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Abstract—Efficient checkpointing of distributed data struc-
tures periodically at key moments during runtime is a recurring
fundamental pattern in a large number of uses cases: fault
tolerance based on checkpoint-restart, in-situ or post-analytics,
reproducibility, adjoint computations, etc. In this context, multi-
level checkpointing is a popular technique: distributed processes
can write their shard of the data independently to fast local
storage tiers, then flush asynchronously to a shared, slower tier of
higher capacity. However, given the limited capacity of fast tiers
(e.g. GPU memory) and the increasing checkpoint frequency,
the processes often run out of space and need to fall back
to blocking writes to the slow tiers. To mitigate this problem,
compression is often applied in order to reduce the checkpoint
sizes. Unfortunately, this reduction is not uniform: some processes
will have spare capacity left on the fast tiers, while others still
run out of space. In this paper, we study the problem of how
to leverage this imbalance in order to reduce I/O overheads for
multi-level checkpointing. To this end, we solve an optimization
problem of how much data to send from each process that
runs out of space to the processes that have spare capacity in
order to minimize the amount of time spent blocking in I/O. We
propose two algorithms: one based on a greedy approach and
the other based on modified minimum cost flows. We evaluate
our proposal using synthetic and real-life application traces.
Our evaluation shows that both algorithms achieve significant
improvements in checkpoint performance over traditional multi-
level checkpointing.

Index Terms—GPU checkpointing, asynchronous I/O, peer-to-
peer collaborative caching, multi-level checkpointing

I. INTRODUCTION

High-Performance Computing (HPC) applications produce
massive amounts of distributed intermediate data during run-
time that needs to be checkpointed concurrently. This is a
fundamental I/O pattern used in a wide range of scenarios:
fault tolerance based on checkpoint-restart, offline or in-
situ analytics, reproducibility (validate intermediate states in
addition to the end result), etc.

Of particular interest is the use of checkpointing for the
purpose of revisiting previous states in order to advance a
computation. For example, adjoint computations are often used
to adjust the parameters of a function used to predict an
outcome by minimizing the differences between the actual and
expected output. Adjoint computations usually consist of two
stages: a forward pass used to obtain the actual output that
checkpoints the intermediate states, followed by a backward
pass that uses the checkpoints in reverse order to make the

adjustments. Such adjoint techniques are ubiquitous, from
climate and ocean modeling to seismic imaging in the oil
industry. The training of deep learning (DL) models is also
an adjoint computation: techniques such as stochastic gradient
descent use a forward pass and a backward pass in order to
adjust the parameters of a deep neural network (DNN) model
composed of multiple layers.

The increasing performance requirements of HPC and DL
applications result in the rapid adoption of accelerators such
as GPUs. Naturally, this also introduces the need to check-
point more frequently, especially for scenarios such as adjoint
computations, where the checkpoint intervals are in the order
of milliseconds. In this context, GPUs are equipped with high
bandwidth memory (HBM) capable of keeping up with the
massive amount of computational resources without causing
data bottlenecks. Unfortunately, HBM is expensive, and thus
its capacity is limited. Consequently, applications commonly
do not have enough room to keep all checkpoints in HBM
for the entire runtime for large problem sizes. Therefore, it
is essential to devise checkpointing techniques that combine
fast tiers of limited capacity (e.g., HBM of GPUs) with slower
tiers of larger capacity (e.g., DDR4 host memory).

In this context, asynchronous multi-level checkpointing
techniques are popular. They rely on a simple idea: all
processes write their checkpoints to a fast tier, then flush
them in the background to a slower tier while the application
continues running in the foreground. Given that the slow I/O
operations needed to flush the checkpoints from the fast tiers
to the slow tiers can often be overlapped with the application
runtime, multi-level checkpointing techniques also open up
opportunities to mask data movement latency either partially or
entirely. However, the constant accumulation of checkpointing
data on the fast tiers means there is often not enough free space
to write the entire checkpoint on the fast tiers. Therefore, the
processes need to directly write to the slow tiers in a blocking
fashion, which leads to increased I/O latency.

In a quest to alleviate this issue, various approaches have
been explored to reduce the checkpoint sizes, e.g., compres-
sion, decimation, and interpolation. These techniques mitigate
but do not fully eliminate this challenge. For example, when
compression is used, the compression ratio may be high for
some checkpoints but low for others. Thus, even if most
processes are capable of fitting their checkpoints in the free



space of their fast local tiers, it is enough for some stragglers
that were not capable of doing so to delay the whole group
especially for tightly coupled applications.

In this paper, we aim to solve the aforementioned challenge.
Our approach is based on two key observations. First, if there
is a significant difference between the checkpoint sizes, then
the processes will fall into two groups: some will have a
checkpoint size that does not fit in the free space of their
fast local tiers, while others will have free space left even
after completely writing their checkpoint to their fast local tier.
Second, modern accelerators, particularly GPUs are typically
linked with high bandwidth interconnects that are significantly
faster than the links between the accelerators and the host
memory. This is also true for other classes of fast vs. slow tiers,
e.g., the bisection bandwidth of remote transfers between main
memories and SSDs is faster than the aggregated bandwidth of
a parallel file system. Based on these observations, we propose
sending some of the checkpointing data to the processes with
spare free space to reduce the amount of data that needs to be
written directly to the slow tiers.

While simple as a concept, this is a complex optimization
problem, i.e., to obtain a schedule which identifies processes
which must transfer a specific amount of data to one or more
processes for minimizing execution stalls during checkpoints.
We refer to this as the collaborative multi-level checkpointing
problem. This is non-trivial both because of link heterogeneity,
i.e., each fast tier may be connected to multiple other fast tiers
with links of different bandwidths, and because these links can
be used concurrently, i.e., it is suboptimal to send all data over
the fastest link even if the destination has enough capacity to fit
the entire data. To this end, we contribute with two algorithms,
which we evaluate in a series of simulated scenarios using both
synthetic and real-life traces of checkpoints of variable sizes.
We summarize our contributions below:

• We formulate the problem of collaborative multi-level
checkpointing, introducing a set of general considerations
and assumptions for the design of scheduling algorithms
(§ II).

• We propose two scheduling algorithms based on a greedy
approach and a variation of min-cost max-flow in trans-
port networks, which leverage the differences between the
checkpoint sizes and the peer-to-peer interconnects of the
fast tiers to minimize the blocking time of collaborative
multi-level checkpointing (§ IV).

• We evaluate our proposed algorithms using the perfor-
mance model in a variety of experimental scenarios using
both a real-world application trace and a synthetically
generated trace. Our evaluation shows that our algorithm
based on min-cost max-flow approach outperforms the
greedy and traditional checkpointing approach while in-
curring comparable execution time (§ V).

II. PROBLEM FORMULATION

Collaborative multi-level checkpointing is a fundamental
I/O pattern applicable in a large variety of scenarios. For
simplicity, consider the case of a single node equipped with
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Fig. 1: Nvidia DGX-1 GPU interconnect [1].

N GPUs, each of which is assigned to a process i. At a given
moment, all processes need to simultaneously checkpoint some
data structures stored on their GPUs that add up to size Ckpti.
Each GPU Gi has a free space Fi. We call the processes for
which Ckpti > Fi senders and those for which Ckpti < Fi

receivers. Each GPU Gi is connected to a subset of the other
GPUs through a link with a maximum bandwidth Bij (with
Bij = 0 if Gi is not connected with Gj), as well as to the host
memory H through a link of bandwidth Bh. Each sender can
concurrently use any of its peer-to-peer links and the device-
to-host link to transfer an arbitrary amount of its remainder
(Ci = Ckpti − Fi) to the receivers or to the host memory.
The goal is to identify the amount of data that each sender
needs to transfer to each receiver or host memory such that
the following two conditions are satisfied: (1) the total amount
of data sent to each receiver j is smaller or equal to its total
spare capacity Sj = Fj−Ckptj ; and (2) the total duration of
all concurrent data transfers (denoted tckpt and referred to as
blocking time) is minimized. We call this the optimal schedule.

We elaborate this problem by considering Nvidia DGX-
1 [1], which has a hybrid cube-mesh GPU interconnect with
8 GPUs that are interconnected with each other using either
single (24 GB/s) or dual NVLinks (48 GB/s), as well as
with the host memory through PCIe links (12 GB/s). As
shown in Figure 1, the senders have a positive amount of
data (remainder), the receivers have a negative amount (spare
capacity), and the GPUs whose local checkpoints fit exactly
in their free space have a spare capacity of zero. In this
case, G0 could send all the data to G4 over a fast dual
NVLink, but this is suboptimal for two reasons: (1) if G0

writes 1/4 of its data to the host memory in parallel, it would
finish 25% faster; (2) G6 is not linked to G1, therefore it
is forced to write its data to the host memory while G1’s
spare capacity remains unused. Thus, accurately identifying
senders and corresponding receivers, and the amount of data
that should be sent to each receiver is critical in reducing the
overall checkpoint time.

Once the optimal schedule is determined, collaborative
multi-level checkpointing can be easily implemented by split-
ting the checkpoints into chunks on the senders, which then
transfer them to the receivers. Next, the chunks can be trans-
ferred from their intermediate locations to the host memory in
the background while the application continues its execution.

In this paper, we focus on multiple GPUs on a single node.
However, it is important to note that the problem can be
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generalized to any number of compute nodes and any other
combinations of fast and slow storage tiers, e.g., the main
memory of compute nodes and the parallel file system.

III. RELATED WORK

Checkpoint-Restart: Both loosely and tightly coupled ap-
plications use checkpoint-restart to support resilience. When
I/O bandwidth is a concern (especially for tightly-coupled
HPC applications running at a large scale), multi-level check-
pointing [2] can be used to leverage complementary strategies
(partner replication, erasure coding) adapted for HPC storage
hierarchies in asynchronous mode [3]. Currently, such tech-
niques use local storage independently on each compute node
via a single shared link, but can be complemented to leverage
local storage of remote nodes. Additionally, checkpoint-restart
techniques are also used for accommodating on-demand jobs
with batch jobs [4], [5] and workload migration [6], [7].

Checkpoint size-reduction: There are a variety of tech-
niques that can be used to reduce the checkpoint sizes for
specific objectives: space (i.e., within the same checkpoint),
time (i.e., across consecutive checkpoints), scope (i.e., indi-
vidual checkpoints vs. global checkpoints aggregated from all
processes). They include lossy [8] and lossless [9], [10] com-
pression, de-duplication [11], [12], incremental checkpointing
based on dirty page tracking [13], etc. Such approaches can be
used together with our proposal and often lead to differences
in the checkpoint sizes leveraged by our proposal.

GPU checkpointing: With the increasing popularity
of GPUs, checkpointing techniques are used both for
migration [14], [15] and resilience [15]–[20]. System-
level checkpoint-restart libraries, e.g., CheCUDA [16] and
NVCR [15] transparently record and replay all the memory-
based API calls. Efforts such as MLBS [21] and Check-
Freq [22] leverage multi-level memory subsystem starting
from GPU memory to minimize checkpoint time. However,
none of these approaches analyze the imbalance of checkpoint
sizes across multiple devices, nor do they leverage peer-to-peer
transfers to reduce the checkpointing overheads.

Schedule optimization: Maximum flows in transportation
networks have been studied for decades, and the complexity of
the algorithms is constantly improving [23]. Such algorithms
can be extended to produce the minimum cost for a given
flow [24], which is closely related to our problem if we model
it using graph theory. However, these algorithms assume that
each transported unit incurs a cost that is the sum of the
costs of all links it passes through, while in our case the
cost (i.e., blocking time) only increases if we transfer more
data over the slowest link. Linear programming [25] is a well-
researched area for solving complex optimization problems,
with a variety of tools available. However, such tools are
typically heavyweight and are not designed to be easily used
in real-time for system-level runtimes.

To the best of our knowledge, we are the first to study
the problem of optimal schedule for collaborative multi-
level checkpointing for different checkpoint sizes and spare

Algorithm 1: Greedy-based Scheduling Algorithm
Input : number of processes N , remainder C, spare

capacity S, bandwidth matrix B
Output: total blocking time tckpt, schedule P
// GPU Gi with largest remainder

1 while ∃i = argmax(C|Ci > 0) do
2 while Ci > 0 do

// fastest Gj with spare capacity

3 if ∃j = argmax(Bi|Bij > 0 and Sj > 0) then
4 k ← min(Ci, Sj)
5 Ci ← Ci − k
6 Sj ← Sj − k
7 Pi ← Pi ∪ {(k, j)}
8 tckpt ← max(tckpt, k/Bij)
9 else

10 break

11 if Ci > 0 then
// Transfer to host

12 Ci ← 0
13 Pi ← Pi ∪ {(Ci, H)}
14 tckpt ← max(tckpt, k/Bh)

15 return (tckpt, P )

capacities, heterogeneous peer-to-peer links, and concurrent
transfers.

IV. OPTIMAL SCHEDULE FOR COLLABORATIVE
MULTI-LEVEL CHECKPOINTING

In this section, we propose two lightweight algorithms to
solve the problem introduced in § II.

A. Greedy-Based Schedule

Our first algorithm is based on a greedy strategy. While it
does not guarantee to find the optimal solution, it is easy to
implement and has a short runtime due to low computational
complexity. The key idea we exploit in this context is to
transfer as much data as possible from the sender with the
highest checkpoint remainder to the fastest receivers with
spare capacity it is connected to. The intuition behind this
idea is that the sender with the highest remainder is likely
to be forced to transfer most of its remainder to the host
memory if other senders occupy the spare capacities of the
receivers, thereby it would cause the longest transfer delay
in the whole group. Thus, by sorting senders in descending
order of their remainder, we minimize the occurrence of this
undesired effect.

The complete algorithm is listed in Algorithm 1. The
notations used in the algorithm are consistent with those used
in § II. Specifically, for each sender i, Ci > 0 is the remainder
after it partially wrote its checkpoint to Gi, leaving the spare
capacity Si = 0. Similarly, for each receiver j, Cj = 0 and
Sj > 0. The algorithm computes the total blocking time tckpt
and the schedule P : for each sender i, Pi is a set of tuples
(k, j), where j is a receiver of the checkpoint chunk of size
k. In the worst case, each node is connected with every other
node, therefore the complexity of this algorithm is O(N2)
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Fig. 2: Min-time, max-flow algorithm: flow graph corresponding to
the example in Figure 1, using β = 24 GB/s, γ = 12 GB/s.

(which supersedes the complexity of sorting the senders in
descending order of their remainder).

For the example illustrated in Figure 1, the greedy approach
chooses G0 first and uses the fastest link to G4 to transfer all
of its remainder, thereby filling the spare capacity of G4 (i.e.,
C0 = 0 and S4 = 0). At this point, G6 is forced to transfer
its remainder to the host memory H because none of its peers
have any spare capacity left. The transfer time for G0 is 10 ms
(at 48 GB/s dual NVLink speed), and, respectively 20 ms for
G6 (at 12 GB/s PCIe link speed). Thus, tckpt = 20 ms.

B. Min-Time Flow-based Schedule

The greedy algorithm fails to find the optimal schedule
because every transfer decision is irreversible and limits fu-
ture opportunities for other senders to exploit fast links to
their receiver peers. One way to address this limitation is
to model the problem as a min-cost max-flow transportation
network [24]. In the simplest form, min-cost max-flow aims
to find the minimum cost of moving F items (flow) through a
graph of N vertices (if possible), starting from a source node
to a sink node. In this graph, each directed edge represents a
maximum number of items that can be transported between the
vertices and the cost of each item. In our case, we can create
a virtual source and a virtual sink, then link the senders to
the source, the receivers with the sink and finally the senders
and receivers with themselves. Specifically, the edges from the
source to the receivers have capacity Ci and cost 0, which is
needed to limit the amount of data exiting the sender to Ci.
Then, the edges from sender i to receiver j have capacity Sj

and cost 1/Bij (meaning sender i is allowed to transfer up to
Sj and each unit of data takes 1/Bij time to transfer). Finally,
the edges from the receivers to the sink have capacity Sj and
cost 0 (to limit the amount of data exiting receiver j from all
its senders).

Figure 2 depicts the transportation network corresponding
to the example shown in Figure 1. A classic algorithm to solve
this problem is to iteratively increase the number of transported
items (flow) by K, where K is the minimum capacity among

Algorithm 2: Min-Time Flow-based Schedule
Input : N (number of nodes), Capacity (capacities of

edges), Cost (cost of edges)
Output: total blocking time tckpt, schedule P

1 while true do
2 di ←∞, i = 0 . . . N − 1 // min distance to i

3 pi ← −1, i = 0 . . . N − 1 // parent of i along path

4 Q← Q ∪ {source}
5 while Q 6= ∅ do
6 u← head(Q)
7 Q← Q \ {u}
8 for v ∈ Bu|Buv > 0 do
9 if Costuv > 0 then f ← Capacityvu

10 else f ← Capacityuv
11 t← max(du, abs(f · Costuv) + Costuv)
12 if Capacityuv > 0 and dv > t then
13 dv ← t
14 pv ← u
15 Q← Q ∪ {v}

16 if dsink =∞ then
17 break
18 curr ← sink
19 while cur 6= source do
20 pred← pcur
21 Capacitypred,curr ← Capacitypred,curr − 1
22 Capacitycurr,pred ← Capacitycurr,pred + 1
23 cur ← pred

24 forall (u, v) ∈ Edges|u 6= source and v 6= sink do
25 Pu ← Pu ∪ {(Capacityvu, v)}
26 tckpt ← max(tckpt, Capacityvu · Costuv)
27 return tckpt, P

all edges on the minimum cost path from the source to the
sink. Note that at each iteration, all edges on the minimum
cost path will have their capacity reduced by K. By itself, this
is not enough to reverse previous decisions if they proved to
be suboptimal. Therefore, the graph is augmented such that for
each edge, there is a back-edge whose capacity is increased by
K at each iteration and whose cost is the negative cost of the
opposite edge. Using this approach, previous decisions that
proved suboptimal can be reversed by allowing back-edges
in the minimum cost path. Note that it is not possible to
use Djikstra’s algorithm to calculate the minimum cost path,
because of the negative cost of the back edges. However,
algorithms, such as Bellman-Ford, can be used.

Unfortunately, using the unmodified classic min-cost max-
flow algorithm to solve the optimal schedule problem is not
possible, because the cost incurred by the concurrent transfers
is the duration of the transfer over the slowest link, not the sum
of the durations of the transfers over the links along the min-
cost path. This has two important consequences: (1) we need to
change how the cost of the minimum cost path is calculated
by including both latency gain and loss due to back-edges;
and (2) it may be suboptimal to increase the flow by the full
capacity of the minium edge along the minimum-cost path as it
may increase the overall blocking time. We solve both aspects
by extending the classic min-cost max-flow algorithm as listed

4



in Algorithm 2, which we refer to as min-time max-flow. The
algorithm needs the capacities and costs of the edges of the
augmented graph, which are initialized as discussed above. To
incorporate (2), our algorithm increases the flow by one unit in
each iteration, which uses a modified form of Bellman-Ford.
Therefore, the worst case complexity is O(F ·N · |E|), where
F =

∑N−1
i=0 Ci and |E| is the number of edges in the graph.

Note that we used an optimized implementation of Bellman-
Ford that prunes the number of attempted relaxations, which
can often run in O(|E|) in practice.

Unlike the greedy algorithm, for the example in Figure 1,
the flow based algorithm finds the optimal schedule as follows:
G0 transfers 137 MB to G1, 275 MB to G4, and the remaining
68 MB to the host memory. G6 transfers 160 MB to G4 and
80 MB to the host. Thus, the blocking time is 6.7 ms, which
is 3× faster than the greedy algorithm.

V. EXPERIMENTAL EVALUATION

A. Methodology

We base our evaluations on two checkpoint traces: one is
obtained from a real run of a reverse time migration (RTM)
application used in the oil industry, the other is generated syn-
thetically. Each trace consists of a series of global checkpoints,
which we refer to as snapshots. In turn, each snapshot records
the checkpoint size of each process after applying compression
to reduce its size. Additionally, we explore several fixed
configurations of free space available on each GPU, which
is used to calculate the remainder Ci = Ckpti − Fi of each
sender and the spare capacity Si = Fi−Ckpti of each receiver.

We compare our algorithms with a baseline approach that
uses a standard strategy adopted by multi-level checkpointing
approaches where each process i writes its checkpoint to Gi.
Then, if a remainder Ci is left, it is written to the host
memory. These comparisons are independently performed for
each snapshot in order to study the tradeoff between the quality
of the checkpoint schedule (blocking time tckpt) returned by
each algorithm and the required runtime to obtain it.

We implemented our proposed algorithms and the baseline
in a simulation framework written in Python, which is respon-
sible to parse the traces, calculate the remainder Ci and the
spare capacity Si used by the algorithms, generate the flow
graph corresponding to snapshots in the case of the min-time
max-flow algorithm, and finally run the algorithms to obtain
the blocking time tckpt and runtimes. The simulations are
performed on a Dell PowerEdge C6320 server on the Cloudlab
testbed [26], which is equipped with an Intel Xeon CPU E5-
2683 v3 CPU and 256 GB of memory, and runs Python 3.8.10
over Ubuntu 20.04.2 distribution.

B. Checkpoint Traces

We start by analyzing the distribution of checkpoint sizes
for all snapshots across the runtime of a real-life application.
We then use the distribution of checkpoint sizes obtained from
the real-life workload to generate synthetic checkpoint traces.

RTM: Adjoint-state methods are commonly used in the
oil and gas industry to generate subsurface images from

seismic data [27]. Reverse time migration (RTM) [28] is an
example of such an application. First, forward and backward
propagated seismic wavefields are calculated by solving the
three-dimensional direct and adjoint wave equations in a
known propagation model. Next, the two wavefields are cross-
correlated in time to form the subsurface image. The corre-
lation step requires combining the two wavefields at identical
propagation times, and hence one of those wavefields needs to
be reversed in time using checkpointing techniques [29], [30].
RTM usually relies on time-domain explicit finite difference
(TDFD) solvers of the wave equation in its acoustic or elastic
approximation. The wave equation derivatives are commonly
approximated with finite-difference stencils of order 2 to 4 in
time derivatives and up to 16 in space. The solver generates a
snapshot of the wavefield at every step that needs to be stored
for time reversal. The total wavefield commonly occupies sev-
eral terabytes for production-size applications. Compression
techniques are thus critical to reducing the overall size and
speeding up the transfer from the computation unit to the
storage layer. We run the RTM application on Nvidia’s DGX-1
platform consisting of 8 Tesla V100 GPUs, each containing 32
GB of HBM2 memory and interconnected through a hybrid-
mesh cube topology. The wavefield reversed in time consists
of 776 snapshots with an aggregated compressed checkpoint
size across all snapshots of ∼53 GB per GPU. We study the
variability of checkpoint sizes across different snapshots and
show the minimum, maximum, and average checkpoint size
across all GPUs for every snapshot in Figure 3. The application
starts with smaller average checkpoint sizes, which increase
almost linearly up to snapshot 400 and then follow an arbitrary
distribution. Figure 4 shows the variability of checkpoint sizes
across all GPUs for 5 representative snapshots. Depending
upon the compression ratio achieved on each GPU, we observe
up to 107 MB (26×) difference in the smallest and largest
checkpoint size for a given snapshot.

Synthetic: We perform a statistical analysis of checkpoint
sizes of the RTM application to develop a model for generating
synthetic checkpoint traces. We use the rv_histogram
distribution of the scipy.stats Python package to obtain a
template distribution from the binned data sample of the RTM
application. Note that unlike the RTM trace, in this case each
snapshot is allowed to capture the full range of checkpoint
sizes observed during the RTM runtime. This is done to study a
complementary behavior where the evolution of the checkpoint
sizes from one snapshot to another is not smooth, and can
change significantly. The distribution of the checkpoint sizes
corresponding to this case is depicted in Figure 5.

C. GPU Configurations

We explore two dimensions of GPU configurations:
GPU Checkpoint Cache Size: We fix the free space

available on the GPUs to 80, 128 and 160 MB, which roughly
corresponds to the 50, 75 and 98 percentile of the average
checkpoint size of the RTM application. Since the checkpoint
sizes of snapshots are increasing (as seen in Figure 3), these
configurations are representative of the average checkpoint
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Fig. 3: Distribution of checkpoint sizes for
different snapshots for RTM.

Fig. 4: Variability in checkpoint sizes of each
GPU for 5 snapshots.

Fig. 5: Distribution of checkpoint sizes for
different snapshots for synthetic traces.

(a) GPU free space = 80 MB (b) GPU free space = 128 MB (c) GPU free space = 160 MB

Fig. 6: RTM trace: checkpointing overhead (%) for the blocking phase of collaborative multi-level checkpointing based on the greedy and
baseline approaches relative to the min-time, max flow approach.

sizes at various runtime stages, which corresponds to the free
space that an application can afford for checkpoint caching.

Increasing Number of GPUs: In addition to the DGX-1
configuration with 8 GPUs, shown in Figure 1, we also study
the behavior of all three approaches for GPU dense systems
by increasing the number of GPUs. Although currently, the
maximum number of interconnected GPUs in a single server
is only 16 [31], multi-instance GPUs (MIG) and an increasing
adoption of GPU dense systems and fast interconnects, e.g.,
NVLink and NVSwitch, advocate for a scalability evaluation.

D. Results

Checkpoint Schedule: For every snapshot of the RTM and
synthetic traces, we obtain the blocking time tckpt returned
by each of the three approaches (greedy, min-time max-flow,
and baseline) using our Python-based simulator. We assume a
granularity of 1 MB for the chunk sizes of the checkpoints,
which means the minimum transferable data from a sender
to a receiver is 1 MB. To better emphasize the differences
between the three approaches, we use the optimal blocking
time obtained by min-time, max-flow approach as a reference
(ranging from less than 1 ms to 12 ms), and plot the relative
percentage increase of the other two approaches in Figure 6
(RTM trace) and Figure 7 (synthetic trace).

Correlating Figure 6a (RTM trace) with Figure 3, for a GPU
cache size of 80 MB, we observe a high overhead for the
greedy (up to 50%) and the baseline (up to 200%) approaches
in the snapshot range 350-450. Outside this range, all the
three approaches produce comparable schedules. Specifically,
for the snapshots higher than 450, the minimum checkpoint
size grows beyond the free capacity, therefore there are only
senders and no receivers, which means every process needs
to checkpoint their remainder to the host memory. For the
snapshots smaller than 350, the opposite is true: the maximum
checkpoint size is smaller than 80 MB, therefore there are
only receivers and no senders, which means every process can

checkpoint directly to their GPUs. With increasing free space
available on the GPU checkpoint caches (Figures 6b and 6c),
performance differences begin to emerge between the three
compared approaches for the higher snapshot numbers. This
is expected as the average checkpoint size is increasing with
the snapshot number. In these scenarios, greedy and baseline
approaches are up to 2× and 5× slower, respectively, as
compared to the optimal approach. Based on these results, we
can draw two conclusions: (1) a sub-optimal schedule can dra-
matically lower the performance of multi-level checkpointing,
especially when the free space on the GPU checkpoint caches
are close to the average (compressed) checkpoint size; and (2)
it is non-trivial to choose an optimal fixed GPU cache size,
because the average checkpoint size varies during runtime.

For the synthetic trace, due to the high variance in the
checkpoint sizes for every snapshot (Figure 5), we observe
high overheads, i.e., greedy and baseline approaches expe-
rience 200% and 800% higher blocking time, respectively,
relative to the min-time, max-flow approach. Since the average
checkpoint size does not vary significantly during runtime,
we observe a consistent speed-up for the min-time, max flow
approach across all snapshots.

Execution Time: Next, we focus on the runtime overhead
of the three approaches necessary to obtain the checkpoint
schedule. Figures 8 and 9 depict the execution time of the three
approaches for the real-world and synthetic traces respectively.

Due to the limited number of GPUs and therefore graph
edges, the min-time, max flow approach runs in nearly same
amount of time as the other two approaches despite a higher
computational complexity. For the synthetic trace, in Figure 9,
we observe that for larger GPU cache sizes, the flow-approach
actually runs faster than greedy and the baseline. This is
because for increasingly larger GPU cache sizes, the remainder
on the GPUs becomes smaller, thereby reducing the total flow.
Overall, we observe that the execution time is negligible for
all three approaches, ranging between 10 to 170 µs. Thus,
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(a) GPU free space = 80 MB (b) GPU free space = 128 MB (c) GPU free space = 160 MB

Fig. 7: Synthetic trace: checkpointing overhead (%) for the blocking phase of collaborative multi-level checkpointing based on the greedy
and baseline approaches relative to the min-time, max flow approach.

(a) GPU free space = 80 MB (b) GPU free space = 128 MB (c) GPU free space = 160 MB

Fig. 8: RTM trace: execution times of the baseline, greedy and min-time, max flow approaches.

(a) GPU free space = 80 MB (b) GPU free space = 128 MB (c) GPU free space = 160 MB

Fig. 9: Synthetic trace: execution times of the baseline, greedy and min-time, max flow approaches.

(a) Checkpoint size on each GPU (b) Checkpoint overheads of Greedy and Local-only
approaches as compared to flow-based approach

(c) Response times for Local-only, Greedy and
Flow-based approach

Fig. 10: Checkpoint sizes, overheads and response times for different number of GPUs.

the min-time, max flow algorithm has no significant runtime
penalty compared with the other two approaches and is an all-
around winner given that it always produces an equal or better
checkpoint schedule than the other two approaches.

Scalability Study: We evaluate the scalability of the three
approaches for an increasing number of GPUs, ranging from
16 (DGX-2) up to 128 GPUs. To this end, we generate a
synthetic snapshot with different checkpoint sizes per GPU,
whose distribution is depicted in Figure 10a. We fix the free
size of each GPU checkpoint cache at 160 MB. The GPUs
are assumed to be connected in an all-to-all pattern using an
NVSwitch, similar to the DGX-2 topology.

As the number of GPUs is increasing, we observe in
Figure 10b, a significant increase in the blocking time for
the greedy and baseline approaches relative to the flow-

based approach. This is because the likelihood to obtain non-
trivial optimal schedules increases for an increasing number
of senders and receivers. Figure 10c illustrates the increase
in execution times for all three approaches as a function of
the number of GPUs. Again, despite the higher complexity,
the flow-based approach outperforms the greedy approach and
stays below 1 ms.

Overall, we conclude that with increasing scale, the optimal
schedule found by the flow-based approach has an increasingly
larger impact, while the execution time remains negligible.

VI. CONCLUSIONS

In this paper we studied the problem of efficient collabo-
rative multi-level checkpointing, focusing on two algorithms
that leverage the spare capacity of the fast local storage of
remote peers to minimize the blocking phase needed to cache
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all checkpoints such that they can be flushed asynchronously
in the background to shared storage.

Based on simulations with two traces that compare our
algorithms with a baseline that does not leverage remote local
storage, we make the following observations: (1) the effective-
ness of remote transfers depends on the imbalance between
the checkpoint sizes (which often occurs due to compression)
and the spare capacities (which can vary during runtime); (2)
our min-time, max-flow algorithm finds the optimal schedule
and significantly reduces the blocking time over the baseline
and the greedy algorithm; and (3) the execution time of our
algorithms is negligible even at scale.

Encouraged by these promising results, in future work we
plan to implement the proposed algorithms in production-
ready multi-level checkpointing systems such as VELOC [2].
Another interesting direction to consider is the case when
the GPU cache accumulates the checkpoints of successive
snapshots. In this case, the free space on each GPU is not
fixed and can be dynamically adjusted, e.g. by dropping
older checkpoints from the cache, which opens additional
optimization opportunities.
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