We may replace a/2 and β0/2 by κa and (1− κ)β0 for any κ ∈ (0, 1).

Remark 2.6. The previous inequalities (2.8) and (2.9) actually hold true with function J̃ as
well as function J since J ≤ J̃ (see Lemma 9.5. However, since J is clearly more easy to
calculate than J̃ , we prefer to write the inequalities with J .

2.3. The scheme of proof.

The proof will be divided in several steps. In the next section we will reduce the prob-
lem first to bounded W ’s replacing the original W by Wn, and then to finite valued W ’s.
This will be done by using exponentially good approximations and Theorem 2.2.
Following [13] we introduce in section 4 (for finite valued W ’s) an associated empirical mea-
sure and state the LDP for this measure (theorem 4.3) and the LDP for the cumulative
process (theorem 4.4), the latter being obtained via the contraction principle. The following
sections are devoted to the proofs of these theorems.
Section 5 is devoted to the study of the rate function in theorem 4.3. This is the most technical
part of this work. The idea is that one can adapt the arguments in [13] by conditioning w.r.t.
each value of W .
At this point the fact that W is finite valued will provide us both with simple conditioning
and with the necessary compactness arguments, since M1({1, ..., n}) is compact.
If many arguments are close to those in [13], some have to be written in detail. We have
decided to refer to the corresponding statements in [13] only when they can be reproduced
line by line in our case. Some topological points also have to be clarified. In section 6 we
show useful auxiliary lemmata. The next section 7 is devoted to the proof of 4.3. In section
8 we deduce theorem 4.4. The final section 9 is devoted to the study of the rate function J
and to the proof of theorem 2.5.

3. Reduction of the problem to finite valued W ’s.

3.1. First reduction to bounded W ’s.

To Zt defined by (2.1) we associate

Znt =
Mt∑
i=1

(Wi ∧ n ∨ (−n)) ,
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so that

|Zt − Znt | =
Mt∑
i=1

(Wi − n)+ +
Mt∑
i=1

(Wi + n)− (3.1)

where u+ = max(u, 0) and u− = max(−u, 0). We then have

Lemma 3.1. If Assumption 2.4 is fulfilled, for all δ > 0,

lim
n→∞

lim sup
t→∞

1
t

lnP
(∣∣∣∣Ztt − Znt

t

∣∣∣∣ > δ

)
≤ − β0 δ

2 .

In particular if β0 = +∞, Znt /t is an exponentially good approximation of Zt/t.

Proof. It is enough to look at

P
(
Mt∑
i=1

(Wi − n)+ > δt

)
,

since the other term in (3.1) can be treated similarly. To conclude it is enough to use the
elementary

ln(a+ b) ≤ max(ln(2a), ln(2b)) . (3.2)
Using that the Wi’s are i.i.d. we may write for δ > 0 and c > 0, (as usual an empty sum is
equal to 0 by convention)

P
(
Mt∑
i=1

(Wi − n)+ > δt

)

≤ P
(

ct∑
i=1

(Wi − n)+ >
δt

2

)
+ P

 Mt∑
i=ct+1

(Wi − n)+ >
δt

2


≤ P

(
ct∑
i=1

(Wi − n)+ >
δt

2

)
+ P


Mt∑

i=ct+1
(Wi − n)+ >

δt

2

 ∩ {1 + ct ≤Mt < 2ct}


+ P


Mt∑

i=ct+1
(Wi − n)+ >

δt

2

 ∩ {Mt ≥ 2ct}


≤ 2P

 ct∑
j=1

(Wj − n)+ >
δt

2

+ P (Mt ≥ 2ct)

Study of P (Mt ≥ 2ct) . Start with the second term in the sum above. According to
theorem 2.3 in [15], we know that Mt/t satisfies a LDP with rate function Jτ given by

Jτ (x) =
{

supλ{λ− x lnE(eλτ )} if x ≥ 0
∞ if x < 0

Notice that Jτ (x) = xΛ∗(1/x, 0) for x > 0. In addition (see Lemma 2.6 in [15]) the supremum
is achieved for λ ≤ 0 if x ∈ (1/E(τ) , +∞) and Jτ is non-decreasing on this interval.
It follows that for 2c > 1/E(τ),

lim sup
t→∞

1
t

lnP (Mt ≥ 2ct) = −Jτ (2c) . (3.3)



8 P. CATTIAUX, L. COLOMBANI, AND M. COSTA

In order to get limn lim supt→+∞
1
t lnP (Mt ≥ 2cnt) = −∞ for some sequence cn (to be chosen

later) it remains to show that

Jτ (x) −→
x→∞

+∞.

Since τ is a non-negative random variable one can find λτ such that

E(eλτ τ ) = e−1 .

Let x ∈ R+, we have:

Jτ (x) = sup
λ
{λ− x lnE(eλτ )}

≥ λτ − x lnE(eλτ τ )
≥ x+ λτ

yielding the desired result.

Study of P
(∑ct

j=1(Wj − n)+ > δt
2

)
. Denote as usual by bctc the integer part of ct. We

have

P

 ct∑
j=1

(Wj − n)+ >
δt

2

 = P

bctc∑
j=1

(Wj − n)+ >
δt

2


so that we may use this time the usual Cramer’s theorem. Defining

Ψn(λ) = lnE
[
eλ(W−n)+

]
Ψ∗n(x) = sup

λ
{λx−Ψn(λ)},

we have

lim sup
t→∞

1
t

lnP

bctc∑
j=1

(Wj − n)+ > δt/2

 = lim sup
t→∞

c

bctc
lnP

bctc∑
j=1

(Wj − n)+ > δt/2


≤ lim sup

t→∞

c

bctc
lnP

bctc∑
j=1

(Wj − n)+ > δbctc/2c


≤ − c inf

x∈[δ/2c,+∞)
Ψ∗n(x).

As the function x 7→ Ψ∗n(x) is non-decreasing on [E((W − n)+),+∞), we have

lim sup
n→∞

1
t

lnP

bctc∑
j=1

(Wj − n)+ > δt/2

 = − cΨ∗n(δ/2c) ,

provided δ/2c ≥ E((W − n)+). Notice that for λ < β0,

cΨ∗n(δ/2c) ≥ λδ

2 − c ln
(
1 + E

[
(eλ(W−n) − 1)1W>n

])
so that choosing cn growing to infinity and such that

cn E((W − n)+)→ 0 and cn ln
(
1 + E

[
(eλ(W−n) − 1)1W>n

])
→ 0 as n→∞
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which is always possible since both E((W − n)+) and ln
(
1 + E

[
(eλ(W−n) − 1)1W>n

])
are

going to 0, we get

lim
n

lim sup
t→∞

1
t

lnP

bctc∑
j=1

(Wj − n)+ > δt/2

 ≥ λδ

2 .

We may optimize in λ and plugging the same sequence cn in (3.3) ends the proof. �

3.2. Second reduction to finite valued W ’s.

Starting with a bounded W such that −K < W < K almost surely we define a discretized
version of W by

Wn =
n−1∑
j=−n

jK

n
1W∈[jK/n,(j+1)K/n[ .

It clearly holds

|W −Wn| ≤ K

n
.

We thus introduce

Z̄nt =
Mt∑
i=1

Wn
i

so that
|Z̄nt − Zt| ≤

KMt

n
.

According to the study in the previous section

lim sup
t→∞

1
t

lnP
(∣∣∣∣∣ Z̄ntt − Zt

t

∣∣∣∣∣ > δ

)
≤ lim sup

t→∞

1
t

lnP (Mt ≥ δtn/K) = −Jτ (δn/K)

so that, since Jτ grows to infinity

lim
n→∞

lim sup
t→∞

1
t

lnP
(∣∣∣∣∣ Z̄ntt − Zt

t

∣∣∣∣∣ > δ

)
= −∞ .

We have thus shown

Lemma 3.2. If Assumption 2.4 is fulfilled, and W is almost surely bounded, Z̄nt /t defined
above is an exponentially good approximation of Zt/t.

Remark 3.3. If W isn’t bounded nor discrete, a double reduction can be done in one step. We
obtain the same results as doing successively both the reductions, but it allows formulating
the rate function more easily, when there is one.

Let’s consider

W̃n = −n1W<−n + n1W≥n +
n2−1∑
j=−n2

j

n
1W∈[ jn , j+1

n ).
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By denoting Z̃nt =
∑Mt
i=1 W̃

n
i , we have, for δ > 0

P
(∣∣∣∣∣Ztt − Z̃nt

t

∣∣∣∣∣ > δ

)
≤P

(
Mt∑
i=1

(Wi − n)+ > δt

)
+ P

(
Mt∑
i=1

(Wi + n)+ > δt

)

+ P

Mt∑
i=1

n2−1∑
j=−n2

(
Wi −

j

n

)
1Wi∈[ jn , j+1

n ) > δt

 .
Since ∣∣∣∣∣∣

Mt∑
i=1

n2−1∑
j=−n2

(
Wi −

j

n

)
1Wi∈[ jn , j+1

n )

∣∣∣∣∣∣ ≤ Mt

n
,

we obtain

P

Mt∑
i=1

n2−1∑
j=−n2

(
Wi −

j

n

)
1Wi∈[ jn , j+1

n ) > δt

 ≤ P(Mt > δtn).

By the proofs of Lemmas 3.1 and 3.2, we finally obtain

Lemma 3.4. If Assumption 2.4 is fulfilled, for all δ > 0,

lim
n→∞

lim sup
t→∞

1
t

lnP
(∣∣∣∣∣Ztt − Z̃nt

t

∣∣∣∣∣ > δ

)
≤ − β0 δ

2 .

In particular if β0 = +∞, Z̃nt /t is an exponentially good approximation of Zt/t.

Remark 3.5. The proofs in the previous section suggest a direct naive approach in order to
get deviation bounds. Indeed we may write∣∣∣∣Ztt − E(W )

E(τ)

∣∣∣∣ ≤ 1
t

∣∣∣∣∣∣
bMtc∑
i=1

(Wi − E(W ))

∣∣∣∣∣∣+ E(W )
∣∣∣∣bMtc

t
− 1

E(τ)

∣∣∣∣
so that following the lines of the proof of lemma 3.1, we may write

P
(∣∣∣∣Ztt − E(W )

E(τ)

∣∣∣∣ ≥ δ) ≤ P

1
t

∣∣∣∣∣∣
bMtc∑
i=1

(Wi − E(W ))

∣∣∣∣∣∣ ≥ δ/2
 + P

(
E(W )

∣∣∣∣bMtc
t
− 1

E(τ)

∣∣∣∣ ≥ δ/2)

≤ 2P
(∣∣∣∣∣

ct∑
i=1

(Wi − E(W ))
∣∣∣∣∣ > δt/4

)
+ P(bMtc > 2ct) +

+P
(
E(W )

∣∣∣∣bMtc
t
− 1

E(τ)

∣∣∣∣ ≥ δ/2) .

Introducing the Cramer transform of W ,

Ψ∗(x) = sup
λ
{λx− lnE(eλ(W−E(W )))}

we thus deduce, if Assumption 2.4 is fulfilled

lim sup
t→∞

1
t

lnP
(∣∣∣∣Ztt − E(W )

E(τ)

∣∣∣∣ ≥ δ) ≤ −A(δ) , (3.4)



LDP FOR CUMULATIVE PROCESSES 11

where
A(δ) = min(A1(δ), A2(δ))

A1(δ) = min
(
Jτ

( 1
E(τ) + δ

2E(W )

)
, Jτ

( 1
E(τ) −

δ

2E(W )

))
(3.5)

A2(δ) = sup
2c>1/E(τ)

min (Jτ (2c) , c min (ψ∗(δ/4c), ψ∗(−δ/4c))) . (3.6)

This time however we cannot let c go to infinity so that A2(δ) will furnish a worse bound
than β0δ/2 (the correcting term in Lemma 3.1). So even when β0 < +∞ the previous bound
will be worse than the one obtained by combining Lemma 3.1 and the LDP for finite valued
W .
This kind of approach should be useful in order to get non asymptotic bounds. ♦

4. Large deviations for a finite valued W .

From now on we will assume that W takes its values in a set of cardinal n (fixed). However
we will keep a superscript n to remember that this is a reduction of the general case, so
we shall write Wn. For simplicity we rename the values of Wn as 1, ..., n. According to
Assumption 2.4 iii) and the approximation made in subsection 3.2 we may assume that

∀j = 1, ..., n ,∀t > 0 , ψn({τ > t} ∩ {w = j}) = P(τ > t,Wn = j) > 0 .
This condition will replace iii) in Assumption 2.4 in all the next statements.

Some results are still true when W takes its value in some W ⊂ R which is compact, in
particular if W is bounded. We will mention these results in related remarks each time it is
possible.

4.1. More notations.

As we said we will now closely follow the approach in [13]. Consider the backward re-
currence time process (At)t≥0, the forward recurrence time process (Bt)t≥0 and the process
(Cnt )t≥0, defined by:

At = t− SMt , Bt = SMt+1 − t, Cnt = Wn
Mt+1 ,

and the associated empirical measure:

µnt := 1
t

∫
[0,t)

δ(As,Bs,Cns )ds ∈M1((0,+∞]2 × {1, ..., n}).

We denote by Pnt the law of µnt .
This empirical measure is a measure on three coordinates, whereas Lefevere, Mariani and
Zambotti [13] consider a measure on two coordinates since W = F (τ) in their work. Looking
at (0,+∞] allows us to avoid integrability considerations at infinity since As and Bs can be
as large as we want simultaneously.
Choosing as metric d(t, t′) = |1t−

1
t′ | on (0,+∞] and the usual one on {1, ..., n} we immediately

see that Y = (0,+∞]2 × {1, ..., n} is a Polish space, so that X = M1((0,+∞]2 × {1, ..., n})
is also Polish. In addition (a, b, c) → 1

a+b is continuous (of course it is equal to 0 if either a
or b equals +∞).
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For µ ∈M1((0,+∞]2 × {1, ..., n}), we denote:

µ(1/τ) = µ(1/(a+ b)) =
∫

(0,+∞)2×{1,...,n}

1
a+ b

µ(da, db, dc)

and for π ∈M1((0,+∞]× {1, ..., n}), we denote:

π(1/τ) =
∫

(0,+∞]×{1,...,n}

1
τ
π(dτ, dW ).

Let us define ∆n
0 ⊂M1((0,+∞]2 × {1, ..., n}) as :

∆n
0 = {µ0 ∈M1((0,+∞]2 × {1, ..., n}), (4.1)

µ0(da, db, dc) =
∫

[0,1]×(0,+∞)×{1,...,n}
δ(uτ,(1−u)τ,W )(da, db, dc)du⊗ π(dτ, dW ),

π ∈M1((0,+∞)× {1, ..., n}), π(1/τ) < +∞}

We also define ∆n:

∆n = {µ(da, db, dc) = αµ0(da, db, dc) + (1− α)δ(+∞,+∞)(da, db)⊗ η(dc),
µ0 ∈ ∆n

0 , α ∈ [0, 1], η ∈M1({1, ..., n})}. (4.2)

The following will be used several times in what follows

Lemma 4.1. For M > 0, the set XM = {ν ∈ X , ν(1/(a+ b)) ≤M} is compact in X .

Proof. First the set {a+ b ≥ δ} is compact in Y for δ ≥ 0. It follows that XM is a uniformly
integrable set, hence is relatively compact (tight). Indeed for ν ∈ XM

ν({a+ b < δ}) ≤ δ ν(1/(a+ b)) ≤ δM .

Notice that this set is also closed, so that it is compact. Indeed if ν belongs to XM , ν( 1
a+b+ε) ≤

M for all ε > 0. Any weak limit ν of such νk’s satisfies ν( 1
a+b+ε) ≤ M since (a, b, c) 7→

1/(a + b + ε) is bounded and continuous. It remains to apply the monotone convergence
theorem. �

Remark 4.2. This lemma and its proof are still true if we replace {1, ..., n} by a compact set
W. ♦

Recall that ψn denotes the joint distribution of (τ,Wn), so that its first marginal does
not depend on n. We may thus skip the superscript n when dealing with quantities that
only depend on this first marginal. To simplify the notation we will denote by ξ the θ0 in
Assumption 2.4, i.e.

ξ = sup{c ∈ R, ψ(ecτ ) <∞} ∈ [0,+∞]. (4.3)

For π ∈M1((0,+∞]×{1, ..., n}), satisfying π(1/τ) ∈ (0,+∞), we define π̃ ∈M1((0,+∞]×
{1, ..., n}) as:

π̃(dτ, dW ) = 1
π(1/τ)

1
τ
π(dτ, dW ).

π̃ has no weight on {+∞}× {1, ..., n}.
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We also define the functional In0 , In :M1((0,+∞]2 × {1, ..., n})→ [0,+∞] by:

In0 (µ) =
{
π(1/τ)H(π̃|ψn) if µ ∈ ∆n

0
∞ otherwise , (4.4)

In(µ) =
{
απ(1/τ)H(π̃|ψn) + (1− α)ξ if µ ∈ ∆n

∞ otherwise , (4.5)

where H is the relative entropy defined by

H(ν|µ) =


∫

ln
(
dν

dµ

)
dµ if ν is absolutely continuous w.r.t. µ

∞ otherwise.

We denote by Cb((0,+∞]2 × {1, ..., n}) the set of bounded and continuous functions on
(0,+∞]2 × {1, ..., n}.
For a bounded measurable f : (0,+∞)× (0,+∞)× {1, ..., n} → R, we set :

f̄(x, τ,W ) =
∫ x

0
f(uτ, (1− u)τ,W )du (4.6)

We define:

Cn,f =
∫

(0,+∞)×{1,...,n}
eτ f̄(1,τ,W ) ψn(dτ, dW ) , (4.7)

and

Dn,f = sup
s>0

∫
(s,+∞)

eτ f̄(s/τ,τ,W ) ψn(dτ, dW ) .. (4.8)

We consider
Γ := {f : (0,+∞]2 × {1, ..., n} → R, bounded, lower semicontinuous,

Cn,f < 1, Dn,f < +∞}. (4.9)

The reasons for introducing such quantities are detailed in [13] section 1, see in particular
subsection 1.5 (and more particularly Remark 1.5) and subsection 1.6.

4.2. Large deviations principle for cumulative process when W is finite valued.

We will first prove a LDP for the empirical measure µnt :

Theorem 4.3. Let µnt the empirical measure of a cumulative process satisfying Asumptions
2.4, and such that Wn takes its values in {1, ..., n}. The family (Pnt )t≥0 of probability distri-
butions of µnt satisfies a large deviations principle with good rate function In as t→∞ with
speed t, where In is defined in (4.5).

Applying the contraction principle we will then deduce

Theorem 4.4. Let (τi,Wn
i )i an i.i.d. sequence of couples of random variables in (0,+∞)×

{1, ..., n} following the law ψn. Let us define Znt =
∑Mt
i=1W

n
i the associated cumulative

process. If ψn satisfies Asumptions 2.4, then the law of Znt /t satisfies a large deviation
principle with good rate function Jn (given by (2.6)).
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5. The functional In

This section aims at proving that In, defined in (4.5), is a good rate function i.e proposition
5.2 (analogue to Proposition 1.3 in [13]. Three propositions are necessary to prove it: the
propositions 5.3, 5.4 and 5.6 which are the analogues of Proposition 2.1 in [13]. In order to
prove these three propositions some additional lemmata are necessary.

Remark 5.1. If the scheme of proof is close to the one in [13], the proofs of this section need
some new ideas. In particular, we will use conditioning by sets like {W = j}. This induces
to use disintegration and uniform controls in j. That is why it is useful to work with a
finite valued W . In addition the compactness ofM1({1, ..., n}) will help to control the third
coordinate (which does not exist in [13]). Except two auxiliary lemmata, we decided to give
self contained proofs. ♦

Proposition 5.2. The function In is a good rate function. Moreover, In is the lower semi-
continuous envelope of In0 .

For the proof we need the next three propositions. We need another notation: if ψk is a
sequence inM1((0,+∞)×{1, ..., n}), ξk and Ink are defined as in (4.3) and (4.5) respectively,
with ψn replaced by ψk.

Proposition 5.3. Let ψk be a sequence in M1((0,+∞)×{1, ..., n}). Assume that ψk ⇀ ψn,
and ξk → ξ as k → +∞. Then any sequence (µk)k in M1((0,+∞]2 × {1, ..., n}) such that
lim supk→∞ Ink (µk) < ∞ is tight and thus, relatively compact in M1((0,+∞]2 × {1, ..., n}).
In particular, for k large enough, such a sequence is in ∆n. If we consider πk and αk the
associated quantities, we have:

lim sup
k→∞

αkπk(1/τ) < +∞. (5.1)

Proposition 5.4. Let ψk be a sequence in M1((0,+∞)×{1, ..., n}). Assume that ψk ⇀ ψn,
and ξk → ξ as k → +∞. Then for any µ and any sequence (µk)k inM1((0,+∞]2×{1, ..., n}),
such that µk ⇀ µ, we have lim infk→∞ Ink (µk) ≥ In(µ).

Remark 5.5. Both previous propositions are still true when replacing {1, ..., n} by W a com-
pact subset of R as it will be clear looking at their proof. ♦

Proposition 5.6. Let ψk be a sequence in M1((0,+∞)×{1, ..., n}). Assume that ψk ⇀ ψn,
and ξk → ξ as k → +∞. Then for any µ in M1((0,+∞]2×{1, ..., n}) with In(µ) <∞, there
exists a sequence (µk)k such that µk ⇀ µ, µk ∈ ∆n

0 for all k and lim supk→∞ Ink (µk) ≤ In(µ).
Moreover, we have µk

(
1
a+b

)
−→
k→∞

µ
(

1
a+b

)
.

For this last proposition we need to work with W taking values in a finite set.

Now we can prove the main Proposition of this section.

Proof of Proposition 5.2. We want to prove that In is a good rate function and is the lower
semicontinuous envelope of In0 .
We apply Proposition 5.3 with ψk = ψn : for all (µk)k sequence ofM1((0,+∞]2×{1, ..., n}),
if lim supk→∞ In(µk) < +∞, then the family (µk)k is tight inM1((0,+∞]2×{1, ..., n}). We
can deduce that In has relatively compact sublevel sets (and is coercive).
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Thanks to Proposition 5.4 we have, for any µ and any sequence µk inM1((0,+∞]2×{1, ..., n})
such that µk ⇀ µ, lim infk→∞ In(µk) ≥ In(µ). Thus In has closed sublevel sets. It also means
that In is lower semicontinuous.
In has relatively compact and closed sublevel sets, so In is a good rate function.

We already know that In ≤ In0 since ∆n
0 ⊂ ∆n, and In is lower semicontinuous, so In is

smaller than or equal to the lower semicontinuous envelope of In0 .
Thanks to proposition 5.6, for any µ ∈ M1((0,+∞]2 × {1, ..., n}) with In(µ) < ∞, there
exists (µk)k a sequence in ∆n

0 such that µk ⇀ µ and lim supk→∞ In(µk) ≤ In(µ). In fact,
lim supk→∞ In0 (µk) ≤ In(µ). So In is greater or equal to the lower semicontinuous envelope
of In0 and finally In is the lower semicontinuous envelope of In0 . �

We turn to the proof of the three auxiliary propositions.

Proof of proposition 5.3. Choose a sequence (µk)k in M1((0,+∞]2 × {1, ..., n}) such that
lim supk→∞ Ink (µk) < ∞. We want to prove that this sequence is tight and thus, relatively
compact in M1((0,+∞]2 × {1, ..., n}).
Since lim supk→∞ Ink (µk) < ∞, for k large enough, µk ∈ ∆n. Then, there exist αk ∈ [0, 1],
πk ∈M1((0,+∞)× {1, ..., n}) with πk(1/τ) < +∞ and ηk ∈M1({1, ..., n}).

First, we prove equation (5.1):

lim sup
k→∞

αkπk(1/τ) < +∞.

We have Ink (µk) = αkπk(1/τ)H(π̃k|ψk) + (1− α)ξk ≥ αkπk(1/τ)H(π̃k|ψk). Therefore

αkπk(1/τ) ≤ Ink (µk)
H(π̃k|ψk)

(we consider H(π̃k|ψk) 6= 0).

Moreover

αkπk(1/τ) = αk
1

π̃k(τ) .

Then

αkπk(1/τ) ≤ Ink (µk)
H(π̃k|ψk)

∧ αk
π̃k(τ)

and lim sup
k→∞

αkπk(1/τ) ≤ lim sup
k→∞

Ink (µk)
H(π̃k|ψk)

∧ αk
π̃k(τ) .
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αk ∈ [0, 1] and lim supk→∞ Ink (µk) < +∞, so there exists a constant C < ∞ such that
∀k, αk ≤ C and Ink (µk) ≤ C. Then

lim sup
k→∞

αkπk(1/τ) ≤ lim sup
k→∞

C

H(π̃k|ψk)
∧ C

π̃k(τ)

≤ C lim sup
k→∞

1
H(π̃k|ψk)

∧ 1
π̃k(τ)

≤ C lim sup
k→∞

1
H(π̃k|ψk) ∨ π̃k(τ)

≤ C

lim infk→∞H(π̃k|ψk) ∨ π̃k(τ) .

If there exists a subsequence kj such that H(π̃kj |ψkj ) → 0, then lim π̃kj = limψkj = ψn.
Thus, since [0, 1] andM1({1, ..., n}) are compact, there exist subsequences of αk and ηk which
converge. Eventually, there exists a subsequence of µk which converges, so this sequence is
relatively compact. In particular, (5.1) is true because lim infj→∞ π̃kj (τ) = ψn(τ) > 0.

Else, lim infk→∞H(π̃k|ψk) > 0 and lim supk→∞ αkπk(1/τ) <∞. Then (5.1) is true.
Moreover, for M large enough and k large enough, µk(1/(a + b)) = αkπk(1/τ) ≤ M . So
µk ∈ XM which is a compact set by Lemma 4.1. Then, this sequence is relatively compact.
In both cases, the sequence is relatively compact and (5.1) is true. �

Remark 5.7. As already said we only used the compactness ofM1(W) and lemma 4.1 so that
the above proof immediately extends to W compact. ♦

Proof of proposition 5.4. Let µ ∈M1((0,+∞]2 ×{1, ..., n}) and let (µk)k inM1((0,+∞]2 ×
{1, ..., n}), such that µk ⇀ µ. We want to prove that lim infk→∞ Ink (µk) ≥ In(µ).

Since µk ⇀ µ, we may replace µk by subsequences again denoted µk in what follows. We
assume supk Ink (µk) < ∞ (otherwise, if lim infk→∞ Ink (µk) = +∞, +∞ ≥ In(µ)). Then
µk ∈ ∆n and we denote by αk, πk, ηk and µ0,k the corresponding quantities, with αk ∈ [0, 1]
and πk(1/τ) <∞.

First, if lim supk→∞ αk = 0, we may assume taking a subsequence that limαk = 0. So
µ = δ(+∞,+∞) ⊗ (limk ηk). Since M1({1, ..., n}) is compact, (limk ηk) ∈ M1({1, ..., n}).
Therefore

lim inf
k→∞

Ink (µk) = lim inf
k→∞

αkπk(1/τ)H(π̃k|ψk) + (1− αk)ξk ≥ lim inf
k→∞

(1− αk)ξk = ξ = In(µ).

Secondly, we have lim supk→∞ αk = ᾱ > 0. Again we may assume that limαk = ᾱ.

We begin by studying the sequence µk and πk to have some information about lim infk→∞ Ink (µk).
Then, we prove that µ is in ∆n, and finally we work on In(µ).
Since supk Ink (µk) <∞, we can apply the proposition 5.3 and in particular the equation (5.1):
lim supk→∞ αkπk(1/τ) < ∞. Since ᾱ > 0, we have: lim supk→∞ πk(1/τ) < ∞. For k large
enough and M large enough, we have πk(1/τ) ≤M .
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As {
ν ∈M1((0,+∞]× {1, ..., n}), ν

(1
τ

)
≤ r

}
is tight for all r > 0, there exists a subsequence of πk which converges in M1((0,+∞] ×
{1, ..., n}). We can write the limit of πk (or its subsequence) as βπ + (1− β)δ(+∞) ⊗ η0, for
some β ∈ [0, 1] and η0 ∈M1({1, ..., n}).
If β > 0, π(1/τ) ≤ 1

β lim supk→∞ πk(1/τ) <∞. If β = 0 we choose an arbitrary π such that
π(1/τ) <∞.

Now, we prove that µ is in ∆n, where µ is defined by:

µ = lim
k
µk

= lim
k

(αkµ0,k + (1− αk)δ(+∞,+∞) ⊗ ηk)

= ᾱ lim
k
µ0,k + (1− ᾱ)δ(+∞,+∞) ⊗ (lim

k
ηk).

It holds

µ0,k =
∫

[0,1]×(0,+∞)×{1,...,n}
δ(uτ,(1−u)τ,W )du⊗ πk(dτ, dW )

−→
k→∞

β

∫
[0,1]×(0,+∞)×{1,...,n}

δ(uτ,(1−u)τ,W )du⊗ π(dτ, dW ) + (1− β)δ(+∞,+∞) ⊗ η0.

Let µ0 and η be defined as:

µ0 :=
∫

[0,1]×(0,+∞)×{1,...,n}
δ(uτ,(1−u)τ,W )du⊗ π(dτ, dW )

η := α(1− β)
1− ᾱβ η0 + 1− ᾱ

1− ᾱβ (lim
k
ηk).

We get

µ = ᾱβµ0 + ᾱ(1− β)δ(+∞,+∞) ⊗ η0 + (1− ᾱ)δ(+∞,+∞) ⊗ (lim
k
ηk)

= ᾱβµ0 + (1− ᾱβ)δ(+∞,+∞) ⊗ η,

and in particular µ ∈ ∆n with α = βᾱ.

Eventually

In(µ) = βᾱπ(1/τ)H(π̃|ψn) + (1− βᾱ)ξ
= ᾱ [βπ(1/τ)H(π̃|ψn) + (1− β)ξ] + (1− ᾱ)ξ
= ᾱπk(1/τ)H(π̃k|ψk) + (1− ᾱ)ξ

+ ᾱ [βπ(1/τ)H(π̃|ψn) + (1− β)ξ − πk(1/τ)H(π̃k|ψk)]
≤ lim inf

k→∞
Ink (µk) + ᾱ [βπ(1/τ)H(π̃|ψn) + (1− β)ξ − πk(1/τ)H(π̃k|ψk)] .

In particular, we can apply Lemma 2.4 from [13] (the proof can be directly adapted in our
case), since the hypotheses therein are satisfied:
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Lemma 5.8. Let πk ∈M1((0,+∞)× {1, ..., n}) be such that πk(1/τ) <∞ such that

lim
k
πk(dτ, dW ) = βπ(dτ, dW ) + (1− β)δ(+∞)(dτ)⊗ η0(dW ) (5.2)

for some β ∈ [0, 1], π ∈M1((0,+∞)×{1, ..., n}) such that π(1/τ) <∞ and η0 ∈M1({1, ..., n}).
Then

lim inf
k→∞

πk(1/τ)H(π̃k|ψk) ≥ βπ(1/τ)H(π̃|ψn) + (1− β)ξ.

Eventually

In(µ) ≤ lim inf
k→∞

Ink (µk) + ᾱ [βπ(1/τ)H(π̃|ψn) + (1− β)ξ − πk(1/τ)H(π̃k|ψk)]︸ ︷︷ ︸
<0 by Lemma 5.8

≤ lim inf
k→∞

Ink (µk).

�

Remark 5.9. Once again we only used the fact that {1, ..., n} is compact so that we may
replace it by any compact W. ♦

Proof of proposition 5.6. Let µ in M1((0,+∞]2 × {1, ..., n}) with In(µ) < ∞. We want
to prove that there exists a sequence (µk) such that µk ⇀ µ, µk ∈ ∆n

0 for all k and
lim supk→∞ Ink (µk) ≤ In(µ).
Since In(µ) <∞, µ ∈ ∆n. Let α, π and η corresponding to µ:

µ(da, db, dc) =α
∫

[0,1]×(0,+∞)×{1,...,n}
δ(uτ,(1−u)τ,W )(da, db, dc)du⊗ π(dτ, dW )

+ (1− α)δ(+∞,+∞)(da, db)⊗ η(dc).

The aim of this (technical) proof is to construct a sequence of laws πk, depending on ψk, which
satisfies a condition on its limit (the condition (5.6) described below) and a condition on its
entropy with respect to ψk (the condition (5.7) described below). Then, we will construct a
sequence of measure µk which will satisfy the wished conditions. The next paragraphs give
the details.

We denote ψn(dτ) the marginal law of τ in ψn, and ψk(dτ) the corresponding law associated
to ψk to simplify notations. In particular, ψn(dτ |W = j) is the marginal law of τ given
W = j. We write qj the weight of j for η: qj = η({W = j}).

Fix ρ > 0, L > M > 1 such that Pψn(τ = 1/M) = Pψn(τ = M) = Pψn(τ = L) = 0. Then
there exist N ∈ N and 1/M = T1 < T2 < ... < TN = M such that Ti+1 − Ti ≤ ρ and
Pψn(τ = Ti) = 0.
Here of course N and Ti depend on M and ρ. We also use the shorthand notation Ai =
[Ti, Ti+1) andA = ∪Ni=1Ai in this proof. Then for L > M define πρ,L,M0,k (dτ, dW ), ηL,Mk (dτ, dW )
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and πρ,M,L
k (dτ, dW ) ∈M1((0,+∞)× {1, ..., n}) as:

πρ,M0,k (dτ, dW ) = 1
βρ,Mk

N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) τψk(dτ, dW |τ ∈ Ai,W = j), (5.3)

ηL,Mk (dτ, dW ) =
n∑
j=1

1
ψk(τ1τ∈[M,L)|W = j)τ1τ∈[M,L)qjψk(dτ |W = j)⊗ δj(dW ), (5.4)

πρ,L,Mk (dτ, dW ) = απρ,M0,k (dτ, dW ) + (1− α)ηL,Mk (dτ, dW ), (5.5)

where βρ,Mk is the normalizing constant such that πρ,M0,k is a probability measure.

Some qj ’s can be equal to 0. In these cases, we consider in fact the sum on j such that the qj
aren’t zero: all the following calculation are then true. Thanks to Assumption 2.4, we know
that for each j ∈ {1, ..., n}, ∀t ∈ R+, ψn({τ > t} ∩ {W = j}) > 0, so the measure ηL,Mk exists
for adequate L and M . To simplify the notation, we consider in the following calculus that
ηL,Mk is the sum for j ∈ {1, ..., n}.

The above definition makes sense if L > M is large enough, and k is large enough depending
on L and M (k will be sent to +∞ before L, and L before M), and there is no problem with
the conditioning. As ψn(τ ∈ ∂Ai) = 0, if ψk(Ai × {j}) = 0 for each k large enough, then
ψ(Ai × {j}) = 0. Since In(µ) < ∞, then H(π̃|ψn) < ∞ and π̃(Ai × {j}) = 0. The term
in (i, j) in (5.3) would be considered equal to 0. Similarly if ψk([M,L)× {n}) = 0 then the
term in j in (5.4) vanishes. If each terms of one sum is zero, then α is equal to 0 or 1, by the
same arguments on the relative entropy.

We want to prove:

lim
M→∞

lim
L→∞

lim
ρ→0

lim
k→∞

πρ,L,Mk = απ + (1− α)δ(+∞) ⊗ η, (5.6)

lim inf
M→∞

lim inf
L→∞

lim inf
ρ→0

lim sup
k→∞

πρ,L,Mk (1/τ)H(π̃ρ,L,Mk |ψk) ≤ απ(1/τ)H(π̃|ψn) + (1− α)ξ = In(µ),

(5.7)
where the limits in M and L are understood to run over M and L satisfying the above con-
ditions.

Once (5.6) and (5.7) are proved, we can consider sequences ρk → 0, Lk → ∞, Mk → ∞
(such that ρk, Lk and Mk satisfy the above conditions), we can define πk = πρk,Lk,Mk

k which
satisfy: πk ⇀ απ + (1− α)δ(+∞) ⊗ η and

lim sup
k→∞

πk(1/τ)H(π̃k|ψk) ≤ In(µ).

Then µk defined by:

µk(da, db, dc) :=
∫

[0,1]×(0,+∞)×{1,...,n}
δ(uτ,(1−u)τ,W )(da, db, dc)du⊗ πk(dτ, dW )

satisfies the proposition.
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First, we prove the convergence (5.6) step by step. First, we consider π̃ρ,M0,k .
The normalisation constant βρ,Mk satisfies:

βρ,Mk =
∫

(0,+∞)×{1,...,n}

N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) τψk(dτ, dW |τ ∈ Ai,W = j)

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A)

∫
Ai×{j}

τψk(dτ, dW |τ ∈ Ai,W = j)

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ψk(τ |τ ∈ Ai,W = j)

Since ψk −→
k→∞

ψ, then ∀i ≤ N, ∀j ≤ n, ψk(τ ∈ Ai,W = j) −→
k→∞

ψn(τ ∈ Ai,W = j). By
bounded convergence (because τ ∈ Ai ⇒ τ ≤ Ti+1), ∀j ≤ n, ∀f ∈ Cb((0,+∞)× {1, ..., n}),

∫
Ai×{j}

τf(τ,W )ψk(dτ, dW ) −→
k→∞

∫
Ai×{j}

τf(τ,W )ψn(dτ, dW ).

So:

βρ,Mk → βρ,M :=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ψn(τ |τ ∈ Ai,W = j),

and

πρ,M0,k (dτ, dW )→ πρ,M0 (dτ, dW ) := 1
βρ,M

N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) τψn(dτ, dW |τ ∈ Ai,W = j).

Let f ∈ Cb((0,+∞) × {1, ..., n}). On A = [1/M,M), for each j ≤ n, τ 7→ τf(τ, j) is
uniformly continuous, so there exists a modulus of continuity ωf , such that ∀(x, y) ∈ A,∀j ∈
{1, ..., n}, |xf(x, j)− yf(y, j)| ≤ ωf (|x− y|). In fact, ωf is the maximum of the n modulus of
continuity for functions τ 7→ τf(τ, j).
For all ρ > 0, (Ti)i defined as before,

∫
A×{1,...,n}

f(τ,W )τ
π̃(τ ∈ A) π̃(dτ, dW ) =

n∑
j=1

∫
A×{j}

f(τ, j)τ
π̃(τ ∈ A) π̃(dτ, dW )

=
n∑
j=1

N∑
i=1

∫
Ai×{j}

f(τ, j)τ
π̃(τ ∈ A) π̃(dτ, dW ).
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Then:
n∑
j=1

N∑
i=1

∫
Ai×{j}

minτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(dτ, dW ) ≤

∫
A×{1,...,n}

τf(τ,W )
π̃(τ ∈ A) π̃(dτ, dW )

≤
n∑
j=1

N∑
i=1

∫
Ai×{j}

maxτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(dτ, dW )

n∑
j=1

N∑
i=1

minτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(τ ∈ Ai,W = j) ≤

∫
A×{1,...,n}

τf(τ,W )
π̃(τ ∈ A) π̃(dτ, dW )

≤
n∑
j=1

N∑
i=1

maxτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(τ ∈ Ai,W = j)

Let us remark that
n∑
j=1

N∑
i=1

maxτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(τ ∈ Ai,W = j)−

n∑
j=1

N∑
i=1

minτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(τ ∈ Ai,W = j)

= 1
π̃(τ ∈ A)

n∑
j=1

N∑
i=1

π̃(τ ∈ Ai,W = j)
(

max
τ∈Ai

(τf(τ, j))− min
τ∈Ai

(τf(τ, j)
)

≤ 1
π̃(A)

n∑
j=1

N∑
i=1

π̃(τ ∈ Ai,W = j)ωf (ρ) = ωf (ρ) −→
ρ→0

0.

Then
n∑
j=1

N∑
i=1

minτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(τ ∈ Ai,W = j) −→

ρ→0

∫
A×{1,...,n}

τf(τ,W )
π̃(A) π̃(dτ, dW )

and
n∑
j=1

N∑
i=1

maxτ∈Ai(τf(τ, j))
π̃(τ ∈ A) π̃(τ ∈ Ai,W = j) −→

ρ→0

∫
A×{1,...,n}

τf(τ,W )
π̃(A) π̃(dτ, dW ).

Then, by studying βρ,Mπρ,M0 (f):
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) min

τ∈Ai
(τf(τ, j))

≤
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A)

∫
τf(τ,W )ψn(dτ, dW |τ ∈ Ai,W = j)

≤
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) max

τ∈Ai
(τf(τ, j)).

So:

∀f ∈ Cb((0,+∞)× {1, ..., n}), βρ,Mπρ,M0 (f) −→
ρ→0

∫
A×{1,...,n}

τf(τ,W )
π̃(A) π̃(dτ, dW ). (5.8)
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In particular, for f = 1, πρ,M0 (1) = 1 so: βρ,M −→
ρ→0

βM :=
∫
A×{1,...,n}

τ
π̃(A) π̃(dτ, dW ) =

π̃(τ |τ ∈ A). So πρ,M0 (dτ, dW ) ⇀ πM0 (dτ, dW ) := 1
βM

τ π̃(dτ, dW |τ ∈ A).
When M → ∞, π(τ ∈ A) = π(τ ∈ [ 1

M ,M)) → 1. So: βM −→
M→∞

π̃(τ) and: πM0 (dτ, dW ) ⇀
τπ̃(dτ, dW )/π̃(τ) = π(dτ, dW ).

Now, we study ηL,Mk :

ηL,Mk (dτ, dW ) =
n∑
j=1

1
ψk(τ1τ∈[M,L)|W = j)τ1τ∈[M,L)qjψk(dτ |W = j)⊗ δj(dW ).

We have ψk(τ1τ∈[M,L)|W = j) −→
k→∞

ψn(τ1τ∈[M,L)|W = j), so:

ηL,Mk (dτ, dW )→ ηL,M (dτ, dW ) :=
n∑
j=1

1
ψn(τ1τ∈[M,L)|W = j)τ1τ∈[M,L)qjψ

n(dτ |W = j)⊗δj(dW ).

When L→∞,

ηL,M (dτ, dW )→ ηM (dτ, dW ) :=
n∑
j=1

1
ψn(τ1τ∈[M,+∞)|W = j)τ1τ∈[M,+∞)qjψ

n(dτ |W = j)⊗δj(dW ).

For g ∈ Cb((0,+∞)× {1, ..., n}) with a compact support,

ηM (g) =
n∑
j=1

∫
[M,∞)

1
ψn(τ1τ∈[M,+∞)|W = j)τg(τ, j)qjψn(dτ |W = j).

For M large enough, ηM (g) = 0.
Moreover, for i ∈ {1, ..., n},

ηM (1W=i) =
∫

[M,+∞)

1
ψn(τ1τ∈[M,+∞)|W = i)τqiψ

n(dτ |W = i) = qi
ψn(τ1τ∈[M,+∞)|W = i)
ψn(τ1τ∈[M,+∞)|W = i) = qi.

Then: ηM (dτ, dW ) ⇀ δ(+∞)(dτ)⊗ η(dW ).

Now we deduce the convergence of πρ,L,Mk :

lim
M→∞

lim
L→∞

lim
ρ→0

lim
k→∞

πρ,L,Mk = απ + (1− α)δ(+∞) ⊗ η.

(5.6) is then proved.

Now we prove the equation (5.7). We define π̃ρ,L,Mk , π̃ρ,M0,k and η̃L,Mk by:

π̃ρ,L,Mk (dτ, dW ) := 1
πρ,L,Mk (1/τ)

1
τ
πρ,L,Mk (dτ, dW ), (5.9)

π̃ρ,M0,k (dτ, dW ) := 1
πρ,M0,k (1/τ)

1
τ
πρ,M0,k (dτ, dW ), (5.10)

η̃L,Mk (dτ, dW ) := 1
ηL,Mk (1/τ)

1
τ
ηL,Mk (dτ, dW ). (5.11)
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In particular:

ηL,Mk (1/τ) =
n∑
j=1

∫ 1
ψk(τ1τ∈[M,L)|W = j)

τ

τ
1τ∈[M,L)qjψk(dτ |W = j)⊗ δj(dW )

=
n∑
j=1

qj
ψk(1τ∈[M,L)|W = j)
ψk(τ1τ∈[M,L)|W = j)

=
n∑
j=1

qj
1

ψk(τ |τ ∈ [M,L),W = j)


η̃L,Mk (dτ, dW ) = 1

ηL,Mk (1/τ)
1
τ

n∑
j=1

1
ψk(τ1τ∈[M,L)|W = j)τ1τ∈[M,L)qjψk(dτ |W = j)⊗ δj(dW )

= 1
ηL,Mk (1/τ)

n∑
j=1

1
ψk(τ1τ∈[M,L)|W = j)1τ∈[M,L)qjψk(dτ |W = j)⊗ δj(dW ).

Using Lemma 2.3 from [13] (the proof of which can be easily adapted in this situation) ,
π 7→ π(1/τ)H(π̃|ψk) = 1

π̃(τ)H(π̃|ψk) is convex, so:

πρ,L,Mk (1/τ)H(π̃ρ,L,Mk |ψk) ≤ α
1

π̃ρ,M0,k (τ)
H(π̃ρ,M0,k |ψk) + (1− α) 1

η̃L,Mk (τ)
H(η̃L,Mk |ψk).

First we consider the second term: since ψn({τ = M}) = ψn({τ = L}) = 0, we have:

lim
k

1
η̃L,Mk (τ)

H(η̃L,Mk |ψk) = 1
η̃L,M (τ)H(η̃L,M |ψn)

η̃L,M (τ) = ηL,M (1/τ)−1

η̃L,M (dτ, dW ) = 1
ηL,M (1/τ)

n∑
j=1

1
ψn(τ1τ∈[M,L)|W = j)1τ∈[M,L)qjψ

n(dτ |W = j)⊗ δj(dW ).

We have

H(η̃L,M |ψn)

=
∫

[M,L)×{1,...,n}
ln
(
η̃L,M (dτ, dW )
ψn(dτ, dW )

)
η̃L,M (dτ, dW )

= 1
ηL,M (1/τ)

n∑
j=1

∫
[M,L)×{j}

ln
(
η̃L,M (dτ, dW )
ψn(dτ, dW )

)
1τ∈[M,L)qj

ψn(τ1τ∈[M,L)|W = j)ψ
n(dτ |W = j)⊗ δj(dW ).

We can decompose ψn in the following form:

ψn(dτ, dW ) =
n∑
j=1

pjψ
n(dτ |W = j)⊗ δj(dτ),
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where pj = ψn(W = j). By definition of ∆n and {1, ..., n}, we know that pi = 0 implies
qi = 0. Then:
H(η̃L,M |ψn)

= 1
ηL,M (1/τ)

n∑
j=1

∫
[M,L)×{j}

ln
(

1
ηL,M (1/τ)

1τ∈[M,L)qj

ψn(τ1τ∈[M,L)|W = j)
ψn(dτ |W = j)⊗ δj(dW )
pjψn(dτ |W = j)⊗ δj(dτ)

)

×
1τ∈[M,L)qj

ψn(τ1τ∈[M,L)|W = j)ψ
n(dτ |W = j)⊗ δj(dW )

= 1
ηL,M (1/τ)

n∑
j=1

qj

∫
[M,L)

ln
(

qj
pjηL,M (1/τ)ψn(τ1τ∈[M,L)|W = j)

)
ψn(dτ |W = j)

ψn(τ1τ∈[M,L)|W = j)

= 1
ηL,M (1/τ)

n∑
j=1

qj ln
(

qj
pjηL,M (1/τ)ψn(τ1τ∈[M,L)|W = j)

)
ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j)

= 1
ηL,M (1/τ)

n∑
j=1

qj ln
(
qj
pj

)
ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j)

− 1
ηL,M (1/τ)

n∑
j=1

qj ln
(
ηL,M (1/τ)ψn(τ1τ∈[M,L)|W = j)

) ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j) .

Then we study
1

η̃L,Mk (τ)
H(η̃L,Mk |ψk) =

n∑
j=1

qj ln
(
qj
pj

)
ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j)

−
n∑
j=1

qj ln
(
ηL,M (1/τ)ψn(τ1τ∈[M,L)|W = j)

) ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j) .

First, we have ψn(τ1τ∈[M,L)|W = j) ≥M , and ψn(1τ∈[M,L)|W = j) ≤ 1, so

ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j)

∣∣∣∣∣∣
n∑
j=1

qj ln
(
qj
pj

)∣∣∣∣∣∣ ≤ 1
M

∣∣∣∣∣∣
n∑
j=1

qj ln
(
qj
pj

)∣∣∣∣∣∣
−→
M→∞

0.

Secondly, we have:
n∑
j=1

qj ln
(
ψn(ηL,M (1/τ)τ1τ∈[M,L)|W = j)

) ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j)

=
n∑
j=1

qj ln
(
ηL,M (1/τ)

) ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j)

+
n∑
j=1

qj ln
(
ψn(τ1τ∈[M,L)|W = j)

) ψn(1τ∈[M,L)|W = j)
ψn(τ1τ∈[M,L)|W = j)

= ln
(
ηL,M (1/τ)

)
× ηL,M (1/τ) +

n∑
j=1

qj
ln
(
ψn(τ1τ∈[M,L)|W = j)

)
ψn(τ1τ∈[M,L)|W = j) ψn(1τ∈[M,L)|W = j).
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Moreover, ψn(τ1τ∈[M,L)|W = j) ≥ M , so ψn(τ1τ∈[M,L)|W = j) −→
M,L→+∞

+∞. Since
ln x
x
−→
x→+∞

0 and ψn(1τ∈[M,+∞)|W = j) −→
M→+∞

0, we have:

n∑
j=1

qj
ln
(
ψn(τ1τ∈[M,L)|W = j)

)
ψn(τ1τ∈[M,L)|W = j) ψn(1τ∈[M,L)|W = j) −→

M,L→∞
0.

Eventually, ηL,M (1/τ) =
∫

[M,L)
1
τ η

L,M (dτ) ≤ 1
M . Then in particular

lim
M→+∞

lim
L→∞

ηL,M
(1
τ

)
= 0. (5.12)

Since x ln x −→
x→0

0, ηL,M (1/τ)× ln
(
ηL,M (1/τ)

)
−→

M,L→+∞
0.

Then

lim
M→∞

lim
L→∞

H(η̃L,M |ψn)
η̃L,M (τ) = 0 ≤ ξ.

We focus on the first term. We know that π̃ρ,M0,k (τ) = 1/πρ,M0,k (1/τ). We have:

lim
M→∞

lim
L→∞

lim
ρ→0

lim
k→∞

πρ,M0,k (1/τ) = lim
M→∞

lim
L→∞

lim
ρ→0

1
βρ,M

N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) = 1

βρ,M

= lim
M→∞

lim
L→∞

1
βM

= 1
π̃(τ) (5.13)

Then: 1
π̃ρ,M0,k (τ)

→
M,ρ,k

1
π̃(τ) . Now, we study H(π̃ρ,M0,k |ψk):

As πρ,M0 (1/τ) = 1/βρ,M , we have

π̃ρ,M0 (dτ, dW ) = 1
πρ,M0 (1/τ)

1
τ
πρ,M0 (dτ, dW )

= βρ,M × 1
βρ,M

N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ψn(dτ, dW |τ ∈ Ai,W = j)

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ψn(dτ, dW |τ ∈ Ai,W = j).
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lim
k→+∞

H(π̃ρ,M0,k |ψk)

= H(π̃ρ,M0 |ψn)

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ×

∫
ln
(

N∑
l=1

n∑
m=1

π̃(τ ∈ Al,W = m)
π̃(A)

ψn(dτ, dW |τ ∈ Al,W = m)
ψn(dτ, dW )

)
ψn(dτ, dW |τ ∈ Ai,W = j)

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ×

∫
Ai×{j}

ln
(
π̃(τ ∈ Ai,W = j)

π̃(A)
ψn(dτ, dW )

ψn(τ ∈ Ai,W = j)ψn(dτ, dW )

)
ψn(dτ, dW )

ψn(τ ∈ Ai,W = j)

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A)ψn(τ ∈ Ai,W = j) ×

∫
Ai×{j}

ln
(

π̃(τ ∈ Ai,W = j)
π̃(A)ψn(τ ∈ Ai,W = j)

)
ψn(dτ, dW )

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ln

(
π̃(τ ∈ Ai,W = j)

π̃(A)ψn(τ ∈ Ai,W = j)

)

=
N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j)
π̃(A) ln

(
π̃(τ ∈ Ai,W = j)
ψn(τ ∈ Ai,W = j)

)
− ln(π̃(A))

= 1
π̃(A)

N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j) ln
(
π̃(τ ∈ Ai,W = j)
ψn(τ ∈ Ai,W = j)

)
− ln(π̃(A))

= 1
π̃(A)

π̃(τ ∈ Ac) ln
(
π̃(τ ∈ Ac)
ψn(τ ∈ Ac)

)
+

N∑
i=1

n∑
j=1

π̃(τ ∈ Ai,W = j) ln
(
π̃(τ ∈ Ai,W = j)
ψn(τ ∈ Ai,W = j)

)
−
(

ln(π̃(A)) + π̃(Ac) ln
(
π̃(Ac)
ψn(Ac)

))
The well known decomposition of entropy property tells us that if (Bm)m≤M is a partition
of (0,+∞)× {1, ..., n}:

H(π̃|ψn) ≥
M∑
m=1

π̃(Bm) ln
(
π̃(Bm)
ψn(Bm)

)
.

Here, (Ai × {j})i,j and Ac are a partition of (0,+∞)× {1, ..., n}. We have:

lim
k→+∞

H(π̃ρ,M0,k |ψk) = H(π̃ρ,M0 |ψn)

≤ 1
π̃(A)H(π̃|ψn)−

(
ln(π̃(A)) + π̃(Ac) ln

(
π̃(Ac)
ψn(Ac)

))
.
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Since π̃(A)→ 1 and π̃(Ac)→ 0 as M →∞:

lim sup
M→∞

sup
ρ<1

lim
k
H(π̃ρ,M0,k |ψk) ≤ H(π̃|ψn).

Now, we can construct a sequence πk(= πρk,Lk,Mk
k ) such that: πk ⇀ απ + (1− α)δ∞ ⊗ η and

: lim supk→∞ πk(1/τ)H(π̃k|ψk) ≤ In(µ).
Eventually, by (5.12) and (5.13),

µk

( 1
a+ b

)
= πk

(1
τ

)
= απρk,Mk

0,k

(1
τ

)
+ (1− α)ηLk,Mk

k

(1
τ

)
−→
k→∞

απ̃

(1
τ

)
= µ

( 1
a+ b

)
.

�

6. Some additional technical topological lemmata.

Before proving the upper bound and the lower bound of the LDP for empirical measures, we
add two useful lemmata. The first one will be used several times for the upper bound. Once
again its proof uses conditioning.

Lemma 6.1. Let DnM =
{
µ ∈ ∆n, µ

( 1
a+ b

)
≤M

}
. Then DnM is a compact set.

Proof. Since DnM ⊂ XM we already know that it is relatively compact. But since ∆n is not
clearly closed, we have to show that DnM is closed.
Let (µk)k be a sequence of measures in DnM . We will prove that some subsequence again de-
noted (µk)k converges in DnM . We denote by αk, µ0,k, πk and ηk the corresponding quantities
in the definition.
For any k, αk ∈ [0, 1] and ηk ∈M1({1, ..., n}) which is compact, so there exists a subsequence
αϕ(k), ηϕ(k) and α ∈ [0, 1] and η ∈M1({1, ..., n}) such that αϕ(k) −→

k→∞
α and ηϕ(k) ⇀ η.

We remind that, for any r > 0,
{
ν ∈M1((0,+∞]), ν

(1
x

)
≤ r

}
is a compact set.

If α = 0 : then for f ∈ Cb((0,+∞]2 × {1, ..., n}):
µϕ(k)(f) = αϕ(k)︸ ︷︷ ︸

→0

µ0,ϕ(k)(f)︸ ︷︷ ︸
∈[−‖f‖∞,‖f‖∞]

+ (1− αϕ(k))︸ ︷︷ ︸
→1

(δ(+∞,+∞) ⊗ ηϕ(k)︸ ︷︷ ︸
⇀η

)(f)

−→
k→∞

(δ(+∞,+∞) ⊗ η)(f).

Since (δ(+∞,+∞) ⊗ η) ∈ DnM , µϕ(k) converges in DnM .

If α > 0 : then for k large enough, we have : |αϕ(k) − α| < α/2, so αϕ(k) > α/2. Then, we
have:

πϕ(k)

(1
τ

)
= µ0,ϕ(k)

( 1
a+ b

)
= 1
αϕ(k)

µϕ(k)

( 1
a+ b

)
≤ M

αϕ(k)
≤ 2M

α
.
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We will prove that for all i, πϕ(k)|W=i, which is the conditional law π given W = i, belongs

to
{
ν ∈M1((0,+∞]), ν

(1
x

)
≤ r

}
for a well-chosen r.

For any k, πϕ(k) ∈M1((0,+∞]×{1, ..., n}), let define (qj,ϕ(k))j∈{1,...,n} the weights such that
qj,ϕ(k) = Pπϕ(k)(W = j). Then πϕ(k)(1/τ) can be written with its marginal law:

πϕ(k)

(1
τ

)
=

∑
j∈{1,...,n}

qj,ϕ(k)Eπϕ(k)

[1
τ

∣∣∣W = j

]
.

The ((qj,ϕ(k))j∈{1,...,n})k are at most n sequences of weights in [0, 1]. There exists a sub-
sequence (qj,ϕ2(k))j∈{1,...,n} and a (qj)j∈{1,...,n} with qj ∈ [0, 1] such that

∑
qj = 1 and

(qj,ϕ2(k))j∈{1,...,n} tends to (qj)j∈{1,...,n}. Let J the set of indices j such that qj 6= 0. Let
pmin the minimum of the qj for j ∈ J :

pmin = min{qj , j ∈ J} 6= 0.
Then, for k large enough, we have:

∀j ∈ J, qj,ϕ2(k) >
pmin

2 .

Then, we have, for each j ∈ J

πϕ2(k)

(1
τ

)
=

∑
i∈{1,...,n}

qi,ϕ2(k)Eπϕ2(k)

[1
τ

∣∣∣W = i

]
≥ pmin

2 Eπϕ2(k)

[1
τ

∣∣∣W = j

]

and πϕ2(k)
(

1
τ

)
≤ 2M

α , then:

∀j ∈ J,Eπϕ2(k)

[1
τ

∣∣∣W = j

]
≤ 4M
αpmin

.

So ∀j ∈ J, πϕ2(k)|W=j ∈
{
ν ∈M1((0,+∞]), ν

(1
x

)
≤ 4M/(αpmin)

}
which is a compact set.

There exists a subsequence of (πϕ2(k)|W=j)k which converges to a πj for each j ∈ J . By a
diagonal argument, we consider an extraction ϕ3 such that:

∀j ∈ J, πϕ3(k)|W=j ⇀ πj .

We define then π corresponding to (qj)j and (πj)j :

π(dτ, dW ) =
∑
j∈J

qjδ(W=j)π
j(dτ)

∀f ∈ Cb((0,+∞]× {1, ..., n}), π(f) =
∑
j∈J

qjπ
j(f(., j)).

Then, πϕ3(k) ⇀ π.

It remains to show that µ to belong to DnM i.e to ∆n.
π can be written as:

π(dτ, dW ) = π(τ < +∞)× π(dτ, dW |τ <∞) + (1− π(τ <∞))π(dτ, dW |τ =∞).
Let π∗(dτ, dW ) = π(dτ, dW |τ <∞), β∗ = π(τ < +∞) and η∗ such that π(dτ, dW |τ =∞) =
δ(+∞) ⊗ η∗.
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Moreover, µ0,ϕ(k) is the product measure of du and πϕ(k). πϕ3(k) weakly converges to π, so
µ0,ϕ3(k) weakly converges to the product measure of du and π. We denote by µ0 the product
measure of du and π∗. Then µϕ(k) tends to

µ = αβ∗µ0 + α(1− β∗)δ(+∞,+∞) ⊗ η∗ + (1− α)δ(+∞,+∞) ⊗ η.

With
η0 = α(1− β∗)

(1− αβ∗)η
∗ + (1− α)

(1− αβ∗)η,

we can write µ = αβ∗µ0 + (1− αβ∗)δ(+∞,+∞) ⊗ η0, so µ ∈ ∆n.

�

The next lemma introduces ∆̄n, a closed set which contains ∆n (but is not its closure despite
the notation). This will be used directly in the proof of the upper bound of the large deviation
principle. A similar set is discussed in [13] lemma 2.5. However we have here to carefully
manage the third coordinate, so that the proof in [13] has to be rewritten.

Lemma 6.2. The set

∆̄n := {µ ∈M1((0,+∞]2 × {1, ..., n}) : µ = αµ0 + (1− α)δ(+∞,+∞) ⊗ η, α ∈ [0, 1],

µ0(da, db, dc) =
∫

[0,1]×(0,∞)×{1,...,n}
δ(uτ,(1−u)τ,W )(da, db, dc)du⊗ π(dτ, dW ),

π ∈M1((0,+∞)× {1, ..., n}), η ∈M1({1, ..., n})
}

(6.1)

is closed in M1((0,+∞]2 × {1, ..., n}).

Proof. Let µk ∈ ∆̄n such that µk converges to a µ ∈M1((0,+∞]2×{1, ..., n}) when k tends
to ∞. We will prove that µ is in ∆̄n. Let αk, πk and ηk be the corresponding quantities to
µk as in the definition of ∆̄n.
(αk)k ∈ [0, 1] admits a subsequence which converges to a α ∈ [0, 1]. ηk is a sequence of
measure on the finite set {1, ..., n}, so a subsequence of ηk converges to η ∈ M1. As usual
we identify the subsequence and the sequence.
(πk)k ∈M1((0,+∞)×{1, ..., n}) ⊂M1([0,+∞]×{1, ..., n}) also admits a subsequence which
tends to a limit π ∈M1([0,+∞]× {1, ..., n}).
Then

µ(da, db, dc) = α

∫
[0,1]×(0,+∞)×{1,...,n}

δ(uτ,(1−u)τ,W )(da, db, dc)du⊗ π(dτ, dW )

+ (1− α)δ(+∞,+∞)(da, db)⊗ η(dc).

We need to prove that µ is in ∆̄n. First we verify that π has no weight in 0, and secondly
we prove that by rewritting µ, we can consider π̄ ∈ M1((0,+∞)× {1, ..., n}), ᾱ and η̄ such
that µ have the good form.

First, we consider the weight of 0 for π. By Skorohod’s representation theorem, there exists
a sequence (Pk, Vk)k and Xk of random variables such that (Pk, Vk) ∈ (0,+∞)×{1, ..., n} has
the law πk, Xk has the law ηk and (Pk, Vk) converges a.s. to (P, V ) of law π, Xk converges
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a.s. to X of law η. Let U be an uniform random variable independent of (Pk)k and P . For
any f ∈ Cb([0,+∞]2 × {1, ..., n}) we obtain

µk(f) = αkE[f(UPk, (1− U)Pk, Vk)] + (1− αk)E[f(+∞,+∞, Xk)]
−→
k→∞

αE[f(UP, (1− U)P, V )] + (1− α)E[f(+∞,+∞, X)]

and this limit is equal to µ(f). For fε(a, b, c) = 1a+b<ε, since µ ∈M1((0,+∞]2 × {1, ..., n}):
απ({P < ε}) = µ(fε) −→

ε→0
0. Then π ∈M1((0,+∞]× {1, ..., n}).

Now we prove that we can write µ in the same form that in ∆̄n. Let β = π(P = +∞). If
β = 0, then

α

∫
[0,1]×(0,+∞)×{1,...,n}

δ(uτ,(1−u)τ,W )(da, db, dc)du⊗π(dτ, dW )+(1−α)δ(+∞,+∞)(da, db)⊗η(dc)

is already in the good form.
Else,

µ(f) = αβE[f(UP, (1− U)P, V )|P <∞] + α(1− β)E[f(+∞,+∞, V )|P =∞]
+ (1− α)E[f(+∞,+∞, X)]

= αβE[f(UP, (1− U)P, V )|P <∞]+

(1− αβ)
(
α(1− β)
1− αβ E[f(+∞,+∞, V )|P =∞] + 1− α

1− αβE[f(+∞,+∞, X)]
)
.

Let η̄(dW ) = α(1−β)
1−αβ π(dW |τ = ∞) + 1−α

1−αβη, ᾱ = αβ and π̄(dτ, dW ) = π(dτ, dW |τ < ∞).
Therefore µ ∈ ∆̄n. �

Remark 6.3. Here again one can replace {1, ..., n} by a compact subset W. ♦

We finally set two important results. The first one is identical to Lemma 2.6 and Lemma 2.7
in [13]:

Lemma 6.4. If µ ∈ ∆n then In(µ) ≤ supf∈Γ µ(f) and if µ ∈ ∆̄n\∆n then supf∈Γ µ(f) =
+∞. (recall that Γ is defined in (4.9))

The proof of the Lemma is almost identical to [13]. Indeed it is enough to consider a third
variable c ∈ {1, ..., n}. Similarly to the proof of Lemma 2.6 we have to introduce a function

fd,ϕ,M (a, b, c) = ϕ(a+ b, c)
a+ b

+ d1(M,+∞](a+ b)

for a continuous and compactly supported ϕ. fd,ϕ,M is lower semi-continuous. One can then
copy the proof of Lemma 2.6 in [13]. For the second part we may consider the same function
fε as in the proof of Lemma 2.7 in [13].
Notice that again we may replace {1, ..., n} by a compact W.

The second one (and its proof) is identical to Proposition 3.3 in [13]

Lemma 6.5. For all f ∈ Γ and all t > 0, E(et µnt (f)) ≤ Dn,f
1−Cn,f < +∞.



LDP FOR CUMULATIVE PROCESSES 31

7. Proof of Theorem 4.3.

In this section, we prove the LDP for Pnt that denotes the P distribution of µnt . This time
the introduction of the third coordinate W replacing F (τ) does not create any new difficulty.
However some points in the proofs of [13] are not clear for us and we will give the details for
some points.
The proof of the upper bound is made in several steps: the proof of a weak principle, for
compact sets C (itself divided in several steps), and the proof that µnt is an exponentially
tight family, i.e. satisfies: for all α ∈ R+ there exists some compact set Kα with

lim sup
t→+∞

1
t

lnPnt (Kcα) < −α .

The (full) upper bound for closed sets C then follows from [9]. These steps are described in
[13] section 3.
Exponential tightness is the aim of Lemma 3.1 in [13]. The first step is the following lemma

Lemma 7.1. We have:

lim
M→+∞

lim sup
t→+∞

1
t

lnP
(
µnt

( 1
a+ b

)
> M

)
= −∞.

whose proof is unchanged in our case. Since {ν ∈M1((0,+∞]2 × {1, ..., n}) , ν(1/(a+ b)) ≤
M} is compact (see lemma 4.1), exponential tightness follows.

The proof of the upper bound for compact subsets is done in [13] p. 2261 and 2262 beginning
with the definition of the set

∆M,g,δ = {µ ∈M1((0,+∞]2) , ∃ν ∈ ∆, |ν(g)− µ(g)| ≤ δ, µ(1/(a+ b)) ≤M}
for some continuous and bounded g, δ and M positive. We do not see an immediate argument
showing that this set is closed (hence compact since it is relatively compact). We will thus
slightly modify the proof in [13].
We introduce a modified set for M δ and g as before,

∆n
M,g,δ = {µ ∈M1((0,+∞]2) ,∃ν ∈ ∆n, |ν(g)− µ(g)| ≤ δ, (7.1)

µ(1/(a+ b)) ≤M,ν(1/(a+ b)) ≤M + δ} .

We also define
RnM,g,δ := − lim sup

t→+∞

1
t

lnPnt ((∆n
M,g,δ)c) . (7.2)

One can of course replace g by a finite number of continuous and bounded gi’s.

Lemma 7.2. ∆n
M,g,δ is a compact set.

Proof. Notice that if µk ∈ ∆n
M,g,δ weakly converges to some µ, µ ∈ DnM according to lemma

6.1. The corresponding sequence νk in ∆n actually belongs to DnM+δ so that one can find
a subsequence still denoted νk that converges to some ν ∈ DnM+δ (this is the key difference
with ∆M,g,δ). Since g is bounded and continuous, by taking limits we have |ν(g)−µ(g)| ≤ δ.
Of course for ε > 0,

ν(1/(a+ b+ ε)) = lim
k
νk(1/(a+ b+ ε)) ≤ lim

k
νk(1/(a+ b)) ≤M + δ ,
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and ν(1/(a + b)) ≤ M + δ follows by letting ε go to 0 thanks to the monotone convergence
theorem. Compactness follows since ∆n

M,g,δ ⊂ DnM which is compact. �

The next step consists in showing that the empirical measure µnt is close to ∆n more precisely

Lemma 7.3. For f ∈ Cb((0,+∞]2 × {1, ..., n}) we define

νnt (f) := 1
t

Mt∑
i=1

τi

∫ 1

0
f(uτi, (1− u)τi,Wn

i )du+ t− SMt

t
f(+∞,+∞,Wn

Mt+1) .

Then νnt ∈ ∆n almost surely.
For all g, δ there exists some t(g, δ) such that for t ≥ t(g, δ), the events {|µnt (g)−νnt (g)| > δ}
and {

∣∣∣µnt ( 1
a+b

)
− νnt

(
1
a+b

)∣∣∣ > δ} are almost surely empty.

Proof. This lemma is the analogue of Lemma 3.2 in [13] but due to the modification of our
∆n
M,g,δ we have to complete the proof therein.

Arguing as in the proof of Lemma 3.2 in [13] one shows that for t large enough the set
{|µnt (g)− νnt (g)| > δ} is almost surely empty. For the other term,∣∣∣∣µnt ( 1

a+ b

)
− νnt

( 1
a+ b

)∣∣∣∣
=
∣∣∣∣∣
(

1
t

Mt∑
i=1

τi ×
1
τi

+ τMt+1
t
× t− SMt

τMt+1
× 1
τMt+1

)
− 1
t

Mt∑
i=1

τi ×
1
τi

∣∣∣∣∣
= 1
t

t− SMt

τMt+1
≤ 1

t
.

Hence for t > 1/δ we have
∣∣∣µnt ( 1

a+b

)
− νnt

(
1
a+b

)∣∣∣ ≤ δ. �

Corollary 7.4. limM→+∞R
n
M,δ,g = +∞.

Proof. According to lemma 7.3, for t large enough (that does not depend on M but only on
δ and g) the set {µnt (1/(a + b)) ≤ M} ∩ (∆n

M,g,δ)c is almost surely empty. Hence for t large
enough

Pn((∆n
M,g,δ)c) ≤ Pn(µnt (1/(a+ b)) > M)

and the result follows from lemma 7.1.
�

We may now follow the proof in [13]. First exactly as in [13], thanks to Lemma 6.5, for all
open set O, all g, M , δ and all f ∈ Γ,

lim sup
t→+∞

1
t

lnPnt (O) ≤ − inf
ν∈O

Inf,M,g,δ(µ)

where

Inf,M,g,δ(µ) =
{
µ(f) ∧RnM,g,δ if µ ∈ ∆n

M,g,δ

+∞ otherwise. , (7.3)
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Since f is lower semicontinuous, Inf,M,g,δ(µ) is also lower semicontinuous thanks to the com-
pactness of ∆n

M,g,δ. One can thus deduce as in [13] that for all compact subset K,

lim sup
t→+∞

1
t

lnPnt (K) ≤ − inf
µ∈K

sup
f,M,g,δ

Inf,M,g,δ(µ) := − inf
µ∈K

Ĩ(µ) .

If µ /∈ ∆̄n which is closed according to lemma 6.2, one can find an open neighborhood U of
µ such that U ∩ ∆̄n = ∅. We may choose U of the form

U =
k⋂
i=1
{ν, |ν(gi)− µ(gi)| ≤ δ}

for some family g1, ..., gk of bounded and continuous functions, so that for at least one of the
gi’s denoted by g, µ /∈ ∆n

M,g,δ. Hence ∩g,δ ∆n
M,g,δ ⊂ ∆̄n and Ĩ(µ) = +∞ if µ /∈ ∆̄n. Together

with corollary 7.4 we deduce that
Ĩ(µ) ≥ sup

f∈Γ
If (µ) where If (µ) = µ(f) if µ ∈ ∆̄n , If (µ) = +∞ otherwise.

Thus, according to lemma 6.4, Ĩ(µ) ≥ In(µ) and the upper bound is proved.

The proof of the lower bound is similar to [13], just replacing the sample τi by a sample
(τi,Wi), and thus is omitted.

8. Proof of Theorem 4.4.

We turn to the proof of theorem 4.4. We first will deduce a LDP from theorem 4.3 by using
the contraction principle, and then identify the rate function.

8.1. The contraction principle.

Define ϕ(a, b, c) = c
a+b which is continuous on (0,+∞]2 × {1, ..., n}. Then

µnt (ϕ) = 1
t

Mt∑
i=1

Wn
i +

(t− SMt)Wn
Mt+1

t τMt+1
.

Remark that ∣∣∣∣∣(t− SMt)Wn
Mt+1

t τMt+1

∣∣∣∣∣ ≤ n

t

so that

lim sup
t→∞

1
t

lnP
(∣∣∣∣∣µnt (ϕ)− 1

t

Mt∑
i=1

Wn
i

∣∣∣∣∣ > δ

)
= −∞

showing that µnt (ϕ) and 1
t

∑Mt
i=1W

n
i = Znt /t will satisfy the same LDP. The contraction

principle (Theorem 4.2.1 in [9]) should thus furnish some LDP for Znt /t. Unfortunately ϕ is
not bounded so that µ 7→ µ(ϕ) is not continuous fromM1(0,+∞]2×{1, ..., n}) to R and the
contraction principle does not apply directly. We are thus obliged one more time to use an
approximation procedure replacing ϕ by

ϕε(a, b, c) = c

(a+ b) ∨ ε
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for ε > 0. Replacing τi by τ εi = τi ∨ ε we may introduce M ε
t , Aεt , Bε

t , C
n,ε
t and µn,εt as in

subsection 4.1. The results of the previous section apply to this new process (introducing
a rate function In,ε(µ)) This time we may apply the contraction principle so that µε,nt (ϕε)
satisfies a LDP with rate function

Jε,n(m) = inf{In,ε(µ) , µ ∈M1((0,+∞]2 × {1, ..., n}),m = µ(ϕε)} . (8.1)

We now have

µε,nt (ϕε) = 1
t

Mε
t∑

i=1
Wn
i +

(t− SεMε
t
)Wn

Mε
t +1

t τ εMε
t +1

,

so that, since M ε
t ≤Mt,∣∣∣∣∣µε,nt (ϕε)− 1

t

Mt∑
i=1

Wn
i

∣∣∣∣∣ ≤ 1
t

∣∣∣∣∣∣
Mt∑

i=Mε
t +1

Wn
i

∣∣∣∣∣∣ +
∣∣∣∣∣(t− S

ε
Mε
t
)Wn

Mε
t +1

t τ εMε
t +1

∣∣∣∣∣
≤ n

t
((Mt −M ε

t ) + 1) .

But according to [13] Lemma 5.4, M ε
t is an exponentially good approximation of Mt. It

follows that µε,nt (ϕε) is an exponentially good approximation of Znt /t so that, finally, thanks
to Theorem 2.2, Znt /t satisfies a weak LDP with rate function

J̃n(m) = sup
δ>0

lim inf
ε→0

inf
|z−m|<δ

Jε,n(m) . (8.2)

In particular we know that J̃n is l.s.c. so that its level sets are closed.

8.2. Study of the rate function.

The goal of this subsection is to show the following lemma (partly close to Lemma 5.1
in [13]) explaining the various forms of the rate function (recall that ϕ(a, b, c) = c/(a+ b)).

Lemma 8.1. We define, for all m > 0, J̄n(m) := inf{In(µ), µ ∈M1((0,+∞]2×{1, ..., n}),m =
µ(ϕ)}. Then

i) J̄n = Jn (Jn is defined in (2.6)). In addition

J̄n(m) = inf{In0 (µ), µ ∈M1((0,+∞]2 × {1, ..., n}),m = µ(ϕ)}.

ii) We also have:

J̄n(m) = min{In(µ), µ ∈M1((0,+∞]2 × {1, ..., n}),m = µ(ϕ)} (8.3)
= min{In0 (µ), µ ∈M1((0,+∞]2 × {1, ..., n}),m = µ(ϕ)}. (8.4)

iii) Finally,

Jn = J̄n = J̃n .
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Proof. Proof of i) We have

J̄n(m) := inf
{
In(µ), µ ∈M1((0,+∞]2 × {1, ..., n}),

∫
c

a+ b
µ(da, db, dc) = m

}
= inf

{
In(µ), µ ∈ ∆n,

∫
c

a+ b
µ(da, db, dc) = m

}
= inf

{
απ

(1
τ

)
H(π̃|ψn) + (1− α)ξ, α ∈ [0, 1], µ0 ∈ ∆n

0 , α

∫
c

a+ b
µ0(da, db, dc) = m

}
= inf

{
απ

(1
τ

)
H(π̃|ψn) + (1− α)ξ, α ∈ [0, 1], µ0 ∈ ∆n

0 , απ

(
W

τ

)
= m

}
= inf

{
α

1
π̃(τ)H(π̃|ψn) + (1− α)ξ, α ∈ [0, 1], π̃ ∈M1((0,+∞)× {1, ..., n}), α π̃(W )

π̃(τ) = m

}
= inf

{
α

β
H(π̃|ψn) + (1− α)ξ, α ∈ [0, 1], β > 0, π̃(τ) = β, α

π̃(W )
β

= m

}
Let p(a, b) = inf{H(ν|ψn), ν(τ) = a, ν(W ) = b}. We have p = Λ∗n according to Csiszar
I-projection theorem (Theorem 3 in [8]). As in [13] (proof of Lemma 5.1) another way is to
directly prove the dual equality p∗ = Λn.
We thus have

J̄n(m) = inf
{
α

β
Λ∗n
(
β,
mβ

α

)
+ (1− α)ξ, α ∈ [0, 1], β > 0

}
.

But
α

β
Λ∗n
(
β,
mβ

α

)
= sup

x,y

{
αx+my − α

β
Λn(x, y)

}
= β′Λ∗n

(
α

β′
,
m

β′

)
where β′ = α

β
.

Thus

J̄n(m) = inf
{
βΛ∗n

(
α

β
,
m

β

)
+ (1− α)ξ, α ∈ [0, 1], β > 0

}
.

We will show that :

inf
α∈[0,1]

{
βΛ∗n

(
α

β
,
m

β

)
+ (1− α)ξ

}
= βΛ∗n

( 1
β
,
m

β

)
.

Taking α = 1, we see that the left hand side is less than or equal to the right hand side. To
show the converse inequality, pick α ∈ [0, 1]:

βΛ∗n
(
α

β
,
m

β

)
+ (1− α)ξ = sup

x,y
{αx+ (1− α)ξ +my − βΛn(x, y)}

≥ sup
x,y
{x ∧ ξ +my − βΛn(x, y)}.

Since W is bounded, eyW ≥ C(y) > 0 for all y, so that we have for all x > ξ and all y,

ψn(exτ+yW ) ≥ C(y)ψn(exτ ) = +∞ .
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This shows that Λn(x, y) = +∞, for all x > ξ and for all y. Hence, the supremum on x can
be restricted to the supremum on {x ≤ ξ}:

βΛ∗n
(
α

β
,
m

β

)
+ (1− α)ξ ≥ sup

x,y
{x ∧ ξ +my − βΛn(x, y)}

= sup
x≤ξ,y

{x+my − βΛn(x, y)}

= βΛ∗n
( 1
β
,
m

β

)
and the desired inequality is proved.
Notice that during the proof we have seen than the minimization is obtained looking only at
µ ∈ ∆n

0 so that we may replace In by In0 in the definition of J̄n.
Proof of ii). This part is completely similar to the corresponding one in the proof of Lemma
5.1 in [13]. The only thing to see is that we may replace ||F ||∞ in [13] by K if |W | ≤ K.
Proof of iii). To prove this equality, we first prove the inequality J̄n(m) ≤ J̃n(m).
Let m ∈ R+ and ε > 0. First, remark that J̄n(m) ≤ Jn,ε(m). Indeed, if µ ∈ ∆n, with
associated π, α and η, is such that H(π̃|ψn,ε) < +∞ and µ(ϕε) = m, then π̃ has its support
included in (ε,+∞) × {1, ..., n}. Hence In(µ) = In,ε(µ). Moreover, µ(ϕ) = µ

(
1
a+b

)
= m.

This yields

J̄n(m) = inf{In(µ), µ ∈M1((0,+∞]2 × {1, ..., n}),m = µ(ϕ)}
≤ inf{In(µ), µ ∈M1({(a, b, c) ∈ (0,+∞)2 × {1, ..., n}), µ({a+ b ≤ ε}) = 0,m = µ(ϕ)}
= inf{In,ε(µ), µ ∈M1((0,+∞]2 × {1, ..., n}),m = µ(ϕε)} = Jn,ε.

We will take the limit as ε→ 0. To this end we may write for δ > 0,

inf
z,|z−m|≤δ

J̄n(z) ≤ inf
z,|z−m|≤δ

Jn,ε(z)

so that
inf

z,|z−m|≤δ
J̄n(z) ≤ lim inf

ε→0
inf

z,|z−m|≤δ
Jn,ε(z) ≤ J̃n(m)

Since J̄n = Jn, it is clearly lower semicontinuous so that

J̄n(m) ≤ lim inf
δ→0

inf
z,|z−m|≤δ

J̄n(z) ≤ J̃n(m) .

Finally J̄n ≤ J̃n

Now, we prove that J̄n ≥ J̃n. Since J̄n(m) is a minimum, let µ̄ a measure such that
J̄n(m) = In(µ̄) and µ̄(ϕ) = m. For a sequence εk going to 0, we consider ψk the distribution
of (τ ∨ εk,W ) . Using proposition 5.6, there exists µk ∈ ∆n

0 with associated to ψk such that
µk ⇀ µ̄ and lim supk→∞ Ink (µk) ≤ In(µ̄). Here Ink = In, so lim supk→∞ In(µk) ≤ In(µ̄).
By construction µk({a + b < εk}) = 0 and for π̃k associated to µk, we have H(π̃k|ψn) <
+∞. Since π̃k is a measure on (εk,+∞) × {1, ..., n}, H(π̃k|ψk) = H(π̃k|ψn), and it follows
In(µk) = In,εk(µk).
As a consequence of proposition 5.6 it holds µk

(
1
a+b

)
→ µ̄

(
1
a+b

)
. Hence, δk =

∣∣∣µk ( 1
a+b

)
− µ̄

(
1
a+b

)∣∣∣→
0.
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We can now write
inf

z,|z−m|≤δk
Jn,εk(z) ≤ In,εk(µk) = In(µk)

so that
lim sup
k→∞

inf
z,|z−m|≤δk

Jn,εk(z) ≤ lim sup
k→∞

In(µk) ≤ In(µ̄) = J̄n(m)

and finally
J̃n(m) = sup

δ>0
lim inf
ε→0

inf
z,|z−m|<δ

Jn,ε(z) ≤ J̄n(m) .

�

Remark 8.2. The first two items i) and ii) in the previous lemma are still hold true if we
replace {1, ..., n} by a compact set W. ♦

8.3. End of the proof.
At this point we have obtained that Znt /t satisfies a weak LDP with rate function Jn. In

order to get the full LDP we have to show that the level sets are bounded (since we know
that they are closed). Recall that it is not a direct consequence of the contraction principle
since µ 7→ µ(ϕ) is not continuous.
First since Jn ≤ Jn,ε for all ε > 0, for all closed set F it holds lim supε→0 infy∈F Jn,ε(y) ≥
infy∈F Jn(y).
It remains to show that Jn is a good rate function i.e. that it has compact level sets.
According to the previous subsection for a sequence mk such that Jn(mk) ≤ β, we may
find a sequence µk ∈ ∆n

0 such that µk(ϕ) = mk and In0 (µk) ≤ β. The corresponding πk
satisfies lim supπk(1/(a + b)) < +∞ according to proposition 5.3 (here αk = 1). Since
|ϕ(a, b, c)| ≤ C/(a+ b), mk is bounded and one can find a convergent subsequence.

9. Proof of Theorem 2.5.

When W is bounded and discrete, the full LDP is already given by Theorem 4.4. If W isn’t
bounded, or isn’t discrete, we need to differentiate whether β0 =∞ or not.
In the first case, when β0 = ∞, we are able to prove a Large Deviation principle. Since the
rate function J̃ is difficult to calculate, we compare J̃ with an other function J to simplify
some inequalities. This work is done in the following subsection 9.1.
In the second case, since the approximation Znt /t isn’t an exponentially good approximation
of Zt/t, we only prove some useful inequalities of deviations, but we’re not able to prove the
Large Deviation Principle.

9.1. Case A: β0 = ∞. In this case, Znt /t is an exponentially good approximation of Zt/t
(see Lemma 3.1, 3.2 or 3.4 depending on the approximation strategy). Combining the LDP
principle obtained for Znt /t (Theorem 4.4) with Theorem 2.2 (1) we obtain that Zt/t satisfies
a weak LDP with rate function

J̃(m) = sup
δ>0

lim inf
n→∞

inf
|m−z|<δ

Jn(z) .

In order to obtain a full LDP, we use lemma 2.3. Therefore it remains to show that Zt/t is
exponentially tight.
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Lemma 9.1. Assume that Assumption 2.4 is fulfilled, then (Zt/t)t≥0 is exponentially tight,
i.e. for all α > 0, there exists a compact set Kα such that

lim sup
t→+∞

1
t

logP
(
Zt
t
/∈ Kc

α

)
< −α.

Proof. Since Znt /t is an approximation of Zt/t and satisfies a full LDP, we can decompose
the probability as following: for each n, and for all δ:

P
(
Zt
t
/∈ [−A,A]

)
≤ P

(∣∣∣∣Ztt − Znt
t

∣∣∣∣ > δ

)
+ P

(
Znt
t

/∈ [−A+ δ, A− δ]
)

≤ P
(∣∣∣∣Ztt − Znt

t

∣∣∣∣ > δ

)
+ P

(
Znt
t
< −A+ δ

)
+ P

(
Znt
t
> A− δ

)
.

≤ 3 max
(
P
(∣∣∣∣Ztt − Znt

t

∣∣∣∣ > δ

)
,P
(
Znt
t
< −A+ δ

)
,P
(
Znt
t
> A− δ

))
.

(9.1)

By Lemma 3.1, Znt /t and Zt/t satisfies

∀δ > 0, lim
n

lim
t

1
t

logP
(∣∣∣∣Ztt − Znt

t

∣∣∣∣ > δ

)
= −β0δ

2 ,

i.e.

∀α > 0,∀δ > 2α
β0
,∃n(α, δ),∀n > n(α, δ), lim

t

1
t

logP
(∣∣∣∣Ztt − Znt

t

∣∣∣∣ > δ

)
≤ −α. (9.2)

(If β0 = +∞, we can consider all δ > 0.)

We just have to study P
(
Znt
t > A− δ

)
and the symmetric case. We know from Theorem 4.4

that:

lim
t

1
t

logP
(
Znt
t
> B

)
≤ − inf

m>B
Jn(m).

It remains to show that ∀α > 0 one can choose a level Bα such that ∀m > Bα, J
n(m) > α.

Remind that

Jn(m) = inf
β>0

{
βλ∗n

( 1
β
,
m

β

)}
= inf

β>0
sup
x,y

{
x+my − β logE[exτ+yWn ]

}
,

(where Wn = W ∧ n ∨ (−n)).
Since −|W | ≤Wn ≤ |W |, we obtain by differentiating whether y is positive or negative that

x+my − β logE[exτ+yWn ] ≥ x+my − β logE[exτ+|y||W |].

Therefore, we deduce the lower bound

Jn(m) ≥ J |.|(m) := inf
β>0

sup
x∈R,y≥0

{
x+ |m|y − β logE[exτ+y|W |]

}
.



LDP FOR CUMULATIVE PROCESSES 39

Remark that J |.| is an even function, thus by symmetry, we can assume m ≥ 0.
Now, using Cauchy-Schwarz inequality, we deduce that

sup
x∈R,y≥0

{x+my − β log E[exτ+y|W |]
}

= sup
x∈R,y≥0

{
x+my − β

2 logE[exτ+y|W |]2
}

≥ sup
x∈R,y≥0

{
x+my − β

2 logE[e2xτ ]− β

2 logE[e2y|W |]
}

≥ sup
x∈R

{
x− β

2 logE[e2xτ ]
}

+ sup
y≥0

{
my − β

2 logE[e2y|W |]
}

There exists x0 < 0 such that E[e2x0τ ] ≤ e−1, and since β0 > 0, y 7→ E[ey|W |] is strictly
increasing and continuous on [0, β0). Then there exists y0 > 0 such that 1 < E[e2y0|W |] ≤ e.
Therefore

sup
x∈R,y≥0

{
x+my − β

2 logE[exτ+y|W |]2
}
≥ x0 −

β

2 logE[e2x0τ ] +my0 −
β

2 logE[e2y0|W |]

≥ x0 +my0 + β

2
(
1− logE[e2y0|W |]

)
Finally, since 1− logE[e2y0|W |] > 0, we conclude that

J |.|(m) ≥ x0 +my0 −→
m→∞

+∞.

In conclusion, let α > 0 and δ > 2α
β0

(or δ > 0 if β0 = +∞), let n(α, δ) defined in (9.2) and
n ≥ n(α, δ), let A = α−x0

y0
+ δ (x0 and y0 are determined by the law of τ and W ). We have

lim
t

1
t

logP
(
Znt
t
> A− δ

)
≤ − inf

m>A−δ
Jn(m)

≤ − inf
m>−A+δ

J |.|(m)

≤ − inf
m>A−δ

x0 +my0

≤ −x0 − y0(A− δ)
≤ −α

and using the evenness of J |.|,

lim
t

1
t

logP
(
Znt
t
< −A+ δ

)
≤ −α.

Eventually combining these bounds with (9.2) in (9.1), and deduce that for n ≥ n(α, δ),

lim
t

1
t

logP
(
Zt
t
/∈ [−A,A]

)
≤ −α.

�

Now, we have a full LDP for Zt/t, but the expression of J̃ isn’t very convenient. In particular,
this expression can depend on the reduction used. In order to simplify some inequality and
obtain Equations (2.8) and (2.9), we prove J̃ ≥ J defined in (2.6).
We consider two cases: in the first one, Lemma 9.2, we assume W is bounded by K and
consider the discretization Wn defined in subsection 3.2. Then in the second one, Lemma
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9.5, we will examine the general case.

Contrary to [13] we do not know a priori that J̃ is a good rate function. However, we use
results of Lemma 8.1 replacing {1, ..., n} by [−K,K]. In particular we deduce that

J(m) = J̄(m) := min{I(µ) ; µ ∈M1((0,+∞]2 × [−K,K]) , µ(ϕ) = m} .

We want to prove

Lemma 9.2. If W is bounded, it holds J ≤ J̃ .

Proof. We may of course assume that J̃(m) < +∞. One can thus find sequences mn and
εn ≤ 1 such that εn → 0, mn → m and Jn(mn) ≤ J̃(m) + εn. Since Jn = J̄n, one
can thus find a sequence µn ∈ M1((0,+∞]2 × [−K,K]) such that In(µn) < J̃(m) + 1.
According to proposition 5.3 (recall that it is true here, see remark 5.5) one can thus find
some subsequence still denoted by µn converging to some µ inM1((0,+∞]2× [−K,K]). Now
(again recall remark 5.5) according to proposition 5.4 we have lim infn In(µn) ≥ I(µ) so that
I(µ) ≤ J̃(m).
In order to see that I(µ) ≥ J(m) it remains to show that µ(c/(a + b)) = m and to apply
J = J̄ .
Notice that thanks to ii) in lemma 8.1 we may have chosen µn ∈ ∆n

0 so that proposition 5.3
tells us in addition that lim supn µn(1/(a + b)) = M < +∞ (since the sequence αn = 1). It
follows

µ(1/(a+ b+ ε)) = lim
n
µn(1/a+ b+ ε)) ≤ lim sup

n
µn(1/(a+ b)) = M

so that again using monotone convergence we deduce µ(1/(a+ b)) ≤M . Hence, since c is µ
a.s. bounded, µ(c/(a+ b)) is well defined.
To calculate µ(c/(a + b)) we need more. Using the definition of J̄n and what precedes the
sequence µn satisfies

H(π̃n|ψn) = mn

µn(1/(a+ b)) ≤ C

for some C < +∞ since mn is bounded and limn µn(1/(a+ b)) = µ(1/(a+ b)) > 0. We will
deduce that π̃n is tight. Indeed a standard application of the Orlicz-Hölder inequality (with
the conjugate pair u 7→ eu − 1− u and u 7→ u 7→ u ln u− u) shows that

π̃n(A) ≤ κC 1
ln(1/ψn(A))

for some universal constant κ. Choosing A = {a+ b < ε} so that ψn(A) = ψ(A) we get the
desired result choosing ε small enough.
It follows∣∣∣∣µn ( c

a+ b

(
ε−1(a+ b)1a+b≤ε + 1a+b>ε

))
−mn

∣∣∣∣ ≤ K µn(1/(a+ b))Cκµn({a+ b ≤ ε})

≤ C ′ µ({a+ b ≤ ε}) .
Since the integrated function is bounded and continuous we can pass to the limit in n first,
and then in ε using Lebesgue’s bounded convergence theorem since∣∣∣∣ c

a+ b

(
ε−1(a+ b)1a+b≤ε + 1a+b>ε

)∣∣∣∣ ≤ K

a+ b
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which is µ integrable according to what we did before. This finally shows that µ(c/(a+b)) = m
and concludes the proof. �

We do not know about the converse inequality.

Remark 9.3. We will see below another way to prove this result (in an even more general
context). Nevertheless we have given this proof in order to complete the picture in the [13]
context. ♦

We will now directly study the function J . Recall that

J(m) = inf
β>0

sup
x,y

(
x+my − β lnE(exτ+yW )

)
:= inf

β>0
sup
x,y

Λ(m,β, x, y) .

We do not assume here that W is bounded.

Lemma 9.4. J is a good rate function.

Proof. First we remark that

sup
x,y

Λ(m,β, x, y) ≥ sup
x

Λ(m,β, x, 0) = sup
x

(x− β lnE(exτ )) .

Since τ ≥ 0 (and supposed not to be identically 0) one can find xτ < 0 such that E(exτ τ ) = e−1

(we already use this in the proof of lemma 3.1), so that

sup
x,y

Λ(m,β, x, y) ≥ xτ + β .

Let {J ≤M} be some level set of J . For β > M −xτ := βτ one has supx,y Λ(m,β, x, y) > M
so that for all m ∈ {J ≤M} it holds

J(m) = inf
0<β≤βτ

sup
x,y

Λ(m,β, x, y) .

Now remark that

sup
x,y

Λ(m,β, x, y) ≥ sup
y

Λ(m,β, 0, y) ≥ Λ(m,β, 0, κ)

where 0 ≤ κ < 1 ∧ β0, β0 being defined in Assumption 2.4 ii). For β ≤ βτ , β lnE(eκW ) is
thus bounded by C, so that

J(m) ≥ mκ− C
showing that {J ≤M} is bounded.
It remains to show that the level sets are closed. Let mn → m be a sequence in {J ≤ M}.
According to what precedes we know that the infimum in β has to be taken in a bounded
interval, so that one can find a (sub)-sequence βn converging to β such that

J(mn) ≤ sup
x,y

Λ(mn, βn, x, y) + εn

with εn going to 0. This implies that for all (x, y)

x+mny − βn lnE(exτ+yW ) ≤M + εn

which implies J(m) ≤M by taking the limit in n and then the supremum w.r.t. (x, y). �
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For a general W , consider
J̃(m) = sup

δ>0
lim inf
n→∞

inf
|m−z|<δ

Jn(z) .

We now know that Znt /t satisfies a full LDP with good rate function Jn. We may state

Lemma 9.5. It holds J ≤ J̃ .

Proof. As for the proof of lemma 9.2, we may of assume that J̃(m) < +∞ and thus find
sequences mn and εn ≤ 1 such that εn → 0, mn → m and Jn(mn) ≤ J̃(m) + εn. We denote
δn = |m − mn|. Define M = J̃(m) + 1. For n large enough, mn belongs to {Jn ≤ M}.
We have seen in the proof of lemma 9.4 that Jn(mn) is thus given by the infimum for
0 < β ≤ M − |xτ | = βτ where E(exτ τ ) = e−1, i.e xτ does not depend on n. The same holds
with J(m). If β ∈ (0, βτ ] and ε > 0 we may found (xε, yε) such that

βΛ∗(1/β,m/β) ≤ xε +myε − β ln
(
E
[
exετ+yεW

])
+ ε

≤ xε +mnyε − β ln
(
E
[
exετ+yεW

])
+ ε+ δn|yε| .

Since
E
[
exετ+yεWn

]
→ E

[
exετ+yεW

]
as n growths to infinity, for n large enough the difference is less than ε so that

βΛ∗(1/β,m/β) ≤ xε +mnyε − β ln
(
E
[
exετ+yεWn

])
+ (1 + βτ )ε+ δn|yε|

≤ βΛ∗n(1/β,mn/β) + (1 + βτ )ε+ δn|yε| .
Taking the infimum in β and then the lim infn we get

J(m) ≤ lim inf
n

Jn(mn) + (1 + βτ )ε ≤ J̃(m) + (1 + βτ )ε.

It remains to let ε go to 0 to conclude. �

Remark 9.6. When W = 1 a.s. it is easily seen that supx,y Λ(m,β, x, y) = +∞ except for
m = β yielding J(m) = supx (x−m lnE(exτ )) as expected.
Since J is defined on R one can expect some monotonicity on intervals delimited by the
asymptotic mean E(W )/E(τ). We were not able to prove this monotonicity. ♦

9.2. Case B: β0 < ∞. We remind that Wn is a reduction of W such that Znt /t is an
approximation of Zt/t and satisfies a full LDP, as proved in Theorem 4.4. However, this
approximation is not an exponentially good approximation, therefore the LDP cannot be
transferred to Zt/t. In this case, we prove the deviation Inequalities (2.10) and (2.11). We
will focus on the first one, P

(
Zt
t ≥ m+ a

)
, since the proof is exactly the same for the second

one, P
(
Zt
t ≤ m− a

)
.

For each n ∈ N∗, for κ ∈ (0, 1), we have

P
(
Zt
t
≥ m+ a

)
≤ P

(
Znt
t
≥ m+ κa

)
+ P

(∣∣∣∣Ztt − Znt
t

∣∣∣∣ ≥ (1− κ)a
)

≤ 2 max
[
P
(
Znt
t
≥ m+ κa

)
,P
(∣∣∣∣Ztt − Znt

t

∣∣∣∣ ≥ (1− κ)a
)]
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Then, for each n ∈ N∗ and κ ∈ (0, 1), we obtain

lim sup
t→∞

1
t

logP
(
Zt
t
≥ m+ a

)
≤ max

[
lim sup
t→∞

1
t

logP
(
Znt
t
≥ m+ κa

)
, lim sup

t→∞

1
t

logP
(∣∣∣∣Ztt − Znt

t

∣∣∣∣ ≥ (1− κ)a
)]

.

We handle the first term with the full LDP for Znt /t with the rate function Jn (Theorem
4.4) and the second term with Lemma 3.1 (or 3.2, or 3.4 depending on the approximation
strategy). We then have

lim sup
t→∞

1
t

logP
(
Zt
t
≥ m+ a

)
≤ max

[
lim inf
n→∞

(
− inf
z≥m+κa

Jn(z)
)
,−β0

(1− κ)a
2

]
≤ −min

[
lim sup
n→∞

inf
z≥m+κa

Jn(z), β0
(1− κ)a

2

]
.

Since this inequality is satisfied for each n, we can then apply the Lemma 9.8, proved below,
which gives us

lim sup
n→∞

inf
z≥m+κa

Jn(z) ≥ inf
z≥m+κa

J(z),

and we obtain the Inequation (2.10): for all κ ∈ (0, 1)

lim sup
t→∞

1
t

logP
(
Zt
t
≥ m+ a

)
≤ −min

[
inf

z≥m+κa
J(z), β0

(1− κ)a
2

]
.

Remark 9.7. Notice Jn isn’t the same in each case. Jn can be written

Jn(z) = inf
β>0

sup
x,y
{x+my − β lnE

(
exτ+yWn

)
},

but the definition of Wn depends on the reduction:

• If W is only bounded by K, a reduction with finite valued Wn was necessary:

Wn =
n−1∑
j=−n

jK

n
1W∈[jK/n,(j+1)K/n[ .

• If W is only discrete, a reduction with Wn bounded by −n and n have been done:
Wn = (W ∨ n) ∧ (−n).
• If W isn’t bounded nor discrete, another reduction is necessary:

W̃n = −n1W<−n + n1W≥n +
n2−1∑
j=−n2

j

n
1W∈[ jn , j+1

n ).

Since in each case, Wn is discrete and bounded a.s. and E
(
exτ+yWn

)
→n→∞ E

(
exτ+yW

)
for (x, y) such that E

(
exτ+yW

)
<∞, the proof is the same.
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Lemma 9.8. Assume (Wn)n is a sequence of random variables which converges almost surely
to W and such that for each n, Wn is discrete and bounded a.s. Then, we have, for all z0 ∈ R,

lim sup
n→∞

inf
z≥z0

Jn(z) ≥ inf
z≥z0

J(z),

where Jn is defined by

Jn(z) = inf
β>0

sup
x,y
{x+my − β lnE

(
exτ+yWn

)
}.

Proof. Let (Wn)n be a sequence of random variables which converges almost surely to W ,
such that for each n, Wn is discrete and bounded a.s. Let z0 ∈ R. Thanks to Lemma 8.1,
Jn has different forms. Here we will use the form

Jn(z) = inf
β>0

βΛ∗n
( 1
β
,
m

β

)
.

If lim supn→∞ infz≥z0 J
n(z) =∞, then the inequality is satisfied.

Let assume lim supn→∞ infz≥z0 J
n(z) <∞. We denote C(z0) this quantity.

There exists a sequence nk →∞ such that limk→∞ infz≥z0 J
nk(z) = C(z0). For each k ∈ N,

there exists a sequence (zki )i in [z0,+∞) such that infz≥z0 J
nk(z) = limi J

nk(zki ).
Let δ > 0. There exists K such that ∀k ≥ K, infz≥z0 J

nk(z) ∈ [C(z0)− δ/2, C(z0) + δ/2] and
Ik such that ∀i ≥ IK , Jnk(zki ) ∈ [C(z0)− δ, C(z0) + δ].
Then, for k ≥ K, and i ≥ Ik, zki is in {Jnk ≤ C(z0) + δ}.
Moreover, for each n ∈ N , Jn ≥ J |.| by the proof of the Lemma 9.1, where

J |.|(m) := inf
β>0

sup
x∈R,y≥0

{
x+ |m|y − β logE[exτ+y|W |]

}
.

So for k ≥ K, and i ≥ Ik, zki is in {J |.| ≤ C(z0) + δ}.
By the exact same argument than for J in the proof of Lemma 9.4, {J |.| ≤ C(z0) + δ} is a
compact level set of J |.|.
Then, for k ≥ K and i ≥ Ik, zki is in a compact. There exists at least an adherent point zlim

in this compact, and a subsequence zkjij →kj ,ij→∞ zlim. In particular, zlim ≥ z0.
Like in the proof of Lemma 9.5, Jnkj (zkjij ) is given by the infimum for β ∈ (0, βτ ). If β ∈ (0, βτ )
and ε > 0, we may found (xε, yε) such that

βΛ∗(1/β, zlim/β) ≤ xε +myε − β ln
(
E
[
exετ+yεW

])
+ ε

≤ xε + z
kj
ij
yε − β ln

(
E
[
exετ+yεW

])
+ ε+ |zlim − z

kj
ij
||yε|

Since
E
[
exετ+yεWn

]
→ E

[
exετ+yεW

]
as n growths to infinity, for n large enough the difference is less than ε so that

βΛ∗(1/β, zlim/β) ≤ xε + z
kj
ij
yε − β ln

(
E
[
exετ+yεWn

])
+ (1 + βτ )ε+ |zlim − z

kj
ij
||yε|

≤ βΛ∗n(1/β, zkjij /β) + (1 + βτ )ε+ |zlim − z
kj
ij
||yε|

Taking the infimum in β and then the limj we get

J(zlim) ≤ lim inf
j

J
nkj (zkjij ) + (1 + βτ )ε ≤ lim sup

n→∞
inf
z≥z0

Jn(z) + (1 + βτ )ε.
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By letting ε go to 0 we obtain:
J(zlim) ≤ lim sup

n→∞
inf
z≥z0

Jn(z).

Then,
inf
z≥z0

J(z) ≤ J(zlim) ≤ lim sup
n→∞

inf
z≥z0

Jn(z).

�
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