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Vincent Bansaye Ayman Moussa Felipe Muñoz-Hernández
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Abstract

We consider conservative cross-di�usion systems for two species where individual mo-

tion rates depend linearly on the local density of the other species. We develop duality es-

timates and obtain stability and approximation results. We �rst control the time evolution

of the gap between two bounded solutions by means of its initial value. As a by product,

we obtain a uniqueness result for bounded solutions valid for any space dimension, under

a smallness assumption. Using a discrete counterpart of our duality estimates, we prove

the convergence of random walks with local repulsion in one dimensional discrete space

to cross-di�usion systems. More precisely, we prove sharp quantitative estimates for the

gap between the stochastic process and the cross-di�usion system. We complete this study

with a rough but general estimate and convergence results, when the population and the

number of sites become large.

Keywords and phrases: Cross-di�usion, duality, stability, scaling limits, repulsive random
walks.

1 Introduction and notation

Approximations of interacting large populations is motivated by physics, chemistry, biology

and ecology. A famous macroscopic model was introduced by Shigesada, Kawasaki and Ter-

amoto in [27] to describe competing species which di�use with local repulsion. In the case of

two species, it writes{
∂tu−∆

(
d1u+ a11u

2 + a12uv
)

= u(r1 − s11u− s12v),

∂tv −∆
(
d2v + a21uv + a22v

2
)

= v(r2 − s21u− s22v),

where u and v are the densities of the two species and di, ri, aij and sij are non-negative real

numbers. Completed by initial and boundary conditions, this system (that we simply refer

to as the SKT system) o�ers a model for the spreading of two interacting species which mu-

tually in�uence their propensity to di�use, through the cross-di�usion terms aij . The other

coe�cients represent either natural di�usion (di coe�cients), reproduction (ri coe�cients) or
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competition (sij coe�cients). The main motivation of [27] was to propose a population dy-

namics model able to detect segregation, that is the existence of non-constant steady states u
and v having disjoint superlevel sets of low threshold value. As a consequence of this moti-

vation, the �rst mathematical results dealing with this system focused on su�cient conditions

for the coe�cients to ensure existence of non-constant steady states, with a careful study of

the stability of the latter. This study of possible segregation states is still active and we refer to

the introduction of [3] for a nice state of the art. It is a striking fact that during its �rst years of

existence within the mathematical community, the SKT system has not been studied through

the prism of its Cauchy problem. As a matter of fact, existence of solutions has been tackled

only a few years later: the �rst paper dealing with this issue is [20] and explores the system

under very restrictive conditions. Several attempt followed, but only with partial results. A

substantial progress was achieved by Amann [1, 2], who proposed a rather abstract approach

to study generic quasilinear parabolic systems. The scope of this technology goes far beyond

the sole case of cross-di�usion systems. In the speci�c case of the SKT system, it o�ers exis-

tence of local (regular) solutions, together with a criteria of explosion to decide if the existence

is global or not. This fundamental result of Amann has been then used by several authors to

establish existence of global solutions for particular forms of the SKT system. This is done, in

general, under a strong constraint on the coe�cients. For instance, [21] treats the case of equal

di�usion rates in low dimension and [16], settles the one of triangular systems (that is, for two

species, when a12a21 = 0). However, the general question of existence of global solution for

the complete system remains open, even in low dimension.

Another way to produce a global solution is to sacri�ce the regularity of the solutions, and

deal with only weak ones. This strategy relies on the so-called entropic structure of the system:

SKT systems as the one previously introduced, admit Lyapunov functionals which decay along

time and whose dissipation allows to control the gradient of the solution. This method has been

used successfully in [4] to prove, for the �rst time, existence of global weak solutions for the

SKT system, without restrictive assumptions on its coe�cients. After it �rst discovery in [15],

this entropic structure has been explored and generalized to several systems, allowing for the

construction of global weak solutions for variants of the original SKT system (see [19, 11] and

the references therein). With this low level of regularity for the solutions, uniqueness becomes

an issue in itself. It has been studied either under simplifying assumptions on the system like

in [24, 7] or in the weak-strong setting thanks to the use of a relative entropy (see [8]).

1.1 Objectives and state of the art

This work is initially motivated by yet another mathematical challenge o�ered by the SKT

system: its rigorous derivation. The di�usion operator used in the system in SKT system is

speci�c. We focus in this paper on the main di�culty raised by this operator, which is the

non-linearity of di�usion term. The initial goal of the work is to approximate the conservative

SKT system, without self-di�usion, that is the following one{
∂tu−∆(d1u+ a12uv) = 0,

∂tv −∆(d2v + a21uv) = 0,
(1)
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where all the coe�cients di and aij are assumed positive. Whereas (possibly heterogeneous)

di�usion of lifeless matter (e.g. ink or any type of chemical substance) uses the Fick di�usion

operator −div(µ∇·) to express the spread, SKT systems rely on the (more singular) operator

−∆(µ ·). As it was already explained in [27], this choice of di�usion operator is at the core

of the repulsive mechanism allowing the segregation to appear. However, the justi�cation

proposed in [27] was rather formal, leaving open the question of the rigorous justi�cation

of SKT systems. As far as our knowledge goes, there exist mainly three approaches for the

derivation of SKT systems

(i) The �rst path was proposed in [17], where an SKT model is obtained as an asymptotic

limit of a family of reaction-di�usion systems. In this approach the idea is that one of

the two species exists in two states (stressed or not), and switch from one to the other

with a reaction rate which diverges. This was used in [17] to obtain formally a triangular

cross di�usion system. This strategy has been followed with a rigorous analysis, mainly

to produce triangular systems (see [28] and references therein) and more recently for a

family of "full" systems in [10] which, however, do not include the SKT one.

(ii) Another strategy was proposed by Fontbona and Méléard in [14]. The idea is to start

from a stochastic population model in continuous space where the individuals’ displace-

ments depend on the presence of concurrents. Then, the large population limit (under

adequate scaling) leads to a non-local cross-di�usion model. In comparison with the sys-

tem (1), the limit model rigorously derived in [14] is a lot less singular, because of several

convolution kernels. It was explicitly asked in [14], whether letting the convolution ker-

nels vanish to the Dirac mass was handable limit or not. A �rst partial answer was given

in [23], but applied for only speci�c triangular systems. More recently, it was discovered

in [13] that even for the non-local systems, it is possible to ensure the persistence of the

entropy structure, allowing to answer fully to the question of Fontbona and Méléard, at

least for the standard SKT system.

A little bit before [13] appeared, Chen et. al. proposed another strategy in [5] (see also

[6] which deals with a slightly di�erent family of systems). It also starts from a stochas-

tic model and makes use of an intermediate non-local one. The main di�erence with

[14, 23, 13] is that in [5] the two asymptotics are done simultaneously (size of popula-

tion to in�nity and parameter of regularization to 0). This direct approach amounts to

"commute" the asymptotic diagram from the stochastic model to the �nal PDE; this is a

common feature with the current work that we will comment later on.

(iii) The third path was proposed in [9] and justi�es the SKT model through a semi-discrete

one. The latter is itself derived from a stochastic population model in discrete space

where individuals are assumed to move by pair, in order to ensure reversibility of the

process and the existence of an entropy for the limit model. In [9] the link to the stochas-

tic was done formally whereas the asymptotic analysis linking the semi-discrete model

to the SKT system was proved rigorously, relying on a compactness argument which is

allowed thanks to the existence of the Lyapunov functional for the semi-discrete system.

In this paper, we are interested in connections between microscopic random individual-
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based models (or particle system) and such macroscopic deterministic dynamics, in the spirit

of strategies (ii) and (iii) described above. We do not use any non-local approximated system

as in [14, 5], being inspired instead by the semi-discrete approach proposed in [9]. We consider

also a discrete space and that each species moves randomly and is only sensitive to the local size

of the other species. Let us comment the main di�erences and novelties of this work compared

to [9]. First, we prove rigorously that the suitably scaled stochastic process converges in law

in Skorokhod space to SKT system (1) and we perform this space and time scaling limit at

once. Besides, individuals of each species move independently with a rate proportional to the

number of individuals of the other species, on the same site. We do not need to make them

move by pair, which may be hard to justify regarding phenomenon at stake. Indeed, we do

not need a reversibility property and do not use the entropic structure. The main di�culty

to prove convergence of the stochastic process at once lies in the control of the cumulative

quadratic rates due to local interactions when the number of sites becomes large. As far as we

have seen, entropy structure does not provide the suitable control of these non-linear terms

and a way to get tightness and identi�cation in general. We use a di�erent approach based on

generalized duality. This provides quantitative estimates in terms of space discretization and

size of population. Moreover, at the level of the PDE system, it implies a local uniqueness result

for bounded solutions of the SKT system. The duality approach allows to compare locally the

stochastic process with its semi-discrete deterministic approximation. It is optimal in the sense

that it provides the good time space scaling for such an approximation.

Let us describe now the stochastic individual-based model. The population is spatially

distributed among M sites. The process under consideration is a continuous time Markov

chain (U(t),V (t))t≥0 taking values in NM × NM . The two coordinates count the number of

individuals of each species at each site, for each time t ≥ 0. Each individual of each species

follows a random walk and its jumps rate increases linearly with respect to the number of

individuals of the other species. The dynamic is de�ned by the jump rates as follows. For any

vector of con�gurations (u,v) ∈ NM × NM , the transitions are

u 7→ u+
(
ei+θ − ei

)
at rate 2ui(d1 + a12vi),

v 7→ v +
(
ei+θ − ei

)
at rate 2vi(d2 + a21ui),

where (ej)1≤j≤M is the canonical basis of RM , e0 = eM , eM+1 = e1 and θ ∈ {−1, 1} with

both values equally likely. Let us mention that hydrodynamic limits of other stochastic models

with repulsive species have been considered, in particular in the context of exclusion processes,

see e.g. [26]. In that case, local densities are bounded so di�culties and limits are di�erent. In

an other direction, stochastic versions of the limiting SKT systems have been considered, see

e.g. [12].

This work contains two main results which at �rst sight can appear unrelated in their for-

mulation. The �rst result is a quantitative stability estimate on the SKT system which bounds

the distance between two solutions in terms of their initial distance. This result is based on

a new duality lemma and applies for bounded solutions, only if one of them is small enough.

As a by-product of this stability estimate, we prove uniqueness of (small) bounded solutions

of the conservative SKT system. This result is valid in arbitrary dimension and is, as far as

our knowledge goes, new. Uniqueness theorems for (only) bounded solutions of the full SKT
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system are missing in the current literature [7, 8, 24].

The second main result is the convergence of the properly scaled sequence of processes

(UM,N ,V M,N )M,N∈N to the SKT system. We obtain quantitative estimates of the gap be-

tween the trajectories of this process extended to the continuous space and the solution of SKT

system, in a large population and di�usive regime. This analysis is performed in a one dimen-

sional setting for the space variable. The strategy is to insert the semi-discrete model proposed

in [9] and estimate separately the gap between our stochastic process and this semi-discrete

system and then, estimate (with enough uniformity) the distance between the semi-discrete

system and the continuous SKT limit. Following this plan, we �rst propose a general estimate,

which rely on naive bounds of the quadratic di�usion term. Roughly, we simply bound locally

the size of the population by the (constant) total number of individuals. These bounds allow for

convergence with a �xed number of sites but lead to an unreasonable assumption of a superex-

ponential number of individuals per site when the number of sites increases. When we faced

this di�culty, we tried to obtain an estimate as sharp as possible to capture the good scales

and compare the semi-discrete system and the continuous one. It’s during this step that we

discovered the stability estimate described above, which is interesting for its own sake. A nice

feature of this stability estimate is that we can transfer it onto the semi-discrete and stochastic

setting. We obtain then the convergence of the stochastic model towards the SKT system, with

sharp estimates and relevant size scales. This asymptotic study shares a similar limitation as

the previous paragraph: it holds only under the assumption of small regular solution of the

SKT system, which is ensured by Amann’s theorem [1, 2].

The paper is organized as follows. In the end of this section, we collect several notations

which will be used throughout the paper. In Section 2 we de�ne the (sequence of) stochastic

processes we consider, we recover the semi-discrete system introduced in [9] and state our

two main results. In Section 3 we show the convergence in law in path space of the stochastic

process towards the semi-discrete system when the number of individuals goes to in�nity but

the number of sites remains �xed. We provide a quanti�cation of this convergence. It implies

the general (no restriction on the limiting SKT system) but naive (in terms of scales) conver-

gence discussed above. Then, Section 4 is dedicated to the duality estimates with source terms

and their consequences. These duality estimates account for the interacting system when one

of the population is seen as an exogenous environment, which amounts to decouple the two

species. In a �rst short paragraph (Subsection 4.1) we state and prove the generalized duality

lemma and its application to the stability estimate of the SKT system in the continuous set-

ting. This paragraph is the only one of the study in which we work in arbitrary dimension for

the space variable. Then, the rest of Section 4 focuses on the translation of these estimates in

the semi-discrete setting. This includes the de�nition of reconstruction operators, the study of

the discrete laplacian matrix and the translation of classical function spaces into the discrete

setting. Eventually in Section 5, we apply the previous machinery to the di�erence between

the stochastic process and the approximated system that solutions of (1) solve when looked

at a semi-discrete level. We then deduce our main asymptotic theorem by controlling some

martingales and approximation errors. In a short appendix, we also give a dictionary which

gives the correspondence of di�erent objects in the discrete and continuous settings.
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1.2 Notation

Finite-dimensional vectors

Throughout the article, vectors will always be written in bold letters and if not stated oth-

erwise, the components of the vector u ∈ RM are (ui)1≤i≤M . The canonical basis of RM
will be denoted (ej)1≤j≤M . Due to the periodic boundary condition that we will use, we will

frequently use the convention e0 = eM and eM+1 = e1.

Given M ∈ N and p ∈ [1,∞] we denote by ‖ · ‖p =
(∑M

i=1 |xi|p
)1/p

the usual `p norm on

RM and ‖ · ‖p,M the rescaled norm de�ned for x ∈ RM by

‖x‖p,M :=

(
1

M

M∑
i=1

|xi|p
)1/p

for p <∞, and ‖x‖∞ := max
1≤i≤M

|xi|.

Similarly, the corresponding (rescaled) euclidean inner-product of RM is denoted (·|·)M :

(x|y)M =
1

M

M∑
i=1

xiyi,

so that ‖ · ‖22,M = (·|·)M .

The symbol � is the internal Hadamard product on RM , that is (x � y)i = xiyi. We will

also often use (when it makes sense) the operator x� y de�ned by (x� y)i = xi/yi and the

“vectorial” square-root x1/2
whose components are (

√
xi)1≤i≤M .

The arithmetic average of all the components of a vector x will be denoted

[x]M :=
1

M

M∑
i=1

xi.

The vector of RM for which every component equals 1 is denoted 1M . The orthogonal

projection onto SpanR(1M )⊥ is denoted with a tilde, that is: x̃ = x− [x]M1M .

For x,y ∈ RM we write x ≥ y whenever x− y ∈ RM+ .

Functions

We will manipulate random and deterministic functions which may depend on the time variable

t ∈ R+ and the space variable x ∈ Td, where T := R/Z is the �at periodic torus. We will

rely on the following convention for functions: uppercase letters will be reserved for random

elements whereas lowercase letters will represent deterministic functions. Accordingly to the

previous paragraph, vector valued functions will be denoted in bold whereas scalar valued

functions will be denoted with the normal font.

Quite often results will be stated on a �xed time interval [0, T ]. For this reason, we intro-

duce the periodic cylinder QT := [0, T ]× Td. For any function space E de�ned on Td or QT ,
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the corresponding norm will be denoted ‖ · ‖E , e.g. ‖ · ‖L2(Td). In case of a Hilbert structure,

the inner-product will be denoted by (·|·)E , e.g. (·|·)L2(Td). We will use frequently two Sobolev

spaces on Td, the de�nition of which we brie�y recall for the reader’s convenience.

Any distribution ϕ ∈ D ′(Td) decomposes

ϕ =
∑
k∈Zd

ck(ϕ)ek,

where ek(x) := e2iπk·x, and ck(ϕ) := 〈ϕ, ek〉. For s ∈ R we de�ne Hs(Td) as the subspace of

D ′(Td) whose elements ϕ satisfy∑
k∈Zd

|ck(ϕ)|2(1 + |k|2)s < +∞,

equipped with the norm

‖ϕ‖Hs(Td) =

∑
k∈Zd

|ck(ϕ)|2(1 + |k|2)s


1/2

.

By analogy with the average notation of the previous paragraph, for any integrable function

ϕ de�ned on Td, we denote

[ϕ]Td :=

∫
Td

ϕ,

which is in general [ϕ]Td = c0(ϕ) if ϕ is merely a distribution. The expression

‖ϕ‖Ḣs(Td) :=

∑
k∈Zd

|ck(ϕ)|2|k|2s


1/2

,

is only a semi-norm on Hs(Td) and is a norm on the homogeneous Sobolev space Ḣs(Td)
constituted of those elements ϕ belonging to Hs(Td) and having a vanishing mean, i.e. for

which [ϕ]T = c0(ϕ) = 0. We use mainly these spaces for s = 1 and s = −1.

Finally, for any metric space X , D([0, T ], X) denotes the space of càdlàg functions from

[0, T ] to X endowed with the Skorokhod topology.

2 Main objects and results

Before stating our main results, we need to de�ne precisely the objects that we aim at consid-

ering.
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2.1 Repulsive random walks and scaling

Let us de�ne the stochastic process by means of a trajectorial representation using Poisson

point measures. We consider a probability space (Ω,F ,P) satisfying the usual conditions. We

introduce a family of independent Poisson point measure (N j)j∈N on R+×R+×{−1, 1}with

common intensity ds ⊗ dρ ⊗ β(dθ), where β is the law of a Bernoulli

(
1
2

)
random variable.

Almost surely the initial data (U(0),V (0)) belongs to NM × NM , and the corresponding

process (U(t),V (t))t≥0 is then de�ned as the unique strong solution in D([0,∞),N2M ) of

the following system of stochastic di�erential equations (SDEs) driven by the aforementioned

measures
U(t) = U(0) +

∫ t

0

∫
R+×{−1,1}

M∑
j=1

1ρ≤2Uj(s−)(d1+a12Vj(s−))

(
ej+θ − ej

)
N j(ds, dρ, dθ),

V (t) = V (0) +

∫ t

0

∫
R+×{−1,1}

M∑
j=1

1ρ≤2Vj(s−)(d2+a21Uj(s−))

(
ej+θ − ej

)
N j(ds, dρ, dθ),

where the jump rates d1, d2, a12 and a21 are the one of (1). Uniqueness and existence for the

previous system of SDEs are obtained easily from a classical inductive construction. Indeed,

the total population size of each species is constant along time: ‖U(t)‖1,M = ‖U(0)‖1,M ,

‖V (t)‖1,M = ‖V (0)‖1,M . Therefore, conditionally on the initial value (U(0),V (0)), the

process (U(t),V (t))t≥0 is a pure jump Markov process on a �nite state space with bounded

rates.

We are interested in the approximation (hydrodynamic limit) when the population size and

the number of sites tend to in�nity. Informally, we consider (U(M2t)/N,V (M2t)/N)t≥0 and

interaction now occurs through the local density of individuals. The scaling parameterN ∈ N∗
yields the normalization of the population per site and provides a limiting density whenN goes

to in�nity. The initial population per site is of order of magnitude N and each species’ motion

rate is an a�ne function of the density of the other species on the same site. The motion of each

individual is centered and we consider the di�usive regime. As a consequence, we accelerate

the time by the factor of M2
, which amounts to multiply the transition rates by M2

.

We denote the renormalized process by (UM,N (t),V M,N (t))t≥0. Moreover, for u, v ∈ R
and i, j = 1, 2 we set

ηM,N
1,j (t) := 2M2NUM,N

j (t)
(
d1 + a12V

M,N
j (t)

)
,

ηM,N
2,j (t) := 2M2NVM,N

j (t)
(
d2 + a21U

M,N
j (t)

)
.

For a given initial condition (UM,N (0),V M,N (0)), the process (UM,N (t),V M,N (t))t≥0 is the

unique solution in D([0,∞),R2M
+ ) of the following system of SDEs

UM,N (t) = UM,N (0) +

∫ t

0

∫
R+×{−1,1}

M∑
j=1

1
ρ≤ηM,N

1,j (s−)

ej+θ − ej
N

N j(ds, dρ,dθ),

V M,N (t) = V M,N (0) +

∫ t

0

∫
R+×{−1,1}

M∑
j=1

1
ρ≤ηM,N

2,j (s−)

ej+θ − ej
N

N j(ds, dρ, dθ).

(2)
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2.2 The intermediate (semi-discrete) system

To estimate the gap between the discrete stochastic process (2) and the SKT system (1), we are

going to use a third system on which our asymptotic analysis will pivot
d

dt
uM (t)−∆M (d1u

M (t) + a12u
M (t)� vM (t)

)
= 0,

d

dt
vM (t)−∆M

(
d2v

M (t) + a21u
M (t)� vM (t)

)
= 0,

(3)

where the unknowns are the vector valued curves uM ,vM : R+ → RM , and the matrix ∆M

is the periodic laplacian matrix, that is

∆M := M2


−2 1 0 · · · 1
1 −2 1 · · · 0
.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · 1 −2 1
1 · · · 0 1 −2

 ∈ MM (R). (4)

This semi-discrete system corresponds to a large population approximation but �xed number

of sites M . Existence and uniqueness for (3) can be proven using the standard Picard-Lindelöf

theorem, as this is done in [9] where this semi-discrete system has been introduced.

2.3 Formal insight

Before stating our main results, let us give an informal argument to see how the stochastic

process (2) can be linked with the SKT system (1), through the semi-discrete system (3).

We �rst introduce the in�nitesimal generator LM,N
of the process (2). For this purpose, we

de�ne the translation operator τa for any vector a ∈ RM . It acts on any functionG : RM → R
by the formula τaG(·) := G(·+ a). Then, for 1 ≤ j ≤M , we de�ne the operator

LNj = τN−1(ej+1−ej) + τN−1(ej−1−ej) − 2Id,

for G : RM → R. We recall here the periodic convention: e0 = eM and eM+1 = e1. Then, for

any measurable and bounded function F : R2M
+ → R , we de�ne for (u,v) ∈ R2M

+

LM,NF
(
u,v

)
=

M∑
j=1

1

2

{
ηM,N
1,j (uj , vj)LNj [F

(
·,v
)
](u) + ηM,N

2,j (uj , vj)LNj [F
(
u, ·
)
](v)

}
.

ForN going to in�nity and F di�erentiable, Taylor’s approximation ensures that LM,NF con-

verges to

LMF (u,v) =
(
∆M (d1u+ a12u� v)

∣∣∇uF (u,v)
)

+
(
∆M (d2v + a21v � u)

∣∣∇vF (u,v)
)
,

where (·|·) is the inner product on RM and ∆M is the discrete laplacian matrix de�ned in (4).

Roughly, this ensures that for a �xed number of sites, the stochastic model can be approximated

9



in large population by the semi-discrete system (3). Then, as M goes to in�nity, the discrete

laplacian represented by ∆M is expected to be formally replaced by the laplacian, thus the

components of uM and vM are expected to approach the values of u and v on a uniform grid

of step
1
M , yielding the cross-di�usion system (1).

2.4 Statements

Our �rst main result is a stability estimate for the conservative SKT system (1). As far as

our knowledge goes, this result is new in the context of weak solutions for the SKT system.

To measure the distance between two solutions on a time interval [0, T ], we introduce the

following norm

||| · |||T :=
(
‖ · ‖2L∞([0,T ];H−1(Td)) + ‖ · ‖2L2(QT )

)1/2
. (5)

We de�ne also the a�ne functions µi : R → R for i = 1, 2, by µi(x) := di + aijx with

{i, j} = {1, 2}.

Theorem 1. Let T > 0 and consider a couple (u, v) ∈ L∞(QT )2 and (u, v) ∈ L∞(QT )2 of
non-negative bounded weak solutions of the SKT system (1), respectively initialized by (u0, v0) ∈
L∞(Td)2 and (u0, v0) ∈ L∞(Td)2. If the following smallness condition

‖u‖L∞(QT )‖v‖L∞(QT ) <
d1d2
a12a21

, (6)

is satis�ed, then we have the stability estimate

|||u− u|||2T + |||v − v|||2T . ‖u0 − u0‖2H−1(Td) + ‖v0 − v0‖2H−1(Td)

+ T
(

[u0 − u0]2Td‖µ1(v0)‖L1(Td) + [v0 − v0]2Td‖µ2(u0)‖L1(Td)

)
,

where the constant behind . depends only on aij , di, ‖ū‖L∞(QT ), ‖v̄‖L∞(QT ), and ||| · |||T is de-
�ned by (5). In particular, if a bounded non-negative solution satis�es (6) then, there is no other
bounded non-negative solution sharing the same initial data.

Remark 1. In case of equality in the smallness condition (6), uniqueness remains but the stability
estimate controls only the H−1 part of the ||| · |||T norm.

The proof of Theorem 1 relies on a generalized duality lemma presented in Subsection 4.1

and on the concept of dual solutions developed in [23], for the Kolmogorov equation. The

uniqueness result contained in Theorem 1 is conditional: if there exists a bounded (non-

negative) solution (u, v) satisfying (6), then it is unique in the class of bounded weak solutions.

The existence of global bounded solutions for the SKT system is a long standing challenge in

the context of cross-di�usion systems. Partial results are known, in the wake of the quest of

even more regular solutions (which are in particular bounded), like [16] or [21] that we already

cited. In the weak solutions setting, the paper [18] gives su�cient –yet restrictive– conditions

on the coe�cients of the SKT system to ensure boundedness. Since the previous results are
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rather constraining on the coe�cients, we prefer to rely on Amann’s theory [1, 2] and un-

derstand Theorem 1 as a local result which holds for su�ciently small initial data. Indeed,

Amann’s theory proves existence of regular solutions, which exist at least in a neighborhood

of the origin. Starting from an initial data satisfying (6), we recover in this way a small interval

on which the estimates remains valid. As the proof of Theorem 1 (which is done in Subsec-

tion 4.1) is totally insensitive to the dimension d, it is here stated in full generality. However,

the remaining part of the paper (which deals with the approximation of the SKT system by

stochastic processes) will focus on the case d = 1.

Before stating our second main result, let us comment brie�y the Section 3 in which we

propose a �rst approach to estimate the gap between the stochastic process de�ned by (2)

and the semi-discrete system (3) on a �xed interval [0, T ]. The methodology at stake in this

paragraph, which is quite rough, allows for asymptotic quadratic closeness between these two

objects, provided that, as N,M → +∞, we have the following

N �M4 exp(cM4T ), (7)

where c is some constant which will become more explicit in the next section. Combining this

fact with the compactness result [9, Theorem 8], we obtain convergence (up to a subsequence)

of our stochastic process towards a weak solution of the SKT system. The result is general

in terms of parameters and form of the solution. However, the drawbacks of this approach

are twofold. First, this necessitates a self-di�usion term in the system (which tends indeed

to regularize the solution) in order to use the compactness result of [9]. Second, and most

importantly, the scaling condition (7) involves a superexponential and time dependent number

of individuals per site in order to make the law of large numbers to hold on each site and to

be able to sum local estimates. As we will see, and as we can guess from the form of quadratic

variations, it is too restrictive.

We propose instead a di�erent approach, based on the discrete translation of Theorem 1.

This alternative method does not rely on [9], so that self-di�usion is not needed in the sys-

tem. The convergence result is obtained by means of a quantitative estimate which bounds

the expectation of the ||| · |||T -norm of the gap between the stochastic processes and the solu-

tion of the SKT system. In particular, there are no compactness tools used and the entropy of

the system is not needed. Convergence is then guaranteed only with a quadratic number of

individuals per site. This corresponds to the expected scaling for having local control of the

stochastic process by its semi-discrete approximation, since beyond this scaling quadratic vari-

ations do not vanish. The main disadvantage of this new method is that, like for Theorem 1, it

works only in a perturbative setting: it needs the existence of a small regular solution.

In order to state the following result, we need to introduce, for any integer M ≥ 1, the

discretization of the �at (one dimensional) torus T

TM := {x1, x2, · · · , xM}, with xk =
k

M
, for 1 ≤ k ≤M. (8)

Given a vector u ∈ RM , classically there exists exactly one piecewise continuous function

de�ned on T for which its value on each point xk of TM is given by uk; we denote this function
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πM (u). We adapt the same notation if instead ofu one considers a vector valued mapU (which

could depend on the event ω or the time t for instance), so that πM (U) becomes a real-valued

map.

Theorem 2. In the one dimensional case d = 1, assume the existence of a non-negative solu-
tion (u, v) of C 1 regularity in time and C 4 regularity in space of the system (1), initialized by
(u0, v0) ∈ C 4(T) and satisfying the smallness assumption (6). Consider the stochastic processes
(UM,N ,V M,N ) de�ned by (2) and assume the existence of C0 such that for allM,N ∈ N,

‖UM,N (0)‖1,M + ‖V M,N (0)‖1,M ≤ C0, almost surely. (9)

Then, for any (M,N) ∈ N2 such that N/M2 is large enough, for any T > 0,

E
[
|||πM

(
UM,N

)
− u|||2

T
+ |||πM

(
V M,N

)
− v|||2

T

]
. E

[
‖πM

(
UM,N (0)

)
− u0‖2H−1(T) + ‖πM

(
V M,N (0)

)
− v0‖2H−1(T)

]
+M−4 +

M2

N
, (10)

where ||| · |||T is de�ned (5) and the symbol . depends on C, T, di, aij , ‖u‖L∞(QT ), ‖v‖L∞(QT ).

This immediately implies the following convergence for the ||| · |||T -norm.

Corollary 1. Under the assumptions of Theorem 2, consider an extraction function φ : N → N
such thatM2 = o(φ(M)). If the initial positions of the individuals are well-prepared in the sense
that

E
[
‖πM

(
UM,φ(M)(0)

)
− u0‖2H−1(T) + ‖πM

(
V M,φ(M)(0)

)
− v0‖2H−1(T)

]
−→

M→+∞
0,

then for any T > 0, we have

lim
M→∞

E
[
|||πM

(
UM,φ(M)

)
− u|||2

T
+ |||πM

(
V M,φ(M)

)
− v|||2

T

]
= 0.

Similarly to Theorem 1, we still have a smallness condition (6) on the target solution. In

some sense, this restriction is not so surprising. Even though it is a bit more hidden in this

asymptotic context, the estimate (10) already contains a kind of uniqueness property for the

target solution (u, v), just as the quantitative estimate of Theorem 1. At the very least, (10)

states that among all possible weak solutions, (u, v) is the one who “attracts” such stochastic

processes. And then, a natural way to select such a solution is to ensure uniqueness by means

of su�cient regularity. These two di�erences come from the fact that, contrary to the previous

result, Theorem 2 estimates the distance between a vector-valued stochastic process and a

deterministic function which is de�ned on the whole torusT. This obliges to consider corrector

terms. The �rst one consists in the martingale term which measures locally the gap between the

stochastic process and the semi-discrete deterministic approximation. Here, we observe that

the estimates are sharp and the scales obtained for convergence are optimal: whenN = φ(M)
is of orderM2

, the local behavior of the size of the population in the individual based model will

remain stochastic at the limit. This limiting stochastic regime should be interesting for future
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works. The second correction term consists in replacing u by a piecewise continuous function

in order to be able to compare it to the semi-discrete system and thus with πM (UM,N ). As a

matter of fact, the proof of Theorem 2 relies on a careful translation of the (idealized) functional

setting of Theorem 1 to the discrete level, together with the treatment of those corrective terms.

This analysis necessitates, among other things, discrete duality lemmas including potential

singular error terms. These are stated and proved in Subsection 4.4. Let us end up with a

remark and perspectives. Another approach for future works would be to prove `∞ estimates

for the semi-discrete system such that it is independent of M . With this one could show that

the semi-discrete system is not far from verifying the limiting equation, and from here evoke

the continuous version of the duality estimates in order to quantify the convergence. Also, the

results obtained can be extended to the case in where the system (1) presents self-di�usion and

a source term (which would correspond to adding births and deaths in the stochastic process).

Last but not least, it is natural to ask to what extent the asymptotic analysis that we proposed

can be generalized to higher dimension. An upper limit is �xed by the avatar of the Bramble-

Hilbert lemma (which is Lemma 2). This latter remains true in higher dimension but demands a

Sobolev embedding H2(Td) ↪→ C 0(Td), which holds only for d = 1, 2, 3. On the other hand,

keeping in mind that solutions of the system of PDEs represent a population density in an

environment, the exploration of such system in dimensions greater than 4 loses some interest.

We expect that the analysis that we develop should be adaptable to dimensions 2 and 3, but

this would imply a technical cost that we have preferred to avoid for now.

3 A general and rough estimate

The trajectorial representation (2) yields for each coordinate of UM,N

UM,N
i (t) = UM,N

i (0)− 1

N

∫ t

0

∫
R+×{−1,1}

1
ρ≤ηM,N

1,i (s−)
N i(ds, dρ, dθ)

+
1

N

∫ t

0

∫
R+×{−1,1}

1
ρ≤ηM,N

1,i−1(s
−)

1θ=1N i−1(ds, dρ,dθ)

+
1

N

∫ t

0

∫
R+×{−1,1}

1
ρ≤ηM,N

1,i+1(s
−)

1θ=−1N i+1(ds, dρ, dθ). (11)

By compensating the Poisson point measure, we obtain the semimartingale decomposition

UM,N (t) = AM,N (t) + MM,N (t), (12)

whereAM,N = (AM,N
i )1≤i≤M is a continuous process de�ned by

AM,N (t) = UM,N (0) +

∫ t

0
d1∆MU

M,N (s) ds+

∫ t

0
a12∆M

(
UM,N (s)� V M,N (s)

)
ds,

with ∆M as de�ned in (4), and MM,N
i is a square integrable martingale whose predictable
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quadratic variation is given by

〈
MM,N

i

〉
(t) =

M2

N

∫ t

0
d1

(
2UM,N

i (s) + UM,N
i+1 (s) + UM,N

i−1 (s)
)

ds (13)

+
M2

N

∫ t

0
a12

(
2UM,N

i (s)VM,N
i (s) + UM,N

i+1 (s)VM,N
i+1 (s) + UM,N

i−1 (s)VM,N
i−1 (s)

)
ds.

The analogous decomposition holds for the coordinates of (V M,N (t))t≥0, the second species.

Let us give �rst estimates of the gap between the stochastic process and its approximation

in large population for a �xed number of sites. Let

UM,N (t) = UM,N (t)− uM (t), VM,N (t) = V M,N (t)− vM (t).

Proposition 1. We assume that there exists C0 > 0 such that almost surely, for anyM,N ≥ 1,

max(‖UM,N (0)‖1,M , ‖V M,N (0)‖1,M , ‖uM (0)‖1,M , ‖vM (0)‖1,M ) ≤ C0

and that for any T ≥ 0, there exist c1, c2 > 0 such that for anyM,N ≥ 1,

E
(

sup
t∈[0,T ]

∥∥UM,N (t)
∥∥2
2,M

+ sup
t∈[0,T ]

∥∥VM,N (t)
∥∥2
2,M

)
≤
(
E
(∥∥UM,N (0)

∥∥2
2,M

+
∥∥VM,N (0)

∥∥2
2,M

)
+ c1

(
M2

√
N

+ T
M3

N

))
e
c2
(
M4+M2

√
N

)
T
,

where c1 only depends on the di�usion parameters and the initial bounds and c2 only depends on
the di�usion parameters.

In particular, this estimate guarantees that the normalized stochastic process converges

to the semi-discrete SKT system when the population size becomes large and the number of

sites is �xed. As evoked in the introduction, this is a �rst step for obtaining convergence to

the continuous SKT system, when the semi-discrete system itself converges to the expected

continuous limit. Moreover, provided of an estimate for this last convergence, combining both

of them will enable to prove convergence of the stochastic processes towards the cross-di�usion

system with simultaneously the size of the population and the number of sites going to in�nity.

This constitutes an alternative approach for the rigorous derivation of the SKT system of [5],

starting from discrete space. Both results seem to involve the same scales, with a number

of individuals exponentially large compared to the inverse of the range of interaction. Our

approach, in where the interaction is restricted to the same site, seems to relax the condition

of small cross-di�usion parameters in [5]. Nevertheless, our main motivation in the rest of the

paper is to go beyond this exponential scale and provide sharper estimates.

Proof. First, using the fact that the total number of individuals is constant along time, we ob-

serve that under our assumptions

max(‖UM,N (t)‖1,M , ‖V M,N (t)‖1,M ) = max(‖UM,N (0)‖1,M , ‖V M,N (0)‖1,M ) ≤ C0, (14)
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almost surely for any M,N ≥ 1, and

max(‖uM (t)‖1,M , ‖vM (t)‖1,M ) = max(‖uM (0)‖1,M , ‖vM (0)‖1,M ) ≤ C0, (15)

for any M ≥ 1. Combining (12) and (3), we notice that the process UM,N (t) = UM,N (t) −
uM (t) has �nite variations and satis�es

UM,N (t) = UM,N (0) +

∫ t

0
d1∆MUM,N (s) ds

+

∫ t

0
a12∆M

(
UM,N (s)� V M,N (s)− uM (s)� vM (s)

)
ds+ MM,N (t).

Consider now the square of its coordinates

UM,N
i (t)2 = UM,N

i (0)2 +

∫ t

0
2UM,N

i (s−) dUM,N
i (s) +RM,N

i (t),

for i = 1, . . . ,M , where

RM,N
i (t) =

∑
0<s≤t

{
UM,N
i (s)2 − UM,N

i (s−)2 − 2UM,N
i (s−)

(
UM,N
i (s)− UM,N

i (s−)
)}

=
( 1

N

)2 ∑
0<s≤t

1
UM,N
i (s)6=UM,N

i (s−),

since the jumps of UM,N
i and UM,N

i are of size 1/N . Putting the two expressions together

yields

UM,N
i (t)2 = UM,N

i (0)2 + 2d1

∫ t

0
UM,N
i (s)

(
∆MUM,N (s)

)
i
ds

+ 2a12

∫ t

0
UM,N
i (s)

(
∆M

(
UM,N (s)� V M,N (s)− uM (s)� vM (s)

))
i
ds

+ 2

∫ t

0
UM,N
i (s−) dMM,N

i (s) +RM,N
i (t).

Given u ∈ RM let us introduce the discrete gradient vector ∇+
Mu = (M(ui+1 − ui))1≤i≤M

(recalling the periodic convention). Summing over all the sites i ∈ {1, . . . ,M} and using

discrete integration by parts in the second and third terms of the right hand side yields

∥∥UM,N (t)
∥∥2
2

=
∥∥UM,N (0)

∥∥2
2
− 2d1

∫ t

0

∥∥∇+
MUM,N (s)

∥∥2
2

ds

− 2a12

∫ t

0

M∑
i=1

(
∇+
MUM,N (s)

)
i

(
∇+
M

(
UM,N (s)� V M,N (s)− uM (s)� vM (s)

))
i
ds

+ 2
M∑
i=1

∫ t

0
UM,N
i (s−) dMM,N

i (s) +
∥∥RM,N (t)

∥∥
1
.

15



Dropping the second term which is negative, taking absolute value in the third term and using

2|ab| ≤ |a|2 + |b|2 ensures that

∥∥UM,N (t)
∥∥2
2
≤
∥∥UM,N (0)

∥∥2
2

+ a12

∫ t

0

∥∥∇+
MUM,N (s)

∥∥2
2

ds

+ a12

∫ t

0

∥∥∇+
M

(
UM,N (s)� V M,N (s)− uM (s)� vM (s)

)∥∥2
2

ds

+ 2
M∑
i=1

∫ t

0
UM,N
i (s−) dMM,N

i (s) +
∥∥RM,N (t)

∥∥
1
.

Let us observe that

∥∥RM,N (t)
∥∥
1

is given by the number of jumps before time t

E
(∥∥RM,N (t)

∥∥
1

)
= 2N−2E(#{t ≥ 0 : UM,N (s) 6= UM,N (s−)}).

Moreover, the total jump rate in the scaled process UM,N
, when the number of individuals of

each species in site i is equal to (ui, vi), is

2M2
M∑
i=1

ui

(
d1 + a12

vi
N

)
≤ 2M2‖u‖1

(
d1 + a12

‖v‖1
N

)
≤ C ′0M3N(1 +M),

where C ′0 = 2(d1 + a12)C0, by (14). Then we get

E
(∥∥RM,N (t)

∥∥
1

)
≤ 2C ′0 t

M3

N
(1 +M).

Lets us now deal with the third and fourth terms. We notice that(
∇+
MUM,N (s)

)2
i

=M2
(
UM,N
i+1 (s)− UM,N

i (s)
)2
≤ 2M2

(
UM,N
i+1 (s)2 + UM,N

i (s)2
)
,

Similarly, using also |ab− cd| ≤ |a− c|b + c|b− d| to deal with the di�erence of products of

positive terms, we get(
∇+
M (UM,N (s)� V M,N (s)− uM (s)� vM (s))

)2
i

≤ 4M2
(
‖uM (0)‖21 V

M,N
i+1 (s)2 + ‖uM (0)‖21 V

M,N
i (s)2

+ ‖V M,N (0)‖21 U
M,N
i+1 (s)2 + ‖V M,N (0)‖21 U

M,N
i (s)2

)
≤ 4C2

0M
4
(
VM,N
i+1 (s)2 + VM,N

i (s)2 + UM,N
i+1 (s)2 + UM,N

i (s)2
)
,
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using (14) and (15). Gathering these bounds, taking supremum and then expectation gives us

E
(

sup
s∈[0,t]

‖UM,N (s)‖22
)

≤ E
(
‖UM,N (0)‖22

)
+ 4a12M

2

∫ t

0
E
(
‖UM,N (s)‖22

)
ds

+ 8C2
0a12M

4

(∫ t

0
E
(
‖VM,N (s)‖22

)
ds+

∫ t

0
E
(
‖UM,N (s)‖22

)
ds

)
+ 2

M∑
i=1

E
(

sup
s∈[0,t]

∫ s

0
UM,N
i (r−) dMM,N

i (r)

)
+ 2C ′0 T

M3

N
(1 +M).

For the martingale part, we use Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities

which together with (13) and (14) yield

E
(

sup
s∈[0,t]

∫ s

0
UM,N
i (r−) dMM,N

i (r)

)2

≤ E
(

sup
s∈[0,t]

∣∣∣∣∫ s

0
UM,N
i (r−) dMM,N

i (r)

∣∣∣∣2)
≤ E

(∫ t

0
UM,N
i (r−)2 d

〈
MM,N

i

〉
(r)

)
≤ 2

M2

N
E
(∥∥UM,N (0)

∥∥
1

(
d1 + a12

∥∥V M,N (0)
∥∥
1

)∫ t

0
UM,N
i (s)2 ds

)
≤ C ′0

M3

N
(1 +M)

∫ t

0
E
(
UM,N
i (s)2

)
ds.

Using that

√
1 + x ≤ 1 + x for all x ≥ 0, we obtain

E
(

sup
s∈[0,t]

∫ s

0
UM,N
i (r−) dMM,N

i (r)

)
≤
√

2C ′′0
M2

√
N

(
1 +

∫ t

0
E
(
UM,N
i (s)2

)
ds

)
.

Putting everything together and using again (14) yields

E
(

sup
s∈[0,t]

‖UM,N (s)‖22
)
≤ E

(
‖UM,N (0)‖22

)
+ 2
√

2C ′′0
M3

√
N

+ 2C ′0T
M4

N

+

(
8C0a12M

4 + 2
√

2C ′′0
M2

√
N

)∫ t

0
E
(

sup
r∈[0,s]

‖UM,N (r)‖22
)

ds

+ 8C0a12M
4

∫ t

0
E
(

sup
r∈[0,s]

‖VM,N (r)‖22
)

ds,

for some C ′′0 > 0. In a similar way we can obtain analogous bounds for V M,N
. Adding the

two inequalities and then applying Gronwall’s lemma leads us to the desired conclusion.
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The proof above is general in the sense that we have no conditions on the limiting SKT

system. But as explained in the previous sections, convergence with a large number of sites

requires a superexponential number of individuals per site. The bounds in the previous proof

are indeed not sharp at several steps. In particular, we have controlled the quadratic terms by

bounding the local size of one species by the total number of individuals, which is �xed and

thus controlled quantity. Similarly, the gradient term has been dominated by brute force since

we have summed the components. To go beyond these estimates and deal with the quadratic

term, we develop a duality approach. This will bring stability property and allow us to compare

the terms involved in the stochastic process to those of the targeted SKT limit. The stochastic

process will then appear as a stable perturbation of this SKT system.

4 Duality estimates

4.1 The continuous setting

The duality lemma is a tool �rst introduced by Martin, Pierre and Schmitt [22, 25], in the

context of reaction-di�usion systems. It consists in an a priori estimate for solutions of the

Kolmogorov equation. The strength of the estimate is that it requires very low regularity on the

di�usivity (merely integrability), which allows its use when dealing with rather weak solutions.

We propose below a small generalization of the duality lemma, which was suggested in [23,

Remark 7]. As a matter of fact, we will not directly use the duality lemma presented in this

paragraph, but rather translate it in a discrete setting (see Subsection 4.4 below). The purpose

of this paragraph is then twofold. First, prove Theorem 1. Second, explain, avoiding several

technicalities inherent to the discrete setting, the core ideas that will be used in Subsection 4.4.

Below, we call a weak solution to a solution in the distributional sense. During (and only in)

this whole paragraph, we work in arbitrary dimension d.

Lemma 1. Consider µ ∈ L∞(QT ) such that α := infQT
µ > 0, z0 ∈ H−1(Td) and f ∈

L2(QT ). Then, there exists a unique z ∈ L2(QT ) that solves weakly the Kolmogorov equation{
∂tz −∆(µz) = ∆f,

z(0, ·) = z0.
(16)

Furthermore, this solution z belongs to C ([0, T ];H−1(Td)) and satis�es the duality estimate

‖z(T )‖2H−1(Td) +

∫
QT

µz2 ≤ ‖z0‖2H−1(Td) + [z0]
2
Td

∫
QT

µ+
1

α

∫
QT

f2. (17)

Remark 2. This duality estimate is stronger than the one stated in [23]: it contains a (singular)
source term and allows a uniform-in-time control of the H−1(Td) norm.

Proof. The proof of existence and uniqueness is exactly the same as [23, Theorem 3]: follow-

ing the naming of this article, z is the unique dual solution of (16). For this z, the regular-

ity C ([0, T ];H−1(Td)) is obtained classically from the belongings z ∈ L2(QT ) and ∂tz ∈
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L2([0, T ];H−2(Td)), which come from the equation itself. We can thus focus here on the du-

ality estimate which needs to be proven only in the case when every function involved in (17)

is smooth, in the sense that they are C∞. Indeed, the assumptions on the data give us a smooth

sequence (µn, zn0 , fn)n∈N converging to (µ, z0, f) in L1(QT ) × H−1(Td) × L2(QT ), with a

uniform bound for the �rst component. Let’s call (zn)n∈N the corresponding sequence of solu-

tions. Note that, by parabolic regularity, the zn’s are also smooth. Then, if the duality estimate

(17) is proved in the smooth setting, we get (up to some subsequence) weak(-?) convergence

of (zn)n∈N, in L∞([0, T ];H−1(Td)) ∩ L2(QT ). But, by uniqueness of the target equation,

the only possible limit point is precisely z, the solution of (16). The whole sequence (zn)n
converges therefore weakly(-?) towards z, and (17) is recovered by the usual semi-continuity

argument for weak convergence.

So, without loss of generality, we assume now that µ, z0, f and z are smooth. This allows

to justify rigorously the following computations. For any functionw de�ned on Td and having

zero average there exists a unique function φ of zero average satisfying ∆φ = w (which is

easily seen via the Fourier coe�cients). In particular, for any t ∈ [0, T ] there exists a unique

φ(t) of vanishing mean such that −∆φ(t) = z(t) − [z(t)]Td . By integrating the Kolmogorov

equation we get

d

dt
[z(t)]Td = 0,

so that [z(t)]Td = [z0]Td and −∂t∆φ = ∂tz. In particular, we have by integration by parts∫
Td

φ(t) ∂tz(t) =
1

2

d

dt

∫
Td

|∇φ(t)|2.

Therefore, multiplying equation (16) by φ and using integration by parts

1

2

d

dt

∫
Td

|∇φ(t)|2 +

∫
Td

µz(z − [z0]Td) = −
∫
Td

(z − [z0]Td)f.

Integrating in time and using Young’s inequality for the right hand side, we get

1

2

∫
Td

|∇φ(T )|2 +

∫
QT

µz2 ≤
∫
QT

µz[z0]Td +
1

2

∫
Td

|∇φ(0)|2

+
1

2

∫
QT

(z − [z0]Td)2µ+
1

2

∫
QT

f2

µ
,

and thus, using µ ≥ α > 0,∫
Td

|∇φ(T )|2 +

∫
QT

µz2 ≤
∫
Td

|∇φ(0)|2 + [z0]
2
Td

∫
QT

µ+
1

α

∫
QT

f2.

Noticing that ‖z(t)‖Ḣ−1(Td) = ‖z(t)− [z0]Td‖H−1(Td) = ‖∇φ(t)‖2, once we add [z0]Td to each

side of the inequality to get the full H−1(Td) norms, the proof is over.
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In Subsection 4.4, we will give (in the discrete setting) variants of the previous duality

lemma which include in the r.h.s. some error term, which is possibly singular in the time

variable. Being able to take into account those error terms will be crucial in the �nal asymptotic

limit studied in Section 5. However, already in its current form, the previous duality lemma is

a valuable piece of information. We highlight this with an application of this lemma: the proof

of Theorem 1, which applies to the conservative SKT system (1) that we consider here with

(u0, v0) as initial data. We recall the de�nition of the a�ne functions µi(x) := di + aijx for

i, j = 1, 2, so that (1) rewrites {
∂tu−∆(µ1(v)u) = 0,

∂tv −∆(µ2(u)v) = 0.

In particular, we recover the framework of Lemma 1, as soon as v and u are bounded and

non-negative.

Proof of Theorem 1. Let’s introduce z := u− u and w := v − v, so that, by subtraction

∂tz −∆(µ1(v)z) = ∆f,

∂tw −∆(µ2(u)w) = ∆g,

where f := a12u(v − v) and g := a21v(u− u). Since u and v are bounded and non-negative,

we recover the structure of Lemma 1 and we get

‖z(T )‖2H−1(Td) + d1

∫
QT

z2 ≤ ‖z0‖2H−1(Td) + [z0]
2
Td

∫
QT

µ1(v) +
a212
d1
‖u‖2L∞(QT )

∫
QT

w2,

‖w(T )‖2H−1(Td) + d2

∫
QT

w2 ≤ ‖w0‖2H−1(Td) + [w0]2Td

∫
QT

µ2(u) +
a221
d2
‖v‖2L∞(QT )

∫
QT

z2,

since infQT
µi ≥ di, |f | ≤ a12|w|‖u‖L∞(QT ) and |g| ≤ a21|z|‖v‖L∞(QT ). By combining the

two inequalities we infer

‖z(T )‖2H−1(Td) + d1

∫
QT

z2 ≤ ‖z0‖2H−1(Td) + [z0]
2
Td

∫
QT

µ1(v)

+
a212
d1d2

‖u‖2L∞(QT )

(
‖w0‖2H−1(Td) + [w0]

2
Td

∫
QT

µ2(u)
)

+ d1

(
a12a21
d1d2

)2

‖u‖2L∞(QT )‖v‖
2
L∞(QT )

∫
QT

z2.

In particular, if we want to absorb the last term of the r.h.s. in the l.h.s. the inequality that we

need is exactly the smallness condition (6). If the later is satis�ed, and if we allow the symbol

. to depend on di, aij , ‖u‖L∞(QT ) and ‖v‖L∞(QT ), we have actually established

‖z(T )‖2H−1(Td) +

∫
QT

z2 . ‖z0‖2H−1(Td) + ‖w0‖2H−1(Td)

+ [z0]
2
Td

∫
QT

µ1(v) + [w0]
2
Td

∫
QT

µ2(u).
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Since the previous computation is still valid replacing T by any t ∈ [0, T ], we have in fact

|||z|||2T . ‖z0‖2H−1(Td) + ‖w0‖2H−1(Td) + [z0]
2
Td

∫
QT

µ1(v) + [w0]
2
Td

∫
QT

µ2(u).

Exchanging the roles (z, u, v, u, v) ↔ (w, v, u, v, u), the previous right hand side remains

unchanged: we have exactly the same estimate for ‖w‖2T on the left hand side. The proof is

over once we notice that

∫
QT

µ1(v) = T
∫
Td µ1(v0) and

∫
QT

µ2(v) = T
∫
Td µ2(u0), since the

space integrals of u and v are conserved through time.

4.2 Reconstruction operators

As explained in the previous paragraph, we plan now to transfer the previous duality and

stability estimates into a discrete setting. The purpose is to be able to use these results on

the semi-discrete system (3). We will have to manipulate several norms on RM , reminiscent

of classical function spaces of the continuous variable. As the number of points M of the

discretization will be sent to in�nity, it will be crucial to have estimates which do not depend

on this parameter. In particular, the following notion of uniform equivalence will be relevant.

De�nition 1. Given norms P1,M and P2,M on RM , we say that P1,M and P2,M are uniformly
equivalent if there exists α, β > 0 such that

∀M ∈ N, ∀u ∈ RM , αP1,M (u) ≤ P2,M (u) ≤ βP1,M (u).

If this is satis�ed, we write P1,M ∼ P2,M .

Given a discretization like (8), there are several ways to build a function de�ned on the

whole torus T. The generic approach is to �x a pro�le θ (generally compactly supported) and

consider

x 7→
M∑
k=1

θ (M(x− xk))uk. (18)

De�nition 2. For u ∈ RM and θ := 1[−1,0], the function de�ned by (18) is a step function
that we denote σM (u). For u ∈ RM and θ(z) := (1 − |z|)+, the function de�ned by (18) is a
piecewise linear function that we denote πM (u). The corresponding vector space of functions (step
and continuous piecewise linear functions respectively) are denoted

sM :=
{
σM (u) : u ∈ RM

}
and pM :=

{
πM (u) : u ∈ RM

}
.

If t 7→ u(t) is a map from [0, T ] to RM , we simply denote by σM (u) and πM (u) the respective
maps from [0, T ] to sM and pM respectively.

Proposition 2. For u ∈ RM we have ‖u‖∞ = ‖σM (u)‖L∞(T) = ‖πM (u)‖L∞(T) and for
p < ∞ we have ‖u‖p,M = ‖σM (u)‖Lp(T) ≥ ‖πM (u)‖Lp(T). Furthermore, the equivalence
‖σM (·)‖Lp(T) ∼ ‖πM (·)‖Lp(T) holds on the positive cone RM+ .
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Proof. We �rst notice 1[−1,0] ? 1[0,1](x) =
∫ 0
−1 1[0,1](x− y) dy = (1− |x|)+. In particular, we

infer for ϕ(x) = (1− |x|)+

ϕk,M (x) := ϕ (M(x− xk)) =

∫
1[−1,0] (M(x− xk)− y) 1[0,1](y) dy

= N

∫
1[−1,0] (M(x− z − xk)) 1[0,1](Mz) dz

= θk,M ? ρM (x).

We have thus established πM (u) = σM (u) ? ρM where (ρM )M is an approximation of the

identity. Therefore, we have ‖πM (u)‖Lp(T) ≤ ‖σM (u)‖Lp(T).

Conversely, assume u ≥ 0. By de�nition we have

πM (u) =

M∑
k=1

ukϕk,M ,

with ϕk,M (x) = ϕ(M(x − xk)) and ϕ(x) = (1 − |x|)+. Recall that for any vector w ∈ RM ,

one has M1/p‖w‖p,M ≤M‖w‖1,M . In particular, using uk ≥ 0, we infer at any point x ∈ T

πM (u)(x) =
M∑
k=1

ukϕk,M ≥

(
M∑
k=1

upkϕ
p
k,M (x)

)1/p

,

from where we conclude

‖πM (u)‖Lp(T) ≥M‖u‖
p
p,M‖ϕ‖

p
Lp(T) = ‖σM (u)‖pLp(T)

2

p+ 1
,

using that ‖ϕk,M‖pLp(T) = 1
M ‖ϕ‖

p
Lp(T) = 1

M
2
p+1 .

We end this paragraph with an estimate that belongs to the folklore of the �nite element

method and omit the proof. It is usually proved using the Bramble-Hilbert lemma, but since

here we focus here on the one dimensional case, it is also possible to give a direct, elementary

proof.

Lemma 2. For ϕ ∈ H2(T) andM ∈ N∗ there exists a unique ιM (ϕ) ∈ pM matching the values
of ϕ on the grid (xk)1≤k≤M . It satis�es

‖ϕ− ιM (ϕ)‖Ḣ−1(T) .M−2‖ϕ‖Ḣ2(T),

‖ϕ− ιM (ϕ)‖L2(T) .M−2‖ϕ‖Ḣ2(T),

‖ϕ− ιM (ϕ)‖Ḣ1(T) .M−1‖ϕ‖Ḣ2(T),

where the symbol . means that the inequality holds up to a constant independent of ϕ andM .
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4.3 Prerequisites on the discrete laplacian matrix

We give in this paragraph several useful properties linked to the discrete periodic laplacian

matrix introduced in (4). This matrix ∆M is not invertible: we have Ker(∆M ) = SpanR(1M )
and Ran(∆M ) = Ker(∆M )⊥ = {u ∈ RM : [u]M = 0}. We refer to Subsection 1.2 for the

de�nition of 1M and [·]M .

De�nition 3. For u ∈ Ran(∆M ) there exists a unique Φ ∈ Ran(∆M ) such that u = ∆MΦ.
By a small abuse of notation we write then Φ = ∆−1M u.

Proposition 3. The matrix −∆M is symmetric non-negative and admits therefore a unique
symmetric non-negative square root that we denote

√
−∆M .

Proof. The proof is standard and we simply note that the spectrum of −∆M is given by{
M2

(
2− 2 cos

(
2πk

M

))
: 0 ≤ k ≤M − 1

}
=

{
4M2 sin2

(
πk

M

)
: 0 ≤ k ≤M − 1

}
⊂ R+,

which establishes the non-negativeness.

Proposition 4. For any Φ ∈ RM we have the estimate ‖Φ− [Φ]M‖2,M ≤ ‖∆MΦ‖2,M .

Remark 3. This is the discrete counterpart of the following consequence of the Poincaré-Wirtinger
inequality ‖ϕ− [ϕ]T‖L2(T) . ‖∆ϕ‖L2(T), for ϕ ∈ H2(T).

Proof. Using the identity sin (πk/M) = sin (π(M − k)/M), the spectrum−∆M that we iden-

ti�ed in the proof of Proposition 3 rewrites{
4M2 sin2

(
πk

M

)
: 0 ≤ k ≤ M − 1

2

}
.

In particular, using the inequality sin(x) ≥ 2
πx valid on [0, π/2] we see that apart from 0 all

the eigenvalues of−∆M are lower-bounded by 16. −∆M being symmetric, its diagonalization

can be written in an orthonormal basis of RM that we denote (wk)0≤k≤M−1, with w0 being

the (only) element of this set belonging to Ker(∆M ). We have therefore

‖Φ− [Φ]M‖22,M =
1

M

M−1∑
k=1

|(Φ|wk)|2 ≤
1

M

1

162

M−1∑
k=1

λ2k|(Φ|wk)|2 =
1

162
‖∆MΦ‖22,M .

Before introducing an analog of the negative Sobolev norm, we recall a standard compu-

tation linked with the Lagrange �nite elements method for which we need to introduce the

following matrix

BM :=


2
3

1
6 0 · · · 1

6
1
6

2
3

1
6 · · · 0

.

.

.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · 1
6

2
3

1
6

1
6 · · · 0 1

6
2
3

 . (19)
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Proposition 5. For w ∈ RM we have

− (w|∆Mw)M =

∫
T
|∇πM (w)(x)|2 dx, (20)

where we recall that (·|·)M denotes the rescaled inner product on RM (see Subsection 1.2). Fur-
thermore, for any u ∈ RM we have

BMu = −∆Mw ⇐⇒ ∀ψ ∈ pM ,

∫
T
ψ(x)πM (u)(x) dx =

∫
T
∇ψ(x)·∇πM (w)(x) dx. (21)

Proof. pM is the vector space spanned by the functions ϕk,M (x) := ϕ(M(x − xk)) where

ϕ(x) := (1− |x|)+, so the r.h.s. of the equivalence (21) boils down to∫
T
ϕk,M (x)πM (u)(x) dx =

∫
T
∇ϕk,M (x) · ∇πM (w)(x) dx,

for k ∈ {1, . . . ,M}, and one checks that∫
T
ϕi,M (x)ϕj,M (x) dx =

1

M

(
2

3
1i=j +

1

6
1|i−j|=1

)
,∫

T
∇ϕi,M (x) · ∇ϕj,M (x) dx = M(21i=j − 1|i−j|=1),

where the equality |i−j| = 1 has to be understood moduloM . Expanding πM (u) and πM (w)
on the basis (ϕk,M )1≤k≤M , we get the equivalence (21). Formula (20) is obtained in the same

fashion, expanding πM (w) on the basis.

We observe that u 7→ −(u|∆−1M u)M is non-negative, due to the symmetry and non-

negativity of −∆M (see Proposition 3). For u ∈ RM , recalling that ũ = u − [u]M1M , we

have then −(ũ|∆−1M ũ)M ≥ 0. This enables us to introduce the following norm ‖ · ‖−1,M ,

which is a discrete counterpart of the H−1(T) norm.

De�nition 4. For u ∈ RM , we de�ne

‖u‖−1,M :=
√
−(ũ|∆−1M ũ)M + [u]2M .

This is a norm on RM .

Proposition 6. We have the equivalence

M‖πM (·)‖H−1(T) + ‖πM (·)‖L2(T) ∼M‖ · ‖−1,M + ‖πM (·)‖L2(Td). (22)

Moreover for any u ∈ RM ,

‖u‖−1,M ≤ ‖u‖2,M . (23)
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Remark 4. The above de�nition is reminiscent of the equality

‖ϕ− [ϕ]T‖2H−1(T) = −
∫
T
(ϕ− [ϕ]T)ψ,

where ψ is the unique solution of −∆ψ = ϕ− [ϕ]T.

Proof. We �rst observe the uniform equivalences

‖πM (u)‖L2(T) ∼ ‖πM (ũ)‖L2(T) + |[u]M |,
‖πM (u)‖H−1(T) ∼ ‖πM (ũ)‖H−1(T) + |[u]M |,

‖u‖−1,M ∼ ‖ũ‖−1,M + |[u]M |.

Without loss of generality we can therefore establish the uniform equivalence (22) under the

assumption [u]M = 0.

We have ‖u‖2−1,M = −(u|∆−1M u)M = −(∆MΦ,Φ)M where Φ := −∆−1M u. Thanks to

Proposition 5 we have therefore

‖u‖2−1,M = ‖∇πM (Φ)‖2L2(T). (24)

The matrix BM de�ned by (19) satis�es 6BM = M−2∆M + 6IM , so it commutes with ∆M .

In particular, the equation u = −∆MΦ is strictly equivalent to

BMu = −∆Mw,

where w := BMΦ. We obtain from Proposition 5 that this last equation is exactly equivalent

to

∀ψ ∈ pM ,

∫
T
ψ(x)πM (u)(x) dx =

∫
T
∇ψ(x) · ∇πM (w)(x) dx.

Since we assumed [u]M = 0, we have also [πM (u)]T = 0 and we can therefore solve−∆ϕM =
πM (u), for a unique ϕM ∈ Ḣ2(T). We have then, by integration by parts,

∀ψ ∈ pM ,

∫
T
ψ(x)πM (u)(x) dx =

∫
T
∇ψ(x) · ∇ϕM (x) dx.

In particular, we have established

∀ψ ∈ pM ,

∫
T
∇ψ(x) · (∇πM (w)(x)−∇ϕM (x)) dx = 0,

and this equality holds in particular for ψ = πM (w). We deduce that for each ψ ∈ pM∫
T
|∇πM (w)(x)−∇ϕM (x)|2 dx

=

∫
T
(∇πM (w)(x)−∇ϕM (x) +∇ψ(x)−∇πM (w)(x)) · (∇πM (w)(x)−∇ϕM (x)) dx

=

∫
T
(∇ψ(x)−∇ϕM (x)) · (∇πM (w)(x)−∇ϕM (x)) dx,
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and we get by the Cauchy-Schwarz inequality

‖∇πM (w)−∇ϕM‖L2(T) ≤ inf
ψ∈pM

‖∇ψ −∇ϕM‖L2(T).

Taking ψ = ιM (ϕ) and using successively ‖∇f‖L2(T) = 2π‖f‖Ḣ1(T) for any f ∈ Ḣ1(T) and

the third estimate of Lemma 2, we get

‖∇πM (w)−∇ϕM‖L2(T) . ‖∇ιM (ϕ)−∇ϕM‖L2(T)

. ‖ιM (ϕ)− ϕM‖Ḣ1(T) .
1

M
‖ϕM‖Ḣ2(T),

where we refer to Subsection 1.2 for the de�nition of the homogeneous norms ‖ · ‖Ḣs(T). Re-

calling that −∆ϕM = πM (u) we have ‖πM (u)‖Ḣ−1(T) = ‖∇ϕM‖L2(T) and ‖ϕM‖Ḣ2(T) =

‖∆ϕM‖L2(T) = ‖πM (u)‖L2(T). All in all, using the reversed triangular inequality we have

established ∣∣∣‖∇πM (w)‖L2(T) − ‖πM (u)‖Ḣ−1(T)

∣∣∣ . 1

M
‖πM (u)‖L2(T).

To conclude, due to (24), it is thus su�cient to prove that ‖∇πM (w)‖L2(T) ∼ ‖∇πM (Φ)‖L2(T),

where we recall w = BMΦ. This last equality implies in particular

πM (w) =
2

3
πM (Φ) +

1

6
τ 1
M
πM (Φ) +

1

6
τ− 1

M
πM (Φ),

where we recall for a ∈ R the translation operator τa de�ned by τaf(x) = f(x+ a). We have

therefore

∇πM (w) =
2

3
∇πM (Φ) +

1

6
τ 1
M
∇πM (Φ) +

1

6
τ− 1

M
∇πM (Φ). (25)

Both ∇πM (w) and ∇πM (Φ) belong to sM (T) i.e. are respectively equal to some functions

σM (λ) and σM (γ), for some λ,γ ∈ RM .

Note thatBM is uniformly well-conditioned: the spectral radii ofBM andB−1M are bounded

independently of M . This can be seen writing BM = 2
3IM + 1

6JM , where JM is the matrix

JM :=


0 1 0 · · · 1
1 0 1 · · · 0
.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · 1 0 1
1 · · · 0 1 0

 .

The eigenvalues of JM are

{
2 cos

(
2πk
M

)
: k ∈ {0, . . . ,M − 1}

}
, so the spectrum of BM lies

within [1/3, 1].

The identity (25) shows that λ = BMγ and we have just controlled the euclidean subordi-

nate norms ofBM andB−1M : we have ‖γ‖2,M ∼ ‖BMγ‖2,M , and therefore ‖∇πM (w)‖L2(T) ∼
‖∇πM (Φ)‖L2(T), thanks to Proposition 2, concluding the proof of (22).
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Let us turn to the proof of (23). Using Proposition 4, ‖∆−1M ũ‖2,M ≤ ‖ũ‖2,M and Cauchy-

Schwarz inequality entails that −(ũ|∆−1M ũ)M ≤ ‖ũ‖22,M . By Pythagore’s identity, we obtain

(23), since u = ũ+ [u]M1M and ‖[u]M1M‖22,M = [u]2M .

Proposition 7. For w ∈ C 1([0, T ]; Ran(∆M )), we have

−(∆−1M w(t)|w′(t))M =
1

2

d

dt
‖w(t)‖2−1,M ,

where as usual (·|·)M denotes the rescaled inner-product on RM .

Proof. If v(t) := −∆−1M w(t), we have ∆Mv(t) = −w(t) and therefore ∆Mv
′(t) = −w′(t),

with still [v′(t)]M = 0. We then have v′(t) = −∆−1M w
′(t). We infer, by symmetry of

√
−∆M ,

−(∆−1M w(t)|w′(t))M = −
(
v(t)|∆Mv

′(t)
)
M

=
(√
−∆Mv(t)|

√
−∆Mv

′(t)
)
M

=
1

2

d

dt

(√
−∆Mv(t)|

√
−∆Mv(t)

)
M

= −1

2

d

dt
(v(t)|∆Mv(t))M =

1

2

d

dt
‖w(t)‖2−1,M .

4.4 The discrete duality lemma

We are now all set to state and prove the discrete duality lemmas. These estimates will apply to

linear di�erential equations with source terms. We �rst consider the case when the source term

is continuous and then the case when it is not regular, respectively Lemma 3 and 4. We need

to combine them to deal with the approximation of the stochastic process and this is achieved

in Proposition 8.

Lemma 3. Consider µ ∈ C ([0, T ];RM>0) so that each component is uniformly (w.r.t. to time and
index) lower bounded by a positive constant α > 0. Assume that z ∈ C 1([0, T ];RM ) solves

z′(t) = ∆M

[
z(t)� µ(t) + f(t)

]
+ r(t),

where f and r are two functions in C ([0, T ];RM ). Then we have the following estimate, for any
parameter a > 0

sup
t∈[0,T ]

‖z(t)‖2−1,M +

∫
QT

σM (z � µ1/2)(s, x)2 ds dx

≤ (1 + a)
[
‖z(0)‖2−1,M + [z(0)]2M

∫ T

0
[µ(s)]M ds+

1

α

∫
QT

σM (f)(s, x)2 ds dx
]

+ (1 + a−1)

(
T + T

∫ T

0
[µ(s)]M ds+

1

α

)∫
QT

σM (r)(s, x)2 ds dx, (26)

where the Hadamard product � and the square-root µ1/2 are de�ned in Subsection 1.2.
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This is a counterpart of Lemma 1. In the case, r = 0, one can indeed get rid of a.

Proof. We follow the proof of the continuous case, Lemma 1. Since Ran(∆M ) ⊆ 1⊥M , we claim

[z(t)]′M =
1

M
(z′(t),1M ) = [r(t)]M ,

and therefore

[z(t)]M = [z(0)]M +

∫ t

0
[r(s)]M ds. (27)

Recalling the de�nition z̃(t) := z(t)− [z(t)]M we also have

z′(t) = z̃′(t) + [r(t)]M .

Now, taking the inner-product with the vector ∆−1M z̃(t) in the di�erential equation solved by z,

we get, using the symmetry of ∆M and the fact ∆−1M z̃(t) ∈ SpanR(1M )⊥ (see Subsection 4.3),

−
(

∆−1M z̃(t)
∣∣z̃′(t))

M
+
(
z̃(t)

∣∣z(t)� µ(t)
)
M

= −
(
z̃(t)

∣∣f(t) + ∆−1M r̃(t)
)
M
.

We use Proposition 7 to identify the �rst term of the l.h.s. and get

1

2

d

dt
‖z̃(t)‖2−1,M +

(
z̃(t)

∣∣z(t)� µ(t)
)
M

= −
(
z̃(t)

∣∣f(t) + ∆−1M r̃(t)
)
M
. (28)

Using that the entries ofµ(t) are all lower-bounded by α > 0 we have the following inequality

(see Subsection 1.2 for the notation �), for any vector g ∈ RM∣∣∣(z̃(t)
∣∣g)

M

∣∣∣ =
∣∣∣(z̃(t)� µ(t)1/2

∣∣g � µ(t)1/2
)
M

∣∣∣
≤ ‖z̃(t)� µ(t)1/2‖2,M‖g � µ(t)1/2‖2,M

≤ 1√
α
‖z̃(t)� µ(t)1/2‖2,M‖g‖2,M

≤ 1

2
‖z̃(t)� µ(t)1/2‖22,M +

1

2α
‖g‖22,M

=
1

2

(
z̃(t)|z̃(t)� µ(t)

)
M

+
1

2α
‖g‖22,M ,

where we used Young’s inequality. We use this estimate in (28) with g := f(t) + ∆−1M r̃(t)

1

2

d

dt
‖z̃(t)‖2−1,M +

(
z̃(t)

∣∣∣z(t)� µ(t)
)
M

≤ 1

2

(
z̃(t)

∣∣∣z̃(t)� µ(t)
)
M

+
1

2α
‖f(t) + ∆−1M r̃(t)‖22,M ,

which, after expanding the de�nition z̃(t) := z(t)− [z(t)]M , becomes

1

2

d

dt
‖z̃(t)‖2−1,M +

1

2

(
z(t)

∣∣∣z(t)� µ(t)
)
M

≤ 1

2
[z(t)]2M [µ(t)]M +

1

2α
‖f(t) + ∆−1M r̃(t)‖22,M .
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Using Proposition 4 to infer ‖∆−1M r̃(t)‖2,M ≤ ‖r̃(t)‖2,M ≤ ‖r(t)‖2,M and the convex inequal-

ity (x+ y)2 ≤ (1 + a)x2 + (1 + a−1)y2 we eventually get, after integration in time

‖z̃(t)‖2−1,M +

∫ t

0
‖z(s)� µ(s)1/2‖22,M ds

≤ ‖z̃(0)‖2−1,M +

∫ t

0
[z(s)]2M [µ(s)]M ds

+
1 + a

α

∫ t

0
‖f(s)‖22,M ds+

1 + a−1

α

∫ t

0
‖r(s)‖22,M ds. (29)

On the other hand, using once more the above convex inequality, we claim from (27) and

Cauchy-Schwarz inequality that

[z(t)]2M ≤ (1 + a)[z(0)]2M + (1 + a−1)T

∫ T

0
[r(s)]2M ds.

Summing the two last inequalities we obtain (26) since for any vector u ∈ RM , ‖u‖2,M =
‖σM (u)‖L2(T).

Lemma 4. Consider µ ∈ C ([0, T ];RM>0) so that each component is uniformly (w.r.t. to time and
index) lower bounded by a positive constant α > 0. Assume that zd : [0, T ]→ RM solves

zd(t) =

∫ t

0
∆M

[
zd(s)� µ(s)

]
ds+ xd(t), (30)

where xd is any càdlàg RM valued function over [0, T ]. Then we have the following estimate

sup
t∈[0,T ]

‖zd(t)‖2−1,M +

∫
QT

σM (zd � µ1/2)(s, x)2 dsdx

. sup
t∈[0,T ]

‖xd(t)‖2−1,M +

∫ T

0
[µ(s)]M [xd(s)]

2
M ds, (31)

where the constant behind . is universal and µ1/2 denotes the vector map whose entries are the
square-roots of the ones of µ.

Remark 5. In this lemma we consider the (discrete) Kolmogorov equation with a singular source
term xd. The mere integrability of this term forbids to di�erentiate in time this equation, so we
cannot proceed as we have done in the proof Lemma 3.

Proof. Using (30), we �rst remark that [zd]M = [xd]M and therefore

z̃d(t) =

∫ t

0
∆M

[
zd(s)� µ(s)

]
ds+ x̃d(t).

We take as usual the inner product with −∆−1M z̃d(t) and use symmetry to write

−
(

∆−1M z̃d(t)
∣∣z̃d(t))

M
+

∫ t

0

(
z̃d(s)

∣∣zd(s)� µ(s)
)
M

ds = −
(

∆−1M z̃d(t), x̃d(t)
)
M
.
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We use the de�nition of the ‖·‖−1,M norm (see Proposition 6) and the equality z̃d = zd−[zd]M
to infer

‖z̃d(t)‖2−1,M +

∫ t

0
‖zd(s)� µ(s)1/2‖22,M ds

=

∫ t

0
[zd(s)]M

(
1M |zd(s)� µ(s)

)
M

ds−
(

∆−1M z̃d(t), x̃d(t)
)
M
.

The �rst term of the r.h.s. can be handled using Young’s inequality to absorb a part of it in the

l.h.s. and get

‖z̃d(t)‖2−1,M +

∫ t

0
‖zd(s)� µ(s)1/2‖22,M ds

.
∫ t

0
[zd(s)]

2
M‖µ(s)1/2‖22,M ds−

(
∆−1M z̃d(t), x̃d(t)

)
M
. (32)

Now, de�ning ΦM := ∆−1M z̃d and ΨM := ∆−1M x̃d we have that using Cauchy-Schwarz’s

inequality, the de�nition of the ‖ · ‖−1,M norm and the symmetry of the discrete laplacian

matrix

−
(

∆−1M z̃d(t)
∣∣ x̃d(t))

M
= −

(
ΦM (t)

∣∣ ∆MΨM (t)
)
M

=
(√
−∆MΦM (t)

∣∣ √−∆MΨM (t)
)
M

≤ ‖
√
−∆MΦM (t)‖2,M‖

√
−∆MΨM (t)‖2,M

= ‖z̃d(t)‖−1,M‖x̃d(t)‖−1,M .

Plugging this estimate in (32), we have

‖z̃d(t)‖2−1,M +

∫ t

0
‖zd(s)� µ(s)1/2‖22,M ds .

∫ t

0
[zd(s)]

2
M‖µ(s)1/2‖22,M ds+ ‖x̃d(t)‖2−1,M .

Recalling that [zd]
2
M = [xd]

2
M and adding this term to the inequality, we get (31).

Proposition 8. Consider µ ∈ C ([0, T ];RM>0) so that each component is uniformly (w.r.t. to time
and index) lower bounded by a positive constant α > 0. Assume that z : [0, T ]→ RM solves

z(t) = z(0) +

∫ t

0
∆M

[
z(s)� µ(s) + f(s)

]
ds+ x(t),

where f is a function in C ([0, T ];RM ) and x = xr + xd, with the regular component xr ∈
C 1([0, T ],RM ) and the singular component xd is any càdlàg RM valued function over [0, T ].

30



Then we have the following estimate, for any a > 0,

sup
t∈[0,T ]

‖z(t)‖2−1,M +

∫
QT

σM (z � µ1/2)(s, x)2 ds dx

≤ (1 + a)2
[
‖z(0)‖2−1,M + [z(0)]2M

∫ T

0
[µ(s)]Mds+

1

α

∫
QT

σM (f)(s, x)2 ds dx

]
+ (1 + a)(1 + a−1)

(
T + T

∫ T

0
[µ(s)]Mds+

1

α

)∫
QT

σM (x′r)(s, x)2 ds dx

+ (1 + a−1)
[

sup
t∈[0,T ]

‖xd(t)‖2−1,M +

∫ T

0
[µ(s)]M [xd(s)]

2
M ds

]
. (33)

Proof. Let’s de�ne zr ∈ C 1([0, T ];RM ) as the unique solution of

zr(t) = z(0) +

∫ t

0
∆M

[
zr(s)� µ(s) + f(s)

]
ds+ xr(t),

which, since xr is continuously di�erentiable, is equivalent to the Cauchy problem

z′r(t) = ∆M

[
zr(t)� µ(t) + f(t)

]
ds+ x′r(t), (34)

zr(0) = z(0). (35)

Now, de�ning zd := z − zr , one readily checks that it solves

zd(t) =

∫ t

0
∆M

[
zd(s)� µ(s)

]
ds+ xd(t).

The Cauchy problem (34) – (35) is exactly the one of Lemma 3, with r(t) := x′r(t), we therefore

infer from this very lemma, for any a > 0

sup
t∈[0,T ]

‖zr(t)‖2−1,M +

∫
QT

σM (zr � µ1/2)(s, x)2 ds dx

≤ (1 + a)

[
‖z(0)‖2−1,M + [z(0)]2M

∫ T

0
[µ(s)]M ds+

1

α

∫
QT

σM (f)(s, x)2 ds dx

]
+ (1 + a−1)

(
T + T

∫ T

0
[µ(s)]M ds+

1

α

)∫
QT

σM (x′r)(s, x)2 ds dx.

Now, since z = zd + zr , combining the triangular inequality and the convex inequality (x +
y)2 ≤ (1 + a)x2 + (1 + a−1)y2 implies

sup
t∈[0,T ]

‖z(t)‖2−1,M +

∫
QT

σM (z � µ1/2)(s, x)2 ds dx

≤ (1 + a)

[
sup
t∈[0,T ]

‖zr(t)‖2−1,M +

∫
QT

σM (zr � µ1/2)(s, x)2 dsdx

]

+ (1 + a−1)

[
sup
t∈[0,T ]

‖zd(t)‖2−1,M +

∫
QT

σM (zd � µ1/2)(s, x)2 ds dx

]
,
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so that the proof follows from Lemma 4, which focuses on the non-regular component.

5 Quantitative estimates and proof of Theorem 2

Let u, v be two functions de�ned on QT of C 1
regularity in time and C 4

regularity in space

solution of the system (1). We have, by Taylor expansion, for any h > 0 and C 4(T) function f

τhf = f + hf ′ +
h2

2!
f ′′ +

h3

3!
f ′′′ + Oh→0(h

4),

τ−hf = f − hf ′ + h2

2!
f ′′ − h3

3!
f ′′′ + Oh→0(h

4),

where Oh→0 refers to the L∞(QT ) norm. We have therefore

τhf + τ−hf − 2f

h2
= f ′′ + Oh→0(h

2).

In particular, denoting by ûM (t) and v̂M (t) the respectives values of u and v at the points

(t, xk) for k = 1, . . . ,M , we have the following discrete system:

∂tû
M (t) = ∆M

[
d1û

M (t) + a12û
M (t)� v̂M (t)

]
+ rM (t),

∂tv̂
M (t) = ∆M

[
d1v̂

M (t) + a21v̂
M (t)� ûM (t)

]
+ sM (t),

with

‖rM (t)‖∞ + ‖sM (t)‖∞ .M−2, (36)

uniformly for t on compact intervals.

On the other hand, we recall that our stochastic process satis�es

UM,N (t) = UM,N (0) +

∫ t

0
∆M

(
d1U

M,N (s) + a12U
M,N (s)� V M,N (s)

)
ds+ MM,N (t),

V M,N (t) = V M,N (0) +

∫ t

0
∆M

(
d2V

M,N (s) + a21U
M,N (s)� V M,N (s)

)
ds+ NM,N (t),

where MM,N
is square integrable martingale whose quadratic variation is given by (13) and

NM,N
satis�es similar properties. By symmetry, we can focus on the �rst species UM,N

.

Denoting

ZM,N (t) = ûM (t)−UM,N (t), XM,N (t) =

∫ t

0
rM (s) ds−MM,N (t),

we have yet another system satis�ed by these quantities

ZM,N (t) = ZM,N (0) +

∫ t

0
∆M

(
ZM,N (s)�ΛM,N (s) + FM,N (s)

)
ds+XM,N (t), (37)
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where

ΛM,N (t) = d11M + a12V
M,N (t),

WM,N (t) = v̂M (t)− V M,N (t),

FM,N (t) = a12û
M �WM,N (t).

We can now apply the discrete duality lemma developed in the previous section to control the

gap ZM,N
. This is the core of the next result, which yields Theorem 2. For z : [0, T ] → RM ,

let

|||z|||T,M :=

(
sup
t∈[0,T ]

‖z(t)‖2−1,M + ‖σM (z)‖2L2(QT )

)1/2

.

Proposition 9. Let u, v be a C 4(QT ) solution of the system (1), if
a12a21
d1d2

‖u‖L∞(QT )‖v‖L∞(QT ) < 1,

then for any (M,N) ∈ N2 such that N/M2 is large enough

E
(
|||ZM,N |||2T,M + |||WM,N |||2T,M

)
. |||ZM,N (0)|||2T,M (1 + [V M,N (0)]M ) + |||WM,N (0)|||2T,M (1 + [UM,N (0)]M )

+
(
1 + T 2 + T 2[UM,N (0) + V M,N (0)]M

)
M−4 + TM2N−1.

(38)

Proof. We �rst observe that t 7→ [ΛM,N (t)]M is constant and we set

λM,N
T = T + T

∫ T

0
[ΛM,N (s)]Mds+

1

d1

= T + T 2(d1 + a12[V
M,N (0)]M ) +

1

d1
.

By applying Proposition 8 with xd := −MM,N
and

xr : t 7→
∫ t

0
rM (σ) dσ,

we obtain that

sup
t∈[0,T ]

‖ZM,N (t)‖2−1,M +

∫
QT

σM
(
ZM,N � (ΛM,N )1/2

)
(s, x)2 dsdx

. ‖ZM,N (0)‖2−1,M + [ZM,N (0)]2M

∫ T

0
[ΛM,N (s)]M ds

+
1

d1

∫
QT

σM (FM,N )(s, x)2 dsdx+ λM,N
T

∫
QT

σM (rM )(s, x)2 dsdx

+ sup
t∈[0,T ]

‖MM,N (t)‖2−1,M +

∫ T

0
[ΛM,N (s)]M [MM,N (s)]2M ds. (39)
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Since ΛM,N
i ≥ d1 and |σM (FM,N )(s, x)| ≤ a12‖u‖L∞(QT )|σM (WM,N )(s, x)|, we obtain

|||ZM,N (t)|||2T,M
. ‖ZM,N (0)‖2−1,M + T [ZM,N (0)]2M [ΛM,N (0)]M

+
a12‖u‖L∞(QT )

d1

∫
QT

σM (WM,N )(s, x)2 dsdx+ λM,N
T

∫
QT

σM (rM )(s, x)2 dsdx

+ sup
t∈[0,T ]

‖MM,N (t)‖2−1,M +

∫ T

0
[ΛM,N (s)]M [MM,N (s)]2M ds.

As the roles of ZM,N
and WM,N

are symmetric in the previous inequality, we have a similar

estimate forWM,N
. Thus, by setting

ΓM,N (t) = d2 + a21U
M,N (t),

and

γM,N
T = T + T

∫ T

0
[ΓM,N (s)]Mds+

1

d2

= T + T 2(d2 + a21[U
M,N (0)]M ) +

1

d2
,

we get

|||WM,N |||2T,M
. ‖WM,N (0)‖2−1,M + T [WM,N (0)]2M [ΓM,N (0)]M

+
a21‖v‖L∞(QT )

d2

∫
QT

σM (ZM,N )(s, x)2 dsdx+ γM,N
T

∫
QT

σM (sM )(s, x)2 dsdx

+ sup
t∈[0,T ]

‖NM,N (t)‖2−1,M +

∫ T

0
[ΓM,N (s)]M [NM,N (s)]2M ds.

Using now our assumption on the bound of ‖u‖L∞(QT )‖v‖L∞(QT ) and letting . to depend on

those parameters, we get that

|||ZM,N |||2T,M . ‖ZM,N (0)‖2−1,M + T [ZM,N (0)]2M [ΛM,N (0)]M

+ ‖WM,N (0)‖2−1,M + T [WM,N (0)]2M [ΓM,N (0)]M

+
(
λM,N
T + γM,N

T

)∫
QT

(
σM (rM )(s, x)2 + σM (sM )(s, x)2

)
dsdx

+ sup
t∈[0,T ]

‖MM,N (t)‖2−1,M +

∫ T

0
[ΛM,N (s)]M [MM,N (s)]2M ds

+ sup
t∈[0,T ]

‖NM,N (t)‖2−1,M +

∫ T

0
[ΓM,N (s)]M [NM,N (s)]2M ds.
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The previous r.h.s. is again invariant with respect to the roles of ZM,N
and WM,N

. Then

using the uniform bounds on σM (rM ) and σM (sM ) from (36) and taking expectation, we get

E
(
|||ZM,N |||2T,M + |||WM,N |||2T,M

)
. ‖ZM,N (0)‖2−1,M + T [ZM,N (0)]2M [ΛM,N (0)]M

+ ‖WM,N (0)‖2−1,M + T [WM,N (0)]2M [ΓM,N (0)]M +
(
λM,N
T + γM,N

T

)
M−4

+ E
(

sup
t∈[0,T ]

‖MM,N (t)‖2−1,M
)

+ [ΛM,N (0)]M

∫ T

0
E
(
[MM,N (s)]2M

)
ds

+ E
(

sup
t∈[0,T ]

‖NM,N (t)‖2−1,M
)

+ [ΓM,N (0)]M

∫ T

0
E
(
[NM,N (s)]2M

)
ds. (40)

We are left then with controlling the local martingale terms that appear at the end. Since

[MM,N (s)]2M =
( 1

M

M∑
i=1

MM,N
i (s)

)2
≤ 1

M

M∑
i=1

MM,N
i (s)2 ≤ 1

M

M∑
i=1

sup
t∈[0,T ]

MM,N
i (t)2,

and recalling that [ΛM,N (0)]M = [d1 + a12V
M,N (0)]M , we have

[ΛM,N (0)]M

∫ T

0
E
(
[MM,N (s)]2M

)
ds

≤ (d1 + a12‖V M,N (0)‖1,M )
T

M

M∑
i=1

E
(

sup
t∈[0,T ]

MM,N
i (t)2

)
.

Besides, we also have using (23)

E
(

sup
t∈[0,T ]

‖MM,N (t)‖2−1,M
)
≤ E

(
sup
t∈[0,T ]

‖MM,N (t)‖22,M
)

≤ E
(

sup
t∈[0,T ]

( 1

M

M∑
i=1

MM,N
i (t)2

))
≤ 1

M

M∑
i=1

E
(

sup
t∈[0,T ]

MM,N
i (t)2

)
.

Now, Doob’s inequality ensures that E
(
supt∈[0,T ]M

M,N
i (t)2

)
. E(〈MM,N

i 〉(T )), where the
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expression of the quadratic variation 〈MM,N
i 〉 is found in (13). Moreover, since

M∑
i=1

(
2UM,N

i (s)VM,N
i (s) + UM,N

i+1 (s)VM,N
i+1 (s) + UM,N

i−1 (s)VM,N
i−1 (s)

)
.

M∑
i=1

(
UM,N
i (s)2 + VM,N

i (s)2
)

= ‖UM,N (t)‖22 + ‖V M,N (t)‖22,

we get

1

M

M∑
i=1

E
(

sup
t∈[0,T ]

MM,N
i (t)2

)
.

1

M
E
(M2

N

∫ T

0
‖UM,N (s)‖1 ds+

M2

N

∫ T

0

(
‖UM,N (s)‖22 + ‖V M,N (s)‖22

)
ds
)
,

Moreover ‖UM,N (s)‖1 = ‖UM,N (0)‖1 a.s. and we recall thatUM,N (t) = ûM (t)−ZM,N (t)
and V M,N (t) = v̂M (t) −WM,N (t) for any s ≥ 0. Adding that boundedness assumption on

the solution of the SKT system and (14) ensure that

T
M2

N
‖UM,N (0)‖1,M +

M2

N

∫
QT

σM
(
ûM
)2

+ σM
(
v̂M
)2

= TO
(M2

N

)
,

we �nally have

1

M

M∑
i=1

E
(

sup
t∈[0,T ]

MM,N
i (t)2

)
.
M

N

∫ T

0
E
(
‖ZM,N (s)‖22 + ‖WM,N (s)‖22

)
ds+ T

M2

N

.
M2

N

∫
QT

E
(
σM
(
ZM,N

)
(s, x)2 + σM

(
WM,N

)
(s, x)2

)
dsdx+ T

M2

N

.
M2

N
|||ZM,N |||2T,M +

M2

N
|||WM,N |||2T,M + T

M2

N
.

By symmetry we have bounds of the same order for the terms involving (NM,N (t))t≥0. We

plug these bounds in (40) and gather the terms |||ZM,N |||2T,M and |||WM,N |||2T,M in the left

hand side. For N/M2
large enough, we can control the left hand side and get

E(|||ZM,N |||2T,M + |||WM,N |||2T,M )

. ‖ZM,N (0)‖2−1,M + T [ZM,N (0)]2M [ΛM,N (0)]M

+ ‖WM,N (0)‖2−1,M + T [WM,N (0)]2M [ΓM,N (0)]M

+
(
λM,N
T + γM,N

T

)
M−4 + T

(
1 + [ΛM,N (0) + ΓM,N (0)]M

)M2

N
.
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Using that T [u]2M ≤ ‖σM (u)‖2L2(QT ) for any u ∈ RM , by rearranging the terms we conclude

the proof.

Now we can prove the remaining main result.

Proof of Theorem 2. We have

ζM,N := πM (UM,N )− u
= πM (UM,N − ûM ) + πM (ûM )− u = πM (ZM,N ) + ιM (u)− u,

where the interpolation operator ιM is the one used in Lemma 2. Using the triangular inequal-

ity, we infer

E
[

sup
t∈[0,T ]

‖ζM,N (t)‖2
Ḣ−1(T) + ‖ζM,N‖2L2(QT )

]
≤ E

[
sup
t∈[0,T ]

‖πM (ZM,N )(t)‖2
Ḣ−1(T) + ‖πM (ZM,N )‖2L2(QT )

]
+ sup
t∈[0,T ]

‖ιM (u)− u‖2
Ḣ−1(T) + ‖ιM (u)− u‖2L2(QT ). (41)

Now, using Proposition 2 we have that ‖πM (ZM,N )‖L2(QT ) ≤ ‖σM (ZM,N )‖L2(QT ), and using

the equivalence (22) of Proposition 6 we get for all t ∈ [0, T ]

‖πM (ZM,N )(t)‖H−1(T) . ‖ZM,N (t)‖−1,M +M−1‖πM (ZM,N (t)‖L2(T).

This means that the expectation term in the r.h.s. of (41) satis�es the following bound for

M ≥ 1

E
[

sup
t∈[0,T ]

‖πM (ZM,N )(t)‖2
Ḣ−1(T) + ‖πM (ZM,N )‖2L2(QT )

]
.T E

[
|||ZM,N |||2T,M

]
.

All in all, using Proposition 9, we get

E
[

sup
t∈[0,T ]

‖πM (ZM,N )(t)‖2
Ḣ−1(T) + ‖πM (ZM,N )‖2L2(QT )

]
.T εM,N ,

where εM,N is the r.h.s. of (38). Getting back to (41), we still have to control the second

expectation term of its r.h.s., for which invoke Lemma 2 which allow us to write

sup
t∈[0,T ]

‖ιM (u)− u‖2
Ḣ−1(T) + ‖ιM (u)− u‖2L2(QT ) .M−4‖u‖2L∞∩L2([0,T ];H2(T)).

Gathering all the terms leads to the conclusion.
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Appendix

Discrete–continuous dictionary

Discrete Continuous

∆M ∆
‖ · ‖p,M ‖ · ‖Lp(T)
(·|·)M (·|·)L2(T)
‖ · ‖−1,M ‖ · ‖H−1(T)
||| · |||T,M ||| · |||T

[·]M [·]T
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