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ABSTRACT2

Traditionally investigated in philosophy, body ownership and agency - two main components of3
the minimal self - have recently gained attention from other disciplines, such as brain, cognitive4
and behavioural sciences, and even robotics and artificial intelligence. In robotics, intuitive human5
interaction in natural and dynamic environments becomes more and more important, and requires6
skills such as self-other distinction and an understanding of agency effects. In a previous review7
article, we investigated studies on mechanisms for the development of motor and cognitive skills8
in robots (Schillaci et al., 2016). In this review article, we argue that these mechanisms also build9
the foundation for an understanding of an artificial self. In particular, we look at developmental10
processes of the minimal self in biological systems, transfer principles of those to the development11

of an artificial self, and suggest metrics for agency and body ownership in an artificial self.12

1 INTRODUCTION

People can usually easily recognise their own body and the results of their own actions. This apparently13
simple skill likely contributes to what makes us feel as separate entities in the world (Van Den Bos14
and Jeannerod, 2002) and it is indeed fundamental for interacting with the environment and with other15
individuals. A current research trend suggests that the minimal self - the pre-reflective experience of being16
a self, or the awareness of oneself as a subject of experience (Blanke and Metzinger, 2009) - would be17
characterised by two important aspects: a sense of body ownership - I feel corporal sensations as uniquely18
belonging to my own body - and a sense of agency - I feel being in control of my own actions (Gallagher,19
2000).20

Topics such as body ownership and agency that have traditionally been investigated in philosophy have21
recently gained attention from other disciplines, such as brain, cognitive and behavioural sciences, and22
even robotics and artificial intelligence. Some neuroscientists, for example, interpret certain human mental23
disorders - such as schizophrenia - as the result of a disrupted sense of the self (Nelson et al., 2014; Klaver24
and Dijkerman, 2016; Frith et al., 2000; Sterzer et al., 2016). In robotics, intuitive human interaction in25
natural and dynamic environments becomes more and more important, and requires skills such as self-other26
distinction and an understanding of agency effects (Belpaeme et al., 2018; Holthaus and Wachsmuth, 2012).27
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Developmental psychologists study the emergence of self-awareness from very early stages of development.28
Self-awareness would unfold already during the first months of life, when infants seem to start having a29
sense of how their own body is situated in relation to other entities in the environment (Rochat, 2003).30
Infants at 5 months of age, for example, are able to distinguish their own leg movements from those of31
another infant, when they are displayed in a mirror (Rochat, 2003). These action-effects have been studied32
in infants using different modalities including sound (Paulus et al., 2012).33

These findings represent a valuable source of inspiration for roboticists, whose aim is to develop34
autonomous robots capable of living in and interacting with the human society. Developmental robotics35
addresses this challenge by implementing methods and algorithms for motor and cognitive development36
in artificial systems inspired by infant development (Cangelosi and Schlesinger, 2015). In developmental37
robotics, state of the art machine learning techniques are applied to computational models, creating artificial38
systems that can adapt to new situations and learn in an open-ended fashion. The emergence of the self39
represents a key step in cognitive development. Therefore, there is a growing interest in the developmental40
robotics community on implementing processes capable of enabling the experience of the self - with41
phenomena such as sense of body ownership and agency - in artificial agents.42

On the other side, robots can represent valuable tools to investigate phenomena of subjective experience43
typical of humans. In fact, robots are equipped with sensors and actuators that can be inspected and44
controlled during their operations. What the robot sees and perceives, and its internal states can be logged45
and further analyzed which is obviously not possible in humans. If robots were capable of detecting and46
recognising their own body and movements, their interaction with the environment and with people would47
be much more efficient and natural. However, the questions about which computational processes are48
needed to implement a primitive sense of body ownership and agency in robots, and of how the ontogenetic49
process of the individual shapes the development of the self, are still open.50

This manuscript follows-up a previous review paper (Schillaci et al., 2016), in which we investigated51
studies on mechanisms for the development of motor and cognitive skills in robots. In this review paper, we52
argue that the same mechanisms also build the foundation for the development of an artificial self. In fact, in53
infants, the self seems to emerge along the motor and cognitive development of the individual (Lagercrantz54
and Changeux, 2009). Implementing similar processes in artificial systems may provide insights also in the55
possibility to develop an artificial self. In this work, we address the role of developmental processes in the56
emergence of an artificial self, and we suggest the concept of self-manifolds in artificial systems and the57
use of metrics for establishing the boundaries of an artificial self.58

The review paper is structured as follows. First, in section 2, we revisit the concepts addressed in our59
previous review (Schillaci et al., 2016) and frame them within the context of the development of an artificial60
self. In particular, we present advances in the study of behavioural and computational components that61
allow autonomous motor and cognitive development in artificial systems. We discuss how these components62
can build the foundation for an artificial self. In order to do so, we ask whether and how the minimal63
self is affected during the ontogenetic process of the individual, and how open-ended learning and social64
interaction can shape the development of an artificial self, and then review robotic studies addressing this65
question. In section 3, we review studies on metrics and boundaries of the human self, and propose their66
use also for artificial systems. Finally, in section 4, we provide our conclusions and open challenges in the67
quest for the development of an artificial self.68
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2 BEHAVIOURAL AND COMPUTATIONAL COMPONENTS

In the robotics literature, the study on the artificial minimal self is young and fragmented. Unfortunately,69
a study presenting a comprehensive overview on the robotic investigations on this topic is missing.70
Nonetheless, many articles can be found providing interesting insights on aspects and prerequisites that71
can be related to the development of an artificial self. Two recent papers highlight both aspects of the72
human minimal self and an artificial minimal self. Georgie et al. (2019) look at developmental indices and73
behavioural measures of the minimal self, and Lanillos et al. (2019) look into computational models of74
neurological disorders related to the minimal self. In particular, they look into the balance between sensed75
and predicted sensory effects in ASD and schizophrenia.76

In a previous review paper (Schillaci et al., 2016), we investigated studies on mechanisms for the77
development of motor and cognitive skills in robots. In particular, we identified three main behavioural and78
computational components that can enable autonomous acquisition of motor skills and the implementation79
of basic cognitive capabilities: (1) exploration behaviours; (2) internal body representations; (3)80
sensorimotor simulations. In this review, we extend the review provided in Schillaci et al. (2016) by81
creating links to the topic of the development of an artificial self, beside introducing more recent robotic82
studies on related topics. We particularly focus on those ones that propose strategies to scale up with motor83
and cognitive development. We extend exploration behaviours with artificial curiosity and sensorimotor84
simulations with predictive processes in order to strengthen the aspects of the development of a minimal85
self. All three components are processes or cognitive skills that run in parallel and independently from86
each other and can be seen as building blocks of the minimal self as discussed later.87

2.1 Self-exploration behaviours and artificial curiosity88

Human fetuses seem to already have some limited control on their body, as they react to touch, sound,89
smell, and pain, and even show facial expressions responding to external stimuli (Lowery et al., 2007). Some90
researchers (Lagercrantz and Changeux, 2009), though, believe that these reactions may have subcortical91
nonconscious origin and that, only shortly after birth, newborns show signs of basic self-awareness. In fact,92
developmental studies provide evidence about infant behaviours displaying some level of self-awareness93
in their first weeks of life (Rochat, 2011). Nonetheless, whether - and to what extend - self-awareness is94
present at birth, developmental researchers believe that it would unfold during early stages of development95
(see Rochat (2003) for empirical evidence and proposals). However, why and how self-awareness exactly96
would emerge during infancy are still open questions and in particular there are no thorough theories or97
computational models explaining their function. Hart and Scassellati (2011) argue that self-identification98
algorithms are the first step towards a more comprehensive model of the robotic self.99

There is a general consensus on recognising the important role in the development of self-awareness to100
the perceptual experiences that toddlers undergo when exploring and playing with their surroundings. The101
self would emerge through the active interaction with one’s physical and social environment (Verschoor102
and Hommel, 2017). Indeed, exploration behaviours are recognised as the means for motor and cognitive103
development in infants, as well as in robots (see Schillaci et al. (2016) for a review). Several studies104
investigate the cognitive mechanisms and drives behind exploration and play in infancy. In infants, curiosity105
- which is usually inferred through their use of prolonged visual attention to stimuli (Benson and Haith,106
2010, pag.157-167) (Grgič et al., 2016) - is thought to drive the emergence of ordered developmental107
trajectories, including in domains such as vocal development, imitation and tool use discovery (Oudeyer,108
2018; Acevedo-Valle et al., 2018). This is contrary to earlier belief that infants learn by random actions,109
but rather that their actions are goal-directed from the very start (Von Hofsten, 2004).110
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Figure 1. Curiosity-based learning method for humanoid robots using postures and regions. This image
shows an example of postures learned after 30 minutes of online learning (Loviken et al., 2018). A and B
represent two independent runs, and the number indicate the state. Each state is responsible for an interval
of angle φ, where φ is the torso’s orientation in relation to the ground. A demonstration video can be found
at this URL: https://www.youtube.com/watch?v=QzZsJxyGGIk).

Infants’ curiosity, play and exploration - and the likely goal-directed nature of their actions - have attracted111
the interest of developmental roboticists. In fact, studies on artificial curiosity have demonstrated how112
mechanisms for goal-directed exploration can be used to efficiently learn robot dynamics, even if the113
artificial system is characterised by complex high-dimensional embodiments. Artificial curiosity goes114
beyond novelty detection that would drive the agent to novel, but not necessarily predictable regions of115
its sensorimotor space. In contrast, artificial curiosity drives the agent towards regions where the learning116
progress can be maximised (Oudeyer et al., 2007). The main difference to typical machine learning117
scenarios is that the agent creates its own training samples for a desired learning trajectory.118

The first studies on artificial curiosity and exploration in robots were limited, in a way. Although119
promising and demonstrating that curiosity-driven and exploration behaviours can efficiently solve inverse120
and forward kinematics problems, they mostly focused on relatively simple tasks, such as reaching actions121
for robot manipulators. Prolonged and incremental learning, until recently, was not a main priority in these122
studies. Indeed, it is still a great challenge in the whole robotics community. Seemingly, assuming that,123
in infants, self-awareness is a result of complex and prolonged interactions and experiences, the study124
on the development of an artificial self has to address, as well, how self-awareness would unfold along125
incremental learning in robots.126

Recently, interesting studies have been published on topics close to this line of thoughts. For instance,127
studies in the literature on goal-directed exploration in artificial systems proposed ways to scale up learning128
to multiple task spaces (Forestier and Oudeyer, 2016; Forestier et al., 2017) or to domains where exploration129
of a task space requires action planning in multiple steps (Loviken and Hemion, 2017; Loviken et al.,130
2018). Figure 1 shows the results of a curiosity-based learning method for humanoid robots, where the131
sensory space was partitioned into a disjoint set of finite elements. In this space, every element was seen as132
an independent goal-babbling problem and a planning module could be added by observing transitions133
between the different elements (Loviken and Hemion, 2017; Loviken et al., 2018).134

Acevedo-Valle et al. (2018) studied intrinsic motivation systems in the context of early vocal development135
which further develop through social reinforcement. An artificial agent was endowed with a proprioceptive136
mechanism, which was used to prevent the execution of unreachable motor configurations or invalid137
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(painful) configurations. Moreover, the authors introduced an expert instructor which produced correct138
utterances whenever the exploring autonomous learner was emitting similar (although still not correct)139
sounds. This resulted in a social reinforcement, which provided clues to the learner of interesting140
sensorimotor regions to explore.141

Interesting advances have been made also in the context of goal generation. For instance, Mannella et al.142
(2018) show how an artificial system can autonomously generate goals to be used in an intrinsic motivation143
system to explore and to gather knowledge about its own body. In Schillaci et al. (2020), the authors present144
an architecture for curiosity-driven goal-directed exploration behaviours on a camera-equipped robot arm.145
A combination of deep neural networks for offline unsupervised learning of low-dimensional features from146
images, and of online learning of shallow neural networks was used. The artificial curiosity system assigned147
interest values to a set of pre-defined goals, and drove the exploration towards those that were expected to148
maximise the learning progress. Moreover, the authors proposed the integration of an episodic memory149
system to face catastrophic forgetting issues, typically experienced when performing online updates of150
artificial neural networks. The results showed that adopting an episodic memory system not only prevented151
the computational models from quickly forgetting knowledge that have been previously acquired, but also152
provided new avenues for modulating the balance between plasticity and stability of the models.153

In humans, the self develops along the ontogenetic process of the individual. This is closely related to154
mechanisms of open-ended learning and social interaction, but also on the establishment and refinement155
of plastic body representations. The next section will provide an overview of recent studies on body156
representations in artificial systems.157

2.2 Body representations158

Many researchers have suggested theories in trying to explain the experience of body ownership and159
agency, and self-awareness in general. Sense of agency and sense of body ownership seem to be strongly160
linked, but many empirical studies still investigate them separately from each other. The appearance of the161
first signs of self-awareness in newborns seems to be dependent to the establishment of thalamocortical162
connections (Lagercrantz and Changeux, 2009). In general, the sense of body ownership seems to be163
strongly intertwined with an internal representation of the body maintained by our brain. Here we adopt the164
conceptual clarification by Gallagher (1986) between body image and body schema, where body image is a165
conscious representation or image of the body, whereas body schema is a non-conscious representation of166
sensorimotor skills. While we interact with the environment, we generate a rich set of multi-modal sensory167
and motor experience (Schillaci et al., 2016). This information has been proposed to be integrated in a168
sort of a body schema into our brain, which would keep an up-to-date representation of the positions and169
configurations of the different body parts in space (Maravita et al., 2003; Hoffmann et al., 2010). Moreover,170
the body schema very likely undergoes a continuous process of adaptation, as humans and animals follow171
an ontogenetic process where corporal dimensions and morphology change over time. The way in which we172
represent and feel our body seems to strongly rely on these representations, which would integrate inputs173
from different sensory modalities (Azañón et al., 2016). Scientists carried out experiments to explore how174
the brain combines information from the flow of sensory input data to create a feeling of body ownership,175
such as the famous experiment of the rubber hand illusion, where the participant is confused by the sight of176
a fake hand and synchronised sensory stimulation (Botvinick and Cohen, 1998).177

Some researchers in cognitive development link the construction of the self to the experience encoded178
in a sort of autobiographical memory (Nelson, 2003). Pointeau and Dominey (2017) review a range of179
robotic experiments that address different aspects of the self and relate them to the definition of the self180
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as given by Neisser (1995). Ulric Neisser proposed five types of self-knowledge that correspond to five181
distinct components of the self: ecological, interpersonal, conceptual, temporally extended, and private.182
The ecological self, that is ”the individual situated in and acting upon the immediate physical environment”183
(Neisser, 1995), is perhaps the level which is most interesting here, and it is rather easy, given the current184
robot technologies, to design robotic experiments addressing it. Ecological proprioception is integrated185
with different modalities of sensory information concerning one’s own body as interacting within the186
environment (Gallagher, 2007). The tactile modality has received particular interest from researchers on187
subjective experiences, and on their impairments in patients with brain disorders. Van Stralen et al. (2011),188
for instance, studied how self-touch influences the structural representation of one’s own body and found189
that self-touch may be modulating impairments in body ownership.190

Developmental roboticists have also focused their attention onto the role of the tactile modality in the191
formation and maintenance of body representations. For instance, Zenha et al. (2018) studied how a192
body schema can be adapted incrementally in a humanoid robot based on touch events. Hoffmann (2017)193
studied the role of self-touch experiences in the formation of a self. Self-touch would provide redundant194
information that would facilitate the formation of a body representation. Timing and synchrony has been195
identified also as an important feature in support to the integration of information from multiple modalities196
within a body representations. Nabeshima et al. (2005) present a robotic study in support of that.197

Hoffmann et al. (2018) studied a self-organising model for body representation on an iCub humanoid198
robot with an artificial pressure-sensitive skin. In particular, the proposed framework was used to learn199
a topographic representation of the robot’s body surface from experience, that is by receiving tactile200
stimulations all over its artificial skin, including multi-touch stimulations.201

2.3 Sensorimotor Simulations and Predictive processes202

A growing number of scientists now consider the brain as an active organ of inference (Picard and Friston,203
2014; De Ridder et al., 2013; Kirchhoff, 2018). Self-awareness and self recognition are thought to be204
dependent also on predictive processes - or sensorimotor simulations - implemented by the brain (Hohwy,205
2013; Apps and Tsakiris, 2014; Friston, 2018). Predictive processes may have several functions, but one206
important is that of sensory attenuation. Pyasik et al. (2019) showed that felt ownership of a fake hand in the207
rubber hand illusion experiment caused attenuation of somatosensory stimuli generated by its movements208
comparable to the attenuation of self-generated stimuli. Burin et al. (2018) also investigated the influence209
of timing on the effect of agency.210

Similar computational models can be implemented into robots to provide them with predictive capabilities.211
Sensorimotor predictions and prediction errors can be recorded and analysed, as well. In humans – in212
contrast – such properties cannot directly be observed and controlled. Bechtle et al. (2016) and Lang et al.213
(2018) implemented internal models into a humanoid robot to study how body representations can emerge214
from sensorimotor experience, and how predictive processes can be run through these computational tools.215
They found that prediction errors can serve as a cue to distinguish between self-generated perceptual events216
and those generated by other subjects. Moreover, they showed how predictive processes can be used to217
attenuate self-body perception (see figure 2). Lang et al. (2018) adopted a convolutional neural network for218
implementing a forward model, which generates image predictions from low-dimensional proprioceptive219
and motor states (see figure 3).220

Pico et al. (2016) demonstrated that a two-wheeled mobile robot was capable of detecting unexpected221
changes in the environment and able to classify motor behaviours by comparing the ego-noise generated222
by its motors with the ego-noise prediction of its internal model. In a first experiment, several ego-noise223
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Figure 2. Self-body attenuation through predictive processes (Lang et al., 2018). A humanoid robot Nao is
moving its arm in front of an object. The first row shows the frames recorded from its camera. The second
row shows the enhanced frames, where self-body perception is attenuated. The attenuation is aided by a
forward model, which anticipates the pixels where the robot arm will be visualised, after executing an
intended motor command.

.

Figure 3. An illustration of the forward model adopted in Lang et al. (2018) for generating image
predictions from low-dimensional proprioceptive and motor states through a convolutional neural network.
Legend: S(t): sensory state at time t. M(t): Motor command sent at time t. D: Dense, i.e. fully connected,
neural network layer. C: Convolutional neural network layer. TC: Transposed Convolutional neural network
layer. Every layer except the last (output) one is followed by a ReLU activation unit (not shown) (Lang
et al., 2018).

.

prediction models have been trained, each of them with a different motor command pattern. All models224
were then fed with a particular motor sequence, obtaining a series of ego-noise predictions. The robot was225
able to determine the correct motor command pattern by selecting the model with the lowest ego-noise226
prediction error. In a second experiment, one ego-noise forward model has been trained by implementing227
random motor babbling on the robot in a flat arena. The model was tested by making the robot do a series228
of runs from side to side of the arena while calculating ego-noise predictions. A ramp was then added in229
the middle and the runs were repeated. A comparison between the ego-noise prediction errors generated in230
the flat arena and those of the arena with the ramp on the middle, showed that the ego-noise prediction231
error increased when the robot was over the ramp. This demonstrated that the robot was able to detect232
changes in the inclination of the surface it moves only by making ego-noise predictions.233
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Predictive models can also be used for robot imitation. Pico et al. (2017) utilised robot ego-noise as a234
mean for communicating intended actions among robots. In an experiment, a robot generated a series235
of ego-noise audio (emulated by a loudspeaker) representing an intended motor command sequence and236
conveyed it to another robot. The receiver robot obtained auditory features from the ego-noise through a237
convolutional autoencoder. These audio features were then fed into an inverse model in order to obtain238
motor command predictions, which were similar to the motor commands that generated the audio produced239
by the sender robot.240

Winfield (2018) describes a range of different experiments with artificial agents running internal241
simulations of themselves, others, and the environment, and compares these skills to an artificial Theory242
of Mind. ”Theory of mind is the term given by philosophers and psychologists for the ability to form a243
predictive model of self and others” Winfield (2018). These internal simulations show how to increase244
robot safety (Blum et al., 2018) by anticipating self and other behaviour (Winfield and Hafner, 2018).245

Predictive processes have also been studied by Hinz et al. (2018) in the context of the rubber hand illusion.246
The authors analysed the drift in the perception of the real limb towards the fake limb, which would suggest247
an update of body estimation resulting from stimulation. In particular, they compared body limb drifting248
patterns of human participants with the end-effector estimation displacement of a multisensory robotic249
arm enabled with predictive processing perception. They observed similar drifting patterns in both human250
and robot experiments, suggesting that the perceptual drift is due to prediction error fusion, rather than251
hypothesis selection.252

Touch seems to be a more direct sense, which could be trusted more for prediction than distant senses253
such as vision. It also equally concerns sense of agency and sense of body ownership. Ciaunica (2017)254
emphasizes the developmental aspects of touch, self-touch and intersubjective touch. An interesting aspect255
of predicting the sensory consequences of touch is the feeling of ticklishness, that has been addressed256
by Sarah Blakemore in a paper with the title ”Why can’t you tickle yourself” (Blakemore et al., 2000).257
This phenomenon of ticklishness has also been shown in mice recently (Ishiyama and Brecht, 2016). In a258
preliminary study on touch prediction in artificial systems, Stiehler and Hafner (2017) could show how259
a predictive model learns to predict the sensory consequences of touch. The sensory consequences of260
self-touch are usually more predictable than those of being touched by someone else. The sensation of261
ticklishness might be triggered by specific changes in prediction error over time, but there is little work262
so far on this topic. Quantitative studies showed that self-generated forces are perceived in the tactile263
modality as weaker than externally generated forces of the same magnitude, suggesting again that sensory264
consequences of a movement are anticipated and attenuated (Shergill et al., 2003).265

Vicente et al. (2016) showed how predictive process can also support adaptation of body schemas. The266
authors combined predictions made by a learned internal model with the actual visual feedback to improve267
the perceptual skill of a humanoid robot.268

The aforementioned studies suggest that predictive processes - as simulations of sensorimotor activities -269
are important tools for implementing basic cognitive capabilities in artificial systems, and may represent270
necessary building blocks for providing robots with subjective experiences, such as those typical of the271
minimal self.272

3 METRICS FOR AN ARTIFICIAL SELF

As mentioned before, the minimal self is often described by two major building blocks: a sense of body273
ownership and a sense of agency. Both are subjective measures (articulated by the word ’sense’), and274
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can vary between individuals, over time, and depending on the situation. As has been shown in various275
experiments, for example in the rubber hand illusion (Botvinick and Cohen, 1998), and in virtual reality276
studies (Banakou et al., 2018; Blanke and Metzinger, 2009), both the sense of body ownership and the277
sense of agency can be altered in humans. This points towards a certain plasticity of the brain’s body278
representation. Predictive capabilities play a major role in maintaining a consistent minimal self. Based on279
our self-models, we as humans anticipate the effects of our own actions and can thus monitor them. Longo280
et al. (2008) for example take a psychometric approach to the question of embodiment and sense of agency.281

In artificial agents, a similar measure for a sense of body ownership and a sense of agency could be282
identified. As discussed in the previous sections, most models related to agency and ownership rely on283
forward models and internal simulations, and have permanent access to a prediction error. When such284
a model is embodied in an artificial agent, the agent has also direct access to this measure. Michel et al.285
(2004), for instance, showed in a robotics study that extensions of the self in the visual field can be identified286
by learning the time delay between actions and their effects.287

What could be the necessary requirements of measuring self-ness in artificial agents? In analogy to288
prediction and anticipation in the human minimal self, a sense of agency and a sense of body ownership289
should be linked to changes in the prediction error in artificial agents over time as well. Preliminarily290
ignoring the complex dynamics of the prediction error, the lower the error in the prediction of the291
consequences of self-generated actions, the stronger a sense of agency and body ownership.292

Given the considerations taken above, we can define a self-manifold in sensorimotor space with the293
following properties: It is dynamic, as it can change with body growth and the acquisition of new skills; it294
is adaptive, where the error tolerance can vary according to the specific context and the states of the system295
and of the surrounding environment.296

The self-manifold outlines the boundaries of the self, both related to body ownership and agency, which297
cannot be clearly separated. A concrete example of learning manifolds in sensorimotor space, however not298
related to the concept of self, can be found in Laflaquière et al. (2015). The boundaries of the self related to299
body ownership are closely related to notions of peripersonal space (PPS) (Clery and Hamed, 2018). The300
same can hold for agency if we consider multisensory channels including tactile information and assume301
temporal and cross-modal predictions (Clery and Hamed, 2018).302

Prediction errors - such as those produced by forward models - may be used for determining the boundaries303
of the self-manifold in the sensorimotor space of artificial agents. Hereby, we encourage further robotics304
investigation within this research line, as it may provide insights in the understanding of the human self305
and in the implementation of the artificial self.306

This idea follows the argument of Gallese and Sinigaglia (2010) who envision the bodily self as a307
manifold of action possibilities that cannot be reduced to any form of proprioceptive awareness. Including308
the action possibilities necessarily needs a system able to make predictions about the consequences of own309
actions. Actions not only include physical body movements and change of postures, but also interaction310
with the external world, including interaction with objects but also other agents (see Neisser (1995)’s notion311
of interpersonal self).312

For simplification, we only consider prediction errors caused by actions affecting the peripersonal space313
of the agent. A self-metric for an artificial agent is a systematic way to assign a value to each suitable314
instance of an agent self. It should allow us to compare the self-ness of one agent at a certain instant in315
time to the self-ness of another agent or the same agent at another instant in time.316

Frontiers 9



Hafner et al. Prerequisites for an Artificial Self

Nonetheless, there are still open issues that need to be solved for deciding on such a metric: how big is317
the time window for normalisation and what other timing issues arise; what are the modalities to include or318
exclude; and which are suitable computational models for multimodal integration. Such a metric will also319
allow to decide the balance of predicted information versus perceived information and might ultimately320
shed light on mechanisms of disturbances of the self in humans.321

Similarities to the concept of the self-manifold can be found with that of the markov blanket (Kirchhoff322
et al., 2018). Organisms tend to self-organise within a coherent whole, maintaining a boundary that323
separates their internal states from the external world. A markov blanket has been theoretised as defining324
the boundaries of such systems in a statistical sense. If taking the theoretical standpoint of the Free Energy325
Principle, as proposed by Friston (2013) , this would mean that organisms maintain their integrity by326
minimising variational free energy (surprise) over their internal states. That is, they maximise evidence327
for their own models, i.e. their own existence (Kirchhoff et al., 2018). In predictive coding, free energy328
is associated with prediction errors. The free-energy bound, or markov blanket, can be associated with329
a prediction error boundary. A self-manifold may thus be formalised as a markov blanket around the330
sensorimotor states of an agent.331

4 CONCLUSIONS

In this manuscript, we studied the literature on developmental processes for an artificial self. We332
reviewed a number of works addressing the self in artificial systems and suggesting basic behavioural333
and computational components that may serve for the implementation of subjective experiences in robots.334
However, many questions and challenges in the development of an artificial self still remain open.335

In section 2, we reviewed the behavioural and computational components necessary to develop an336
artificial self - inspired by models of the human self - in the three areas ”Self-exploration behaviours and337
artificial curiosity”, ”Body representations”, and ”Sensorimotor simulations and predictive processes”.338
These ingredients of an artificial self have been studied extensively in robotics and computational modeling,339
and will need to be integrated for a full understanding of the self using computational methods.340

A common trend in both analytic sciences such as psychology and neuroscience and synthetic sciences341
such as robotics is to look more into the developmental processes that shape the self. This allows us to342
identify prerequisites and test existing theories of the self.343

In section 3, we pointed out that beside the challenging task of implementing such mechanisms in artificial344
systems, there is a need for defining and designing metrics for an artificial self. We suggested requirements345
for such a self-metric and identified properties of a self-manifold as being adaptive and dynamic. Although346
we are far from establishing whether artificial agents can ever undergo subjective experiences, these metrics347
may provide support and insights in the investigation of the self, in both robots and humans.348

To conclude this review, we suggest a number of open challenges of the artificial self. In particular,349
there is a need of integrating the three main behavioural and computational components mentioned above:350
Self-exploration behaviours and artificial curiosity, body representations, and sensorimotor simulations and351
predictive processes.352

Moreover, further investigation is required in addressing the following overall challenges: designing353
models for multimodal integration in lifelong learning robotics setups; working on a refinement of self-354
metrics; identifying difference and complementarity between agency and body ownership; realising355
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the integration of temporal and intentional binding effects within predictive computational models; and356
resolving synchronisation as well as conceptual issues.357

In robotics, we can access internal states and inspect sensorimotor and prediction information. However,358
to what extent can this privileged point of view allow us to state - if ever possible - that a robot is undergoing359
subjective experience? Indeed, there is a need for further debating the possibility of phenomenological360
experience in artificial systems.361

CONFLICT OF INTEREST STATEMENT

PL was employed by SoftBank Robotics and has received funding from the European Union’s Horizon362
2020 research and innovation programme APRIL. The authors declare that the research was conducted in363
the absence of any commercial or financial relationships that could be construed as a potential conflict of364
interest.365

AUTHOR CONTRIBUTIONS

VVH and GS produced most of the text within this manuscript. PL and APV contributed to section 2, in366
particular discussing studies on goal-directed exploration (PL) and ego-noise representation and imitation367
(APV).368

FUNDING

The work of GS, VVH and APV was funded by the European Union’s Horizon 2020 research and innovation369
programme under grant agreement No 773875 (EU-H2020 ROMI, Robotics for Microfarms) and by the370
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 402790442 (”Prerequisites for371
the Development of an Artificial Self”).372

PL has received funding from the European Union’s Horizon 2020 research and innovation programme373
under the Marie Sklodowska-Curie grant agreement No 674868 (APRIL), where VH is also an associate374
partner.375

The work of GS has received funding from the European Union’s Horizon 2020 research and innovation376
programme under the Marie Sklodowska-Curie grant agreement No. 838861 (Predictive Robots)377

REFERENCES

Acevedo-Valle, J. M., Hafner, V. V., and Angulo, C. (2018). Social reinforcement in artificial prelinguistic378
development: A study using intrinsically motivated exploration architectures. IEEE Transactions on379
Cognitive and Developmental Systems doi:10.1109/TCDS.2018.2883249380

Apps, M. A. and Tsakiris, M. (2014). The free-energy self: a predictive coding account of self-recognition.381
Neuroscience & Biobehavioral Reviews 41, 85–97382
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