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Abstract Recent development in smart devices has lead us to an explosion in
data generation and heterogeneity, which requires new network solutions for
better analysing and understanding traffic. These solutions should be intelli-
gent and scalable in order to handle the huge amount of data automatically.
With the progress of high-performance computing (HPC), it becomes feasible
easily to deploy machine learning (ML) to solve complex problems and its
efficiency has been validated in several domains (e.g., healthcare or computer
vision). At the same time, network slicing (NS) has drawn significant attention
from both industry and academia as it is essential to address the diversity of
service requirements. Therefore, the adoption of ML within NS management is
an interesting issue. In this paper, we have focused on analyzing network data
with the objective of defining network slices according to traffic flow behaviors.
For dimensionality reduction, the feature selection has been applied to select
the most relevant features (15 out of 87 features) from a real dataset of more
than 3 million instances. Then, a K-Means clustering is applied to better un-
derstand and distinguish behaviors of traffic. The results demonstrated a good
correlation among instances in the same cluster generated by the unsupervised
learning. This solution can be further integrated in a real environment using
network function virtualization.

Keywords Machine Learning · Feature Selection · Clustering · Unsupervised
Learning · Network Traffic · Traffic analysis · Network Slicing

1 Introduction

Under the evolution of smart devices, the networks become increasingly het-
erogeneous, dynamic, and this has pushed network operators to search for new
concepts of management. Consequently, designing network architecture that
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can handle the heterogeneity and maximize resource utilization efficiency is
a major challenge [1]. In this context, several solutions have been proposed
including Network Slicing (NS) and Machine Learning (ML). Applying these
concepts together can provide an autonomic and intelligent network resources
management as well as can yield performance optimization on a large-scale
environment, which will accommodate 5G quality of service (QoS) require-
ments [2]. In fact, ML is deployed to solve complex problems without explicit
programming where the algorithm can model and learn the underlying be-
havior using a training dataset/environment. Its efficiency is validated and it
has achieved promising results in several domains and network management
is one of them [3]. On the other hand, NS provides the network as a service
(NaaS) for different use cases, allowing infrastructure provider to unlock their
physical network to several occupants [4] [5]. It partitions the network infras-
tructure into isolated network slices where each slice has its own resources and
performance requirement. NS has various advantages for the 5G networks and
beyond. First, it can support multi-tenancy sharing the same physical network
infrastructure. Second, NS can handle the diversified services with stringent
QoS and guarantee service level agreements (SLA). Third, as it addresses the
diversified service requirements, instead of the “one-fit-all” principal [4], it
leads to a flexible and efficient utilization of the limited resources.

However, since the network behaviors changes depending on several factors
such as user mobility, location, social events, it is a challenging task to define
explicitly the network state. In this context, the resource allocation to network
slicing instances becomes more difficult. Moreover, the huge amount of new
network traffic and applications made the creation of network slices manually
time-consuming [6]. Consequently, the process should be flexible, answer to in-
stantaneous requests, and depend on the traffic behavior of the end-user. Mon-
itoring the performance of network slices and network resources optimization
(e.g., auto-scaling) can take place via intelligent traffic management, which
understands the behavior of connected smart devices and applications. There-
fore, the intelligent definition of Network (sub)-Slicing according to the traffic
behaviors will become an important issue to support different use cases in the
heterogeneous environments and even within the slice (sub-slicing).

To efficiently understand the traffic and automatically generate network
slicing, ML offers these benefits since it can inspect a large quantity of data and
find a useful pattern from this data in a reasonable time. It allows the system
to come up with rules for automating tasks. The most important advantage
of ML is its capability to deal with complex problems. Moreover, analysis
of these vast datasets using the machine learning approach promises novel
discoveries. Therefore, integrating these tools into the traffic analysis and NS
will enable network operators to implement self-configuring, self-healing, and
self-optimizing networks [7], which in turn provide a zero-touch management.
Within the field of ML, a broad distinction could be made between supervised
and unsupervised learning. The main objective behind supervised learning is to
identify a mapping from the input features to an output class, which requires a
fully labeled dataset. On the other hand, the objective of unsupervised learning
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is to find a structure (i.e., pattern) in the inputs without the need of an output
class.

In practice, the learning ability of ML models is only as good as the given
data and features. The increase in the data dimensionality may decrease the
performance of an algorithm as well as cause an extra computational cost (e.g.,
storage and processing) [8] and curse of dimensionality problem. Consequently,
to make the raw data suitable for analysis, preprocessing steps should be
applied and feature selection is one of them.

In this study, an ML-based slice-defining solution is introduced. The pro-
posed architecture uses network statistics and an offline process for under-
standing network traffic patterns with a clustering algorithm. Preliminary re-
sults of this work appeared in [9] where only 4 features (out of 87) were selected
based on Ryu controller’s default capability. However, this small number of
features is not enough to recognize traffic behavior. In order to better define
each cluster, more features have been added and analyzed in this work.

Therefore, the main contributions of this paper are:

– Feature selection: We include additional experiments involving features se-
lection. Since the networks is a time-critical system and ML algorithms
are as good as the quality of data, we show that the set of features needed
to distinguish between applications can be reduced using feature reduc-
tion techniques, which can improve the performance of learning algorithms
(i.e., classification or clustering) and decreases the overhead both for data
collection and model computation.

– Traffic clustering : We apply an unsupervised-learning method to find dif-
ferent clusters of the traffic using the previously selected features. These
clusters are constructed from traffic with similar behavior.

– Cluster analysis: We focus on the analysis of each cluster (i.e., future slice
definition) and explain its behavior according to the property of selected
features.

The rest of the paper is organized as follows: Section 2 presents related
work of similar researches that use ML for traffic analysis and network slic-
ing. Section 3 introduces the essential background in order to understand our
proposition. Section 4 describes the proposed solution and presents the dataset
used during this work. Section 5 presents the experimental results along with
its analysis. Section 6 provides some inside discussions and finally Section 7
concludes the paper.

2 Related Work

The existing research with the most similar context to this paper is presented
in [10] where the authors have discussed software defined networks (SDN),
network function virtualization (NFV), Machine learning, and big data driven
network slicing for 5G. In this work, they have proposed an architecture to
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classify network traffic and used those decisions for network slicing. According
to the paper, with the exponentially increasing number of applications enter-
ing the network, it is impossible to classify traffic by a single classification
model. Therefore, they have used the K-means clustering algorithm to cope
with this issue. By using this unsupervised algorithm, they have grouped the
data set and labeled them. They have set the number of clusters (i.e. slices)
k=3 associating three bandwidths. With this grouping and labeling, they have
trained five classification models and have compared their accuracy. The re-
sults show that the user can play the video smoothly and with better quality
after network slicing is deployed. However, the number of applications used
in this work is limited (21 applications) and without an analysis of their be-
havior. There is no information about the choice of the attributes during the
clustering and no metric used to select the best number of clusters.

In [11], the authors developed a proof-of-concept of network slicing in a
real mobile virtual network operator (MVNO) network. They classify mobile
traffic into fine grained slices, by identifying application types in order to apply
QoS control and various network function per application. However, only five
flow features are selected to train an 8-layer deep learning model. Also, there
is no information about the behaviors of each slice.

Another interesting work is presented in [12] where the authors analyzed
the traffic to capture its behavior of all the cells in each cluster. Firstly, a
clustering model (K-means) explored the data to identify the traffic behavior
of the clusters. Secondly, they propose a traffic utilization forecasting model for
each cluster using several ML models. Based on their proposition, the authors
demonstrate how clustering model can help to forecast the network traffic
cells and provide self-organizing networks. However, the authors analyze the
traffic utilization and not the network applications. Also, the framework is not
dedicated to network slicing and no feature selection method has been used.

In [13], an SDN-based slicing prototype based on the home devices is pre-
sented. The authors present three types of slicing strategy. However, the ML
technique was not used in this work where the authors have manually speci-
fied home users requirements according to the restrained resources of the home
network. Thus, this solution can not scale well.

In [5], the authors proposed a hybrid learning algorithm in order to design
efficient slicing classification. For the given data features, they classify the
traffic to the exact network slices like enhanced Mobile Broadband (eMBB),
massive Machine Type Communication (mMTC), and Ultra-Reliable Low-
Latency Communication (URLLC). However, this solution classifies the data
to the static service types (eMBB, URLLC, mMTC) defined in the 5G era.
Moreover, it is based on supervised learning algorithms where the models tend
to learn over-fit spaces to the labeled samples.

In [14], the authors proposed a machine learning-based network sub-slicing
framework in a 5G environment where each slice is divided into a virtualized
sub-slice of resources. To do so, support vector machine (SVM) algorithm is
used for feature selection based on the smart applications in IoT devices, then
the K-means algorithm is applied to assign the group based on similar types
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of application services. However, there is no information about the data, the
initial and selected features as well as a lack of analyzing the clusters (sub-
slices) behaviors.

3 Background

In this section, we provide a brief overview of basic concepts, which are useful
for understanding the rational behind the proposition.

3.1 Network-Slicing based architecture

Network slicing is one of the most popular technologies used to enhance re-
source utilization [15] [16]. It has been proposed with the aim of sharing the
same physical network infrastructure to address the diversified service require-
ments, instead of “one-fit-all” principal [4]. Therefore, the network slicing
concept offers reduced Capital Expenditure (CAPEX) and Operational Ex-
penditure (OPEX) costs. According to the International Telecommunication
Union (ITU), network slicing ”is recognized as a key enabler for the support
of different types of services”. It has several advantages such as supporting
multi-tenancy, providing customized slices for different services with different
QoS and resources requirements [1]. As shown in Figure 1, in order to meet the
SLA of each slice, different virtualized network resources (via virtual network
functions or VNFs) are jointly allocated based on the slice behaviors. The
VNFs can be computing, communication, and caching resources that are run-
ning over the same physical infrastructure. Moreover, as slices can be created
on-demand or modified as needed, network slicing improves the flexibility and
adaptability in network management [17]. Therefore, it has a profound impli-
cations on resource management.

Slice_0

Slice_1

Slice_N

Resource 
Orchestration 

VNF_1 …

End user Clustering

Virtualized Network Resources

Storage Computing Communication

Physical Network Resources

VNF_2 VNF_3 VNF_N

Fig. 1: Network Slicing using behavior clustering
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3.2 Unsupervised Learning

With the rapid increases in the size and complexity of data, unsupervised
learning will be the trend in the future [18]. It tries to find relationships be-
tween the inputs without having any prior knowledge of the outputs. In other
words, the aim of unsupervised learning is processing data for knowledge dis-
covery, and using the knowledge for reasoning and decision making. Clustering
algorithms are one of the mostly used unsupervised learning processes. These
algorithms are used to categorize the input data into distinctive clusters (i.e.,
groups) by examining the similarity between them. Each observation within
the same cluster is having greater similarity as compared to the observation
in other clusters [19]. Several clustering algorithms have been proposed and
used over the past few years. However, in this section, we have selected to
present only a few representative ones. Also, Table 1 presents the advantages
and weaknesses of each algorithm.

– K-means

K-means algorithm is the oldest and popular partitional method [20]. It
is well known for its efficiency in clustering large-scale data sets. It aims to
partition the data into K clusters based on a similarity measure. In other
words, the examples belong to the same cluster have high similarity as compare
to those of other clusters. Each cluster has a category center µk. The Euclidean
metric is selected as the criterion of similarity. The sum of squares of the
distance between the points in each cluster to the center of the cluster µk is
calculated to minimize the sum of squares within each cluster. The objective
function is written as:

V =

K∑
i=1

N∑
n=1

||xi − µk||2

where x is the sample to be clustered, N is the number of samples and K
is the number of clusters. K points are randomly selected from the datasets
as the initial clustering center. The Euclidean distance from each sample to
the cluster center is calculated. The sample is returned to the nearest cluster
center. The new clustering center is obtained by calculating the average value
of the newly formed data objects of each cluster. If there is no change in
two successive iterations, it shows that the sample adjustment is over and the
clustering criterion function has been converged.

– Hierarchical Clustering

Unlike K-means, Hierarchical Clustering (HC) does not need to pre-specify
the number of clusters. HC constructs the clusters by recursively partitioning
the data objects in a top-down fashion or by merging them in a bottom-up
fashion and this process can be visualized as a dendrogram [21]. It uses two
popular approaches: Agglomerative and Divisive clustering. The agglomerative
approach goes from bottom to top where all data objects are considered as
different clusters and then at each step, it merges the objects by similarity
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until it forms a single cluster. The divisive approach works in the top-down
fashion where it assumes that all the objects are in a single cluster and then at
each step, it splits the cluster until each cluster contains a single data object.

– Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN)

DBSCAN is one of the most popular unsupervised learning algorithms.
It aims to use the density in order to divide the samples of the dataset into
various clusters [22]. Specifically, it partitions the dataset into different clusters
using two parameters, ε and MinPts (the minimum number of points to create
a cluster). Any data object that does not fit into any cluster is considered an
outlier. That is why unlike K-means and Hierarchical Clustering, DBSCAN
can handle the outliers objects (i.e., noise) in the dataset. Its performance
depends on the parameters settings (i.e., MinPts, ε).

Table 1: Comparison of the popular unsupervised algorithms [23] [24]

Method Advantages Weaknesses
K-means

– Fast and simple
– Less complex
– Easy to implement
– Highly scalable

– Requires the number of
clusters in advances

Hierarchical Clustering

– No need to specify the
number of clusters in ad-
vance

– Good visualisation capa-
bilities

– High computational cost
– Can not handle the out-

liers
– Not scalable
– Requires choosing the

decomposition process

DBSCAN

– Does not need the number
of cluster in advance

– Handle the outliers within
the dataset

– Needs a careful selection
of its parameters (i.e.,
MinPts, ε)

In this study, we have selected k-means as our clustering algorithm since
it eases further implementation. To estimate the optimal number of clusters,
several clustering validity indicators have been proposed in the literature. In
our study, we will use two popular clustering validation methods, which are
Davies-Bouldin Index and Silhouette Coefficient.

– Davies-Bouldin Index

The basic principle of validity clustering is minimizing the intra-cluster
distance or maximizing the inter-cluster distance. This study used Davies-
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Bouldin Index (DBI) to measure inter and intra-cluster distance and find the
ideal number of clusters [25], which is calculated as follows:

DBI =
1

K

K∑
i=1

max
i=| j

(d̂i + d̂j)

di,j

where K is the number of clusters, d̂i is the average distance between each
object in the ith cluster and the centroid of the ith cluster, d̂j is the average
distance between each object in the jth cluster and the centroid of the jth
cluster, and di,j is the Euclidean distance between centroids of the ith and jth
clusters. A lower DBI means a better cluster configuration.

– Silhouette Coefficient

The silhouette Coefficient (SC) measures how similar an object is to its own
cluster (cohesion) compared to other clusters (separation) [26]. It evaluates the
intra-cluster and nearest-cluster distance for each object. In contrast to DBI,
the closer SC is to 1, the better the clustering result. In other words, SC
ranges from -1 to 1. The coefficient equals -1 means clustering is wrong; 0
means indifference (same); and 1 means both clusters are far away. However,
it is more computationally demanding than DBI. SC is calculated as follows:

SC(i) =
b(i)− a(i)

max{a(i), b(i)}
where a(i) is the average distance of the object xi to other objects in the

same cluster as i, and b(i) is the minimum average distance from the object
xi to objects in a different cluster (i.e., xi is not a member).

3.3 Feature Selection

As the amount of high-dimensional data has increased in recent years, ML
tasks have many benefits. However, this data can consist of irrelevant (a fea-
ture that provides no useful information) and redundant (a feature with pre-
dictive ability covered by another), which increase search space and decrease
predictive quality [27]. Thereby, with the increase in the dimensionality (i.e.,
features) of data, the predictive ability of an algorithm decreases as well as
causing an extra computational cost for both storage and processing [8]. These
challenges are referred to as curse of dimensionality, which is one of the most
important challenges in ML, first introduced by Bellman in 1961 to indicate
that ML algorithms can work fine in low dimensions and become intractable
with high-dimensional data [28]. In practice, each algorithm is only as good
as the given features. Also, the learning ability of the model depends not only
on the quality of collected features but also on the number of features consid-
ered. The model will perform poorly if the number of variables is larger than
the number of observations (over-fitting) [29]. In this situation, the model can
easily separate the training data but it will be inaccurate on the test data. In
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fact, these make dimensionality reduction difficult tasks not only because of
the higher size of the initial dataset but because it needs to meet two chal-
lenges, which are to maximize the learning capacity and to reduce the number
of features. Further, to make the raw data suitable for analysis, feature selec-
tion steps should be applied.

4 Proposed Solution

The proposed solution consists of four steps as shown in Figure 2. In the first
step, the dataset is cleaned and prepared for the second step, which is the
feature selection. Then, an unsupervised ML algorithm is applied to cluster
the applications that have similar traffic behavior. Finally, we analyze network
data to define network slices according to the traffic flow behaviors of each
cluster.

Fig. 2: Steps of our proposition

4.1 Dataset description

For this paper, ”IP Network Traffic Flows, Labeled with 75 Apps” dataset from
Kaggle1 database was used. This dataset is a good match for our objectives
and satisfies all the three main components of a good dataset, which are real-
world, substantial and diverse. This dataset was created by collecting network
data from Universidad Del Cauca, Popayán, Colombia using multiple packet
capturing and data extracting tools [30]. This dataset is consisting of 3,577,296
instances (observations), 78 applications (Facebook, Google, YouTube, Yahoo,
Dropbox, and so on), and 87 features. It is originally designed for application

1 https://www.kaggle.com/jsrojas/ip-network-traffic-flows-labeled-with-87-apps
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classification. Each row represents a traffic flow from a source to a destination
and each column represents features of the traffic data.

4.2 Data Preparation

In the data cleaning process, several operations need to be done before it is
ready for machine learning model training. If there are duplicate instances in
the dataset, it will cause bias in the machine learning algorithm. So to avoid
the biasing, those duplicates need to be identified and remove from the dataset.
Also, the main issue is that a real dataset can have redundant and irrelevant
features. Consequently, preprocessing of data is a necessary task, which can
be done with several techniques among which the feature selection.

Moreover, in this dataset, there are several features containing different
data types; however, some ML models can only work with numeric values. To
use those data types for the ML models training, it is necessary to convert
or reassign numeric values to represent its correlations with other features. In
this work, we have converted timestamp and IPaddresses values to numerical
values. After this cleaning process, the dataset is ready for feature selection.

4.3 Feature Selection

The feature selection methods try to pick a subset of features that are relevant
to the target concept. This step has become an indispensable component of
the ML process. They can be grouped into two broad categories (filter and
wrapper) based on their dependence on the inductive algorithm that will finally
use the selected subset [31]. We based our analysis on the obtained features by
Recursive Feature Elimination (RFE) method from [32]. As a reminder, RFE
is a wrapper methods that recursively evaluates alternative sets by running
some induction algorithms on the training data. It uses the estimated accuracy
of the resulting classifier as its metric. Starting from all the feature sets, the
method recursively removes features in order to maximize accuracy. Then it
ranks the features based on the order of their elimination. The algorithm used
here is the classification and regression tree (CART).Using RFE, we have
derived a method to identify the best 15 features out of 87 features in our
dataset. These features are summarized in Table 2.

4.4 Data Clustering

Data clustering is another part of this proposition, wherein the selected fea-
tures are used to cluster the traffic according to their similar properties. For
this, K-means unsupervised learning model has been deployed as it is effective,
fast, scalable, and less complex. The number of clusters has been determined
using the Davies-Bouldin Index and Silhouette Coefficient as previously de-
scribed in Section 3. From the K-means clustering results, the number of clus-
ters (k value) has been varied from 2 to 14, and then the DBI and SC are
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Table 2: Best fifteen features of our data set

Features Name Description Rank
Flow.IAT.Max The maximum value of the inter-arrival time of the

flow (in both directions).
1

DestinationIP The destination IP address. 2
SourcePort The source port number. 3
SourceIP The source IP address of the flow. 4
Fwd.IAT.Total The total Inter-arrival time in the forward direction. 5
Init Win Bytes Backward The total number of bytes sent in the initial window

in the backward direction.
6

DestinationPort The destination port number. 7
Fwd.Packet.length.Max The maximum value in bytes of the packets length

in the forward direction.
8

Timestamp The instant the packet was captured stored. 9
Subflow.Fwd.Bytes The average number of bytes in a subflow in the

forward direction.
10

Init Win Bytes Forward The total number of bytes sent in the initial window
in the forward direction.

11

Bwd.Packet.Length.Mean The mean value in bytes of the packets length in the
backward direction.

12

Bwd.Packet.Length.Max The maximum value in bytes of the packets length
in the backward direction.

13

Fwd.Packet.Length.Std The standard deviation in bytes of the packets
length in the forward direction.

14

Flow.Duration The total duration of the flow. 15

calculated for each k value. As can be seen from Fig. 3 and Fig. 4, k = 3 has
the lowest score with the DBI and highest score with the SC, which reflects
that there are three types of traffic behaviors that can be identified from this
dataset. The three types of network traffic behaviors recognized by the K-
means algorithm will be analyzed in order to understand their characteristics.

Fig. 3: k value vs Davies Bouldin Score
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Fig. 4: k value vs Silhouette Coefficient

5 Results and analysis

In this section, we analyse and discuss the obtained results (via the selected
features in each obtained cluster). We separate the analysis into three parts:
application-related, time-related, and bandwidth-related.

5.1 Application-related features analysis

After running K-means algorithm, three clusters were obtained with different
applications distribution as presented in Fig. 5. For the sake of clarity, we limit
the plot to the majority applications (those with at least 10 000 instances).

It can be noticed that the majority of the traffic comes from web browsing
as we can see the huge numbers of HTTP related flows in all the clusters,
following by Google, SSL, and YouTube. Please note here that the SSL flows
are encrypted connections (and ports); therefore, we cannot discuss about the
final applications but we can infer some behaviors via time and bandwidth
related features in the next sections. Concerning the cluster 0, we can observe
that it contains the most significant amount of traffic from HTTP Proxy and
Google (as HTTP Connect flows are related to TCP connection initiation
process, we will not emphasize it in this paper). HTTP Proxy means that the
browsing flows have the campus proxy server as the destination before going
outside. This is also shown in the Fig 6. We limit the plot to the majority
destination ports number where the port number 3128 (proxy) represents most
of the traffic (92%) especially for cluster 0. Concerning the cluster 1, we can
observe that most of the traffic are HTTP (direct connections via port 443
and 80, seen in Fig. 6), follow by Google. As for cluster 2, no trend can be
concluded except that there are also many direct connections as seen in Fig. 6.
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Fig. 5: Application distribution of each cluster

Fig. 6: Distribution of destination ports

5.2 Time-related features analysis

In this subsection, we analyze the time-related features in the resulting clus-
ters. The dataset used in this study consists of 6 days of data collected from
university network traffic in the morning and afternoon period, the distribu-
tion is presented in the Fig. 7 (a). Colors present the distribution of traffic for
the morning/afternoon for each day. The darker the color the more dominant
the traffic within that period.

Fig. 7 (b) presents the distribution of flow duration among different clusters
categorized by duration as short (less than 100 milliseconds), medium (between
100 milliseconds until 10 seconds), and long (longer than 10 seconds). It can
be observed that the majority of flows (50%) in cluster 1 have very short
duration (less than 100 milliseconds). On the contrary, the majority of the
flows (40%) in cluster 0 have a duration of more than 10 seconds.
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Moreover, Fig. 7(c) presents the distribution of the maximum inter-arrival
time (IAT) among clusters. It can be noticed that for the cluster 0 and 2, most
of the flows arrived with high inter-arrival time with 67% and 65% of the flows
respectively. As for the cluster 1, we can observe that approximately half the
flows (45%) arrived with IAT less than 20 milliseconds and the other half of
the flows (46%) arrived with IAT more than 100 milliseconds. These time-
related features can help operators to manage network resources; for example,
in terms of scheduling and reservation, they can fine tune the related param-
eters according to user behavior in the same cluster (slice) and the available
resources.

(a)

(b) (c)

Fig. 7: Distribution of time related behavior

5.3 Bandwidth-related feature analysis

Figure 8 shows the flow distribution with respect to the maximum packet
length and the number of bytes sent in the initial window size in both directions
(backward and forward). The majority of flows in the backward (Fig. 8 (a)) are
of small size, mostly control or acknowledgement packets. Approximately 64%
(cluster 0) and 76% (cluster 1) are less than 753 bytes. This is correlated to the



Traffic analysis: an unsupervised learning approach 15

number of bytes sent in the initial window size in the backward direction (Fig. 8
(c)), which shows that 84% (cluster 1) and 89% (cluster 0) remain below 1310
bytes. We note, however, that for a window size greater than 5242 bytes, cluster
1 sent more bytes than the other two. Therefore, the resource reservation for
this cluster must be particularly adapted. In the forward direction, about 75%
of the transmitted packets are small, i.e., less than 657 bytes. For cluster 0,
these packets are mostly sent when the initial window size exceeds 6553 bytes
(65%). For cluster 1, 58% of the packets are sent when this window size less
than 1310 bytes and about a third are sent when this size exceeds 6553 bytes.
Whereas for Cluster 2, we observe an almost equal distribution between small
(45%) and large (41%) window sizes. In summary, special attention will be
given to resource reservation for outbound Cluster 0 traffic.

(a) (b)

(c) (d)

Fig. 8: Distribution of bandwidth related behavior



16 Ons Aouedi et al.

6 Discussion

This work aims to design an efficient network slicing using an unsupervised ML
algorithm. We have demonstrated that the analysis of the massive quantity
of data in a short duration, and discovering the complex traffic behavior in
an efficient way could be made possible by the use of ML algorithms. Also, in
this work, we have used unlabeled data, which is often abundant and easily
available. Moreover, instead of building dedicated networks for all services,
NS can be used to allow the operators to create a customized network and
allocate the optimal resources for each cluster created through an unsupervised
ML algorithm (K-means in our case). In other words, the slice specifications
can be applied to the aggregate traffic of certain flows (clusters) in order to
maximize flexibility and guaranteeing the QoS to the end-users. In addition,
the default service types (e.g., eMBB, URLLC, mMTC) defined in the 5G era
are static [33], while new types of services continually evolve. If the behaviors of
these new services are not integrated efficiently, it may make the network less
reliable and less optimized. To eliminate these issues, our proposition can help
to automatically recognize a new type of service and establish the required
network slices. Moreover, it can be used to discover different behavior into
common slices (i.e., sub-slicing).

Pros and cons of the proposed network slicing solution

– Labeling all the traffic to their particular slice requires a huge effort of
human annotators sometimes with a specific domain of expertise. There-
fore, the proposed solution helps to find traffic pattern without human
intervention and avoids time-wasting as maximum as possible.

– However, in order to save and process the network data with ML models
a high amount of storage and computational resources are needed, as well
as there are some threats on information security.

7 Conclusion and future work

This study has been carried out as a proof of concept while combining ML
with traffic analysis, in particular, for defining network slicing. This study
demonstrates the powerful capacity of machine learning to analyze traffic be-
haviors and hence can create intelligent network slices. Feature selection (RFE)
method and K-means algorithm are deployed in this proposition to find the
most relevant features and clustering, respectively. An experimental analysis
of these clusters (future slices) using the selected features in order to find
useful behaviors has been conducted in order to be utilized easily for net-
work slicing and resource management. These features are classified according
to application-related, time-related, and bandwidth-related features. The ob-
tained results have demonstrated some clear behaviors that need special at-
tention. For example, on the morning of 04/27, cluster 0 and cluster 1 (future
slices) need the infrastructure provider to allocate more resources because the
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traffic load increases during this time. Also, the majority traffic of cluster 0 is
proxy, thus special attention should be given in terms of resources (e.g., more
CPU and caching resource to the proxy server) for this cluster (future slice).
Consequently, this helps the infrastructure provider to anticipate the network
state and thereby avoid the violation of SLA.

For future work, other clustering algorithms such as DBSCAN (Density-
based spatial clustering of applications with noise) or hierarchical clustering
should also be applied to the dataset in order to compare the performance to
the K-mean clustering used in this paper. Implementation of network slicing
infrastructure should also be done in order to bench-marking the signaling and
overhead generated by this solution.
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