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Human Sensing in Reverberant Environments: RF-based Occupancy and Fall Detection in Ships Marwan Yusuf, Emmeric Tanghe, Brecht De Beelde, Pierre Laly, Matteo Ridolfi, Eli De Poorter, Luc Martens, Davy P. Gaillot, Martine Lienard, and Wout Joseph Abstract-In this paper, we explore the possibility of estimating the number of people inside a below-deck ship compartment using the theory of room electromagnetics. Most RF-based occupancy detection solutions focus on residential environments. Confined metallic spaces such in industrial environments are more hostile and exhibit features of a reverberant cavity. The theory of room electromagnetics provides a simple characterization of microwave propagation in such environments. By considering the indoor environment as a lossy cavity, the exponential decay rate of the power-delay profile (PDP), also known as reverberation time (RT), is related to the total absorption inside the room. First, we verify the reverberating nature of the room by measuring the RT at different locations inside the room. The PDPs are calculated from the channel impulse response (CIR) measured using the MIMOSA radio channel sounder. Then, the relation between RT and the number of people inside the room is investigated. We show that it is possible to estimate the number of stationary people with a good accuracy, depending on the number of antennas used. With a success rate of 88%, the estimation error is only one person when 16 spatially averaged PDPs are used. Higher success rates are achievable with more spatial averaging. Moreover, off-the-shelf (OTS) ultra wide band (UWB) devices are used to estimate the number of people inside the same room. Results show that temporal averaging of PDPs can further improve the success rate to 95% when people inside the room are moving. In addition, the detection of a lone person falling to the ground is investigated based on the Doppler analysis of the measured CIRs. It is shown that the Doppler spread in case of a fall has higher peak values compared to normal activities, such as walking and sitting. With the use of a simple Bayes classifier, a fall is detected with 98% accuracy and 100% sensitivity.
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I. INTRODUCTION

A N increasingly common requirement of smart systems is to extract information about the people present in an environment in a device-free way, meaning that humans are not expected to carry any dedicated devices or passive tags. Basic human-sensing such as people counting is of high importance in the context of Internet-of-Things, driving many applications: from building automation to surveillance and safety monitoring in case of natural or man-made disasters. Hence, deploying wireless networks in confined, reflective spaces such as found in metallic warehouses, aircraft cabins, and belowdeck compartments in ships is essential to the envisioned Industry 4.0 and intelligent transportation systems (ITS). In particular, below-deck spaces in ships have been a primary focus of a number of studies, exploring the wireless radio frequency (RF) propagation and communication performance [START_REF] Tait | Electromagnetic environment characterization of below-deck spaces in ships[END_REF]- [START_REF] Wanuga | Performance evaluation of MIMO OFDM systems in on-ship below-deck environments[END_REF]. Current shipboard monitoring systems use extensive lengths of cables to connect a massive number of sensors to control units. Wired installation during ships construction results in a high cost and weight. In addition, ships represent a harsh environment wherein wires are vulnerable to moisture, heat and hazardous elements, making maintenance a very difficult task. On the other hand, wireless communication is a serious challenge in such hostile environments [START_REF] Wanuga | Performance evaluation of MIMO OFDM systems in on-ship below-deck environments[END_REF]. These highly reflective environments are characterized by rich electromagnetic scattering, time and angular dispersion, and can exhibit features of a complex reverberant cavity. While typical indoor environments (e.g., residential and office) show RMS delay spreads of 15-100 ns at 2.4 GHz, highly reverberant environments can reach up to 1200 ns [START_REF] Measel | An empirical study on the performance of wireless OFDM communications in highly reverberant environments[END_REF].

With regard to human counting or occupancy detection, different types of sensing solutions are available today, each having its advantages as well as limitations [START_REF] Kouyoumdjieva | Survey of nonimage based approaches for counting people[END_REF]. Solutions vary in the targeting approach (e.g. counting people through doorways or within certain areas) or the sensing modality (visual, thermal, etc.). Image-based solutions, for example, are prone to blind spots, sensitive to environmental condition like lighting, smoke etc., pose privacy issues and are computationally expensive due to the image processing, which is often based on machine learning algorithms. On the other hand, RFbased solutions have a great potential in overcoming many of those drawbacks [START_REF] Kouyoumdjieva | Survey of nonimage based approaches for counting people[END_REF]. Using RF signals such as Wi-Fi or Zigbee has the benefit of exploiting the deployed networks for sensing as well, without additional infrastructure. RF sensing is mainly based on received signal strength indication (RSSI) or channel state information (CSI). This limits the accuracy of such methods in hostile propagation environments, even with the use of probabilistic and machine learning algorithms [START_REF] Kouyoumdjieva | Survey of nonimage based approaches for counting people[END_REF]. Another limitation is that they usually require extensive training, which must be performed in the same targeted environment and for each number of the supported count range.

Another RF-based solution makes use of the ultra wide band (UWB) technology. UWB is a technology that can be used for both communication and sensing. The IEEE 802.15.4a is the international standard defining the UWB physical and MAC layers. This standard is designed to deliver very accurate measurements of the Time of Flight (ToF) of the radio signal, leading to localization with centimeter accuracy. Moreover, it provides simultaneous two-way communications up to 27 Mbps and consumes low energy, making it a perfect fit for battery-powered devices [START_REF] Benedetto | UWB communication systems: a comprehensive overview[END_REF]. In 2018, further security aspects are added to the physical layer, forming the 802.15.4z standard. On the other hand, UWB sensing is based on multi-target detection via radar transceivers [START_REF] Kouyoumdjieva | Survey of nonimage based approaches for counting people[END_REF]. An impulse radio (IR) UWB radar transmits a narrow impulse signal that occupies a wide bandwidth in the frequency domain, with fine resolution and high penetration. The radar then receives and analyses the backscattered signal to infer the number of people and distances within the radar range. While it has the best performace among the RF solutions, its need for a dedicated radar sensor adds to the mentioned limitations [START_REF] Kouyoumdjieva | Survey of nonimage based approaches for counting people[END_REF].

A sensing solution that performs well in certain indoor scenarios, like in a lab or office environment, can not guarantee the same performance in industrial environments. The authors in [START_REF] Choi | People counting based on an IR-UWB radar sensor[END_REF], for example, used the IR UWB radar for people counting in two environments: an indoor room and an elevator with metal structure, and noticed a performance degradation in the elevator compared to the room. As aforementioned, highly reflective environments cause rich multipath scattering. Reflections from targeted humans can easily be buried in the scattered multipath components that can contribute up to 95% of the total power density [START_REF] Poutanen | Angular and shadowing characteristics of dense multipath components in indoor radio channels[END_REF]. Nonetheless, the method proposed in this paper exploits the diffuse multipath scattering in such reflective environment to estimate the number of people indoors. The main difference is that, as the environment becomes more reverberant, our techniques performance improves, while other RF techniques performance deteriorates.

Similar to Room Acoustics [START_REF] Kuttruff | Room acoustics[END_REF], Room Electromagnetics theory views the indoor environment as a lossy cavity, where all the effective losses can be described by the exponentially decaying tail of the power-delay profile (PDP) [START_REF] Andersen | Room electromagnetics[END_REF] shown in Fig. 1. The decay time constant, also known as the reverberation time (RT), is a function of the volume and the absorption area of the room. Several studies were conducted based on this theory, e.g. [START_REF] Steinböck | Experimental validation of the reverberation effect in room electromagnetics[END_REF]- [START_REF] Bamba | Experimental assessment of specific absorption rate using room electromagnetics[END_REF]. They validate the use of the acoustic reverberation models in electromagnetics, and show that the reverberation is confined in the room where the transmitter (Tx) and receiver (Rx) are located, and that the RT is location and antenna independent. The RT has previously been used to calculate the effective absorption coefficient as a single parameter that characterizes a room [START_REF] Andersen | Room electromagnetics[END_REF]. In addition, the mean received diffuse power can be determined everywhere by knowing RT and the volume of the room [START_REF] Steinböck | Experimental validation of the reverberation effect in room electromagnetics[END_REF]. From the assumption of diffuse scattering, the RT allows the determination of the path loss and delay time parameters [START_REF] Andersen | Reverberation and absorption in an aircraft cabin with the impact of passengers[END_REF]. Specific absorption rate (SAR) as a basic restriction for RF human exposure is often found numerically from knowledge of the distribution of complex permittivity in the body, and experimental values are scarce. A measurement- based approach based on the RT is a suitable alternative for the assessment of the whole-body averaged SAR [START_REF] Bamba | Experimental assessment of specific absorption rate using room electromagnetics[END_REF].

Room Electromagnetics relates the RT to the absorption inside the room. The presence of people in the room will alter the total absorption area, and hence, the RT of the room. The inverse relation between the number of people and the RT has been recorded in reverberation chambers using human phantoms [START_REF] Bamba | Assessing whole-body absorption cross section for diffuse exposure from reverberation chamber measurements[END_REF] and inside cars with real humans [START_REF] Bellens | UWB channel analysis within a moving car[END_REF]. In this work, we exploit this relation to detect the presence and number of people inside ship compartments. This should work in the whole room where the reverberating field fills up. Wherever the person is in the room (e.g. behind a pipe), he will perturb the reverberating field, and this will show up in the RT. The PDP is calculated based on the channel impulse response (CIR), a quantity most wideband communication systems measure via e.g. pilot symbols [START_REF] Adireddy | Optimal placement of training for frequency-selective block-fading channels[END_REF]. This gives our solution the capability to be integrated in communication networks such as UWB systems [START_REF] Benedetto | UWB communication systems: a comprehensive overview[END_REF]. To this end, the CIR is measured in a below-deck room and the RT is calculated by means of linear regression. With a changing number of people in the room, the number of people in each case is estimated using the theory of Room Electromagnetics.

In addition, operation onboard ships for example sometimes requires crew members to work alone in isolated rooms. With the lack of reliable communication below-deck, a person falling on the ground can become a serious situation if not detected in time. A complementary feature that detects if a person alone has fallen from a standing position is highly desirable. RF-based fall detection in the literature is mainly based on Doppler radar sensors that scan the environment at rates higher than 1 KHz [START_REF] Cippitelli | Radar and RGB-depth sensors for fall detection: A review[END_REF]. Other solutions that use Wi-Fi signals are also available [START_REF] Wang | RT-fall: A real-time and contactless fall detection system with commodity WiFi devices[END_REF], [START_REF] Wang | Wifall: Device-free fall detection by wireless networks[END_REF]. They use machine learning by extracting features from the CSI that are unique for the fall compared to other normal activities. However, all these studies focus on residential environments, which are far less hostile than industrial ones. Hence, this work explores the possibility of fall detection in harsh environments using Doppler analysis of the CIRs available in wideband communication systems at a much lower rate than radar solutions. The contributions of this paper can then be summarized as: environments based on the CIRs The outline of this paper is as follows. The measurement setup and scenario are described in Section II. Section III describes the methodology to extract the RT, while in Section IV processing of the measurement data is presented. Section V shows the estimation results for the number of people, while the fall detection is discussed in Section VI. Finally, conclusions are drawn in Section VII.

II. MEASUREMENT CONFIGURATION AND SCENARIO

Channel measurements are first performed with the MI-MOSA radio channel sounder [START_REF] Laly | Flexible real-time MIMO channel sounder for multidimensional polarimetric parameter estimation[END_REF]. The multidimensional polarimetric CIR is measured in the spatial and polarization dimensions to investigate the reverberant behavior of the room. It is then used to test the occupancy detection algorithm when the people are standing still as a proof-of-concept. The next step is to verify the algorithm performance with OTS products that provide the CIR. Hence, UWB devices are used for the occupancy detection when the people move in the same room, which is a more realistic scenario. This section includes the details of the measurement configurations and scenario.

A. MIMOSA Channel Sounder

The sounder operates with a carrier frequency of 1.35 GHz and the transmission bandwidth is 80 MHz. It uses dualpolarized patch antenna arrays with horizontal (H) and vertical (V) polarization. For this measurement campaign, 8-element rectangular arrays are used at both Tx and Rx as shown in Fig. 2 (left). Orthogonal frequency division multiplexing is used to encode 8 parallel transmit channels, and by connecting each to a two-port RF switch for the two polarizations, a total of 16×16 channels are measured. The channel sounder is fully parallel: the data from each transmit antenna are simultaneously modulated onto the carriers using interleaved frequency division multiple access. Table I summarizes the technical specifications of MIMOSA [START_REF] Laly | Flexible real-time MIMO channel sounder for multidimensional polarimetric parameter estimation[END_REF].

B. OTS Hardware: UWB Devices

UWB is one of the most promising technologies for realtime location systems (RTLS) indoors due to its accurate positioning capabilities, immunity against multipath fading, and excellent resilience against narrowband interference [START_REF] Benedetto | UWB communication systems: a comprehensive overview[END_REF]. In our experiment, we use a newly developed open source hardware platform based on Decawave's DW1000 UWB transceiver chips with support of both long-range sub-GHz and 2.4 GHz back-end communication between nodes [START_REF] Van Herbruggen | Wi-pos: A lowcost, open source ultra-wideband (uwb) hardware platform with long range sub-ghz backbone[END_REF]. An external omni-directional antenna with vertical polarization is connected to each node. To calculate the distance between 2 nodes based on the ToF, asymmetric two-way ranging protocol [23] is used at a rate of 25 Hz. One of the optional outcomes of this protocol is the CIR estimate of size equal to 1016 samples. Hence, the CIRs are recorded with 900 MHz bandwidth around 4 GHz center frequency using channel 4 of the DW1000 chip [23].

C. Measurement Scenario

The measurement campaign is carried out in the steering gears room of a bulk carrier vessel, shown in Fig. 3. The Tx and Rx of the channel sounder are placed inside the room and the door is kept closed during the measurement. The room has a height of 4 m and a floor area of 150 m 2 , approximately. The Rx antenna array is fixed at 2 m height, pointed towards the corner of the room [START_REF] Tait | Electromagnetic environment characterization of below-deck spaces in ships[END_REF]. The reverberating nature of the room is first investigated by comparing the RT at random locations inside the room. This is done by placing the Tx antenna array at 6 different locations to measure the CIRs. Then, the Tx is fixed and the CIRs are recorded for different numbers of people inside the room, ranging from 0 to 6 persons standing still at random locations. The channel in each case is measured 200 times in static conditions and averaged to reduce measurement noise. Hence, a total of 7×64×4 PDPs are calculated, where the value 64 results from the 8×8 antenna elements, and 4 from the TxRx polarization combinations (VV, HV, VH, HH). The same scenario is repeated using the UWB nodes with the difference that the people are allowed to move inside the room. A setup of 8x8 UWB nodes is used to measure the 64 spatially uncorrelated CIRs 200 times for each number of people. The Rx antennas setup of both measurements is shown in Fig. 2.

III. METHODOLOGY

In order to estimate the number of people inside the room, we first need to extract the RT. In indoor propagation, multiple reflections and scattering lead to an exponential decay of power with a decay constant τ representing the RT. The diffuse scattering model in Fig. 1 can be written as

P (t) = P (0) exp (-t/τ ) ( 1 
)
where t is the time of arrival on the delay axis and P (t) is the corresponding received power. According to Room Electromagnetics, the RT can be expressed as [START_REF] Andersen | Room electromagnetics[END_REF] 

τ = 4V cA n ( 2 
)
where V is the room volume, A n is the total absorption area and c is the velocity of light. In a fixed environment, where the contents of the room do not change except for the number of people inside, the total absorption area can be written as

A n = A 0 + n × ACS (3) 
where A 0 is the absorption area of the room without people, n is the number of people in the room and ACS is the whole-body absorption cross-section area of the human body [START_REF] Bamba | Assessing whole-body absorption cross section for diffuse exposure from reverberation chamber measurements[END_REF]. Each additional person in the room increases the total absorption area by the amount of the ACS of the human body.

The PDP is calculated as

PDP = 1 N N |CIR| 2 (4)
where N is the number of CIRs aligned to the same LOS delay as in [START_REF] Kalyanaraman | Caraokey : Car states sensing via the ultra-wideband keyless infrastructure[END_REF]. Once the RT is extracted from the PDP, it is possible to assess the absorption area A n from (2). Assuming the ACS is known, the number of people n can then be calculated from [START_REF] Mariscotti | On the propagation of wireless signals on board ships[END_REF].

For the extraction of the RT, the slope of the PDP exponential decay needs to be calculated. However, the tail of the PDP is not perfectly linear due to noise, LOS and specular components. A least squares regression line is thus used to fit the PDP over a delay range, and the choice of this range is done automatically. First, to avoid LOS, the starting point is taken as the mean arrival time T m given by

T m = tP (t) P (t) (5) 
Second, the noise level is calculated by averaging the power values at large delays from the PDP where no multipath components above the noise are expected. Finally, in order to avoid the noise floor, the ending point of the delay range is taken when the power level reaches 5 dB above the calculated noise level.

IV. EXPERIMENTAL RESULTS AND PREPROCESSING

A. RT Extraction

In order to investigate the reverberating nature of the environment, the RT is calculated at 6 different locations in case of an empty room. The PDP per location is measured using the channel sounder and spatially averaged over all the antenna elements before extracting the RT, to remove smallscale fading. Fig. 4 shows the PDP at one location for different polarizations. The figure shows the identical diffuse power level of the co-polar and cross-polar channels, suggesting that the polarization states in the room are uniformly distributed (XPD of one), as is expected in a reverberating environment. To further validate the assumption of reverberating fields, the RT is calculated at 6 random locations in the room. Fig. 5 shows the RT at each location for different polarizations. It is clear that the RT value is independent of the location as well as the polarization of the antennas, with a relative standard deviation of 0.99%. This verifies the reverberating nature of the room, in accordance with [START_REF] Bamba | Experimental assessment of specific absorption rate using room electromagnetics[END_REF].

With the Tx fixed, the RT is calculated when the room is occupied by people, starting from 1 up to 6 persons. Fig. 6 shows the RT versus the number of people for different shows that the RT for VV is slightly lower than the average of all polarizations, suggesting that the human body is more prone to absorbing vertically polarized waves. Nevertheless, the RT values for different polarizations are aggregated to form a larger sample size to be used for the occupancy detection in the next section, as they are similar enough with relative standard deviation of 0.61%.

B. Absorption Area and Calibration

Since the average ACS of the people inside the room is assumed to be known, it would be of interest to first calculate the ACS based on our measurements and compare it to prior studies. From (3), the ACS is the slope of the linear regression of different absorption areas A n related to different numbers of people (n = 0, 1, .., 6). The calculation of A n is given in (2) by averaging the PDPs of all polarizations before extracting the RT. This gives an ACS of 1.3 m 2 based on our experiment. The whole-body ACS was measured in a reverberation chamber in [START_REF] Bamba | Assessing whole-body absorption cross section for diffuse exposure from reverberation chamber measurements[END_REF] and was found to be 11.01-1.11 m 2 for a 1.73 m and 63 kg person. A reason for this small deviation is the complex structure of the room in our scenario, making the calculation of the exact volume a difficult task. Moreover, the value from our experiment is the average ACS of all 6 persons. It is thus expected to be different from the one reported in [START_REF] Bamba | Assessing whole-body absorption cross section for diffuse exposure from reverberation chamber measurements[END_REF] of only one human subject.

In order not to require the exact volume of the room, the parameters ACS and A 0 used for estimation based on (2) and ( 3) can be replaced by the scaled versions ACS/V and A 0 /V , respectively. This requires a measurement-based calibration of these ratios to be able to estimate the number of people from the RT with optimal performance. To that end, the measurement data are randomly split into two sets: a calibration set of 20% of the data for calculating the ACS/V and A 0 /V , and a testing set of 80% to actually estimate the number of people based on the calibrated values. Table II summaries the calculated calibration values from both the full data set and the calibration set of the channel sounding. The small difference between the values of the two sets indicates how well the estimation performance is expected to be.

V. OCCUPANCY DETECTION ANALYSIS AND DISCUSSION

In this section, the number of people inside the room is estimated. The performance is measured in terms of the estimation error e defined as the absolute difference between the estimate and the actual number of people

e = |n -n| (6) 

A. Estimation Results via Channel Sounding

Table II lists the calibrated ratios to be used for estimation, while A n /V is calculated based on the measured RT from (2) for each case. From (3), the estimate number of people is obtained as

n = A n /V -A 0 /V ACS/V (7) 
where a simple round operator [.] is used to get the integer estimate. The estimation performance depends on the RT calculation as aforementioned. For a more accurate RT calculation, averaging of PDPs from several spatial links is used beforehand. Since the antenna elements capture uncorrelated CIRs of the same environment, averaging PDPs of the same number of people will smooth the decaying tail. This results in a more accurate regression line for the RT calculation. Fig. 8 presents the estimation error histogram for m number of averaged PDPs from the testing set. For only a single spatial link (m=1), the estimation error can reach up to 6 persons with an estimation success rate of only 21.4%. As m increases, the estimation performance improves in terms of higher success rate and smaller number of persons as estimation error. With m=16, the success rate is 88% with only a 1-person error of 12%. Fig. 7 shows the confusion matrix for m=16. It gives the details of the estimation percentage for each case of the observed number of people. This clearly shows the good performance of the estimation algorithm, where all the cases have a success rate above 81%, and all the estimation error larger than 1-person is 0%. It is worth noting that while the persons inside the room may not be identically exposed to the propagating waves, nor having the same physical surface area, this method assumes they are. This is clear from (3), which directly influences the estimation performance. By increasing the number of antennas and the spatial averaging size, the accuracy of the RT calculation, and hence, the overall estimation performance can be further improved.

B. Estimation Results via OTS UWB

The MIMOSA channel sounder is a dedicated device for measuring the CIR with high accuracy and precision. In order to test the feasibility of our method, we use OTS products of a radio access technology that is part of available communication networks. UWB nodes, usually deployed for RTLS and communication networks, are used to measure the CIRs in the same scenario. Fig. 2 (right) shows the UWB nodes array used to have the same 8×8 MIMO setup. The Rx and Tx arrays are placed at the same locations as those of the channel sounder. The 6 people are again introduced into the room one by one with the difference that they are allowed to move freely while capturing the CIRs. Hence, the 200 CIRs measured per number or people can be considered uncorrelated, and consequently, PDPs averaging over time can 4 shows that the PDP in our scenario spans almost 2.5 us from the LOS. Thus, only the first 40% of the PDP following the LOS is used for calculating the regression line in the case of UWB. This is expected to degrade the accuracy of the RT calculation. Fig. 9 shows the estimation error histogram for different sizes of only spatial averaging. Although a larger averaging size results in a higher success rate, the performance is lower compared to the channel sounder. With m=16, the success rate is about 53% with up to 3-person errors in the case of UWB. In order to reach the channel sounding performance of 88% success rate and only 1-person error, the spatial averaging size should increase to 64, as shown in Fig. 9.

The confusion matrix for the estimation percentage with m=64 is shown in Fig. 10. It again shows the good performance of the algorithm using UWB, where all the errors above 1-person are 0%.

In addition to spatial averaging, time averaging of PDPs can be used to enhance the estimation performance as aforementioned. Fig. 11 shows the estimation error histogram for spatial averaging size m=32 and different time averaging sizes w. With only w=8, the same performance of the 64 spatial averaging can be achieved with less number of antennas (m=32). Increasing the time averaging size results in higher success rate, reaching 95% with w=40 as shown in Fig. 11. While it is easier to reach higher time averaging size compared to having more antennas for spatial averaging, the performance enhancement of time averaging highly depends Fig. 12. Measurement setup for fall detection via MIMOSA channel sounder on the scenario. In a stationary environment, where movement is limited, having uncorrelated CIRs over time is difficult. Thus, spatial averaging is considered more robust compared to time averaging, even though it requires more antennas.

VI. FALL DETECTION IN REVERBERANT ENVIRONMENTS

Knowledge of the location of people on ships has a wide range of applications in commercial solutions and during the duty of state officials. In the previous section, we showed that the number of people inside harsh reverberant environments like ship compartments can be accurately estimated using CIRs available in many communication systems. A highly critical situation is when a crew member working alone in isolated areas falls on the ground. Therefore, we investigate the detection of a fall event in such environments using the same measured CIRs. Most radar-based fall detection studies focus on residential environments for monitoring elderly people in their daily activities and promptly detect fall events, enabling timely and effective intervention [START_REF] Cippitelli | Radar and RGB-depth sensors for fall detection: A review[END_REF]. In these environments, it is much easier to extract information from the phase or Doppler domain for velocity or micro-Doppler signature analysis [START_REF] Cippitelli | Radar and RGB-depth sensors for fall detection: A review[END_REF]. An example of how the environment can impact the detection performance can be found in [START_REF] Wang | Wifall: Device-free fall detection by wireless networks[END_REF], where the fall detection precision of a one-class support-vector machine classifier drops from 96% in an anechoic chamber, to 83% in a dormitory room. In this section, we investigate the possibility of detecting a fall from a standing position in a reverberant environment using CIRs of communication systems, which are measured at a much lower rate compared to radar sensors.

A. Measurement and Processing

MIMOSA channel sounder is used in the same below-deck chamber as shown in Fig. 12. The Tx is fixed to face the Rx in a LOS condition, and a mattress is located in the Fig. 13. Time evolution of Doppler-power profiles in dB for a fall event. The blue region indicates the Doppler components resulting from the fall middle so that the fall is perpendicular to the LOS. This represents a worst-case scenario since the fall movement is in the plane orthogonal to the LOS direction, reducing the effective Doppler shift. The impact of the fall orientation has been studied in many papers. Doppler signature is sensitive to the direction of motion defined by the aspect angle, which is the angle between target motion trajectory and the radial LOS path between the radar and the target. The most distinctive signatures appear when target is moving towards or away from the radar, leading to the maximum Doppler spread. As the aspect angle increases, the Doppler effect also decreases. When the aspect angle approaches 90 o , Doppler signal becomes strongly attenuated. It is reported that the fall detection performance can drop approximately to below 50% for target directions with angles close to 90 o [START_REF] Erol | Effects of range spread and aspect angle on radar fall detection[END_REF]. This is in case of non-reverberating environments, where diffuse scattering is not dominant and the Doppler paths can be distinguished.

The experiment consists of a person walking, sitting (squatting down) and falling on the mattress. Each activity is repeated 3 times of 5 s measurement duration. Eight dualpolarized antenna elements at the Tx and one at the Rx are used to measure the CIRs while the person is doing the activity, thus making use of the parallel transmission to have a larger sample size. Motion in the environment can be detected using the Doppler-power profile (DPP); faster movements result in larger Doppler spreads. A person can fall to the ground at 4 m/s, with the head impact velocity exceeding 6 m/s from standing [START_REF] Hajiaghamemar | Measurement of head impact due to standing fall in adults using anthropomorphic test dummies[END_REF]. This corresponds to around 18 Hz of Doppler shift. Thus, CIRs are captured at a 64 Hz rate, providing Doppler frequencies up to 32 Hz, according to the Nyquist theorem. Each DPP is calculated from 64 consecutive CIRs averaged over the whole bandwidth per polarization per antenna. Fig. 13 to the vibration caused by the ship's engine. Fig. 14 shows the RMS Doppler spread calculated from the DPP over the 5 s duration. DPPs per event are first averaged over all antennas and polarizations to have 3 records per activity. To calculate the RMS Doppler spread, the DPPs are clipped to remove components above 20 Hz unrelated to the fall event. A fall can be detected when a peak in the Doppler spread is captured, which marks the increasing and then decreasing velocity of the fall. This differentiates the fall from other activities like walking and sitting. Fig. 14 clearly shows that the Doppler spread for the fall has higher peak values compared to the other normal activities.

B. Feature Extraction and Detection Results

After verifying that a fall can be differentiated by the Doppler spread pattern, a classifier is needed to detect a fall event based on certain features. We choose a Naive Bayes classifier with only one feature for simplicity [START_REF] Zhang | The optimality of naive bayes[END_REF]. The feature is extracted from each Doppler spread pattern of 5 s duration. These patterns are calculated from the DPP per antenna, per polarization, and per event resulting in a total of 48 patterns per class of activity. Several features are investigated, e.g., the mean, peak, peak-to-mean ratio, maximum gradient, and variance of the Doppler spread patterns. It is found that the variance of the Doppler spread over the 5 s duration gives the best separation among the 3 classes, namely fall, walk and sit shown in Fig. 15.

The sample data are split into a training set for the classifier model development and a testing set for the model validation. Since the data size is limited to 48 samples per class, the k-fold cross-validation method is used with k=3. The data are split into 3 folds where each fold is used as the testing set while the others as the training set. Finally, the classification results are averaged over the 3 splits. Even though we have 3 classes, our main aim is to detect only the fall event. Thus, performance metrics for binary classification (positive/negative) are used. These include detection accuracy (ratio of true to total predictions), precision (ratio of true positive to total positive predictions) and sensitivity (ratio of true positive predictions to total positive observations). Fig. 16 shows the confusion matrix for the class predictions as percentage of the observations, averaged for k=3 folds. It shows that 100% of the fall events are detected, and only 4.17% of the sit events are mispredicted as falling. It also shows that this classifier can not differentiate between sit and walk events, since 62.5% of the sit events are mispredicted as walking.

Table III lists the performance metrics for the fall detection. With k=3 folds, one third of the data are used for validation, while 66% (32 samples per class) are for training. This gives a very good performance as the metrics consisting of accuracy, precision and sensitivity are all above 96%. The table also includes performance metrics when only 17% of the data (8 samples per class) are used for training. While the sensitivity is still 100%, a small degradation in accuracy and precision can be noticed. Nevertheless, all metrics are above 94%, which is a good performance for a single feature classifier with only 8 training samples per class.

VII. CONCLUSION

Industrial environments are characterized by high time and angular dispersion due to scattering from complex metallic structures. Such harsh environments experience reverberation behaviour similar to cavities. Based on the theory of Room Electromagnetics, this paper explores the feasibility of estimating the number of people inside a reverberant ship compartment by means of only measuring the reverberation time. We observe that the reverberation time is the same, Fig. 16. Confusion matrix for the classification of the testing set with k = 3 folds, with prediction types indicated independent of the antenna or the location used for measurement inside the room. Our findings verify that there is an inverse relation between the number of people inside the room and the reverberation time. More people absorb more energy, decreasing the reverberation time. A calibration of the absorption parameters of the empty room and the average human body is needed before performing the estimation, which is done via measurements. While the estimation performance is very low in case of a single antenna, it can be enhanced via spatial averaging from multiple antennas. In addition, time-averaging can be used to further enhance the estimation performance when the measured channel is non-stationary due to the movement of people. The estimation algorithm depends on the channel impulse response (CIR), a metric that can be found in wideband communication systems. With OTS UWB nodes that are originally used for localization and communication, we estimated the number of people ranging from 0 to 6 persons with a success rate of 95% and only 1-person error. Moreover, the CIRs can be used to detect when a person alone has fallen to the ground via Doppler analysis. Doppler frequencies up to 20 Hz are used, so the radio channel can be sampled at only 40 Hz rate. While most studies on fall detection use micro-Doppler signatures extracted with sampling rates above 1 kHz, they only focus on residential environments where such signatures can be easily detected. In a reverberant scenario, we found that the RMS Doppler spread has a peak that differentiates a fall from sitting or walking. A simple Bayes classifier is used for fall detection, with the variance of the Doppler spread as its feature. Using 3-fold cross-validation, the fall is detected with 98.6% accuracy, 96% precision, and 100% sensitivity. Future work will include testing the developed algorithms in different scenarios to characterize the performance dependency on the environment as well as the number of people. For his fundamental research he is currently the coordinator of several research projects (SBO, FWO, GOA, etc.) and has over 180 publications in international journals or in the proceedings of international conferences. For his applied research, he collaborates with (Flemish) industry partners to transfer research results to industrial applications as well as to solve challenging industrial research problems. Prof. De Poorter is also co-founder of the lopos spin-off company (https://lopos.be) which offers privacy-aware UWB wearables for industrial safety. 
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 1 Fig. 1. Theoretical model of propagation including a LOS and an exponential tail with time constant τ
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 2 Fig. 2. The rectangular antenna array of the channel sounder (left) and the equivalent UWB nodes array (right)
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 3 Fig. 3. Below-deck ship compartment with rectangular antenna arrays of the channel sounderTABLE I MIMOSA CHANNEL SOUNDER SPECIFICATIONS Parameter Setting center frequency 1.35 GHz bandwidth 80 MHz number of Tx and Rx antennas 8 Tx and Rx polarization H/V number of OFDM subcarriers 6560 OFDM symbol duration T S 81.92 µs cyclic prefix duration T CP 0 ≤ T CP ≤ T S 16×16 channel acquisition time 2 (T S + T CP ) ≤ 327.68 µs
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 4 Fig. 4. PDP and linear regression for different polarizations in case of an empty room
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 5 Fig. 5. RT at 6 locations for different TxRx polarization combinations in case of an empty room
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 6 Fig. 6. RT versus the number of people inside the room for different polarizations
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 7 Fig. 7. Confusion matrix for the estimation percentage of the number of people in the room with spatial averaging m=16 via channel sounding

Fig. 8 .Fig. 9 .

 89 Fig. 8. Estimation error (e = 0-6 persons) histogram of the number of people in the room for different spatial averaging sizes via channel sounding
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 1011 Fig. 10. Confusion matrix for the estimation percentage of the number of people in the room with spatial averaging m=64 via UWB
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 14 Fig. 14. RMS Doppler spread for fall, walk and sit activities, each performed 3 times
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 15 Fig. 15. Doppler spread variance over the 5 s duration for each class of activity, used as a classification feature with good separation
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