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control system, state information can be resolved from the sampled images captured by a camera [3, pp.132] by using an image-processing algorithm. After resolution, the state information is available for the controller design, and it is transmitted to the controller through a wired or wireless sensor-to-controller communication channel that is subject to a small uncertain time-varying transmission delay of several milliseconds [10, pp.147]. After receiving state information, the controller updates the control signal and sends it to the actuator with the help of the controller-to-actuator channel. Finally, the updated control input is applied to the controlled plant. Based on the previous statements, the whole control process of such a system is subject to the following timedelays:

• the exposure time of the camera (constant);

• the computational delay introduced by the imageprocessing algorithm (long, time-varying); • the transmission latency induced from the sensor-tocontroller communication channel (small, time-varying); • the computation time of the control algorithm (small, constant); • the transmission latency induced from the controller-toactuator communication channel (small, time-varying); • the physical dead time of the actuator (constant). Note that the time-delays introduced by data communication are time-varying because of network congestion, the communication protocol, and the real-time intensity of the communication network. The computational time of the image-processing algorithm is also time-varying since it is usually affected by the number of feature points in each frame, the number of image edges in each frame, and the real-time illumination intensity.

Based on the discussions above, the vision-based control system can be modeled as a networked control system (NCS) [START_REF] Zhang | Networked control systems: A survey of trends and techniques[END_REF] with sensor-to-controller time-varying delay and the controller-to-actuator uncertain constant delay 1 . Thus, due to its high potential for application (e.g. an indoor mobile robot, or a UAV in weak GPS environment [START_REF] Miao | Autonomous landing of small unmanned aerial rotorcraft based on monocular vision in GPS-denied area[END_REF]), it is important to develop new control strategies to stabilize the system.

B. Interests of the discrete-time method

Some discussions are given in this subsection in order to explain the reason why the discrete-time control method is adopted. The main challenges for the vision-based control systems mentioned in Subsection I-A are given in the sequel:

• Problem 1: The image-processing algorithm needs a long computational time (compared with the transmission delays). As a result, a long sensor-to-controller timevarying delay is introduced [START_REF] Zhan | Stability and stabilization for visual servo inverted pendulum system with random image processing time delay[END_REF], [START_REF] Ramirez | Stability analysis of a vision-based UAV controller: An application to autonomous road following missions[END_REF]; • Problem 2: The vision-based control system can only run at a low sampling rate. Indeed, the sampling rate of such a system depends on the frame rate of the camera and the computational time of the image-processing algorithm.

On the one hand, if the frame rate is high, then the quality of the captured images will be lower (i.e. low-contrast [5, pp.8138]), and it may introduce more measurement errors. On the other hand, a high sampling rate will make unprocessed images accumulate if no distributed computation is applied [13, pp.554], and this problem will make the control task more complicated. After discussing the main issues of the vision-based control systems modeled as an NCS, three main control solution to NCSs [START_REF] Zhang | Survey on recent advances in networked control systems[END_REF], [START_REF] Liu | Survey on time-delay approach to networked control[END_REF] are recalled:

• Discrete-time method [START_REF] Cloosterman | Stability of networked control systems with uncertain time-varying delays[END_REF]- [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF]: This method turns the original NCS into a discrete-time extended system, where the control law is designed for the extended system in the discrete-time domain; • Impulsive system method [START_REF] Heemels | Networked and quantized control systems with communication delays[END_REF]: Using this method, an NCS is considered as a hybrid system (i.e. continuoustime system with state jumps), and the discontinuous Lyapunov functional is used for the stability analysis; • Time-delay method [START_REF] Yue | Network-based robust H ∞ control of systems with uncertainty[END_REF]- [START_REF] Selivanov | Predictor-based networked control under uncertain transmission delays[END_REF]: This method treats the effects of sampling & ZOH (zero-order hold) as a timevarying delay, where a Lyapunov-Krasovskii stability analysis is provided. To solve Problem 1, predictor-based controllers designed by using the discrete-time method [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF] and the time-delay method [START_REF] Selivanov | Observer-based input-to-state stabilization of networked control systems with large uncertain delays[END_REF] are able to deal with long time-delays, whereas the impulsive system method is not effective.

Next, the arguments given in [15, pp.61] explain that the discrete-time method is less conservative in the maximum allowable transmission interval (MATI) for linear time-invariant (LTI) networked control systems, which indicates that this method can stabilize the LTI networked control systems with a lower sampling rate. Thus, it can better meet the requirement of Problem 2.

In conclusion, the discrete-time method can solve Problems 1 and 2 together, and is suitable for LTI vision-based control systems. Therefore, the main objective of this paper is to develop a discrete predictor-based control technique for a class of LTI networked control systems, and then implement the control algorithm on a real vision-based control system.

C. Contributions and organizations

This paper proposes a control solution to stabilize NCSs with sensor-to-controller time-varying delay and controllerto-actuator uncertain constant delay, which can be applied to vision-based control systems. The controller design is based on the discrete-time extended system representation [START_REF] Cloosterman | Stability of networked control systems with uncertain time-varying delays[END_REF]- [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF], [START_REF] Lozano | Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter[END_REF] in order to deal with long time-delays and a long sampling period. The message rejection (packet disordering) is also considered. The main theoretical contribution of this paper is threefold:

• compared with work [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF], where the network-induced delay is a constant, this paper considers that the networkinduced delay is time-varying; • in [START_REF] Lozano | Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter[END_REF], discrete predictor-based control of the sampleddata system with a single uncertain constant input-delay is developed, but the explicit upper bound on the allowable delay uncertainty is not given; this bound is calculated in detail by this paper; • the effects of the time-varying delays are analyzed in [START_REF] Hu | Stochastic optimal control and analysis of stability of networked control systems with long delay[END_REF], [START_REF] Pan | Stabilization of remote control systems with unknown time varying delays by LMI techniques[END_REF], but they did not consider the effect of message rejection (packet disordering) caused by the time-varying delays, whereas the proposed method deals with the message rejection phenomenon in the sensor-to-controller channel.

Furthermore, the proposed control scheme is implemented on the networked inverted pendulum visual servo system (NIPVSS) introduced in [6], [START_REF] Du | Realtime H ∞ control of networked inverted pendulum visual servo systems[END_REF], the experimental results are given in Section VII.

In conclusion, this paper provides a control scheme for vision-based control systems (which can be modeled as a class of LTI networked control systems with time-varying delays), and the proposed method has the following main features:

• The state prediction technique is used to compensate for the effects of sensor-to-controller time-varying delay, and also deals with slight message rejection. • The discrete predictor-based controller is designed to stabilize the LTI plant which is subject to controllerto-actuator uncertain constant delay. The benefit of this control algorithm is lower conservativeness in the sense of MATI, as stated in Subsection I-B. • The experimental validation of the proposed control technique on the NIPVSS test bench, which illustrates that the proposed method is able and suitable to cope with the real visual servo control problem. Moreover, based on the experimental results presented in Subsection VII-C, it is observed that the proposed method can provide better control performance than the non-predictive control method.

The rest of the paper is organized as follows. The problem statement is given in Section II in order to explain modeling and some necessary assumptions. The extended system representation, the state prediction technique, and the discrete predictor-based controller are introduced in Section III. The main theoretical results for the unperturbed plant are presented in Section IV. Then the theoretical results are extended to the case with external disturbances in Section V, and they are illustrated by simulation results of Section VI and experimental results provided in Section VII. Finally, a conclusion is presented in Section VIII. 

II. PROBLEM STATEMENT

A. Notations

In this paper, the following notations are used. The symbols N and N + represent the sets of non-negative integers and strictly positive integers. The set of all real matrices with m rows and n columns reads as R m×n . The identity matrix of size m × m writes as I m . The superscript "T " denotes the matrix transposition. The symbol • gives the Euclidean norm of a vector and the 2-norm of a matrix, respectively. Finally, the maximum and minimum eigenvalues of a symmetric matrix read as λ max (•) and λ min (•).

B. System modeling

In this subsection, the modeling of the LTI networked control system for the LTI vision-based control system (as described in Subsection I-A) is introduced. Consider the following LTI plant

ẋ(t) = Ax(t) + Bu(t), t ≥ 0 (1)
controlled through a network with A ∈ R n×n and B ∈ R n×m . The control input is piecewise-constant such that

u(t) = u k , t ∈ [t k ,t k+1 ), k ∈ N u(t) = 0, t < t 0 . ( 2 
)
where t k is the instant that the kth control input u k is applied to the plant. In this work, the sensor and the controller have time-driven behavior with a sampling period ∆ > 0, which means that they update the state measurement and the control input each ∆ seconds and send them out. The actuator is eventdriven, which applies the new control input to the plant as soon as it receives the updated control signal. Fig. 1 is the timing diagram of this method, and the sequence {s k } k∈N represents the sampling instants of the sensor and the updating instants of the controller. The sequence {ξ k } k∈N describes the arriving instants (at the controller) of the state measurement x(s k ), and {t k } k∈N denotes the instants that a new control input u k is applied to the plant, as shown in [START_REF] Wolcott | Visual localization within lidar maps for automated urban driving[END_REF]. The state information of the controlled plant is periodically measured (with sampling period ∆ > 0) and sent to the controller through the sensorto-controller network. Namely, at instants s k = k∆, k ∈ N, the sensor takes action and sends the state measurement to the controller. According to Fig. 1, one defines the sensorto-controller time-varying delay as τ sc (k) ξ ks k , and it is supposed to be bounded by:

0 < τ sc (k) ≤ N 1 ∆ (3) 
with known N 1 ∈ N + . Due to the discussions above and Fig. 1, the controller is time-driven, so it also updates the new control input at instants s k = k∆, k ∈ N. Therefore, the controller-toactuator delay is defined as τ ca (k) = t ks k , and is modeled as an uncertain constant delay (based on the discussions given in Subsection I-A) such that

τ ca (k) = τca + ∆τ(k) (4) 
where the nominal controller-to-actuator constant delay τca is known and bounded by

(N 2 -1)∆ < τca ≤ N 2 ∆ (5) 
with known N 2 ∈ N + , and the delay uncertainty is bounded by 0 < ∆τ(k) ≤ ∆.

Remark 1. According to the discussions of Subsection I-A, the delay uncertainty ∆τ(k) of a visual feedback system arises from the time-varying data communication latency (e.g. transmission delay through the controller-to-actuator communication network), and this kind of time-delay is usually smaller than 10ms [10, pp.147]. However, the sampling period ∆ of a real visual feedback system is always in the level of 10 -40ms (e.g. 11.5ms in [START_REF] Kizir | Time delay compensated vision based stabilization control of an inverted pendulum[END_REF], 12.5 -25ms in [START_REF] Wu | Cloud-based networked visual servo control[END_REF], 40ms in [START_REF] Wang | Vision servoing of robot systems using piecewise continuous controllers and observers[END_REF]), which is greater than the delay uncertainty. Thus, (6) is not a strong constraint for control applications.

Fig. 1 shows that the controller is time-driven, but not event-driven. The main benefit of the time-driven controller is the compensation of the sensor-to-controller time-varying delay with the state prediction technique provided in Section III, without solving the Belleman equation [START_REF] Hu | Stochastic optimal control and analysis of stability of networked control systems with long delay[END_REF] nor checking large numbers of LMIs (linear matrix inequalities) [START_REF] Cloosterman | Stability of networked control systems with uncertain time-varying delays[END_REF].

Assumption 1. Define Ā = e A∆ , B1 = N 2 ∆-τca 0 e Aθ dθ B and B2 = ∆ N 2 ∆-τca e Aθ dθ B. It is assumed that the pair ( Ā, Ā-N 2 +1 B1 + Ā-N 2 B2 ) is controllable.
Assumption 1 is a sufficient condition for controller design based on the discrete-time method, and some similar assumptions are given in [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF], [START_REF] Ionete | Controllability and observability of linear discrete-time systems with network induced variable delay[END_REF]. In this assumption, the nominal controller-to-actuator delay is utilized since the controller design method requires the nominal delay value [START_REF] Lozano | Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter[END_REF]. The effect of the delay uncertainty is analyzed in Subsection III-B.

Next, it is assumed that the sensor and the controller are synchronized so that τ sc (k) can be measured when the controller receives a new state measurement, this assumption is also made in [START_REF] Selivanov | Predictor-based networked control under uncertain transmission delays[END_REF], [START_REF] Selivanov | Observer-based input-to-state stabilization of networked control systems with large uncertain delays[END_REF], [START_REF] Zhang | Stability of networked control systems[END_REF]. Note that clock synchronization can be achieved in practice by using the time-stamp technique based on the IEEE 1588 protocol [START_REF] Cooklev | An implementation of ieee 1588 over[END_REF].

Remark 2. The Zeno phenomenon never occurs since the updates of the state measurement and the control law are periodic.

In [START_REF] Selivanov | Predictor-based networked control under uncertain transmission delays[END_REF], it is assumed that the older control inputs and the older state measurements cannot arrive at the destination later than a newer one. In other words, the sequences {t k } k∈N and {ξ k } k∈N are strictly increasing:

t 0 < t 1 < • • • < t k < t k+1 < • • • ξ 0 < ξ 1 < • • • < ξ k < ξ k+1 < • • • (7)
in order to avoid message rejection (message disordering). In this paper, only a weaker assumption is required as below.

Assumption 2. The sequence {t k } k∈N is supposed to be strictly increasing.

Assumption 2 can also be ensured by ( 4), ( 5), and ( 6) due to the fact that τ ca (k -1) < τ ca (k) + ∆ is always ensured by these inequalities. This assumption shows that the proposed method deals with slight message rejection in the sensor-to-controller channel.

III. EXTENDED SYSTEM REPRESENTATION AND DISCRETE PREDICTOR-BASED CONTROLLER

In this section, the extended system representation and the discrete predictor-based controller are introduced. Subsection III-A presents the control scheme with a controller-toactuator constant delay. Subsection III-B considers the case when the controller-to-actuator delay is an uncertain constant.

A. Controller-to-actuator constant delay case

This subsection introduces the discrete predictor-based controller [START_REF] Cloosterman | Stability of networked control systems with uncertain time-varying delays[END_REF], [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF]. Firstly, one considers the simple case, i.e. there is no delay uncertainty in the controller-to-actuator channel, and the controller-to-actuator delay is constant, i.e. τ ca (k) = τca , ∆τ(k) = 0. Therefore, the state-translation equation [START_REF] Aström | Computer-controlled systems: theory and design third edition[END_REF]Chapter 2.3] between x(s k ) and x(s k+1 ) reads as

x(s k+1 ) =e A∆ x(s k ) + t k-N 2 +1 s k e A(s k+1 -θ ) dθ Bu k-N 2 + s k+1 t k-N 2 +1 e A(s k+1 -θ ) dθ Bu k-N 2 +1 (8)
with N 2 defined in [START_REF] Kizir | Time delay compensated vision based stabilization control of an inverted pendulum[END_REF]. Under Assumption 1, (8) can be equally considered as the following discrete-time system:

x(s k+1 ) = Āx(s k ) + B1 u k-N 2 +1 + B2 u k-N 2 . ( 9 
)
Assumption 1 ensures that the discrete-time system ( 9) is controllable [26, Theorem 1]. Define the extended state

z k = x T (s k ) u T k • • • u T k-N 2 +1 u T k-N 2 • • • u T k-N 1 -N 2 -1 T .
Using [START_REF] Mcguire | Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone[END_REF], it leads to

z k+1 =             Ā 0 • • • B1 B2 • • • 0 0 0 • • • • • • 0 I m 0             A z k +              0 I m 0 . . . . . . . . . 0              B u k+1 .
(10) The controllability of ( 9) and the controllability of ( 10) are equivalent since ( 9) and ( 10) are two different descriptions of the same system, see [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF]Remark 5]. Therefore, the controllability of the extended system (10) can be guaranteed if Assumption 1 is satisfied. It is the possible to find a statefeedback control law

u k+1 = K z k (11) 
that makes the matrix A + BK Schur, i.e. the closed-loop poles of A + BK are all within the unit circle of the complex plane. Thanks to the property of the Schur matrix, for all ε > 0, there exists a symmetric positive definite matrix P with appropriate dimensions such that

(A + BK ) T P(A + BK ) -P = -εI. (12) 
Moreover, by applying the recursive analysis given in [31, pp.51-52], the existence and uniqueness of the solution to the continuous-time plant (1) under the digital feedback control law [START_REF] Zhang | Networked control systems: A survey of trends and techniques[END_REF] can be ensured. To calculate the control law [START_REF] Zhang | Networked control systems: A survey of trends and techniques[END_REF] at instant t = s k+1 , one needs the knowledge of x(s k ) which may not arrive at the controller before t = s k+1 . To overcome this problem, one can use the latest available state measurement x(s k-d ) (with 1 ≤ d ≤ N 1 ) and the control history to predict the state x(s k ) by iterating (9) for d times:

                 x(s k-d+1 ) = Āx(s k-d ) + B1 u k-N 2 -d+1 + B2 u k-N 2 -d , x(s k-d+2 ) = Ā x(s k-d+1 ) + B1 u k-N 2 -d+2 + B2 u k-N 2 -d+1 , . . . . . . x(s k-1 ) = Ā x(s k-2 ) + B1 u k-N 2 -1 + B2 u k-N 2 -2 , x(s k ) = Ā x(s k-1 ) + B1 u k-N 2 + B2 u k-N 2 -1 .
As stated after Assumption 1, the value of d can be determined by using the clock synchronization technique [START_REF] Cooklev | An implementation of ieee 1588 over[END_REF] in practice.

Then, the equations above can provide the state estimation x(s k ) as follows:

x(s k ) = Ād x(s k-d ) + Ād-1 B2 u k-N 2 -d + B1 u k-N 2 + d-1 ∑ i=1 ( Āi B1 + Āi-1 B2 )u k-N 2 -i . (13) 
Finally, the control law can be calculated by using statefeedback control [START_REF] Zhang | Networked control systems: A survey of trends and techniques[END_REF] and state prediction [START_REF] Wu | Cloud-based networked visual servo control[END_REF].

Remark 3. Since the controller-to-actuator delay is assumed to be constant in this subsection, (13) is a perfect prediction such that x(s k ) = x(s k ). If the controller-to-actuator delay is uncertain, then there exists an estimation error e(s k ) = x(s k )x(s k ). The effects of the estimation error will be analyzed in Subsection III-B.

Remark 4. Consider the case when the time-delays are large (i.e. N 1 , N 2 are large), but the sampling period ∆ is small. The sizes of the matrices A , B are large, and it may lead to numerical issues when using the Matlab pole assignment functions place and acker. In this case, one can use the alternative method provided in [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF]Section 6] to compute the control law u k+1 :

Step 1. Redefine the auxiliary state z k as:

z k = xk + N 2 -1 ∑ j=0 Ā-j-1 B1 u k-N 2 + j+1 + N 2 ∑ j=0 Ā-j-1 B2 u k-N 2 + j , (14) 
with Ā, B1 , and B2 defined in Assumption 1.

Step 2. Define B = Ā-N 2 B1 + Ā-N 2 -1 B2 . Then compute the feedback gain K z such that the matrix Ā + BK z is Schur stable. Therefore, the system plant can be stabilized by using the alternative control law

u k+1 = K z z k . ( 15 
)
Note that the dimension of the alternative control law (14)-( 15) is equivalent to the dimension of the original system, which is smaller than the extended one. More detailed analysis about these two methods are available in [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF]Remarks 8,[START_REF] Mcguire | Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone[END_REF][START_REF] Horalek | Analysis of the wireless communication latency and its dependency on a data size[END_REF].

The state prediction technique ( 13) is able to deal with slight message rejection [16, pp.1576] (packet reordering [32, pp.1775]) in the sensor-to-controller network. In the communication channel, if an older data packet arrives at its destination after a newer packet, then this older one is discarded in order to ensure that the newest data is processed. This phenomenon is presented in Fig. 2, where the measurements x(s k ) and x(s k+1 ) are neglected due to message rejection since they arrive at the controller after the measurement x(s k+2 ).

In order to deal with the message rejection shown by Fig. 2, at t = s k+1 and t = s k+2 , one uses the technique (13) to predict the states x(s k ) (with the case d = 1) and x(s k+1 ) (with the case d = 2), after which the control inputs u k+1 and u k+2 are successfully calculated even though the message rejection occurs. Proof. Firstly, because the sensor-to-controller delay is upper bounded by N 1 ∆, the measurement x(s k-N 1 ) must arrive at the controller before t = s k since

Lemma 1. At least one measurement x(s k-d ) with 1 ≤ d ≤ N 1 is available to the controller at t = s k . Actuator Controller s k-1 s k s k+1 s k+2 t k+1 t k-1 t k t ca u k-1 s k+3 s k s k+1 s k+2 t k-1 - Dt(k-1) t k - Dt(k) -t k+1 Dt(k+1) u k u k+1 s k+3 u(t) s k+1 s k u k-2 u k-1 u k u k+1 s k+3 t k+1 t k s k+2 t k-1 s k-1 s k-1 - -t k-1 Dt(k-1) -t k Dt(k) -t k+1 Dt(k+1)
ξ k-N 1 = s k-N 1 + τ sc (k -N 1 ) ≤ s k-N 1 + N 1 ∆ ≤ s k . ( 16 
)
Secondly, if the measurement x(s k-N 1 ) is not discarded, then Lemma 1 is proven with d = N 1 . Thirdly, if x(s k-N 1 ) is rejected, then there must exist an integer 1 ≤ d < N 1 such that x(s k-d ) successfully arrives at the controller and its arriving time ξ k-d is earlier than the arriving time of x(s k-N 1 ) such that

ξ k-d ≤ ξ k-N 1 ≤ s k . (17) 
Thus, x(s k-d ) is available to the controller at t = s k and this ends the proof.

Lemma 1 ensures that the maximum value of d in ( 13) is N 1 .

B. Controller-to-actuator uncertain delay case

In this subsection, we develop the technique given in Subsection III-A, and take into account the delay uncertainty in the controller-to-actuator channel. Consider ( 5) and ( 6). The controller-to-actuator delay satisfies

(N 2 -1)∆ < τ ca (k) ≤ (N 2 + 1)∆. ( 18 
)
Fig. 3 shows a timing diagram of the controller-to-actuator uncertain delay case with N 2 = 2 for instance. Let {t k } k∈N be the expected arriving times of each control input (without delay uncertainties) such that

tk = s k + τca , (19) 
and the sequence {t k } k∈N presents the true arriving times of each control input such that

t k = s k + τ ca (k) = tk + ∆τ(k). (20) 
Comparing ( 5) and [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF], two cases must be considered. Case 1:

(N 2 -1)∆ < τca < τ ca (k) ≤ N 2 ∆. (21) 
In this case, the delay uncertainty ∆τ(k) is not greater than N 2 ∆ -τca , and it implies that

s k < tk-N 2 +1 < t k-N 2 +1 ≤ s k+1 . (22) 
In Fig. 3, the control input u k-1 illustrates this case. The statetranslation equation between x(s k ) and x(s k+1 ) reads as

x(s k+1 ) =e A∆ x(s k ) + tk-N 2 +1 s k e A(s k+1 -θ ) dθ Bu k-N 2 + t k-N 2 +1 tk-N 2 +1 e A(s k+1 -θ ) dθ Bu k-N 2 + s k+1 t k-N 2 +1 e A(s k+1 -θ ) dθ Bu k-N 2 +1 (23) 
Under Assumption 1, one has that B1 =

s k+1 tk-N 2 +1 e A(s k+1 -θ ) dθ B and B2 = tk-N 2 +1 s k e A(s k+1 -θ ) dθ B. Let ∆ B1 (k -N 2 + 1) = t k-N 2 +1 tk-N 2 +1 e A(s k+1 -θ ) dθ B. Then (23) equals to x(s k+1 ) = Āx(s k ) + [ B1 -∆ B1 (k -N 2 + 1)]u k-N 2 +1 + [ B2 + ∆ B1 (k -N 2 + 1)]u k-N 2 . ( 24 
)
Case 2:

(N 2 -1)∆ < τca ≤ N 2 ∆ < τ ca (k). (25) 
This case shows that the delay uncertainty ∆τ(k) is greater than N 2 ∆ -τca , and it leads to

s k < tk-N 2 +1 ≤ s k+1 < t k-N 2 +1 . (26) 
The control input u k in Fig. 3 describes this case. The statetranslation equation between x(s k+1 ) and x(s k+2 ) is given by

x(s k+2 ) = Āx(s k+1 ) + [ B1 -B1 ]u k-N 2 +2 + [ B2 + B1 ]u k-N 2 +1 . (27) 
Indeed, if this case occurs, the delay uncertainty ∆τ(k) also has an influence on the system plant during the next sampling period. For instance, the control input u k-1 of Fig. 3 is also applied to the plant on interval [s k+2 ,t k ) ⊂ [s k+2 , s k+3 ] which yields

x(s k+3 ) = Āx(s k+2 ) + [ B1 -∆ B1 (k -N 2 + 3)]u k-N 2 +3 + [ B2 + ∆ B1 (k -N 2 + 3) -∆ B2 (k -N 2 + 2)]u k-N 2 +2 + ∆ B2 (k -N 2 + 2)u k-N 2 +1 (28) with ∆ B2 (k -N 2 + 2) = t k
s k+2 e A(s k+3 -θ ) dθ B. In conclusion, for both Case 1 and Case 2, one defines

∆ B1 (k) = B1 , if ∆τ(k) > N 2 ∆ -τca τca -(N 2 -1)∆+∆τ(k) τca -(N 2 -1)∆ e A(∆-θ ) dθ B, if ∆τ(k) ≤ N 2 ∆ -τca (29) and ∆ B2 (k) = τca +∆τ(k)-N 2 ∆ 0 e A(∆-θ ) dθ B, if ∆τ(k) > N 2 ∆ -τca 0, if ∆τ(k) ≤ N 2 ∆ -τca . ( 30 
) Thus, the following state-translation equation describes all the cases mentioned above:

x(s k+1 ) = Āx(s k ) + [ B1 -∆ B1 (k -N 2 + 1)]u k-N 2 +1 + [ B2 + ∆ B1 (k -N 2 + 1) -∆ B2 (k -N 2 )]u k-N 2 + ∆ B2 (k -N 2 )u k-N 2 -1 . ( 31 
)
Remark 5. If there is no delay uncertainty in the controller-toactuator channel, then the matrices ∆ B1 (k

-N 2 + 1), ∆ B2 (k - N 2 )
given in [START_REF] Karafyllis | Recent results on nonlinear delay control systems[END_REF] are zero, and (31) is reduced to (9).

Lemma 2. If the delay uncertainty satisfies 0 ≤ ∆τ(k) ≤ µ ≤ ∆ for all k ∈ N, then the norms of the matrices ∆ B1 (k) and ∆ B2 (k) satisfy

∆ B1 (k) ≤ µe A ∆ B , ∆ B2 (k) ≤ µe A ∆ B ( 32 
)
for all k ∈ N.

Proof. Suppose that ∆τ(k) > N 2 ∆ -τca hold. Then one has

∆ B1 (k) = B1 = ∆ τca -(N 2 -1)∆ e A(∆-θ ) dθ B. (33) 
By using the triangle inequality for integrals, (33) leads to

∆ B1 (k) ≤ ∆ τca -(N 2 -1)∆ e A(∆-θ ) dθ B ≤ ∆ τca -(N 2 -1)∆ e A ∆ dθ B ≤ [∆ -τca + (N 2 -1)∆]e A ∆ B ≤ µe A ∆ B . (34 
) Similarly, ∆ B2 (k) ≤ µe A ∆ B is proven by using the same inequality [START_REF] Lazar | Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems[END_REF] and the fact that τca + ∆τ(k) -N 2 ∆ ≤ ∆τ(k). Now, consider the case ∆τ(k) ≤ N 2 ∆ -τca . One can prove that ∆ B1 (k) ≤ µe A ∆ B the same way as with [START_REF] Lazar | Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems[END_REF], after which one has ∆ B2 (k) = 0. This ends the proof.

Similar to Subsection III-A, one uses the state prediction [START_REF] Wu | Cloud-based networked visual servo control[END_REF] to predict the state x(s k ) when the expected state measurement of x(s k ) is not available to the controller at instant t = s k+1 . However, one cannot perfectly calculate the system state x(s k ) due to delay uncertainty ∆τ(k), and only a state estimation x(s k ) can be computed. Assume that only the previous state measurement x(s k-d ) is available to the controller at instant t = s k+1 . Then, one can calculate the state prediction error as follows.

Step 1. Firstly, the true state-translation equation (31) between x(s k-d ) and x(s k-d+1 ) reads as

x(s k-d+1 ) = Āx(s k-d ) + ∆ B2 (k -d -N 2 )u k-d-N 2 -1 + [ B2 + ∆ B1 (k -d -N 2 + 1) -∆ B2 (k -d -N 2 )]u k-d-N 2 + [ B1 -∆ B1 (k -d -N 2 + 1)]u k-d-N 2 +1
(35) and the 1-step state prediction based on x(s k-d ) is calculated as

x(s k-d+1 ) = Āx(s k-d ) + B1 u k-d-N 2 +1 + B2 u k-d-N 2 . (36)
Taking the difference between ( 35) and ( 36), the 1-step prediction error is

e(s k-d+1 ) = x(s k-d+1 ) -x(s k-d+1 ) = ∆ B1 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1 ) + ∆ B2 (k -d -N 2 )(u k-d-N 2 -1 -u k-d-N 2 ). (37) 
Step 2. Secondly, one considers the estimation error e(s k-d+2 ) in a similar way, but one assumes that x(s k-d+1 ) is still not received by the controller, so the state prediction x(s k-d+1 ) provided in [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] is used for the further state prediction of x(s k-d+2 ) as follows:

x(s k-d+2 ) = Ā x(s k-d+1 ) + B1 u k-d-N 2 +2 + B2 u k-d-N 2 +1 . (38)
Then, the true state-translation equation (31) between x(s k-d+1 ) and x(s k-d+2 ) is obtained in the sequel:

x(s k-d+2 ) = Āx(s k-d+1 ) + ∆ B2 (k -d -N 2 + 1)u k-d-N 2 + [ B2 + ∆ B1 (k -d -N 2 + 2) -∆ B2 (k -d -N 2 + 1)]u k-d-N 2 +1 + [ B1 -∆ B1 (k -d -N 2 + 2)]u k-d-N 2 +2 .
(39) Taking the difference between (39) and [START_REF] Bansal | Aperiodic sampled-data control of distributed networked control systems under stochastic cyber-attacks[END_REF], one can calculate the 2-step estimation error as follows:

e(s k-d+2 ) = Āe(s k-d+1 ) + ∆ B1 (k -d -N 2 + 2)(u k-d-N 2 +1 -u k-d-N 2 +2 ) + ∆ B2 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1
).

(40) Step 3. Recursively, the d-step state estimation error e(s k ) based on the state measurement x(s k-d ) reads as:

e(s k ) = Ād-1 ∆ B1 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1 ) + Ād-1 ∆ B2 (k -d -N 2 )(u k-d-N 2 -1 -u k-d-N 2 ) + Ād-2 ∆ B1 (k -d -N 2 + 2)(u k-d-N 2 +1 -u k-d-N 2 +2 ) + Ād-2 ∆ B2 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1 ) + • • • + ∆ B1 (k -N 2 )(u k-N 2 -1 -u k-N 2 ) + ∆ B2 (k -N 2 -1)(u k-N 2 -2 -u k-N 2 -1 ).
(41) Finally, the control law u k+1 is calculated by

u k+1 = K ẑk (42) with ẑk = xT (s k ) u T k u T k-1 • • • u T k-N 1 -N 2 u T k-N 1 -N 2 -1 T .
Remark 6. Note that (42) is designed to deal with the case 1 ≤ d ≤ N 1 . If d = 0 holds, then it implies that the state measurement x(s k ) is available to the controller at instant t = s k+1 and there is no need to use the state prediction [START_REF] Wu | Cloud-based networked visual servo control[END_REF].

In this case, one can directly set x(s k ) = x(s k ), and the control law (42) is equivalent to [START_REF] Zhang | Networked control systems: A survey of trends and techniques[END_REF].

Lemma 3. The 2-norm of a class of block matrices

Γ =      0 0 • • • 0 -B B 0 • • • 0 0 0 • • • 0 0 0 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 0 0 0 • • • 0      (43) satisfies that Γ ≤ √ 2 B . ( 44 
)
Proof. The 2-norm of Γ is the induced norm [33, pp.281

] such that Γ = sup { Γx : x = 1} ( 45 
)
where x is a vector with appropriate dimension. One assumes that

x = x T 1 • • • x T j x T j+1 • • • x T r T satisfies x = 1 and Γ = sup { Γx : x = 1} = Γ x , (46) 
then one has

Γ = (-Bx j + Bx j+1 ) T 0 • • • 0 T = -Bx j +Bx j+1 .
(47) By using the triangle inequality, (47) is upper bounded as

Γ ≤ B ( x j + x j+1 ). (48) 
Note that according to the definition of the Euclidean vector norm [33, pp.270] and the fact that x = ∑ i=r i=1 x i 2 = 1,

( x j + x j+1 ) 2 ≤ 2 x j 2 + 2 x j+1 2 ≤ 2 i=r ∑ i=1 x i 2 = 2. ( 49 
)
Finally, ( 48) and ( 49) imply (44), which ends the proof.

IV. MAIN THEORETICAL RESULTS

The main theoretical results of this work are presented in this section. Before stating the main convergence result of this work, one uses the results given in Lemmas 1-3 to find the upper bound on the estimation error (41). Lemma 4. Consider the extended states

z k = x T (s k ) u T k • • • u T k-N 2 +1 u T k-N 2 • • • u T k-N 1 -N 2 -1 T (50) and ẑk = xT (s k ) u T k • • • u T k-N 2 +1 u T k-N 2 • • • u T k-N 1 -N 2 -1 T , (51) 
where there exists a constant Θ > 0 such that the extended error e(z k ) = z kẑk is upper bounded as follows:

e(z k ) ≤ Θµ z k (52)
with µ defined in Lemma 2.

Proof. Firstly, if d = 0, then the estimation error is zero according to Remark 6, and (52) holds with an arbitrary Θ > 0.

Then one moves on to the case 1 ≤ d ≤ N 1 , where Lemma 1 ensures that the maximum value of d in (41) is N 1 , and all of the control inputs mentioned in the right-hand side of (41) are contained in (50) and (51).

Secondly, the extended error between z k and ẑk reads as

e(z k ) = e T (s k ) 0 T • • • 0 T T . ( 53 
)
Consider that the last term of (41) and the error term (53) yields

∆ B2 (u k-N 2 -2 -u k-N 2 -1 ) T 0 T • • • 0 T T =      0 • • • 0 -∆ B2 ∆ B2 0 • • • 0 0 • • • 0 0 0 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 0 0 0 • • • 0      z k ( 54 
)
where the matrix ∆ B2 (k -N 2 -1) is written as ∆ B2 due to space limitations. Taking the norm of (54) and applying Lemmas 2-3, it leads to

     ∆ B2 (u k-N 2 -2 -u k-N 2 -1 ) 0 . . . 0      ≤ √ 2 ∆ B2 (k -N 2 -1) z k ≤ √ 2µe A ∆ B z k .
(55) Repeating the calculations of ( 54)-( 55) for all of the terms presented in the right-hand side of (41), then taking the sum of them leads to

e(z k ) ≤ 2 √ 2 i=d-1 ∑ i=0 Ā i µe A ∆ B z k ≤ 2 √ 2 Ā d -1 Ā -1 µe A ∆ B z k , if Ā = 1 2 √ 2dµe A ∆ B z k , if Ā = 1 .
(56) Finally, by virtue of Lemma 1, one has that d ≤ N 1 . Then (52) is proven with

Θ = 2 √ 2 Ā N 1 -1 Ā -1 e A ∆ B , if Ā = 1 2 √ 2N 1 e A ∆ B , if Ā = 1 . (57) 
The main convergence result of this work is given in the following theorem.

Theorem 1. Consider the fact that system (1) is controlled through a network that is subject to the sensor-to-controller time-varying delay (3) and a controller-to-actuator uncertain constant delay (4) satisfying (5)-( 6). The controller is supposed to be time-driven, and the control algorithm is composed of state prediction [START_REF] Wu | Cloud-based networked visual servo control[END_REF] and the discrete predictor-based controller (42). If the controller-to-actuator delay uncertainty is smaller than a certain bound 2 µ * as follows:

0 ≤ ∆τ(k) ≤ µ ≤ µ * , ( 58 
)
for all k ∈ N, then there exist constants M > 0 and η ∈ (0, 1) such that the extended discrete-time system is globally exponentially stable:

z k ≤ M z 0 η k , ( 59 
)
and the sequence {x(s k )} k∈N also globally converges to zero with decay rate η.

Proof. Firstly, consider the state-translation equation ( 31) and the control law (42), which leads to

z k+1 = (A + ∆A k )z k + Bu k+1 = (A + ∆A k )z k + BK ẑk = (A + BK )z k + ∆A k z k -BK e(z k ) (60) 
2 the detailed calculation of this bound is given in the proof of this theorem.

with

∆A k =      0 • • • 0 -∆ B1 ∆ B1 -∆ B2 ∆ B2 0 • • • 0 0 • • • 0 0 0 0 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 0 0 0 0 • • • 0     
(61) where the indexes of ∆ B1 (k -N 2 +1), ∆ B2 (k -N 2 ) are omitted due to space limitations. Taking the norm of ∆A k and using Lemmas 2-3 gives

∆A k ≤ √ 2( ∆ B1 (k -N 2 + 1) + ∆ B2 (k -N 2 ) ) ≤ 2 √ 2e A ∆ B µ. ( 62 
)
Define the discrete-time Lyapunov function as

V k = z T k Pz k ( 63 
)
with P satisfying [START_REF] Ramirez | Stability analysis of a vision-based UAV controller: An application to autonomous road following missions[END_REF]. Taking the difference between V k+1 and V k leads to

∆V k =V k+1 -V k = -εz T k z k + z T k ∆A T k P∆A k z k + e T (z k )K T B T PBK e(z k ) + 2z T k (A + BK ) T P∆A k z k -2z T k ∆A T k PBK e(z k ) -2z T k (A + BK ) T PBK e(z k ).
(64) Taking the norm of the right-hand side of (64) and using (62), (52) yields 65) is simplified as

∆V k ≤ -ε z k 2 + 8e 2 A ∆ B 2 P µ 2 z k 2 + BK 2 P Θ 2 µ 2 z k 2 + 4 √ 2 A + BK e A ∆ B P µ z k 2 + 4 √ 2 BK e A ∆ B P Θµ 2 z k 2 + 2 A + BK BK P Θµ z k 2 . ( 65 
) Define α = (8e 2 A ∆ B 2 + BK 2 Θ 2 +4 √ 2 BK e A ∆ B Θ) P (66) and β = (4 √ 2 A + BK e A ∆ B +2 A + BK BK Θ) P (67) then (
∆V k ≤ --α µ 2 -β µ + ε z k 2 . ( 68 
)
Given a constant 0 < γ < min{λ max (P), ε}, and defining

µ * = min β 2 + 4α(ε -γ) -β 2α , ∆ , (69) 
note that if 0 ≤ µ ≤ µ * , then (69) ensures that

-α µ 2 -β µ + (ε -γ) ≥ 0 (70)
and ( 68) further implies that

V k+1 -V k = ∆V k ≤ -γ z k 2 ≤ - γ λ max (P) V k . (71) 
Since 0 < γ < λ max (P), it follows that 0 < 1γ/λ max (P) < 1. Finally, (71) and (50) lead to

x(s k ) ≤ z k ≤ λ max (P) λ min (P) M      1 - γ λ max (P) η      k z 0 . (72)
Considering the fact that 1γ/λ max (P) ∈ (0, 1), the proof of Theorem 1 is finished.

Remark 7. If ∆τ(k) = 0, then Theorem 1 implies that the proposed method stabilizes NCSs with a long τ sc (k), long ∆ and long τca by virtue of the extended system representation (10) and the perfect state prediction [START_REF] Wu | Cloud-based networked visual servo control[END_REF]. On the one hand, suppose that ∆τ(k) = 0 holds. Then, the stability condition (68) is reduced to ∆V k ≤ -ε z k 2 which is not constrained by the sizes of τ sc (k), τca , and ∆ (given that µ is the upper bound on ∆τ(k)); on the other hand, long time-delays can be endured by the proposed method since the effects of the timedelays are converted to the structure of the delay-free extended system [START_REF] Horalek | Analysis of the wireless communication latency and its dependency on a data size[END_REF]. A similar discussion about the above benefit of the discrete-time approach is also given in [18, Section 7.1].

Remark 8. In Theorem 1, the exponential convergence of the discrete-time sequence {x(s k )} k∈N is obtained. Indeed, since the original system (1) is linear, the continuous-time exponential convergence of x(t) can be derived if the following conditions hold:

• the matrix A does not have any eigenvalue with the form of (2π/∆) • k j; • if λ is an eigenvalue of A whose real part is nonnegative, then λ + (2π/∆) • k j is not an eigenvalue of A; for any nonzero integer k, a detailed analysis is given in [START_REF] Francis | Stability theory for linear timeinvariant plants with periodic digital controllers[END_REF]Section VIII].

Theorem 1 provides a discrete-time control scheme for a class of NCSs with sensor-to-controller time-varying delay, and the robustness to delay uncertainty is also analyzed.

V. RESULTS WITH EXTERNAL DISTURBANCE

In this section, the main theoretical results of Theorem 1 are extended to a case with external disturbance, and it will be shown that the discrete-time extended system {z k } is globally ISS (input-to-state stable) even with an external disturbance. In this case, the system plant is redefined as:

ẋ(t) = Ax(t) + Bu(t) + Dw(t) (73) 
with external disturbance w(t) ∈ R p and D ∈ R n×p . Therefore, the following ISS property can be obtained:

Proposition 1. Consider the perturbed system (73) controlled through the network with the sensor-to-controller time-varying delay (3) and the controller-to-actuator uncertain constant delay (4) such that conditions (5)-( 6) are satisfied. Under the same conditions as Theorem 1, the discrete-time predictorbased controller composed of ( 13) and ( 42) is able to guarantee that the closed-loop system of {z k } is globally ISS.

Sketch of Proof. The sketch of proof is almost the same as the one of Theorem 1, except that the effects of the external disturbance are taken into account. Firstly, consider the state-translation equation [START_REF] Karafyllis | Recent results on nonlinear delay control systems[END_REF]. It is modified to the following perturbed equation:

x(s k+1 ) = Āx(s k ) + [ B1 -∆ B1 (k -N 2 + 1)]u k-N 2 +1 + [ B2 + ∆ B1 (k -N 2 + 1) -∆ B2 (k -N 2 )]u k-N 2 + ∆ B2 (k -N 2 )u k-N 2 -1 +W k+1 , (74) 
with W k+1 s k+1 s k e A(s k+1 -θ ) Dw(θ )dθ , where the disturbance term is bounded as follows:

W k+1 ≤ ∆ • e A ∆ D sup s∈[s k ,s k+1 ] w(s) . (75) 
The new state-translation equation (74) implies that the effects of the external disturbance can not only influence the current state, but also be accumulated in the state prediction procedure. Namely, applying (74) to ( 37), (40), and (41) yields the 1-step perturbed estimation error:

e(s k-d+1 ,W ) = ∆ B1 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1 ) + ∆ B2 (k -d -N 2 )(u k-d-N 2 -1 -u k-d-N 2 ) +W k-d+1 , (76) 
the 2-step perturbed estimation error:

e(s k-d+2 ,W ) = Āe(s k-d+1 ,W ) +W k-d+2 + ∆ B1 (k -d -N 2 + 2)(u k-d-N 2 +1 -u k-d-N 2 +2 ) + ∆ B2 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1 ), (77) 
and the d-step perturbed estimation error:

e(s k ,W ) = Ād-1 ∆ B1 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1 ) + Ād-1 ∆ B2 (k -d -N 2 )(u k-d-N 2 -1 -u k-d-N 2 ) + Ād-2 ∆ B1 (k -d -N 2 + 2)(u k-d-N 2 +1 -u k-d-N 2 +2 ) + Ād-2 ∆ B2 (k -d -N 2 + 1)(u k-d-N 2 -u k-d-N 2 +1 ) + • • • + ∆ B1 (k -N 2 )(u k-N 2 -1 -u k-N 2 ) + ∆ B2 (k -N 2 -1)(u k-N 2 -2 -u k-N 2 -1 ) + d ∑ i=1 Ād-i W k-d+i .
(78) After calculating the prediction error (78), one moves on to the stability analysis. Taking (78) into account, the main results of Lemma 4 should be modified as:

e(z k ,W ) ≤ Θµ z k + d ∑ i=1 Ā d-i W k-d+i . ( 79 
) Define Wk+1 = W T k+1 0 T • • • 0 T T .
Then the extended state-translation equation ( 60) is recalculated as:

z k+1 = (A + BK )z k + ∆A k z k -BK e(z k ,W ) + Wk+1 (80)
where e(z k ) takes the redefined value given in (79). Finally, considering the same Lyapunov function as given in Theorem 1 for the discrete-time perturbed extended system (80), it leads to:

V k+1 -V k ≤ -γ z k 2 + σ1 w w w 2 + σ2 z k w w w ≤ - γ 2 z k 2 + σ1 + σ 2 2 2γ w w w 2 , (81) 
with w w w sup{ w(s) |s ∈ R + }, and

σ1 = ( BK Ξ + 1) 2 P e 2 A ∆ D 2 • ∆ 2 , σ2 = 2 P A + BK + 2 √ 2e A ∆ B µ + BK Θµ • ( BK Ξ + 1) • e A ∆ D • ∆, (82) where Ξ 
∑ d i=1 Ā d-i . Inequality (81) ensures that the discrete-time extended system {z k } is globally ISS under the definition given in [START_REF] Lazar | Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems[END_REF]Theorem II.4] which ends the sketch of proof.

In Proposition 1, the input-to-state stability of the discretetime extended system is obtained, which implies that the proposed method can deal with the case when the system plant is perturbed by an uniformly bounded external disturbance.

VI. SIMULATION RESULTS

In this section, some simulation results are provided to demonstrate the benefits of the proposed control method based on the discrete-time approach, i.e. it is able to stabilize the NCS under a low sampling rate, as described in Subsection I-B. Moreover, the message rejection is also considered in the simulation, and it is compensated by the proposed state prediction technique [START_REF] Wu | Cloud-based networked visual servo control[END_REF].

Consider the continuous-time unperturbed plant

ẋ(t) = -1 0.7 -0.4 0 x(t) + 0 0.02 u(t), (83) 
and the continuous-time perturbed plant

ẋ(t) = -1 0.7 -0.4 0 x(t) + 0 0.02 u(t) + 1 2 w(t), (84) 
with w(t) = 0.2 sin (2t), controlled through a network. The sampling period is set to ∆ = 0.8s, the sensor-to-controller delay is set to

τ sc (k) =          0.5s, k = 4m, m ∈ N 2.0s, k = 4m + 1, m ∈ N 1.0s, k = 4m + 2, m ∈ N 0.7s, k = 4m + 3, m ∈ N (85)
and the controller-to-actuator delay is chosen as an uncertain constant delay such that 1.56s ≤ τ ca (k) ≤ 1.64s. Thus, the controller-to-actuator delay can be modeled as (4) with τca = 1.56s and ∆τ(k) ∈ (0, 0.08s].

The time-delays of this simulation have the following features:

• the sensor-to-controller delay is upper bounded by N 1 ∆ with N 1 = 3, and the nominal controller-to-actuator delay τca satisfies [START_REF] Kizir | Time delay compensated vision based stabilization control of an inverted pendulum[END_REF] with N 2 = 2; • the message rejection is found in the sensor-to-controller channel, and the state measurements x(s 4m+1 ) with m ∈ N are discarded;

• the controller-to-actuator delay can be greater or smaller than N 2 ∆, namely, both Cases 1 and 2 given in Subsection III-B can occur; • the external disturbance Dw(t) is introduced in (84), which affects the performance of the closed-loop system. In term of the discussions above, the parameters N 1 = 3 and N 2 = 2 are determined, the extended state is then defined as

ẑk = xT (s k ) u T k u T k-1 • • • u T k-6 T , (86) 
and the feedback controller is chosen as u k+1 = [0.3067 0.0245 0.7148 -0.2276... ...0.0289 -0.0016 0 0 0] ẑk ,

which makes the matrix A + BK Schur. Considering the proposed parameter settings, it is possible to determine Θ = 0.3121 for Lemma 4. Next, we set ε = 1 and solve the Lyapunov equation [START_REF] Ramirez | Stability analysis of a vision-based UAV controller: An application to autonomous road following missions[END_REF]. Then, the maximum allowable upper bound on the delay uncertainty (69) under Theorem 1 (for the case of γ = 0.05) is computed as µ * = 0.0846s, which is greater than the upper bounded µ = 0.08s in the simulation. Finally, the initial conditions of the simulation are set to x(0) = 3 -5 T , and u k = 0 for all k < 0.

In addition, considering the fact that N 1 = 3, one may use a state-feedback without prediction or a 1-step/ 2-step state prediction to compute control law u k+1 . The detailed control strategies for these three cases are introduced as follows:

• No state prediction is required: the control law can be directly calculated as (87) where ẑk is replaced by z k ; • 1-step state prediction is required: one firstly calculates x(s k ) = Āx(s k-1 ) + B1 u k-2 + B2 u k-3 , then one can use (87) to compute the control input u k+1 ; • 2-step state prediction is required: in this case, the state prediction reads as x(s

k ) = Ā2 x(s k-2 ) + B1 u k-2 + ( B2 + Ā B1 )u k-3 + Ā B2 u k-4
, and the estimation is then plugged into (87) for the controller design. Namely, under the 1-step state prediction and the 2-step state prediction, the complete control laws are computed as follows: 

with

z 1-step = x T (s k-1 ) u T k u T k-1 • • • u T k-6 T , z 2-step = x T (s k-2 ) u T k u T k-1 • • • u T k-6 T . (89) 
The simulation results are provided in Fig. 4. The trajectories of the system (83) under control law (86)-(87) converge to the origin (see the blue/ red curves of Fig. 4a) for the unperturbed system (83), although the sampling period ∆ is long and the sensor-to-controller delay τ sc (k) is fast-varying. Next, the blue/ red dash curves of Fig. 4a illustrate that trajectories of the states converge into a small interval around the origin for the perturbed system (84). Moreover, it is observed that the message rejection that occurred in the sensorto-controller network is also successfully overcome by the control solution of Theorem 1. The simulation results presented in this section highlight the following contributions of Theorem 1 and Proposition 1:

• the state prediction technique ( 13) is able to deal with slight sensor-to-controller message rejections; • due to the properties of the discrete-time approach [START_REF] Cloosterman | Stability of networked control systems with uncertain time-varying delays[END_REF], [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF], the proposed method provides endurance even with a long sampling period; • the control technique is able to cope with a uniformly bounded external disturbance, and the ISS stability/ convergence is illustrated by the simulation results. Furthermore, the calculation of the maximum allowable delay uncertainty µ * in Theorem 1 is conservative, and the choice of the feedback matrix K can be more flexible in practice.

VII. EXPERIMENTAL VALIDATION ON NIPVSS

In this section, the main theoretical results of Theorem 1 are implemented on the NIPVSS test bench [START_REF] Zhan | Stability and stabilization for visual servo inverted pendulum system with random image processing time delay[END_REF], [START_REF] Du | Realtime H ∞ control of networked inverted pendulum visual servo systems[END_REF] in order to test the effectiveness and the performance of the proposed control method on a real vision-based control system.

A. Configuration of the NIPVSS test bench

In this subsection, the NIPVSS test bench [START_REF] Zhan | Stability and stabilization for visual servo inverted pendulum system with random image processing time delay[END_REF], [START_REF] Du | Realtime H ∞ control of networked inverted pendulum visual servo systems[END_REF] is introduced. The test bench is firstly composed of an inverted pendulum displayed in Fig. 5. The movement of the inverted pendulum is captured by an Aca640-120gm monochrome industrial camera (see Fig. 6), after which the state information x(s k ) is obtained by the image-processing algorithm (based on Microsoft Visual Studio 2010 and OpenCV 2.4.11) on each frame. In this experimental set-up, the cart position is obtained by applying the translation between the pixel coordinate system and the world coordinate system since the camera and the moving plane are fixed. The pendulum angle is measured in the pixel coordinate system by using the edge detection technique based on the Hough Transformation [START_REF] Duda | Use of the hough transformation to detect lines and curves in pictures[END_REF]. Once the controller (i.e. a host computer) receives the vision-based state measurements through the communication channel, it runs the control algorithm and then sends the control signal to a GT-400-SV-PCI movement control card. Finally, a MSDA023A1A servo driver receives the control signal and drives the cart to move on the rail.

B. Controller design for NIPVSS based on Theorem 1

The controller design is based on the linearized inverted pendulum plant around the straight-up position

ẋ(t) =     0 0 1 0 0 0 0 1 0 0 0 0 0 lmg/J 0 0     A x(t) +     0 0 1 ml/J     B u(t) (90) 
with x(t) = col{α, θ , α, θ }. The parameters of (90) are provided in Table I. The NIPVSS is subject to the following timedelays:

C. Experimental results The experimental results 4 are presented in Fig. 7. Firstly, Fig. 7b shows that the two methods can achieve good control performance on the pendulum angle θ (t): it is maintained in a neighborhood around zero (namely, the curves are almost bounded over [-0.04rad, 0.04rad]). Secondly, the experimental results displayed in Fig. 7a show that the cart position α(t) cannot return perfectly to the original position (α(t) = 0) due to the measurement error introduced by the image-processing algorithm [START_REF] Du | Realtime H ∞ control of networked inverted pendulum visual servo systems[END_REF] and the imperfect linearized modeling of (90). However, the experimental results still confirm that the proposed method provides better control performance on the cart position than the LQR controller.

Next, as done in [7, Section V-B], the following indexes are used for the analysis of the results presented in Fig. 7: • MCP: mean of cart position;

• SCP: standard deviation of cart position;

• MPA: mean of pendulum angle;

• SPA: standard deviation of pendulum angle. The normalized (with respect to LQR controller (96)) performance indexes of the two controllers (93) and (96) are provided in Fig. 8: smaller the value is, better the result is. Apparently, the results obtained by the proposed controller (93) are better than the ones obtained by the LQR method (96). The experimental results displayed by Figs. 7-8 illustrate the proposed method is successfully implemented on the real remote visual servo control system. Moreover, the proposed method provides better experimental control performance than the non-predictive control solution (96). Furthermore, the proposed method has good control performances on such a fast motion control system, which shows that the proposed method has wide application prospects in control engineering.

VIII. CONCLUSIONS

A discrete-time control solution (state prediction and discrete predictor-based controller) is designed to stabilize a class of LTI networked control systems, and this method is applied to a networked visual servo inverted pendulum system. The state prediction technique is used to deal with the sensor-to-controller time-varying delay, and the uncertain constant controller-to-actuator delay is compensated for using the predictor-based controller. Moreover, the message rejection phenomenon is also considered in this work. The theoretical results are illustrated by the simulation and experimental results. In the future, the following research activities will be investigated:

• Theoretical part: the output-feedback control technique will be developed, some additional network-induced imperfections (e.g. quantization [START_REF] Léchappé | Discrete predictorbased event-triggered control of networked control systems[END_REF], cyber-attack [START_REF] Bansal | Aperiodic sampled-data control of distributed networked control systems under stochastic cyber-attacks[END_REF]) will be considered, and the stochastic Lyapunov approaches will be applied in order to systematically deal with stochastic packet-dropout and message rejection at the same time. Besides, more analysis will be given in order to relax the assumption ∆τ(k) ∈ (0, ∆], and the controllerto-actuator message rejection will be studied as well. • Experimental part: in order to improve the control performance of the cart position, the robust H ∞ control technique will be used to calculate the feedback gain K in a more systematic way.
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 1 Fig. 1: Timing diagram of the control scheme with time-driven sensor, time-driven controller and event-driven actuator.
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 2 Fig. 2: Timing diagram of the sensor-to-controller channel with message rejections.
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 3 Fig. 3: Timing diagram of the controller-to-actuator channel with uncertain delays.
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  State evolution of systems (83)-(84) under control law (86)-(87). (b) Control signals (86)-(87) for two systems (83)-(84) . (c) Sensor-to-controller time-varying delay versus time. (d) Controller-to-actuator uncertain constant delay versus time.
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 4 Fig. 4: State evolution, control signal, and network-induced delays versus time for the unperturbed/ perturbed systems (83)-(84).

  Cart positions α(t) versus time with controllers (93) and (96).

  Pendulum angles θ (t) versus time with controllers (93) and (96).
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 7 Fig. 7: Experimental results with the LQR controller (96) and the proposed controller (93)-(95).

Fig. 8 :

 8 Fig.8: Normalized (with respect to LQR controller) performance indexes of the experimental results.

The controller-to-actuator delay is the sum of a constant delay (dead time of the actuator) and a small time-varying delay (controller-to-actuator data transmission latency). Therefore, it can be equivalently modeled as an uncertain constant delay.
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The continuous-time controller (96) is emulated [36, Section 2.2] to the sampled-data form for the experiment on the NIPVSS.

The videos of the two experiments are available at https://drive.google. com/drive/folders/1WEp7VUt5JTcUlbQf6cAt4z4ZHKKJzGjN?usp=sharing.
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• the computational time D(t) ∈ [0.015s, 0.016s] caused by the image-processing algorithm; • the sensor-to-controller transmission delay bounded in (0s, 0.007s] introduced by data communication; • the controller-to-actuator transmission delay bounded in (0s, 0.007s] introduced by data communication. Thus, the control of the NIPVSS can be modeled as an NCS with the plant (90) and the time-delays mentioned above. The sensor-to-controller delay is the sum of the computational time and the transmission delay such that τ sc (k) ∈ (0.015s, 0.023s], and the controller-to-actuator delay satisfies τ ca (k) ∈ (0s, 0.007s]. Note that the max frame rate of the industrial camera is 120Hz, i.e. the industrial camera can maximumly take 120 photos per second, but the image-processing algorithm cannot follow up with this sampling rate. Indeed, by considering the image-processing time D(t), the image-processing algorithm cannot process more than 1/0.015 = 66.67 frames per second. In the experiment, the sampling period is set to ∆ = 0.02s in order to ensure that each frame is captured after the state information resolution of the previous frame, and a similar discussion is given in [13, pp.554].

Consider the time-delays τ sc (k), τ ca (k), the sampling period ∆ and the system modeling provided in (3)-( 5). The parameters N 1 = 2, τca = 0s, and N 2 = 1 are then determined. 

By virtue of (91), u k-4 cannot influence the state-translation between x(s k ) and x(s k+1 ), so it is not necessary to be used in the controller design.

By considering Remark 9, the following extended state is chosen to build the control law for this experiment:

Next, in order to guarantee the experimental control performance, the following closed-loop poles of the discrete-time extended system have been obtained by trial and error: 

with

In order to evaluate the control performance of the proposed method, the continuous-time LQR controller 3 (with Q = diag(50, 230, 0, 0) and R = 50):

provided in [37, pp.439] is used for a comparison. Note that [START_REF] Du | Experimental performance analysis of inverted pendulum platform[END_REF] is based on the same inverted pendulum experimental set-up as Fig. 5. Franck Plestan (M'99) received the Ph.D. in Automatic Control from the École Centrale de Nantes, France, in 1995. From September 1996 to August 2000, he was with Louis Pasteur University, Strasbourg, France. In September 2000, he joined the École Centrale de Nantes, Nantes, France where he is currently Professor. His research interests include robust control (adaptive/higher order sliding mode, time-delay systems) and nonlinear observer design. He is also working in several application domains as pneumatic actuators, automotive, flying systems, renewable energy systems.