
HAL Id: hal-03344314
https://hal.science/hal-03344314v1

Submitted on 14 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Discrete Predictor-Based Controllers for
Networked Control Systems with Time-varying Delays:

Application to A Visual Servo Inverted Pendulum
System

Yang Deng, Vincent Léchappé, Changda Zhang, Emmanuel Moulay, Dajun
Du, Franck Plestan, Qing-Long Han

To cite this version:
Yang Deng, Vincent Léchappé, Changda Zhang, Emmanuel Moulay, Dajun Du, et al.. Designing
Discrete Predictor-Based Controllers for Networked Control Systems with Time-varying Delays: Ap-
plication to A Visual Servo Inverted Pendulum System. IEEE/CAA Journal of Automatica Sinica,
2022, 9 (10), pp.1763-1777. �10.1109/JAS.2021.1004249�. �hal-03344314�

https://hal.science/hal-03344314v1
https://hal.archives-ouvertes.fr


1

Designing discrete predictor-based controllers for
networked control systems with time-varying
delays: application to a visual servo inverted

pendulum system
Yang Deng, Vincent Léchappé, Changda Zhang, Emmanuel Moulay, Dajun Du, Franck Plestan, Member, IEEE,

and Qing-Long Han, Fellow, IEEE

Abstract—A discrete predictor-based control method is de-
veloped for a class of linear time-invariant networked control
systems with a sensor-to-controller time-varying delay and a
controller-to-actuator uncertain constant delay, which can be
potentially applied to vision-based control systems. The control
scheme is composed of a state prediction and a discrete predictor-
based controller. The state prediction is used to compensate for
the effect of the sensor-to-controller delay, and the system can be
stabilized by the discrete predictor-based controller. Moreover, it
is shown that the control scheme is also robust with respect to
slight message rejections. Finally, the main theoretical results are
illustrated by simulation results and experimental results based
on a networked visual servo inverted pendulum system.

Index Terms—Networked control system, vision-based control,
time-varying delay, inverted pendulum system, discrete predictor-
based control.

I. INTRODUCTION

A. Motivations

V ISION-BASED sensors are widely used in various con-
trol applications (e.g. self-driving cars [1], [2], robots

[3], UAVs [4], and inverted pendulums [5]–[7]) due to their
low cost (compared with LIDAR [2, pp.176]) and the rapid
progress of image-processing-based sensing techniques (e.g.
indoor navigation [8], collision avoidance [9]). In such a
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control system, state information can be resolved from the
sampled images captured by a camera [3, pp.132] by using
an image-processing algorithm. After resolution, the state
information is available for the controller design, and it is
transmitted to the controller through a wired or wireless
sensor-to-controller communication channel that is subject to
a small uncertain time-varying transmission delay of several
milliseconds [10, pp.147]. After receiving state information,
the controller updates the control signal and sends it to the
actuator with the help of the controller-to-actuator channel.
Finally, the updated control input is applied to the controlled
plant. Based on the previous statements, the whole control
process of such a system is subject to the following time-
delays:

• the exposure time of the camera (constant);
• the computational delay introduced by the image-

processing algorithm (long, time-varying);
• the transmission latency induced from the sensor-to-

controller communication channel (small, time-varying);
• the computation time of the control algorithm (small,

constant);
• the transmission latency induced from the controller-to-

actuator communication channel (small, time-varying);
• the physical dead time of the actuator (constant).

Note that the time-delays introduced by data communication
are time-varying because of network congestion, the communi-
cation protocol, and the real-time intensity of the communica-
tion network. The computational time of the image-processing
algorithm is also time-varying since it is usually affected by the
number of feature points in each frame, the number of image
edges in each frame, and the real-time illumination intensity.

Based on the discussions above, the vision-based control
system can be modeled as a networked control system (NCS)
[11] with sensor-to-controller time-varying delay and the
controller-to-actuator uncertain constant delay1. Thus, due
to its high potential for application (e.g. an indoor mobile
robot, or a UAV in weak GPS environment [4]), it is important
to develop new control strategies to stabilize the system.

1The controller-to-actuator delay is the sum of a constant delay (dead
time of the actuator) and a small time-varying delay (controller-to-actuator
data transmission latency). Therefore, it can be equivalently modeled as an
uncertain constant delay.
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B. Interests of the discrete-time method

Some discussions are given in this subsection in order to
explain the reason why the discrete-time control method is
adopted. The main challenges for the vision-based control
systems mentioned in Subsection I-A are given in the sequel:
• Problem 1: The image-processing algorithm needs a

long computational time (compared with the transmission
delays). As a result, a long sensor-to-controller time-
varying delay is introduced [6], [12];

• Problem 2: The vision-based control system can only run
at a low sampling rate. Indeed, the sampling rate of such a
system depends on the frame rate of the camera and the
computational time of the image-processing algorithm.
On the one hand, if the frame rate is high, then the quality
of the captured images will be lower (i.e. low-contrast
[5, pp.8138]), and it may introduce more measurement
errors. On the other hand, a high sampling rate will
make unprocessed images accumulate if no distributed
computation is applied [13, pp.554], and this problem
will make the control task more complicated.

After discussing the main issues of the vision-based control
systems modeled as an NCS, three main control solution to
NCSs [14], [15] are recalled:
• Discrete-time method [16]–[18]: This method turns the

original NCS into a discrete-time extended system, where
the control law is designed for the extended system in the
discrete-time domain;

• Impulsive system method [19]: Using this method, an
NCS is considered as a hybrid system (i.e. continuous-
time system with state jumps), and the discontinuous
Lyapunov functional is used for the stability analysis;

• Time-delay method [20]–[22]: This method treats the
effects of sampling & ZOH (zero-order hold) as a time-
varying delay, where a Lyapunov-Krasovskii stability
analysis is provided.

To solve Problem 1, predictor-based controllers designed
by using the discrete-time method [18] and the time-delay
method [23] are able to deal with long time-delays, whereas
the impulsive system method is not effective.

Next, the arguments given in [15, pp.61] explain that the
discrete-time method is less conservative in the maximum al-
lowable transmission interval (MATI) for linear time-invariant
(LTI) networked control systems, which indicates that this
method can stabilize the LTI networked control systems with a
lower sampling rate. Thus, it can better meet the requirement
of Problem 2.

In conclusion, the discrete-time method can solve Prob-
lems 1 and 2 together, and is suitable for LTI vision-based
control systems. Therefore, the main objective of this paper is
to develop a discrete predictor-based control technique for a
class of LTI networked control systems, and then implement
the control algorithm on a real vision-based control system.

C. Contributions and organizations

This paper proposes a control solution to stabilize NCSs
with sensor-to-controller time-varying delay and controller-
to-actuator uncertain constant delay, which can be applied to

vision-based control systems. The controller design is based
on the discrete-time extended system representation [16]–[18],
[24] in order to deal with long time-delays and a long sampling
period. The message rejection (packet disordering) is also
considered. The main theoretical contribution of this paper is
threefold:

• compared with work [18], where the network-induced
delay is a constant, this paper considers that the network-
induced delay is time-varying;

• in [24], discrete predictor-based control of the sampled-
data system with a single uncertain constant input-delay is
developed, but the explicit upper bound on the allowable
delay uncertainty is not given; this bound is calculated in
detail by this paper;

• the effects of the time-varying delays are analyzed in
[17], [25], but they did not consider the effect of message
rejection (packet disordering) caused by the time-varying
delays, whereas the proposed method deals with the
message rejection phenomenon in the sensor-to-controller
channel.

Furthermore, the proposed control scheme is implemented
on the networked inverted pendulum visual servo system
(NIPVSS) introduced in [6], [7], the experimental results are
given in Section VII.

In conclusion, this paper provides a control scheme for
vision-based control systems (which can be modeled as a class
of LTI networked control systems with time-varying delays),
and the proposed method has the following main features:

• The state prediction technique is used to compensate for
the effects of sensor-to-controller time-varying delay, and
also deals with slight message rejection.

• The discrete predictor-based controller is designed to
stabilize the LTI plant which is subject to controller-
to-actuator uncertain constant delay. The benefit of this
control algorithm is lower conservativeness in the sense
of MATI, as stated in Subsection I-B.

• The experimental validation of the proposed control tech-
nique on the NIPVSS test bench, which illustrates that the
proposed method is able and suitable to cope with the
real visual servo control problem. Moreover, based on
the experimental results presented in Subsection VII-C,
it is observed that the proposed method can provide
better control performance than the non-predictive control
method.

The rest of the paper is organized as follows. The prob-
lem statement is given in Section II in order to explain
modeling and some necessary assumptions. The extended
system representation, the state prediction technique, and the
discrete predictor-based controller are introduced in Section
III. The main theoretical results for the unperturbed plant
are presented in Section IV. Then the theoretical results are
extended to the case with external disturbances in Section V,
and they are illustrated by simulation results of Section VI
and experimental results provided in Section VII. Finally, a
conclusion is presented in Section VIII.
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Fig. 1: Timing diagram of the control scheme with time-driven
sensor, time-driven controller and event-driven actuator.

II. PROBLEM STATEMENT

A. Notations

In this paper, the following notations are used. The symbols
N and N+ represent the sets of non-negative integers and
strictly positive integers. The set of all real matrices with m
rows and n columns reads as Rm×n. The identity matrix of size
m×m writes as Im. The superscript “T ” denotes the matrix
transposition. The symbol ‖ · ‖ gives the Euclidean norm of a
vector and the 2-norm of a matrix, respectively. Finally, the
maximum and minimum eigenvalues of a symmetric matrix
read as λmax(·) and λmin(·).

B. System modeling

In this subsection, the modeling of the LTI networked
control system for the LTI vision-based control system (as
described in Subsection I-A) is introduced. Consider the
following LTI plant

ẋ(t) = Ax(t)+Bu(t), t ≥ 0 (1)

controlled through a network with A ∈ Rn×n and B ∈ Rn×m.
The control input is piecewise-constant such that

u(t) = uk, t ∈ [tk, tk+1), k ∈N
u(t) = 0, t < t0.

(2)

where tk is the instant that the kth control input uk is applied
to the plant. In this work, the sensor and the controller have
time-driven behavior with a sampling period ∆ > 0, which
means that they update the state measurement and the control
input each ∆ seconds and send them out. The actuator is event-
driven, which applies the new control input to the plant as soon
as it receives the updated control signal. Fig. 1 is the timing
diagram of this method, and the sequence {sk}k∈N represents
the sampling instants of the sensor and the updating instants
of the controller. The sequence {ξk}k∈N describes the arriving
instants (at the controller) of the state measurement x(sk), and
{tk}k∈N denotes the instants that a new control input uk is
applied to the plant, as shown in (2). The state information of
the controlled plant is periodically measured (with sampling
period ∆ > 0) and sent to the controller through the sensor-
to-controller network. Namely, at instants sk = k∆, k ∈ N,

the sensor takes action and sends the state measurement to
the controller. According to Fig. 1, one defines the sensor-
to-controller time-varying delay as τsc(k) , ξk− sk, and it is
supposed to be bounded by:

0 < τsc(k)≤ N1∆ (3)

with known N1 ∈N+. Due to the discussions above and Fig. 1,
the controller is time-driven, so it also updates the new control
input at instants sk = k∆, k ∈N. Therefore, the controller-to-
actuator delay is defined as τca(k) = tk−sk, and is modeled as
an uncertain constant delay (based on the discussions given in
Subsection I-A) such that

τca(k) = τ̄ca +∆τ(k) (4)

where the nominal controller-to-actuator constant delay τ̄ca is
known and bounded by

(N2−1)∆ < τ̄ca ≤ N2∆ (5)

with known N2 ∈ N+, and the delay uncertainty is bounded
by

0 < ∆τ(k)≤ ∆. (6)

Remark 1. According to the discussions of Subsection I-A,
the delay uncertainty ∆τ(k) of a visual feedback system
arises from the time-varying data communication latency (e.g.
transmission delay through the controller-to-actuator com-
munication network), and this kind of time-delay is usually
smaller than 10ms [10, pp.147]. However, the sampling period
∆ of a real visual feedback system is always in the level of
10−40ms (e.g. 11.5ms in [5], 12.5−25ms in [13], 40ms in
[3]), which is greater than the delay uncertainty. Thus, (6) is
not a strong constraint for control applications.

Fig. 1 shows that the controller is time-driven, but not
event-driven. The main benefit of the time-driven controller
is the compensation of the sensor-to-controller time-varying
delay with the state prediction technique provided in Section
III, without solving the Belleman equation [17] nor checking
large numbers of LMIs (linear matrix inequalities) [16].

Assumption 1. Define Ā = eA∆, B̄1 =
∫ N2∆−τ̄ca

0 eAθ dθB
and B̄2 =

∫
∆

N2∆−τ̄ca
eAθ dθB. It is assumed that the pair

( Ā, Ā−N2+1B̄1 + Ā−N2 B̄2) is controllable.

Assumption 1 is a sufficient condition for controller design
based on the discrete-time method, and some similar assump-
tions are given in [18], [26]. In this assumption, the nominal
controller-to-actuator delay is utilized since the controller
design method requires the nominal delay value [24]. The
effect of the delay uncertainty is analyzed in Subsection III-B.

Next, it is assumed that the sensor and the controller
are synchronized so that τsc(k) can be measured when
the controller receives a new state measurement, this
assumption is also made in [22], [23], [27]. Note that clock
synchronization can be achieved in practice by using the
time-stamp technique based on the IEEE 1588 protocol [28].



4

Remark 2. The Zeno phenomenon never occurs since the
updates of the state measurement and the control law are
periodic.

In [22], it is assumed that the older control inputs and the
older state measurements cannot arrive at the destination later
than a newer one. In other words, the sequences {tk}k∈N and
{ξk}k∈N are strictly increasing:

t0 < t1 < · · ·< tk < tk+1 < · · ·
ξ0 < ξ1 < · · ·< ξk < ξk+1 < · · ·

(7)

in order to avoid message rejection (message disordering). In
this paper, only a weaker assumption is required as below.

Assumption 2. The sequence {tk}k∈N is supposed to be
strictly increasing.

Assumption 2 can also be ensured by (4), (5), and (6) due to
the fact that τca(k−1)< τca(k)+∆ is always ensured by these
inequalities. This assumption shows that the proposed method
deals with slight message rejection in the sensor-to-controller
channel.

III. EXTENDED SYSTEM REPRESENTATION AND DISCRETE
PREDICTOR-BASED CONTROLLER

In this section, the extended system representation and
the discrete predictor-based controller are introduced. Subsec-
tion III-A presents the control scheme with a controller-to-
actuator constant delay. Subsection III-B considers the case
when the controller-to-actuator delay is an uncertain constant.

A. Controller-to-actuator constant delay case

This subsection introduces the discrete predictor-based con-
troller [16], [18]. Firstly, one considers the simple case, i.e.
there is no delay uncertainty in the controller-to-actuator
channel, and the controller-to-actuator delay is constant, i.e.
τca(k) = τ̄ca, ∆τ(k) = 0. Therefore, the state-translation equa-
tion [29, Chapter 2.3] between x(sk) and x(sk+1) reads as

x(sk+1) =eA∆x(sk)+
∫ tk−N2+1

sk

eA(sk+1−θ)dθBuk−N2

+
∫ sk+1

tk−N2+1

eA(sk+1−θ)dθBuk−N2+1

(8)

with N2 defined in (5). Under Assumption 1, (8) can be equally
considered as the following discrete-time system:

x(sk+1) = Āx(sk)+ B̄1uk−N2+1 + B̄2uk−N2 . (9)

Assumption 1 ensures that the discrete-time system (9) is
controllable [26, Theorem 1]. Define the extended state zk =

[
xT (sk) uT

k · · · uT
k−N2+1 uT

k−N2
· · · uT

k−N1−N2−1
]T

.
Using (9), it leads to

zk+1 =



Ā 0 · · · B̄1 B̄2 · · · 0
0 0 · · · 0 0 · · · 0
0 Im · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 · · · Im 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 · · · · · · 0 Im 0


︸ ︷︷ ︸

A

zk +



0
Im
0
...
...
...
0


︸ ︷︷ ︸

B

uk+1.

(10)
The controllability of (9) and the controllability of (10) are
equivalent since (9) and (10) are two different descriptions
of the same system, see [18, Remark 5]. Therefore, the
controllability of the extended system (10) can be guaranteed
if Assumption 1 is satisfied. It is the possible to find a state–
feedback control law

uk+1 = K zk (11)

that makes the matrix A +BK Schur, i.e. the closed-loop
poles of A +BK are all within the unit circle of the complex
plane. Thanks to the property of the Schur matrix, for all ε >
0, there exists a symmetric positive definite matrix P with
appropriate dimensions such that

(A +BK )T P(A +BK )−P =−εI. (12)

Moreover, by applying the recursive analysis given in [31,
pp.51-52], the existence and uniqueness of the solution to the
continuous-time plant (1) under the digital feedback control
law (11) can be ensured. To calculate the control law (11) at
instant t = sk+1, one needs the knowledge of x(sk) which may
not arrive at the controller before t = sk+1. To overcome this
problem, one can use the latest available state measurement
x(sk−d) (with 1 ≤ d ≤ N1) and the control history to predict
the state x(sk) by iterating (9) for d times:

x̂(sk−d+1) = Āx(sk−d)+ B̄1uk−N2−d+1 + B̄2uk−N2−d ,

x̂(sk−d+2) = Āx̂(sk−d+1)+ B̄1uk−N2−d+2 + B̄2uk−N2−d+1,

...
...

x̂(sk−1) = Āx̂(sk−2)+ B̄1uk−N2−1 + B̄2uk−N2−2,

x̂(sk) = Āx̂(sk−1)+ B̄1uk−N2 + B̄2uk−N2−1.

As stated after Assumption 1, the value of d can be determined
by using the clock synchronization technique [28] in practice.
Then, the equations above can provide the state estimation
x̂(sk) as follows:

x̂(sk) =Ādx(sk−d)+ Ād−1B̄2uk−N2−d + B̄1uk−N2

+
d−1

∑
i=1

(ĀiB̄1 + Āi−1B̄2)uk−N2−i.
(13)

Finally, the control law can be calculated by using state–
feedback control (11) and state prediction (13).

Remark 3. Since the controller-to-actuator delay is assumed
to be constant in this subsection, (13) is a perfect prediction
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Fig. 2: Timing diagram of the sensor-to-controller channel with
message rejections.

such that x̂(sk) = x(sk). If the controller-to-actuator delay is
uncertain, then there exists an estimation error e(sk) = x(sk)−
x̂(sk). The effects of the estimation error will be analyzed in
Subsection III-B.

Remark 4. Consider the case when the time-delays are large
(i.e. N1, N2 are large), but the sampling period ∆ is small.
The sizes of the matrices A , B are large, and it may lead
to numerical issues when using the Matlab pole assignment
functions place and acker. In this case, one can use the
alternative method provided in [18, Section 6] to compute the
control law uk+1:
Step 1. Redefine the auxiliary state zk as:

zk = x̂k +
N2−1

∑
j=0

Ā− j−1B̄1uk−N2+ j+1 +
N2

∑
j=0

Ā− j−1B̄2uk−N2+ j,

(14)
with Ā, B̄1, and B̄2 defined in Assumption 1.
Step 2. Define B̄ = Ā−N2 B̄1 + Ā−N2−1B̄2. Then compute the
feedback gain Kz such that the matrix Ā+ B̄Kz is Schur stable.
Therefore, the system plant can be stabilized by using the
alternative control law

uk+1 = Kzzk. (15)

Note that the dimension of the alternative control law (14)-(15)
is equivalent to the dimension of the original system, which is
smaller than the extended one. More detailed analysis about
these two methods are available in [18, Remarks 8,9,10].

The state prediction technique (13) is able to deal with
slight message rejection [16, pp.1576] (packet reordering [32,
pp.1775]) in the sensor-to-controller network. In the communi-
cation channel, if an older data packet arrives at its destination
after a newer packet, then this older one is discarded in order to
ensure that the newest data is processed. This phenomenon is
presented in Fig. 2, where the measurements x(sk) and x(sk+1)
are neglected due to message rejection since they arrive at the
controller after the measurement x(sk+2).

In order to deal with the message rejection shown by Fig. 2,
at t = sk+1 and t = sk+2, one uses the technique (13) to predict
the states x̂(sk) (with the case d = 1) and x̂(sk+1) (with the
case d = 2), after which the control inputs uk+1 and uk+2
are successfully calculated even though the message rejection
occurs.

Lemma 1. At least one measurement x(sk−d) with 1≤ d ≤N1
is available to the controller at t = sk.

Actuator

Controller
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Fig. 3: Timing diagram of the controller-to-actuator channel
with uncertain delays.

Proof. Firstly, because the sensor-to-controller delay is upper
bounded by N1∆, the measurement x(sk−N1) must arrive at the
controller before t = sk since

ξk−N1 = sk−N1 + τsc(k−N1)≤ sk−N1 +N1∆≤ sk. (16)

Secondly, if the measurement x(sk−N1) is not discarded, then
Lemma 1 is proven with d = N1. Thirdly, if x(sk−N1) is
rejected, then there must exist an integer 1≤ d < N1 such that
x(sk−d) successfully arrives at the controller and its arriving
time ξk−d is earlier than the arriving time of x(sk−N1) such
that

ξk−d ≤ ξk−N1 ≤ sk. (17)

Thus, x(sk−d) is available to the controller at t = sk and this
ends the proof.

Lemma 1 ensures that the maximum value of d in (13) is
N1.

B. Controller-to-actuator uncertain delay case

In this subsection, we develop the technique given in
Subsection III-A, and take into account the delay uncertainty
in the controller-to-actuator channel. Consider (5) and (6). The
controller-to-actuator delay satisfies

(N2−1)∆ < τca(k)≤ (N2 +1)∆. (18)

Fig. 3 shows a timing diagram of the controller-to-actuator
uncertain delay case with N2 = 2 for instance. Let {t̄k}k∈N
be the expected arriving times of each control input (without
delay uncertainties) such that

t̄k = sk + τ̄ca, (19)

and the sequence {tk}k∈N presents the true arriving times of
each control input such that

tk = sk + τca(k) = t̄k +∆τ(k). (20)

Comparing (5) and (18), two cases must be considered.
Case 1:

(N2−1)∆ < τ̄ca < τca(k)≤ N2∆. (21)
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In this case, the delay uncertainty ∆τ(k) is not greater than
N2∆− τ̄ca, and it implies that

sk < t̄k−N2+1 < tk−N2+1 ≤ sk+1. (22)

In Fig. 3, the control input uk−1 illustrates this case. The state-
translation equation between x(sk) and x(sk+1) reads as

x(sk+1) =eA∆x(sk)+
∫ t̄k−N2+1

sk

eA(sk+1−θ)dθBuk−N2

+
∫ tk−N2+1

t̄k−N2+1

eA(sk+1−θ)dθBuk−N2

+
∫ sk+1

tk−N2+1

eA(sk+1−θ)dθBuk−N2+1

(23)

Under Assumption 1, one has that B̄1 =
∫ sk+1

t̄k−N2+1
eA(sk+1−θ)dθB

and B̄2 =
∫ t̄k−N2+1

sk eA(sk+1−θ)dθB. Let ∆B̄1(k − N2 + 1) =∫ tk−N2+1
t̄k−N2+1

eA(sk+1−θ)dθB. Then (23) equals to

x(sk+1) =Āx(sk)+ [B̄1−∆B̄1(k−N2 +1)]uk−N2+1

+[B̄2 +∆B̄1(k−N2 +1)]uk−N2 .
(24)

Case 2:
(N2−1)∆ < τ̄ca ≤ N2∆ < τca(k). (25)

This case shows that the delay uncertainty ∆τ(k) is greater
than N2∆− τ̄ca, and it leads to

sk < t̄k−N2+1 ≤ sk+1 < tk−N2+1. (26)

The control input uk in Fig. 3 describes this case. The state-
translation equation between x(sk+1) and x(sk+2) is given by

x(sk+2) = Āx(sk+1)+ [B̄1− B̄1]uk−N2+2 +[B̄2 + B̄1]uk−N2+1.
(27)

Indeed, if this case occurs, the delay uncertainty ∆τ(k) also
has an influence on the system plant during the next sampling
period. For instance, the control input uk−1 of Fig. 3 is also
applied to the plant on interval [sk+2, tk) ⊂ [sk+2,sk+3] which
yields

x(sk+3) =Āx(sk+2)+ [B̄1−∆B̄1(k−N2 +3)]uk−N2+3

+[B̄2 +∆B̄1(k−N2 +3)−∆B̄2(k−N2 +2)]uk−N2+2

+∆B̄2(k−N2 +2)uk−N2+1
(28)

with ∆B̄2(k−N2 +2) =
∫ tk

sk+2
eA(sk+3−θ)dθB.

In conclusion, for both Case 1 and Case 2, one defines

∆B̄1(k)=

{
B̄1, if ∆τ(k)> N2∆− τ̄ca∫ τ̄ca−(N2−1)∆+∆τ(k)

τ̄ca−(N2−1)∆ eA(∆−θ)dθB, if ∆τ(k)≤ N2∆− τ̄ca
(29)

and

∆B̄2(k)=

{ ∫ τ̄ca+∆τ(k)−N2∆

0 eA(∆−θ)dθB, if ∆τ(k)> N2∆− τ̄ca

0, if ∆τ(k)≤ N2∆− τ̄ca.
(30)

Thus, the following state-translation equation describes all the
cases mentioned above:

x(sk+1) =Āx(sk)+ [B̄1−∆B̄1(k−N2 +1)]uk−N2+1

+[B̄2 +∆B̄1(k−N2 +1)−∆B̄2(k−N2)]uk−N2

+∆B̄2(k−N2)uk−N2−1.
(31)

Remark 5. If there is no delay uncertainty in the controller-to-
actuator channel, then the matrices ∆B̄1(k−N2 +1), ∆B̄2(k−
N2) given in (31) are zero, and (31) is reduced to (9).

Lemma 2. If the delay uncertainty satisfies 0≤∆τ(k)≤ µ ≤∆

for all k ∈ N, then the norms of the matrices ∆B̄1(k) and
∆B̄2(k) satisfy

‖∆B̄1(k)‖ ≤ µe‖A‖∆‖B‖, ‖∆B̄2(k)‖ ≤ µe‖A‖∆‖B‖ (32)

for all k ∈N.

Proof. Suppose that ∆τ(k)> N2∆− τ̄ca hold. Then one has

∆B̄1(k) = B̄1 =
∫

∆

τ̄ca−(N2−1)∆
eA(∆−θ)dθB. (33)

By using the triangle inequality for integrals, (33) leads to

‖∆B̄1(k)‖ ≤
∫

∆

τ̄ca−(N2−1)∆
‖eA(∆−θ)‖dθ‖B‖

≤
∫

∆

τ̄ca−(N2−1)∆
e‖A‖∆dθ‖B‖

≤ [∆− τ̄ca +(N2−1)∆]e‖A‖∆‖B‖ ≤ µe‖A‖∆‖B‖.
(34)

Similarly, ‖∆B̄2(k)‖≤ µe‖A‖∆‖B‖ is proven by using the same
inequality (34) and the fact that τ̄ca +∆τ(k)−N2∆≤ ∆τ(k).
Now, consider the case ∆τ(k)≤N2∆− τ̄ca. One can prove that
‖∆B̄1(k)‖≤ µe‖A‖∆‖B‖ the same way as with (34), after which
one has ‖∆B̄2(k)‖= 0. This ends the proof.

Similar to Subsection III-A, one uses the state predic-
tion (13) to predict the state x(sk) when the expected state
measurement of x(sk) is not available to the controller at
instant t = sk+1. However, one cannot perfectly calculate the
system state x(sk) due to delay uncertainty ∆τ(k), and only
a state estimation x̂(sk) can be computed. Assume that only
the previous state measurement x(sk−d) is available to the
controller at instant t = sk+1. Then, one can calculate the state
prediction error as follows.
Step 1. Firstly, the true state-translation equation (31) between
x(sk−d) and x(sk−d+1) reads as

x(sk−d+1) = Āx(sk−d)+∆B̄2(k−d−N2)uk−d−N2−1

+[B̄2 +∆B̄1(k−d−N2 +1)−∆B̄2(k−d−N2)]uk−d−N2

+[B̄1−∆B̄1(k−d−N2 +1)]uk−d−N2+1
(35)

and the 1–step state prediction based on x(sk−d) is calculated
as

x̂(sk−d+1) = Āx(sk−d)+ B̄1uk−d−N2+1 + B̄2uk−d−N2 . (36)

Taking the difference between (35) and (36), the 1–step
prediction error is

e(sk−d+1) = x(sk−d+1)− x̂(sk−d+1)

= ∆B̄1(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1)

+∆B̄2(k−d−N2)(uk−d−N2−1−uk−d−N2).
(37)

Step 2. Secondly, one considers the estimation error e(sk−d+2)
in a similar way, but one assumes that x(sk−d+1) is still not
received by the controller, so the state prediction x̂(sk−d+1)
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provided in (36) is used for the further state prediction of
x(sk−d+2) as follows:

x̂(sk−d+2) = Āx̂(sk−d+1)+ B̄1uk−d−N2+2 + B̄2uk−d−N2+1. (38)

Then, the true state-translation equation (31) between
x(sk−d+1) and x(sk−d+2) is obtained in the sequel:

x(sk−d+2) = Āx(sk−d+1)+∆B̄2(k−d−N2 +1)uk−d−N2

+[B̄2 +∆B̄1(k−d−N2 +2)−∆B̄2(k−d−N2 +1)]uk−d−N2+1

+[B̄1−∆B̄1(k−d−N2 +2)]uk−d−N2+2.
(39)

Taking the difference between (39) and (38), one can calculate
the 2–step estimation error as follows:

e(sk−d+2) =Āe(sk−d+1)

+∆B̄1(k−d−N2 +2)(uk−d−N2+1−uk−d−N2+2)

+∆B̄2(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1).
(40)

Step 3. Recursively, the d–step state estimation error e(sk)
based on the state measurement x(sk−d) reads as:

e(sk) =Ād−1
∆B̄1(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1)

+ Ād−1
∆B̄2(k−d−N2)(uk−d−N2−1−uk−d−N2)

+ Ād−2
∆B̄1(k−d−N2 +2)(uk−d−N2+1−uk−d−N2+2)

+ Ād−2
∆B̄2(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1)

+ · · ·
+∆B̄1(k−N2)(uk−N2−1−uk−N2)

+∆B̄2(k−N2−1)(uk−N2−2−uk−N2−1).
(41)

Finally, the control law uk+1 is calculated by

uk+1 = K ẑk (42)

with ẑk =
[
x̂T (sk) uT

k uT
k−1 · · · uT

k−N1−N2
uT

k−N1−N2−1
]T

.

Remark 6. Note that (42) is designed to deal with the case
1 ≤ d ≤ N1. If d = 0 holds, then it implies that the state
measurement x(sk) is available to the controller at instant
t = sk+1 and there is no need to use the state prediction (13).
In this case, one can directly set x̂(sk) = x(sk), and the control
law (42) is equivalent to (11).

Lemma 3. The 2-norm of a class of block matrices

Γ =


0 0 · · · 0 −B B 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 0 · · · 0

 (43)

satisfies that
‖Γ‖ ≤

√
2‖B‖. (44)

Proof. The 2-norm of Γ is the induced norm [33, pp.281] such
that

‖Γ‖= sup{‖Γx‖ : ‖x‖= 1} (45)

where x is a vector with appropriate dimension. One assumes
that x̄=

[
xT

1 · · · xT
j xT

j+1 · · · xT
r
]T

satisfies ‖x̄‖= 1 and

‖Γ‖= sup{‖Γx‖ : ‖x‖= 1}= ‖Γx̄‖, (46)

then one has

‖Γ‖=
∥∥∥[(−Bx j +Bx j+1)

T 0 · · · 0
]T∥∥∥= ‖−Bx j+Bx j+1‖.

(47)
By using the triangle inequality, (47) is upper bounded as

‖Γ‖ ≤ ‖B‖(‖x j‖+‖x j+1‖). (48)

Note that according to the definition of the Euclidean vector
norm [33, pp.270] and the fact that ‖x̄‖=

√
∑

i=r
i=1 ‖xi‖2 = 1,

(‖x j‖+‖x j+1‖)2 ≤ 2‖x j‖2+2‖x j+1‖2 ≤ 2
i=r

∑
i=1
‖xi‖2 = 2. (49)

Finally, (48) and (49) imply (44), which ends the proof.

IV. MAIN THEORETICAL RESULTS

The main theoretical results of this work are presented in
this section. Before stating the main convergence result of this
work, one uses the results given in Lemmas 1–3 to find the
upper bound on the estimation error (41).

Lemma 4. Consider the extended states

zk =
[
xT (sk) uT

k · · · uT
k−N2+1 uT

k−N2
· · · uT

k−N1−N2−1
]T

(50)
and

ẑk =
[
x̂T (sk) uT

k · · · uT
k−N2+1 uT

k−N2
· · · uT

k−N1−N2−1
]T

,
(51)

where there exists a constant Θ > 0 such that the extended
error e(zk) = zk− ẑk is upper bounded as follows:

‖e(zk)‖ ≤Θµ‖zk‖ (52)

with µ defined in Lemma 2.

Proof. Firstly, if d = 0, then the estimation error is zero
according to Remark 6, and (52) holds with an arbitrary Θ> 0.
Then one moves on to the case 1≤ d ≤ N1, where Lemma 1
ensures that the maximum value of d in (41) is N1, and all of
the control inputs mentioned in the right-hand side of (41) are
contained in (50) and (51).

Secondly, the extended error between zk and ẑk reads as

e(zk) =
[
eT (sk) 0T · · · 0T ]T . (53)

Consider that the last term of (41) and the error term (53)
yields[[

∆B̄2(uk−N2−2−uk−N2−1)
]T 0T · · · 0T

]T
=

0 · · · 0 −∆B̄2 ∆B̄2 0 · · · 0
0 · · · 0 0 0 0 · · · 0
...

. . .
...

...
...

...
. . .

...
0 · · · 0 0 0 0 · · · 0

zk

(54)
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where the matrix ∆B̄2(k − N2 − 1) is written as ∆B̄2 due
to space limitations. Taking the norm of (54) and applying
Lemmas 2–3, it leads to∥∥∥∥∥∥∥∥∥


∆B̄2(uk−N2−2−uk−N2−1)

0
...
0


∥∥∥∥∥∥∥∥∥≤
√

2‖∆B̄2(k−N2−1)‖‖zk‖

≤
√

2µe‖A‖∆‖B‖‖zk‖.
(55)

Repeating the calculations of (54)–(55) for all of the terms
presented in the right-hand side of (41), then taking the sum
of them leads to

‖e(zk)‖ ≤ 2
√

2

(
i=d−1

∑
i=0
‖Ā‖i

)
µe‖A‖∆‖B‖‖zk‖

≤

{
2
√

2 ‖Ā‖
d−1

‖Ā‖−1 µe‖A‖∆‖B‖‖zk‖, if ‖Ā‖ 6= 1

2
√

2dµe‖A‖∆‖B‖‖zk‖, if ‖Ā‖= 1
.

(56)
Finally, by virtue of Lemma 1, one has that d ≤ N1. Then

(52) is proven with

Θ =

{
2
√

2 ‖Ā‖
N1−1

‖Ā‖−1 e‖A‖∆‖B‖, if ‖Ā‖ 6= 1

2
√

2N1e‖A‖∆‖B‖, if ‖Ā‖= 1
. (57)

The main convergence result of this work is given in the
following theorem.

Theorem 1. Consider the fact that system (1) is controlled
through a network that is subject to the sensor-to-controller
time-varying delay (3) and a controller-to-actuator uncertain
constant delay (4) satisfying (5)–(6). The controller is sup-
posed to be time-driven, and the control algorithm is composed
of state prediction (13) and the discrete predictor-based con-
troller (42). If the controller-to-actuator delay uncertainty is
smaller than a certain bound2 µ∗ as follows:

0≤ ∆τ(k)≤ µ ≤ µ
∗, (58)

for all k ∈N, then there exist constants M > 0 and η ∈ (0,1)
such that the extended discrete-time system is globally expo-
nentially stable:

‖zk‖ ≤M‖z0‖ηk, (59)

and the sequence {x(sk)}k∈N also globally converges to zero
with decay rate η . �

Proof. Firstly, consider the state-translation equation (31) and
the control law (42), which leads to

zk+1 = (A +∆Ak)zk +Buk+1

= (A +∆Ak)zk +BK ẑk

= (A +BK )zk +∆Akzk−BK e(zk)

(60)

2the detailed calculation of this bound is given in the proof of this theorem.

with

∆Ak =


0 · · · 0 −∆B̄1 ∆B̄1−∆B̄2 ∆B̄2 0 · · · 0
0 · · · 0 0 0 0 0 · · · 0
...

. . .
...

...
...

...
...

. . .
...

0 · · · 0 0 0 0 0 · · · 0


(61)

where the indexes of ∆B̄1(k−N2+1), ∆B̄2(k−N2) are omitted
due to space limitations. Taking the norm of ∆Ak and using
Lemmas 2–3 gives

‖∆Ak‖ ≤
√

2(‖∆B̄1(k−N2 +1)‖+‖∆B̄2(k−N2)‖)
≤ 2
√

2e‖A‖∆‖B‖µ.
(62)

Define the discrete-time Lyapunov function as

Vk = zT
k Pzk (63)

with P satisfying (12). Taking the difference between Vk+1 and
Vk leads to

∆Vk =Vk+1−Vk

=− εzT
k zk + zT

k ∆A T
k P∆Akzk + eT (zk)K

T BT PBK e(zk)

+2zT
k (A +BK )T P∆Akzk−2zT

k ∆A T
k PBK e(zk)

−2zT
k (A +BK )T PBK e(zk).

(64)
Taking the norm of the right-hand side of (64) and using (62),
(52) yields

∆Vk ≤− ε‖zk‖2 +8e2‖A‖∆‖B‖2‖P‖µ2‖zk‖2

+‖BK ‖2‖P‖Θ2
µ

2‖zk‖2

+4
√

2‖A +BK ‖e‖A‖∆‖B‖‖P‖µ‖zk‖2

+4
√

2‖BK ‖e‖A‖∆‖B‖‖P‖Θµ
2‖zk‖2

+2‖A +BK ‖‖BK ‖‖P‖Θµ‖zk‖2.

(65)

Define

α =(8e2‖A‖∆‖B‖2+‖BK ‖2
Θ

2+4
√

2‖BK ‖e‖A‖∆‖B‖Θ)‖P‖
(66)

and

β =(4
√

2‖A +BK ‖e‖A‖∆‖B‖+2‖A +BK ‖‖BK ‖Θ)‖P‖
(67)

then (65) is simplified as

∆Vk ≤−
[
−αµ

2−β µ + ε
]
‖zk‖2. (68)

Given a constant 0 < γ < min{λmax(P),ε}, and defining

µ
∗ = min

{√
β 2 +4α(ε− γ)−β

2α
,∆

}
, (69)

note that if 0≤ µ ≤ µ∗, then (69) ensures that

−αµ
2−β µ +(ε− γ)≥ 0 (70)

and (68) further implies that

Vk+1−Vk = ∆Vk ≤−γ‖zk‖2 ≤− γ

λmax(P)
Vk. (71)
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Since 0 < γ < λmax(P), it follows that 0 < 1− γ/λmax(P)< 1.
Finally, (71) and (50) lead to

‖x(sk)‖ ≤ ‖zk‖ ≤

√
λmax(P)
λmin(P)︸ ︷︷ ︸

M


√

1− γ

λmax(P)︸ ︷︷ ︸
η


k

‖z0‖. (72)

Considering the fact that 1− γ/λmax(P) ∈ (0,1), the proof of
Theorem 1 is finished.

Remark 7. If ∆τ(k) = 0, then Theorem 1 implies that the
proposed method stabilizes NCSs with a long τsc(k), long ∆

and long τ̄ca by virtue of the extended system representation
(10) and the perfect state prediction (13). On the one hand,
suppose that ∆τ(k) = 0 holds. Then, the stability condition
(68) is reduced to ∆Vk ≤ −ε‖zk‖2 which is not constrained
by the sizes of τsc(k), τ̄ca, and ∆ (given that µ is the upper
bound on ∆τ(k)); on the other hand, long time-delays can be
endured by the proposed method since the effects of the time-
delays are converted to the structure of the delay-free extended
system (10). A similar discussion about the above benefit of
the discrete-time approach is also given in [18, Section 7.1].

Remark 8. In Theorem 1, the exponential convergence of
the discrete-time sequence {x(sk)}k∈N is obtained. Indeed,
since the original system (1) is linear, the continuous-time
exponential convergence of x(t) can be derived if the following
conditions hold:
• the matrix A does not have any eigenvalue with the form

of (2π/∆) · k j;
• if λ is an eigenvalue of A whose real part is nonnegative,

then λ +(2π/∆) · k j is not an eigenvalue of A;
for any nonzero integer k, a detailed analysis is given in [30,
Section VIII].

Theorem 1 provides a discrete-time control scheme for a
class of NCSs with sensor-to-controller time-varying delay,
and the robustness to delay uncertainty is also analyzed.

V. RESULTS WITH EXTERNAL DISTURBANCE

In this section, the main theoretical results of Theorem 1
are extended to a case with external disturbance, and it will be
shown that the discrete-time extended system {zk} is globally
ISS (input-to-state stable) even with an external disturbance.
In this case, the system plant is redefined as:

ẋ(t) = Ax(t)+Bu(t)+Dw(t) (73)

with external disturbance w(t)∈Rp and D∈Rn×p. Therefore,
the following ISS property can be obtained:

Proposition 1. Consider the perturbed system (73) controlled
through the network with the sensor-to-controller time-varying
delay (3) and the controller-to-actuator uncertain constant
delay (4) such that conditions (5)–(6) are satisfied. Under the
same conditions as Theorem 1, the discrete-time predictor–
based controller composed of (13) and (42) is able to guar-
antee that the closed-loop system of {zk} is globally ISS. �

Sketch of Proof. The sketch of proof is almost the same as
the one of Theorem 1, except that the effects of the external
disturbance are taken into account.
Firstly, consider the state-translation equation (31). It is mod-
ified to the following perturbed equation:

x(sk+1) =Āx(sk)+ [B̄1−∆B̄1(k−N2 +1)]uk−N2+1

+[B̄2 +∆B̄1(k−N2 +1)−∆B̄2(k−N2)]uk−N2

+∆B̄2(k−N2)uk−N2−1 +Wk+1,
(74)

with Wk+1 ,
∫ sk+1

sk
eA(sk+1−θ)Dw(θ)dθ , where the disturbance

term is bounded as follows:

‖Wk+1‖ ≤ ∆ · e‖A‖∆‖D‖ sup
s∈[sk,sk+1]

‖w(s)‖. (75)

The new state-translation equation (74) implies that the effects
of the external disturbance can not only influence the current
state, but also be accumulated in the state prediction procedure.
Namely, applying (74) to (37), (40), and (41) yields the 1-step
perturbed estimation error:

e(sk−d+1,W ) = ∆B̄1(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1)

+∆B̄2(k−d−N2)(uk−d−N2−1−uk−d−N2)+Wk−d+1,
(76)

the 2-step perturbed estimation error:

e(sk−d+2,W ) =Āe(sk−d+1,W )+Wk−d+2

+∆B̄1(k−d−N2 +2)(uk−d−N2+1−uk−d−N2+2)

+∆B̄2(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1),
(77)

and the d-step perturbed estimation error:

e(sk,W ) =Ād−1
∆B̄1(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1)

+ Ād−1
∆B̄2(k−d−N2)(uk−d−N2−1−uk−d−N2)

+ Ād−2
∆B̄1(k−d−N2 +2)(uk−d−N2+1−uk−d−N2+2)

+ Ād−2
∆B̄2(k−d−N2 +1)(uk−d−N2 −uk−d−N2+1)

+ · · ·
+∆B̄1(k−N2)(uk−N2−1−uk−N2)

+∆B̄2(k−N2−1)(uk−N2−2−uk−N2−1)

+
d

∑
i=1

Ād−iWk−d+i.

(78)
After calculating the prediction error (78), one moves on to the
stability analysis. Taking (78) into account, the main results
of Lemma 4 should be modified as:

‖e(zk,W )‖ ≤Θµ‖zk‖+
d

∑
i=1
‖Ā‖d−i‖Wk−d+i‖. (79)

Define W̄k+1 =
[
W T

k+1 0T · · · 0T ]T . Then the extended
state-translation equation (60) is recalculated as:

zk+1 = (A +BK )zk +∆Akzk−BK e(zk,W )+W̄k+1 (80)

where e(zk) takes the redefined value given in (79). Finally,
considering the same Lyapunov function as given in Theorem



10

1 for the discrete-time perturbed extended system (80), it leads
to:

Vk+1−Vk ≤−γ‖zk‖2 + σ̄1‖www‖2 + σ̄2‖zk‖‖www‖

≤ −γ

2
‖zk‖2 +

(
σ̄1 +

σ̄2
2

2γ

)
‖www‖2,

(81)

with ‖www‖, sup{‖w(s)‖|s ∈R+}, and

σ̄1 = (‖BK ‖Ξ+1)2‖P‖e2‖A‖∆‖D‖2 ·∆2,

σ̄2 = 2‖P‖
(
‖A +BK ‖+2

√
2e‖A‖∆‖B‖µ +‖BK ‖Θµ

)
· (‖BK ‖Ξ+1) · e‖A‖∆‖D‖ ·∆,

(82)
where Ξ , ∑

d
i=1 ‖Ā‖d−i. Inequality (81) ensures that the

discrete-time extended system {zk} is globally ISS under the
definition given in [34, Theorem II.4] which ends the sketch
of proof.

In Proposition 1, the input-to-state stability of the discrete-
time extended system is obtained, which implies that the
proposed method can deal with the case when the system plant
is perturbed by an uniformly bounded external disturbance.

VI. SIMULATION RESULTS

In this section, some simulation results are provided to
demonstrate the benefits of the proposed control method based
on the discrete-time approach, i.e. it is able to stabilize the
NCS under a low sampling rate, as described in Subsection
I-B. Moreover, the message rejection is also considered in
the simulation, and it is compensated by the proposed state
prediction technique (13).

Consider the continuous-time unperturbed plant

ẋ(t) =
[
−1 0.7
−0.4 0

]
x(t)+

[
0

0.02

]
u(t), (83)

and the continuous-time perturbed plant

ẋ(t) =
[
−1 0.7
−0.4 0

]
x(t)+

[
0

0.02

]
u(t)+

[
1
2

]
w(t), (84)

with w(t) = 0.2sin(2t), controlled through a network. The
sampling period is set to ∆ = 0.8s, the sensor-to-controller
delay is set to

τsc(k) =


0.5s, k = 4m, m ∈N
2.0s, k = 4m+1, m ∈N
1.0s, k = 4m+2, m ∈N
0.7s, k = 4m+3, m ∈N

(85)

and the controller-to-actuator delay is chosen as an uncer-
tain constant delay such that 1.56s ≤ τca(k) ≤ 1.64s. Thus,
the controller-to-actuator delay can be modeled as (4) with
τ̄ca = 1.56s and ∆τ(k) ∈ (0,0.08s].
The time-delays of this simulation have the following features:
• the sensor-to-controller delay is upper bounded by N1∆

with N1 = 3, and the nominal controller-to-actuator delay
τ̄ca satisfies (5) with N2 = 2;

• the message rejection is found in the sensor-to-controller
channel, and the state measurements x(s4m+1) with m∈N
are discarded;

• the controller-to-actuator delay can be greater or smaller
than N2∆, namely, both Cases 1 and 2 given in Subsec-
tion III-B can occur;

• the external disturbance Dw(t) is introduced in (84),
which affects the performance of the closed-loop system.

In term of the discussions above, the parameters N1 = 3 and
N2 = 2 are determined, the extended state is then defined as

ẑk =
[
x̂T (sk) uT

k uT
k−1 · · · uT

k−6
]T

, (86)

and the feedback controller is chosen as
uk+1 = [0.3067 0.0245 0.7148 −0.2276...

...0.0289 −0.0016 0 0 0] ẑk,
(87)

which makes the matrix A +BK Schur. Considering the
proposed parameter settings, it is possible to determine Θ =
0.3121 for Lemma 4. Next, we set ε = 1 and solve the
Lyapunov equation (12). Then, the maximum allowable upper
bound on the delay uncertainty (69) under Theorem 1 (for
the case of γ = 0.05) is computed as µ∗ = 0.0846s, which is
greater than the upper bounded µ = 0.08s in the simulation.
Finally, the initial conditions of the simulation are set to
x(0) =

[
3 −5

]T , and uk = 0 for all k < 0.
In addition, considering the fact that N1 = 3, one may use
a state–feedback without prediction or a 1-step/ 2-step state
prediction to compute control law uk+1. The detailed control
strategies for these three cases are introduced as follows:
• No state prediction is required: the control law can be

directly calculated as (87) where ẑk is replaced by zk;
• 1-step state prediction is required: one firstly calculates

x̂(sk) = Āx(sk−1) + B̄1uk−2 + B̄2uk−3, then one can use
(87) to compute the control input uk+1;

• 2-step state prediction is required: in this case, the state
prediction reads as x̂(sk) = Ā2x(sk−2) + B̄1uk−2 + (B̄2 +
ĀB̄1)uk−3 + ĀB̄2uk−4, and the estimation is then plugged
into (87) for the controller design.

Namely, under the 1-step state prediction and the 2-step state
prediction, the complete control laws are computed as follows:

uk+1 = [0.1164 0.1376 0.7148 −0.2276...
...0.029 −0.0002 0 0 0]z1−step,

uk+1 = [0.0167 0.1717 0.7148 −0.2276...
...0.029 0 0.0024 0 0]z2−step,

(88)
with

z1−step =
[
xT (sk−1) uT

k uT
k−1 · · · uT

k−6
]T

,

z2−step =
[
xT (sk−2) uT

k uT
k−1 · · · uT

k−6
]T

.
(89)

The simulation results are provided in Fig. 4. The trajecto-
ries of the system (83) under control law (86)-(87) converge
to the origin (see the blue/ red curves of Fig. 4a) for the
unperturbed system (83), although the sampling period ∆ is
long and the sensor-to-controller delay τsc(k) is fast-varying.
Next, the blue/ red dash curves of Fig. 4a illustrate that
trajectories of the states converge into a small interval around
the origin for the perturbed system (84). Moreover, it is
observed that the message rejection that occurred in the sensor-
to-controller network is also successfully overcome by the
control solution of Theorem 1.
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(a) State evolution of systems (83)-(84) under control law (86)-(87). (b) Control signals (86)-(87) for two systems (83)-(84)
.

(c) Sensor-to-controller time-varying delay versus time. (d) Controller-to-actuator uncertain constant delay versus time.

Fig. 4: State evolution, control signal, and network-induced delays versus time for the unperturbed/ perturbed systems (83)–(84)
.

The simulation results presented in this section highlight the
following contributions of Theorem 1 and Proposition 1:
• the state prediction technique (13) is able to deal with

slight sensor-to-controller message rejections;
• due to the properties of the discrete-time approach [16],

[18], the proposed method provides endurance even with
a long sampling period;

• the control technique is able to cope with a uniformly
bounded external disturbance, and the ISS stability/ con-
vergence is illustrated by the simulation results.

Furthermore, the calculation of the maximum allowable
delay uncertainty µ∗ in Theorem 1 is conservative, and the
choice of the feedback matrix K can be more flexible in
practice.

VII. EXPERIMENTAL VALIDATION ON NIPVSS
In this section, the main theoretical results of Theorem 1

are implemented on the NIPVSS test bench [6], [7] in order
to test the effectiveness and the performance of the proposed
control method on a real vision-based control system.

A. Configuration of the NIPVSS test bench

In this subsection, the NIPVSS test bench [6], [7] is
introduced. The test bench is firstly composed of an inverted
pendulum displayed in Fig. 5. The movement of the inverted
pendulum is captured by an Aca640-120gm monochrome
industrial camera (see Fig. 6), after which the state information

x(sk) is obtained by the image-processing algorithm (based
on Microsoft Visual Studio 2010 and OpenCV 2.4.11) on each
frame. In this experimental set-up, the cart position is obtained
by applying the translation between the pixel coordinate sys-
tem and the world coordinate system since the camera and
the moving plane are fixed. The pendulum angle is measured
in the pixel coordinate system by using the edge detection
technique based on the Hough Transformation [35]. Once the
controller (i.e. a host computer) receives the vision-based state
measurements through the communication channel, it runs the
control algorithm and then sends the control signal to a GT-
400-SV-PCI movement control card. Finally, a MSDA023A1A
servo driver receives the control signal and drives the cart to
move on the rail.

B. Controller design for NIPVSS based on Theorem 1

The controller design is based on the linearized inverted
pendulum plant around the straight-up position

ẋ(t) =


0 0 1 0
0 0 0 1
0 0 0 0
0 lmg/J 0 0


︸ ︷︷ ︸

A

x(t)+


0
0
1

ml/J


︸ ︷︷ ︸

B

u(t) (90)

with x(t) = col{α,θ , α̇, θ̇}. The parameters of (90) are pro-
vided in Table I. The NIPVSS is subject to the following time-
delays:
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Fig. 5: The experimental set-up of the NIPVSS.
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Fig. 6: Control diagram of the NIPVSS.

• the computational time D(t) ∈ [0.015s,0.016s] caused by
the image-processing algorithm;

• the sensor-to-controller transmission delay bounded in
(0s,0.007s] introduced by data communication;

• the controller-to-actuator transmission delay bounded in
(0s,0.007s] introduced by data communication.

Thus, the control of the NIPVSS can be modeled as an NCS
with the plant (90) and the time-delays mentioned above.
The sensor-to-controller delay is the sum of the computa-
tional time and the transmission delay such that τsc(k) ∈
(0.015s,0.023s], and the controller-to-actuator delay satisfies
τca(k) ∈ (0s,0.007s].

TABLE I: Model parameters of the inverted pendulum (reprint
from [7, Table 1]).

g Gravitational acceleration 9.81m/s2

m Mass of the pendulum 0.109kg
J Moment of the inertia of the pendulum 0.009083kg ·m2

l Length to the pendulum center of mass 0.25m
α Cart position m
θ Pendulum angle rad

Note that the max frame rate of the industrial camera is
120Hz, i.e. the industrial camera can maximumly take 120
photos per second, but the image-processing algorithm cannot
follow up with this sampling rate. Indeed, by considering the
image-processing time D(t), the image-processing algorithm
cannot process more than 1/0.015 = 66.67 frames per second.
In the experiment, the sampling period is set to ∆ = 0.02s
in order to ensure that each frame is captured after the state
information resolution of the previous frame, and a similar
discussion is given in [13, pp.554].

Consider the time-delays τsc(k),τca(k), the sampling period
∆ and the system modeling provided in (3)–(5). The parame-
ters N1 = 2, τ̄ca = 0s, and N2 = 1 are then determined.

Remark 9. According to Lemma 4, one should add uk−i, i =
{0,1,2,3,4} into the extended state (51) since N1 = 2 and
N2 = 1. However, it is not necessary to use uk−4 since the case
described by (25) cannot occur in this experiment because

τca(k)≤ 0.007s < N2∆ = ∆, k ∈N+. (91)

By virtue of (91), uk−4 cannot influence the state-translation
between x(sk) and x(sk+1), so it is not necessary to be used
in the controller design.

By considering Remark 9, the following extended state is
chosen to build the control law for this experiment:

ẑk =
[
x̂T (sk) uT

k uT
k−1 uT

k−2 uT
k−3
]T

. (92)

Next, in order to guarantee the experimental control perfor-
mance, the following closed-loop poles of the discrete-time
extended system have been obtained by trial and error:{

e−1.6∆,e−1.7∆,e−3∆,e−19∆,e−35∆,e−36∆,e−37∆,e−38∆

}
,

and the proposed control law reads as

uk+1 = [0.2959 −5.5002 0.5043 −1.0435...
...1.4770 −0.9802 0.2888 −0.0325] ẑk.

(93)
Under the parameter setting of the NIPVSS, the control
law uk+1 can be calculated through a state–feedback without
prediction (93) or the one with a 1-step prediction by using
the same technique presented in (88)-(89), and the complete
control law under the 1-step prediction is computed as:

uk+1 = [0.2959 −6.1481 0.5103 −1.1598...
...1.4770 −1.0361 0.2888 −0.0325]z1−step,

(94)
with

z1−step =
[
xT (sk−1) uT

k uT
k−1 · · · uT

k−6
]T

. (95)

In order to evaluate the control performance of the pro-
posed method, the continuous-time LQR controller3 (with
Q = diag(50,230,0,0) and R = 50):

u(t) =
[
1 −25.5765 1.7944 −4.7004

]
x(t) (96)

provided in [37, pp.439] is used for a comparison. Note that
[37] is based on the same inverted pendulum experimental
set-up as Fig. 5.

3The continuous-time controller (96) is emulated [36, Section 2.2] to the
sampled-data form for the experiment on the NIPVSS.
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C. Experimental results
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(a) Cart positions α(t) versus time with controllers (93) and (96).
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(b) Pendulum angles θ(t) versus time with controllers (93) and (96).

Fig. 7: Experimental results with the LQR controller (96) and
the proposed controller (93)-(95).

The experimental results4 are presented in Fig. 7. Firstly,
Fig. 7b shows that the two methods can achieve good control
performance on the pendulum angle θ(t): it is maintained in
a neighborhood around zero (namely, the curves are almost
bounded over [−0.04rad,0.04rad]). Secondly, the experimental
results displayed in Fig. 7a show that the cart position α(t)
cannot return perfectly to the original position (α(t) = 0) due
to the measurement error introduced by the image-processing
algorithm [7, Remarks 3-4] and the imperfect linearized mod-
eling of (90). However, the experimental results still confirm
that the proposed method provides better control performance
on the cart position than the LQR controller.

Next, as done in [7, Section V-B], the following indexes are
used for the analysis of the results presented in Fig. 7:

• MCP: mean of cart position;
• SCP: standard deviation of cart position;
• MPA: mean of pendulum angle;
• SPA: standard deviation of pendulum angle.

The normalized (with respect to LQR controller (96)) per-
formance indexes of the two controllers (93) and (96) are
provided in Fig. 8: smaller the value is, better the result is.
Apparently, the results obtained by the proposed controller
(93) are better than the ones obtained by the LQR method
(96).

4The videos of the two experiments are available at https://drive.google.
com/drive/folders/1WEp7VUt5JTcUlbQf6cAt4z4ZHKKJzGjN?usp=sharing.
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Fig. 8: Normalized (with respect to LQR controller) perfor-
mance indexes of the experimental results.

The experimental results displayed by Figs. 7–8 illustrate
that the proposed method is successfully implemented on
the real remote visual servo control system. Moreover, the
proposed method provides better experimental control perfor-
mance than the non-predictive control solution (96). Further-
more, the proposed method has good control performances
on such a fast motion control system, which shows that the
proposed method has wide application prospects in control
engineering.

VIII. CONCLUSIONS

A discrete-time control solution (state prediction and dis-
crete predictor-based controller) is designed to stabilize a
class of LTI networked control systems, and this method
is applied to a networked visual servo inverted pendulum
system. The state prediction technique is used to deal with
the sensor-to-controller time-varying delay, and the uncertain
constant controller-to-actuator delay is compensated for using
the predictor-based controller. Moreover, the message rejection
phenomenon is also considered in this work. The theoretical
results are illustrated by the simulation and experimental
results. In the future, the following research activities will be
investigated:
• Theoretical part: the output-feedback control technique

will be developed, some additional network-induced im-
perfections (e.g. quantization [18], cyber-attack [38]) will
be considered, and the stochastic Lyapunov approaches
will be applied in order to systematically deal with
stochastic packet-dropout and message rejection at the
same time. Besides, more analysis will be given in order
to relax the assumption ∆τ(k)∈ (0,∆], and the controller-
to-actuator message rejection will be studied as well.

• Experimental part: in order to improve the control per-
formance of the cart position, the robust H∞ control
technique will be used to calculate the feedback gain K
in a more systematic way.
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