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Abstract
This work presents an adaptive architecture that performs online learning and faces catastrophic forgetting issues by means of 
an episodic memory system and of prediction-error driven memory consolidation. In line with evidence from brain sciences, 
memories are retained depending on their congruence with the prior knowledge stored in the system. In this work, congru-
ence is estimated in terms of prediction error resulting from a deep neural model. The proposed AI system is transferred onto 
an innovative application in the horticulture industry: the learning and transfer of greenhouse models. This work presents 
models trained on data recorded from research facilities and transferred to a production greenhouse.

Keywords Adaptive models · Deep neural networks · Episodic memory · Memory consolidation · Greenhouse

1 Introduction

Adaptivity is about adjusting behaviours or beliefs to achieve 
novel objectives or to respond to unexpected circumstances. 
Of crucial importance for biological systems, adaptivity is 
one of the most challenging capabilities to implement in 
artificial systems. Developmental robotics addresses this 
challenge by taking inspiration from models of human 
development and from principles of brain functioning. [2, 
18]. Indeed, infant brains are continuously exposed to rich 
and novel sensorimotor experience while morphological and 
environmental conditions are changing. Skills acquired at a 
certain point in time—e.g. sitting up, manipulating toys—
need to be re-adapted as the proportions of growing body 
parts change and as other capabilities emerge.

Brain science communities converge on considering the 
somatosensory cortex of the human brain as playing a role 
in the implementation of adaptive body representations 
[15]. These representations are formed along the rich sen-
sorimotor information the individual is exposed to, while 
interacting with its surroundings. Research suggests that 
experienced sensorimotor contingencies and action-effect 
regularities are stored in the brain, allowing later processes 
of anticipation of sensorimotor activity. This has been shown 
to be crucial for adaptive behaviours, perception [12], motor 
control [1], memory [8, 11] and many other cognitive func-
tions [14, 29], and has inspired a wide range of computa-
tional models for artificial systems [4, 7, 30]. However, 
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despite the promising results in robotics and AI, a number 
of challenges still remain open. Among these is the ques-
tion about how adaptivity can be leveraged in lifelong learn-
ing systems. Although there is an increasing understanding 
of how biological systems balance the integration of new 
knowledge while retaining past experience in memory, an 
implementation of such strategies in artificial systems is still 
arduous.

In mammals, memory is composed of multiple systems 
supported by different structures in the brain [36]. One of 
these systems, i.e. episodic memory, is crucial for adaptive 
behaviours, as well as for other cognitive functions such as 
planning, decision-making and imagination [25]. Memory 
traces are stabilised in the brain after their initial acqui-
sition through memory consolidation [37]. Consolidation 
occurs at different levels in the brain, including a faster, 
synaptic (hippocampal) level and a slower, more stable 
(neocortical) system level. System consolidation seems to 
be driven by the hippocampus, which reorganises its stored 
temporal and labile memories into more stable traces in the 
neocortex [36]. The rate of consolidation can also be influ-
enced by the congruence between prior knowledge and the 
information that is going to be stored [38]. Recent studies 
suggest that if the information to be learned is consist-
ent with prior knowledge, neocortical consolidation can 
be more rapid [19, 36]. In other words, the way memory is 
updated appears to be dependent on the extent new infor-
mation is likely to be formed [9, 32, 33]. Consolidated 
memories are not static imprints of past experiences, but 
are rather malleable and can be updated or reconsolidated 
[16, 27, 34]. A key component of this process seems to be 
the capability of the brain to evaluate a prediction error, or 
a surprise signal, which would be necessary for destabilis-
ing and reconsolidating memories. Evidences suggest also 
that formation and consolidation of long-term memories 
occur during sleep, where experienced events are likely 
to be reactivated [3]. The rate of memory consolidation 
also depends on the developmental stage of the individual. 
Infants show weaker retention of experience compared to 
adults, thus reflecting a tendency of young brains to save 
more newly acquired experience [13].

The present work brings a twofold contribution to this 
special issue. Firstly, it advances the state-of-the-art on con-
tinual learning in artificial systems. In particular, it proposes 
an online learning framework implementing an episodic 
memory system, in which memories are retained according 
to their congruence with the prior knowledge stored in the 
system. Congruence is estimated in terms of prediction error 
resulting from a generative model.

Secondly, it shows that some of the paradigms of devel-
opmental robotics and of brain-inspired computational 
modelling can be transferred from laboratories to innovative 
applications. In particular, we apply this research in practical 

horticulture: the design of greenhouse models for monitor-
ing physiological parameters of plants—with the goal of 
increasing crop yield—and their transfer from research to 
production greenhouse facilities.

1.1  AI Transfer: Adaptive Greenhouse Models

Continual learning, i.e., the capability of a learning sys-
tem to continually acquire, refine and transfer knowledge 
and skills throughout its lifespan, has represented a long 
standing challenge in machine learning and neural network 
research [26]. Training neural networks in an online and 
prolonged fashion without caution typically rises cata-
strophic forgetting issues [20]. Catastrophic forgetting 
consists of the overwriting of previously learned knowl-
edge that occurs when a model is being updated with new 
information. Researchers have been trying to tackle this 
issue through different strategies [5, 17, 31]. These include 
consolidating past knowledge already present in a short-
term memory system into a long-term memory one [21], or 
employing an episodic memory system [20] that maintains 
a subset of previously experienced training samples and 
replays them, along with the new samples, to the networks 
during the training. This paper adopts a mixed approach 
which uses episodic memory replay and prediction-error 
driven consolidation to implement online learning in deep 
recurrent neural networks. Importantly, this work aims at 
transferring this AI strategy onto an application for the 
innovative greenhouses industry.

Greenhouses are complex systems comprising techni-
cal and biological elements. Similarly to robots, their state 
can be measured and modified through control actions, for 
instance on the internal climate. Modelling the mappings 
between different sensors and control actions as well as 
the resulting measurements allows to anticipate the effects 
of an intervention upon the greenhouse conditions, to bet-
ter plan further control actions and, ultimately, to increase 
crop yield. Several studies can be found in the horticulture 
literature showing that neural networks can model different 
processes occurring in a greenhouses, including internal 
climate [10] and yield [6, 28]. Experiments by [22] used 
multilayer perceptrons to predict time series in green-
houses, particularly leaf tissue temperature, transpiration 
and photosynthesis rates of a tomato canopy. The authors 
used chained simulations to generate predictions of several 
time steps, using 3 time steps for all input signals. A more 
thorough investigation of the time steps needed to predict 
time series inside a greenhouse is given by [24], who points 
that a static selection of time steps gives poor results after 
three historical steps (15 min) in the inputs. This is due 
to different time constants involved in the system, as sev-
eral inputs show very fast variations while others appear 
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delayed. These experiments suggest that more elaborated 
models are needed to account for the different memory 
length needed to make a prediction. This length is different 
for each input and changes at times of the day and seasons 
of the year.

Despite their potential impact in several applications in 
the field, adaptive models have received little attention in 
the horticulture scientific community (e.g. [35]). Indeed, 
the possibility to adapt can facilitate the transfer of models 
from research facilities to the production greenhouses. In 
a preliminary study [23], we showed that a learning archi-
tecture characterised by deep recurrent neural networks and 
an episodic memory system can enable the portability of 
greenhouse models. The model exposed to a big amount 
of data recorded from a research greenhouse can be trans-
ferred to a production facility, requiring less training data 
from the new greenhouse setup. This approach can have a 
high impact on the greenhouse industry, as it would allow 
to design and train optimal models at research greenhouses 
and quickly re-adapt them to different production facilities 
and crops.

Here, we extend our previous study [23] by introduc-
ing a more efficient memory consolidation strategy and by 
providing a more comprehensive analysis of the different 
aspects of the architecture. As in the previous work, we train 
a computational model for estimating the transpiration and 
photosynthesis of a hydroponic tomato crop by using meas-
urements of the climate. The models are trained and tested 
using data from two greenhouses in Berlin, Germany. There-
after, the adaptive model is fed with data from a production 
greenhouse in southern Germany, near Stuttgart, where other 
tomato varieties were grown under different irrigation and 
climate strategies.

2  Methodology

The computational model adopted here consists of a deep 
neural network, in part composed by Long Short-Term 
Memory (LSTM) layers, characterised by two outputs—
transpiration and photosynthesis—and a time series of six 
sensor values as input. In particular, climate data (air tem-
perature, relative humidity, solar radiation, CO2 concentra-
tion) and temperature of two leaves are used as sensor data. 
The model is used to predict transpiration and photosyn-
thesis rates from the sequence of sensor data. Anticipating 
these information allows better control of the climate and, 
consequently, an increase of the yield. This aspect is how-
ever not covered by this study.

The samples have been pre-recorded from three different 
greenhouses (hereon: GH1, GH2 and GH3), with a rate of 
one multi-sensors measurement every 5 minutes. GH1 and 
GH2 are research greenhouses located in Berlin. Recordings 

have been carried out during several years: 2011 to 2014 
for GH1, and 2015 to 2016 for GH2. GH3 is a production 
greenhouse located near Stuttgart, Germany. Data from 2018 
was obtained for this greenhouse.

We test two models1, both with inputs consisting of fixed-
length time series of six sensors data. The first model (M1) 
takes as input a window of 288 subsequent samples from 
the six sensors, corresponding to one full day of recordings, 
given that samples are captured every 5 minutes. The second 
model (M2) takes as input a window of 576 subsequent 6D 
samples, corresponding to two full days of recordings2. The 
output consists of a 2D vector representing the transpiration 
and photosynthesis rates recorded at the final time step of 
the window.

Datasets are prepared so that input-output training sam-
ples can be sequentially extracted, to simulate an online 
learning process. For both models, the first training phase 
includes 5 cultivation years (2011 to 2014) from GH1. Sub-
sequent phases use the cultivation years 2015 (GH2), 2016 
(GH2) and 2018, regarding the commercial greenhouse 
(GH3). In all cases, the time series are truncated during the 
winter production pauses.

For model M1, this results in 26197 training samples 
from GH1 exposed sequentially to the learning process. 
After all samples are covered, the model is exposed to 7079 
samples from GH2, (2015) and to 5566 samples from GH2 
(2016). Finally, the model is exposed to 1153 samples from 
GH3 (2018). During each of these training phases, perfor-
mance of the learning system is estimated by computing the 
mean squared error (MSE) on test datasets extracted from 
the corresponding greenhouse. In particular, test datasets 
consist of 1377 samples (1/20th of the GH1 training dataset 
size) for GH1, 372 samples for GH2 (2015), 292 samples for 
GH2 (206) and finally 60 samples for GH3.

In another experiment, model M2 is trained and tested 
on smaller datasets, defined by wider input windows (two 
days, or 576 samples). In this experiment, M2 is exposed, in 
sequence, to 24949 training samples (tested on 1311 sam-
ples) from GH1, to 6831 training samples (tested on 359 
samples) from GH2 (2015) and to 5431 training samples 
(tested on 285 samples) from GH2 (2016), and finally to 
1096 training samples (tested on 57 samples) from GH3 
(2018).

1 Diagrams of the structure of the models, as well as the source code, 
can be found here: https ://githu b.com/guido schil laci/onlin e_lstm_
episo dic_memor y.
2 One day included a full daylight-night shift in the data. We avoided 
dealing with smaller portion of time windows, and chose instead mul-
tiples of one day. Considering the good performance of the system 
using two days input data, as described in the results section, we did 
not increase anymore the input size to allow a clearer differentiation 
between memory consolidation strategies.

https://github.com/guidoschillaci/online_lstm_episodic_memory
https://github.com/guidoschillaci/online_lstm_episodic_memory
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Test data are not included in the training sets3.
Model updates are performed on batches of 32 subsequent 

samples. As discussed above, an episodic memory system 
is used to reduce catastrophic forgetting issues. This system 
replays samples (together with the current batch) when updat-
ing the model’s weights. Samples observed over time are 
stored into an episodic memory and retained following a pre-
diction-error driven consolidation scheme: a mechanism that 
chooses which samples to maintain in the episodic memory 
based on their expected contribution to the learning progress. 
Each memory element consists of an input-output mapping, 
i.e. a fixed-length time series (of one day for model M1; of two 
days for model M2) of 6D vectors as input and a 2D vector as 
output. A memory element is also characterised by a prediction 
error—i.e. how the model’s guess about such a stored expe-
rience deviates from the actual measured value – and by an 
expected learning progress— estimated as the absolute value 
of the derivative of two subsequent prediction errors—. More 
precisely, the learning progress LP is calculated as:

where � is the prediction error calculated as the Euclidean 
distance between the sensory state s (transpiration and pho-
tosynthesis) and the sensory prediction s∗ . Sensory predic-
tions are inferred by feeding the 6D input of a memory ele-
ment into the model. After each model update, the derivative 
of the prediction error associated to each memory element 
is updated.

For both models M1 and M2, we compare three differ-
ent memory consolidation strategies and one that does not 
adopt any episodic memory system—hereon named no-
memory strategy. The first strategy, i.e., discard high LP, 
tends to consolidate memory elements that produced little 
variations in the prediction error. This is performed by dis-
carding, at every memory update, the element characterised 
by the highest absolute value of the derivative of the predic-
tion error (an estimate of the expected contribution to the 
learning progress) and by replacing it with the most recently 
observed sample. A second strategy, hereon named discard 
low LP, tends to consolidate memory elements that produced 
big variations in the prediction error, likely to impact more 
on the learning progress during the next training iteration. In 
particular, it discards the memory element characterised by 
the smallest variation in the prediction error. This strategy is 
more in line with the literature reviewed at the beginning of 
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this paper, and we expect it to outperform the others. A third 
baseline strategy, named discard random, implements the 
standard memory consolidation approach in machine learn-
ing: at every memory update a randomly chosen sample is 
discarded from the memory.

Table 1  The configurations of the experiments carried out in this 
work. Each experiment is run 10 times

Design of experiments

ID Model Mem. consolidation Update prob.

1 M1 No memory –
2 M1 Discard high LP 0.05%
3 M1 Discard low LP 0.05%
4 M1 Discard random 0.05%
5 M1 No memory –
6 M1 Discard high LP 0.4%
7 M1 Discard low LP 0.4%
8 M1 Discard random 0.4%
9 M2 No memory –
10 M2 Discard high LP 0.05%
11 M2 Discard low LP 0.05%
12 M2 Discard random 0.05%
13 M2 No memory –
14 M2 Discard high LP 0.4%
15 M2 Discard low LP 0.4%
16 M2 Discard random 0.4%

3 The number of training samples available for models M1 and M2 
vary as a result of selecting windows of one or two days, the step 
size used to scan the original dataset and the random extraction of 
test data. The extraction algorithm can be found in the loaddataset.py 
script in the github repository.

Fig. 1  Mean squared error over time of the following experiments: 
model M1 (input: one day of observations) in the stable memory 
update configuration (first column); model M1 in the plastic memory 
update configuration (second column); model M2 (input: two days of 
observations) in the stable memory update configuration (third col-
umn); model M2 in the plastic memory update configuration (fourth 
column). The first row shows the MSE when no episodic memory is 
employed; the second and third rows show the MSE of the models 
employing the discard high LP and discard low LP memory consoli-
dation strategies, respectively; the fourth row shows the MSE of the 
model employing the baseline discard random consolidation strategy. 
Vertical axes indicate MSE values in the logarithmic scale. Horizon-
tal axes represent time, in form of the iterations at which MSE has 
been estimated. Model update is performed every time a 32-batch of 
samples is observed. MSE is not computed at every model update, 
but rather at a slower pace, i.e. every four model updates. Vertical 
dashed lines indicate switches between training datasets. From time 0 
to the iteration marked with the red vertical dashed line, the model is 
exposed to data recorded from GH1. From the iteration marked with 
the red line to the purple one, the model is exposed to data from GH2 
(2015). From the iteration marked with the purple line to the blue 
one, the model is exposed to data recorded from GH2 (2016). Finally, 
from the instant marked with the blue line until the end, the model 
is exposed to data recorded from the production greenhouse GH3 
(2018). Each experiment is repeated 10 times. Solid lines show the 
average MSE over the 10 runs calculated on four different test data-
sets (green plot: data from GH1, red plot: data from GH2, year 2015; 
purple plot: data from GH2, year 2016; blue plot: data from GH3). 
Shaded areas indicate errors (mean ± std.dev.) over the 10 runs

▸
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Finally, we compare the different architectures varying 
another hyper-parameter, i.e., the probability of updating the 
memory: in a stable configuration, the memory is updated 
5% of the times a new sample is observed; in a plastic con-
figuration, this probability is set to 40%, therefore updating 
the memory much more frequently than in the stable setup. 
Table  1 summarises the experiments.

3  Results

Fig. 1 shows the mean squared error over time for each of 
the experiments depicted in Table 1.

The absence of an episodic memory system (experiments 
1, 5, 9, 13) produces higher MSE values and big fluctua-
tions in the MSE curves, likely due to catastrophic forgetting 
issues. Abrupt deterioration of system performance can be 
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Table 2  Quantitative analysis comparing the discard low LP and discard random consolidation strategies

Periods P1, P2, P3, P4 indicate the learning phases characterised by the different training data: GH1 (2011 to 2014), GH2 (2015), GH2 (2016) 
and GH3 (2018), respectively. Rows indicate the test dataset used to calculate the MSE. A linear regression is calculated on each MSE curve 
segment, i.e., on the MSE values within the indicated training period. A green cell indicates that the MSE slope of the (discard low LP) strategy 
is smaller than that of (discard random). That is, a steeper descent in the MSE is observed using the discard low LP than the discard random 
one. Inversely, red cells indicate that discard random strategy produced a steeper MSE descent, compared to the discard low LP strategy. Gray 
cells refer to test data from a GH not yet used as training source, and are hence omitted. Asterisks indicate p-values of the interaction analysis, 
and thus of the slope difference: one asterisk indicates p-value ≤ 0.05; two asterisks indicate p-value ≤ 0.01. Empty values (-) indicate that the 
difference was not statistically significant

observed whenever training datasets are switched (see the 
peaks in the MSE near the vertical dashed lines), showing 
the poor adaptive capabilities of the model4.

By contrast, an episodic memory system produces a more 
stable learning progress (see Fig. 1). Overall, the discard low 
LP memory consolidation strategy outperforms the other 
methods, as expected. A model under this configuration pre-
sents more stability after the changes in the training distribu-
tions. Table 2 presents a quantitative analysis in support to 
these statements. In particular, we analysed the difference 
between the slopes of the linear regression computed on the 
MSE produced by the discard low LP and discard random 
consolidation strategies5. The statistical significance of the 
slope differences is estimated by means of an interaction 
analysis6. Overall, the discard low LP has a tendency to 
over-perform the discard random strategy. Discard random 
brought better results—marked in red in Table 2—in fewer 
cases than for the discard low LP. They occur in plastic 
models (40% memory update probability) and only in GH1: 
the largest and first training group in all experiments7.

The discard high LP strategy over-consolidates past and, 
perhaps, less informative experiences (see later comment 
about the variance of the stored episodic memories). This 
can be noticed in Fig. 2, which illustrates the content of the 
episodic memory over time for the stable (left column) and 
plastic (rigth column) configurations. The plots show the 
amount of elements from GH1 (green), GH2 (red) and GH3 
(blue) stored in the memory at each time8. Notably, the dis-
card low LP strategy fills up the memory with new samples 
faster than discard high LP. A similar trend is observable 
in the discard random strategy. Nonetheless, the discard 
low LP strategy maintains memory elements from previous 
greenhouses longer than the discard random strategy, likely 
affecting models’ performance (1). For example, in experi-
ments 15 and 16, MSE on the GH2 (2015) test dataset, dur-
ing exposition of the models to GH2 (2016) training data, 
decreases faster in the discard random than in the discard 
low LP strategy. A similar situation can be observed in Exp. 
7 and 8.

Replaying more recent samples during the model update 
is likely to increase the plasticity of the system. In fact, 
smaller peaks in the MSE in the discard low LP plots can be 
observed when the distribution changes. Plastic configura-
tions in general respond faster to new data (see final training 
instances—blue curves—in Exp. 7, 8, 15 and 16). Moreover, 
the discard low LP strategy ensures that a higher variance 
in the values stored in the memory is maintained over time, 

4 Spikes of the MSE in the no-memory strategy already occur before 
a switch to a new dataset is performed. We believe this to be a sea-
sonal effect in the data, as the time series are truncated during winter 
production pauses (see Sect. 2).
5 We omit the other, less interesting, strategies, as trends can be qual-
itatively inferred from Fig. 1.
6 For each period following a dataset change, a linear model is 
trained and p-values of the interaction between time and group are 
reported in Table   2.
7 We believe that analysing the impact of the number of elements to 
be consolidated each time or of the moment when to integrate new 
observations, may help in explaining these trends.

8 The maximum size of the memory is set to 500 elements in all the 
experiments. The memory is filled up with any observed sample, until 
it is full. Thereafter, the chosen consolidation strategy is applied. We 
tested different memory sizes (in the range 100–1000, empirically 
chosen). We decided to fix the memory size to 500 as it allowed eas-
ier visualisation of the system performances.



77KI - Künstliche Intelligenz (2021) 35:71–80 

1 3

Fig. 2  Content of the episodic memory over time for memory con-
solidation strategies (means ± std.dev. over 10 runs per experiment) 
using model M1. y-values represent the amount of elements (from 0 
to 500, where 500 is memory size) from each dataset in the memory. 

Horizontal axes represent time. The left column shows stable con-
figurations, while the right column shows plastic configurations. The 
plots for the model M2 have been omitted, as they closely resemble 
those of M1



78 KI - Künstliche Intelligenz (2021) 35:71–80

1 3

compared to the other strategies (see Fig. 3). We believe that 
this helps the model to maintain a good balance between 
stability and plasticity.

Finally, it is worth noting that a principal component 
analysis (PCA) carried out on all the datasets (Fig. 4), and 
estimated on 8 dimensions—i.e., six sensors data, and 
transpiration and photosynthesis—shows a partial overlap 
between datasets. GH2 and GH3 data seem to be partly 
represented by GH1 data. As can be seen in Fig. 1, the 
MSE curves for GH3 test data (blue curves) during the first 

learning phase—i.e., where data from GH1 is used—show 
a steeper descent compared to the others, although no data 
from GH3 is yet being learned by the model. This can be 
explained by the fact that GH1 was used to test a number 
of climate control strategies, resulting in a broader range of 
conditions being reflected in the data. Additionally, green-
houses GH1 and GH2 share the same construction and loca-
tion, while GH3 is bigger and subject to different meteoro-
logical conditions. Despite similarities in the datasets, we 
believe that the proposed memory consolidation strategies 

Fig. 3  The variance of the content of the memory over time
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Fig. 4  Principal component analysis of all datasets

based on prediction error estimates can be used to produce 
more stable learning systems, compared to standard consoli-
dation strategies.

4  Conclusions

This paper presented an architecture in which episodic 
memory replay and prediction-error driven consolidation 
are used to tackle online learning in deep recurrent neural 
networks. Inspired by evidences in brain sciences, memories 
are retained depending on their congruence with the prior 
knowledge stored in the system. Congruence is estimated in 
terms of prediction error resulting from a generative model, 
a deep recurrent neural network. This approach produces a 
good balance between stability and plasticity in the model 
and tends to outperform standard memory consolidation 
strategies.

Importantly, this work aimed at transferring developmen-
tal robotics solutions onto an application for the greenhouse 
industry, i.e., the transfer of climate models from research 
facilities to production greenhouses. We show that the sys-
tem exposed to data recorded from a research greenhouse 
can be transferred to a production facility, without facing 
the need to re-train on a big amount of data from the new 
setup, a process that is costly and involves a high risk of 
damaging the crop.
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